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Alright everyone, welcome to this segment of our Phys 608 Laser 

Spectroscopy course. Today, we embark on a very important topic, detailed 

in Chapter 3, Section 4 of our notes: Transit-Time Broadening. As you can 

see, these materials have been prepared by Distinguished Professor 

Doctor M A Gondal for our course here at KFUPM. 

Transit-time broadening is a fundamental concept in laser spectroscopy, 

and indeed, in any scenario where particles interact with a localized wave 

or field for a finite duration. It's one of several mechanisms that contribute 

to the observed widths of spectral lines, and understanding it is absolutely 

crucial for anyone aiming to perform high-resolution spectroscopy or to 

interpret spectroscopic data accurately. We'll find that in many practical 

situations, especially those involving fast particles or tightly focused laser 

beams, transit-time broadening can actually become the dominant factor 

limiting the achievable resolution, often overshadowing even the natural 

linewidth of a transition. So, let's delve into why this occurs, how we can 

quantify it, and importantly, what strategies we can employ to mitigate its 

effects. 
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This page appears to be a separator. Let's move directly into the core 

material on the next slide. 
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Slide 1: Transit-Time Broadening – Why It Matters 

Now, let's begin our detailed discussion with what's labeled here as "Slide 

1: Transit-Time Broadening – Why It Matters." This slide sets the stage by 

highlighting the significance of this phenomenon. 

The first bullet point states: "Spectroscopic linewidth determines the 

achievable resolution and the minimum measurable frequency shift." This is 



a cornerstone of all spectroscopy. The linewidth, which is essentially the 

spread in frequencies observed for a spectral transition, dictates how well 

we can distinguish between two closely spaced spectral features. If your 

lines are broad, two nearby peaks will merge into a single blob, and you 

lose information. Similarly, if you're trying to measure a very small change 

in a transition frequency – perhaps due to an external field (like Zeeman or 

Stark effects), an isotopic shift, or a subtle Doppler shift – the precision of 

your measurement is fundamentally limited by how narrow your spectral 

line is. The narrower the line, the more precisely you can determine its 

center frequency, and thus, the smaller the frequency shift you can reliably 

measure. So, the quest for high resolution in spectroscopy is, in many 

ways, a quest for narrower linewidths. 

The second bullet point introduces the core scenario for transit-time 

broadening: "When a particle crosses a laser beam quickly, the interaction 

time, 𝑇, can be far shorter than its spontaneous-emission lifetime, 𝜏𝑠𝑝." 

Let's unpack this. Imagine an atom or molecule, our "particle," moving and 

entering a laser beam. It only interacts with the laser light for the duration it 

spends inside the beam. We call this duration the interaction time, denoted 

by 𝑇. Now, every excited state of an atom or molecule also has a natural 

lifetime, denoted here as 𝜏𝑠𝑝 (sp for spontaneous emission). This is the 

average time the particle would stay in the excited state before decaying 

spontaneously, even if it were left undisturbed. 

The critical situation arises when the particle is moving so fast, or the laser 

beam is so narrow, that the time it spends in the beam (𝑇) is much, much 

shorter than this natural lifetime (𝜏𝑠𝑝). For example, an atom might have a 

natural lifetime of 10 nanoseconds, but if it's zipping through a 1-millimeter 

wide laser beam at a significant fraction of the speed of light, its transit time 

could be picoseconds! In such cases, the interaction is abruptly cut short 

not by spontaneous decay, but by the particle simply leaving the interaction 

region. 



This leads us to the third bullet point, which explains the consequence: "In 

this short-interaction regime, the uncertainty principle associates the finite 

time window, 𝑇, with an intrinsic frequency uncertainty: shorter 𝑇 implies a 

broader line." This is where quantum mechanics, specifically the time-

energy uncertainty principle, comes into play. You'll recall that one form of 

this principle is 

𝛥𝐸 𝛥𝑡 ∼ ℏ, 

or, in terms of frequency, 

𝛥𝜈 𝛥𝑡 ∼
1

2𝜋
. 

If an interaction is limited to a finite time duration, 𝛥𝑡, then there's an 

inherent uncertainty or spread in the energy, 𝛥𝐸, or frequency, 𝛥𝜈, 

associated with that interaction. In our case, the effective duration of the 

coherent interaction between the particle and the laser field is the transit 

time, 𝑇. So, this 𝑇 acts as our 𝛥𝑡. Consequently, there's an associated 

frequency uncertainty, 𝛥𝜈, given roughly by 

𝛥𝜈 ∼
1

2𝜋𝑇
. 

This uncertainty manifests as a broadening of the observed spectral line. 

The shorter the interaction time 𝑇, the larger the frequency uncertainty 𝛥𝜈, 

and thus, the broader the spectral line. This is the essence of transit-time 

broadening. It's a fundamental limit imposed by the finite duration of 

observation or interaction. 
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Continuing our exploration of why transit-time broadening matters, the first 

point here elaborates on its role relative to other broadening mechanisms: 

"Transit-time broadening therefore replaces natural (lifetime-limited) 

broadening as the dominant mechanism whenever..." and then a condition 

is given. 



Let's first recall natural broadening. This is the broadening that arises due 

to the finite lifetime, 𝜏𝑠𝑝, of the excited state itself. Even if an atom were 

perfectly stationary and interacted with light for an infinitely long time, its 

spectral line would still have a minimum width dictated by its natural 

lifetime, again via the uncertainty principle (𝛥𝜈𝑛𝑎𝑡𝑢𝑟𝑎𝑙 ≈
1

2𝜋𝜏𝑠𝑝
). This is the 

most fundamental linewidth limit. 

However, transit-time broadening is an additional effect. If the transit time, 

𝑇, is significantly shorter than the natural lifetime, 𝜏𝑠𝑝, then the frequency 

uncertainty due to 𝑇 (which is proportional to 
1

𝑇
) will be significantly larger 

than the frequency uncertainty due to 𝜏𝑠𝑝 (which is proportional to 
1

𝜏𝑠𝑝
). In 

such cases, the transit-time effect dictates the observed linewidth, making it 

much broader than the natural linewidth. 

The condition for this dominance is given by the equation: 

𝑇 =
𝑑

|𝑣|
≪ 𝜏𝑠𝑝 

Let's break this down: 

* 𝑇 is the transit time, in seconds. 

* 𝑑 represents the effective beam diameter, in meters. This is the distance 

the particle travels while inside the laser beam. For a simple cylindrical 

beam, it's the diameter. For a Gaussian beam, it would be related to the 

beam waist or width. 

* The magnitude of 𝑣, written as |𝑣|, is the speed of the particle 

perpendicular to the laser beam, in meters per second. We specify 

"perpendicular" because it's this component of velocity that determines how 

quickly the particle traverses the beam diameter 𝑑. 



* The "much, much less than" symbol (≪) indicates that 𝑇 is significantly 

smaller than 𝜏𝑠𝑝. 

* And 𝜏𝑠𝑝 is, of course, the spontaneous emission lifetime, in seconds. 

So, whenever the time it takes for the particle to physically cross the laser 

beam 
𝑑

|𝑣|
 is substantially shorter than the time it would naturally remain in its 

excited state 𝜏𝑠𝑝, transit-time broadening will be the main contributor to the 

observed linewidth, masking the natural linewidth. 

The slide then reiterates the definitions: "where 𝑑 equals effective beam 

diameter in meters, and the magnitude of 𝑣 equals speed of the particle 

perpendicular to the beam in meters per second." It's crucial to remember 

these definitions as we proceed. 
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The final point on why transit-time broadening matters underscores its 

practical relevance: "Understanding, predicting, and mitigating this effect is 

essential for high-precision laser spectroscopy, frequency standards, and 

Doppler-free techniques." 

Let's consider each of these: 

* High-precision laser spectroscopy: In many experiments, we aim to 

resolve very fine details in spectra – perhaps hyperfine structure, small 

isotopic shifts, or subtle effects that test fundamental physical theories. 

Achieving this requires extremely narrow spectral lines. If transit-time 

broadening is significant, it will obscure these details, limiting the precision 

of our measurements and the depth of our understanding. So, we 

absolutely need to be able to calculate it, and if it's a problem, figure out 

ways to reduce it. 

* Frequency standards: Devices like atomic clocks, or more broadly, 

optical frequency standards, rely on locking a laser's frequency to an 



extremely stable and narrow atomic or molecular transition. The stability 

and accuracy of these standards are directly related to the 𝑄-factor, or 

quality factor, of the reference transition, which is inversely proportional to 

its linewidth. Transit-time broadening can be a major limiting factor for the 

performance of these frequency standards. For instance, in cesium 

fountain clocks, atoms pass through a microwave cavity; their transit time 

limits the Ramsey fringe width, which is crucial for the clock's stability. 

Similar considerations apply to optical clocks using laser-cooled atoms or 

ions. 

* Doppler-free techniques: We've learned about techniques like saturated 

absorption spectroscopy or two-photon spectroscopy, which are designed 

to eliminate or greatly reduce Doppler broadening – often the largest 

source of broadening in gas-phase samples at ordinary temperatures. 

However, even when Doppler broadening is conquered, other mechanisms 

like natural broadening, pressure broadening, and, very importantly, transit-

time broadening can still remain and limit the ultimate resolution. So, even 

in sophisticated Doppler-free experiments, one must carefully consider and 

often actively manage transit-time effects to achieve the desired precision. 

In essence, transit-time broadening is not an obscure or minor effect; it is a 

practical and often significant challenge in a wide range of laser 

spectroscopy applications. This motivates our deep dive into its 

characteristics and how to manage it. 
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Alright, let's now move to "Slide 2: Computing The Transit Time 𝑇 — Step-

by-Step." Having established why transit-time broadening is important, we 

now need to understand how to calculate the crucial parameter, the transit 

time capital 𝑇 itself. 

The first bullet point sets up a simplified model: "Assume a cylindrically 

symmetric laser beam of diameter 𝑑." This is a common starting 

assumption. Many laser beams, especially those in the fundamental TEM00 



mode, are indeed (or can be approximated as) cylindrically symmetric in 

their intensity profile. The diameter '𝑑' is the characteristic width of this 

interaction region. For a more realistic Gaussian beam, '𝑑' might be related 

to, say, twice the beam waist radius, or some effective diameter based on 

the intensity profile. For now, let's think of it as a well-defined diameter. 

The second bullet point describes the particle's motion: "A particle with 

speed magnitude, |𝑣|, travels approximately perpendicularly across the 

beam." We're considering the component of the particle's velocity that is 

perpendicular to the axis of the laser beam. This is because it's this velocity 

component, combined with the beam diameter 𝑑, that determines how long 

the particle remains within the beam. If a particle were moving parallel to 

the beam axis, its interaction time would be determined by other factors, 

like the length of the sample cell or the beam's Rayleigh range, not its 

transverse speed across a diameter. 

With these assumptions, the transit time, capital 𝑇, is given by the very 

simple and intuitive formula: 

𝑇 =
𝑑

|𝑣|
 

So, 𝑇, in seconds, is the beam diameter 𝑑 in meters, divided by the 

particle's perpendicular speed, magnitude |𝑣|, in meters per second. This is 

just distance divided by speed equals time. 

The third bullet point suggests a "Units consistency check:" which is always 

a good practice in physics. 
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Continuing with our unit consistency check from the previous slide, we 

have the equation: 

𝑚

𝑚 𝑠−1
= 𝑠 



Let's verify this. Meters, 𝑚, divided by meters per second, 𝑚 𝑠−1, is 

equivalent to meters multiplied by the reciprocal of meters per second, 

which is seconds per meter (𝑠 𝑚−1). So, 𝑚 times 𝑠 𝑚−1 results in the 

meters canceling out, leaving us with seconds, 𝑠. Thus, as the slide 

confirms, 𝑇 has units of seconds. This makes perfect sense for a time 

duration. 

Now, let's consider the practical importance and typical magnitudes 

involved. The next bullet point notes: "Practical importance: for thermally 

populated molecular beams, the magnitude of 𝑣 is typically hundreds of 

meters per second (𝑚 𝑠−1); for ion beams, the magnitude of 𝑣 can reach 

106 to 108 meters per second (𝑚 𝑠−1)." 

Let's elaborate. For molecular beams, even if they are generated by 

supersonic expansion which cools them significantly, the residual 

velocities, or velocities in a simple effusive beam from a thermal source, 

are typically in the range of hundreds of meters per second. For example, 

the root-mean-square speed of a nitrogen molecule at room temperature is 

around 500 𝑚 𝑠−1. 

For ion beams, the situation can be quite different. Ions can be accelerated 

in electric fields to very high energies. It's not uncommon in certain 

experiments, like those involving ion traps or accelerator-based studies, for 

ions to reach speeds of 106 meters per second (that's one million meters 

per second) up to 108 meters per second (one hundred million meters per 

second). The latter is a significant fraction of the speed of light (which is 3 ×

108 meters per second). 

Given these speeds, let's see the implication, as stated in the final bullet 

point: "Therefore, even millimetre-scale beams can impose sub-

microsecond interaction times, orders of magnitude below most 

spontaneous lifetimes (which are typically in the microsecond (𝜇𝑠) to 

millisecond (𝑚𝑠) range)." 



Consider a typical laser beam diameter of, say, 1 millimeter, which is 10−3 

meters. If a molecule travels at 500 𝑚 𝑠−1 (5 × 102 𝑚 𝑠−1) across this 1-

millimeter beam, the transit time 𝑇 would be 

𝑇 =
10−3 m

5 × 102  𝑚 𝑠−1
, 

which is 0.2 × 10−5 seconds, or 2 × 10−6 seconds. That's 2 𝜇𝑠. 

Now, if we have an ion moving at, say, 106 𝑚 𝑠−1 across the same 1-

millimeter beam, the transit time 𝑇 would be 

𝑇 =
10−3 m

106 𝑚 𝑠−1
, 

which is 10−9 seconds. That's 1 ns! 

Compare these transit times to typical spontaneous lifetimes. For many 

allowed electronic transitions in atoms, lifetimes are in the range of 1 to 100 

nanoseconds. For vibrational transitions in molecules, lifetimes can be 

much longer, from microseconds to milliseconds, or even seconds in some 

cases. Rovibrational lifetimes are often in this microsecond to millisecond 

regime. 

So, a 2 𝜇𝑠 transit time for a thermal molecule might be comparable to or 

shorter than some molecular lifetimes. But a 1 ns transit time for a fast ion 

is almost certainly going to be much shorter than the natural lifetime of 

most atomic excited states (unless it's a very short-lived X-ray transition, for 

example). 

The key takeaway here is that with common experimental parameters – 

millimeter-scale beams and typical particle velocities – the transit times can 

easily fall into the nanosecond to microsecond range. This often pushes us 

into the regime where 𝑇 is indeed much shorter than 𝜏sp, making transit-

time broadening a dominant concern. 
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Slide 3: Numerical Illustration — Example 1 (Molecular Beam) 

Let's solidify these ideas with "Slide 3: Numerical Illustration — Example 1 

(Molecular Beam)." Here we'll plug in some numbers. 

First, we're given a thermal speed: The magnitude of velocity, |𝑣|, equals 

5.0 × 104 centimeters per second. 

To work in S.I. units, we convert this to meters per second. Since 100 

centimeters make a meter, 104 centimeters per second is 102 meters per 

second. So, this is equal to 5.0 × 102 meters per second, or 500 meters per 

second. This is a typical thermal speed for a molecule like nitrogen or 

oxygen at or slightly above room temperature. 

Next, we're given the beam diameter: 𝑑 = 0.10 centimeters. 

Again, converting to meters, this is 1.0 × 10−3 meters, or 1 millimeter. This 

is a very common diameter for a laser beam in a lab, perhaps after some 

focusing or collimation. 

Now, the slide asks for the "Transit time:" We'll use our formula 𝑇 =
𝑑

|𝑣|
. 
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Continuing with our molecular beam example, let's calculate the transit 

time, capital 𝑇. 

Using the values from the previous slide, 𝑑 = 1.0 × 10−3 meters and |𝑣| =

5.0 × 102 meters per second. 

So, capital 𝑇 equals 

1.0 × 10−3 meters

5.0 × 102 meters per second
. 

One divided by five is 
1

5
= 0.2. Ten to the minus three divided by ten to the 

two is 
10−3

102
= 10−5. 



So, 𝑇 = 0.2 × 10−5 seconds, which can be written as 2.0 × 10−6 seconds. 

And 10−6 seconds is a microsecond (𝜇s). So, the transit time is 2 

microseconds. 

Now, let's compare this to a typical lifetime. The slide states: "Typical 

spontaneous lifetime for rovibrational levels: 𝜏𝑠𝑝 is approximately 1 

millisecond (ms), which equals 10−3 seconds." 

This is a reasonable order of magnitude for the lifetime of some infrared 

rovibrational transitions in molecules. Some might be shorter, many can be 

longer, but it gives us a benchmark. One millisecond is one thousand 

microseconds. 

So, let's look at the ratio: "Ratio 𝜏𝑠𝑝 divided by capital 𝑇 is approximately 

500." 

Let's check this: 𝜏𝑠𝑝 is 10−3 seconds, and 𝑇 is 2 × 10−6 seconds. 

The ratio is 

10−3 s

2 × 10−6 s
=
1

2
× 103 = 0.5 × 1000 = 500. 

Indeed, the ratio is 500. 

What does this mean? It means that the spontaneous lifetime (1000 𝜇s) is 

500 times longer than the transit time (2 𝜇s). In other words, the molecule is 

in the laser beam for only a very small fraction (
1

500
) of the time it would 

naturally take to decay from the excited state. 

The implication is profound: "transit-time broadening dominates by two 

orders of magnitude." Remember, broadening is inversely proportional to 

the relevant time. So, the transit-time broadening will be roughly 500 times 

larger than the natural broadening. 



"Two orders of magnitude" means a factor of 100. Here, it's 500, which is 

5 × 102, so it's between two and three orders of magnitude larger. This 

clearly illustrates a scenario where achieving the natural linewidth would be 

impossible without addressing this very significant transit-time broadening. 
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Here we have "Fig. 1: Molecular Beam Crossing a Laser Beam." This 

diagram provides a helpful visual for the scenario we've just discussed in 

our numerical example. 

Let me describe what we see. 

On the left side of the diagram, we have a "Molecular Beam" indicated. 

This is represented by a series of small blue circles, which symbolize 

individual molecules, moving from left to right. An arrow shows their 

direction of travel along a dashed horizontal line, which represents their 

trajectory. 

These molecules are shown encountering a "Laser Beam." The laser beam 

is depicted as a larger, circular region shaded in pink. This shaded area is 

labeled as the "Shaded Interaction Region," signifying that it's only when 

the molecules are within this region that they interact with the laser light. 

We can see some molecules approaching the laser beam, a few are 

depicted inside the pink circle (currently interacting), and one molecule is 

shown having already passed through the laser beam and exited on the 

right side. 

Below the pink circular laser beam, there's a horizontal double-arrow line 

segment. This segment is labeled "(beam diameter, path length)". This 

visually represents the distance 𝑑 – the diameter of the laser beam – that a 

molecule must traverse to cross the interaction region. 

The key concept this figure illustrates is that the interaction between a 

molecule and the laser light is confined to the spatial extent of the laser 



beam. The time it takes for a molecule, moving with a certain velocity, to 

cross this diameter 𝑑 is precisely the transit time, capital T, which we've 

been calculating using 𝑇 =
𝑑

|𝑣|
. This simple picture is fundamental to 

understanding where transit-time broadening comes from. 
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Now let's consider a different scenario with "Slide 4: Numerical Illustration 

— Example 2 (Fast Ion Beam)." This will highlight how dramatically things 

can change with faster particles. 

First, the "Ion speed": The slide denotes this as 𝑣, which typically means 

average speed. Let's take it as the characteristic speed of the ions. 𝑣 =

3.0 × 108 cm/s. Converting to S.I. units, this is 3.0 × 106 m/s. This is an 

extremely high speed! Three million meters per second. For reference, the 

speed of light is 3 × 108  m/s, so these ions are moving at 1% of the speed 

of light. Such speeds are achievable in ion accelerators or in certain high-

energy plasma environments. 

Next, the "Beam diameter": 𝑑 = 0.10 cm, which, as before, is 1.0 × 10−3 m 

(or 1 millimeter). We're using the same laser beam diameter as in the 

molecular beam example to allow for a direct comparison of the effect of 

particle speed. 

Now, we need to calculate the "Transit time:" for these fast ions. 
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Continuing with our fast ion beam example, let's calculate the transit time, 

capital 𝑇. We have 𝑑 = 1.0 × 10−3 meters and the ion speed |𝐯| (or 𝑣‾) =

3.0 × 106 meters per second. So, capital 𝑇 equals 
1.0×10−3 meters

3.0×106 meters per second
. 

One divided by three is approximately 
1

3
≈ 0.333. 10−3 divided by 106 is 

10−9. So, 𝑇 is approximately 0.33 × 10−9 seconds, which is more commonly 

written as 3.3 × 10−10 seconds. A time of 10−9 seconds is one nanosecond 



(ns). So, 3.3 × 10−10 seconds is zero point three three nanoseconds. This 

is an incredibly short interaction time – about a third of a nanosecond! 

Now, let's compare this to the typical lifetimes of excited states in atoms, as 

ions are often atomic species. The slide notes: "Many atomic excited states 

possess 𝜏𝑠𝑝 ≈ 10−8 to 10−7 seconds." This range, 10−8 s to 10−7 s, 

corresponds to 10 nanoseconds to 100 nanoseconds. These are typical 

lifetimes for allowed electronic transitions in neutral atoms and ions. The 

comparison is stark: our calculated transit time 𝑇 is 0.33 nanoseconds. This 

is significantly shorter than even the lower end of typical atomic lifetimes 

(e.g., 10 ns). The slide concludes: "here 𝑇 is still shorter, so even atomic 

lines are transit-time limited in fast-ion experiments." 

Indeed, if 𝑇 is 0.33 ns and a typical 𝜏𝑠𝑝 is, say, 10 ns, then 𝑇 is about 30 

times shorter than 𝜏𝑠𝑝. Consequently, the transit-time broadening 

(proportional to 1/𝑇) will be about 30 times larger than the natural 

broadening (proportional to 1/𝜏𝑠𝑝). This means that even for atomic 

transitions, which can have relatively short natural lifetimes compared to 

molecular vibrational transitions, experiments involving such fast ion beams 

traversing millimeter-scale laser beams will almost invariably be dominated 

by transit-time broadening. This is a crucial consideration in, for example, 

beam-foil spectroscopy or experiments with fast ions from accelerators. 

Page 13: 

This slide, also titled "Numerical Illustration — Example 2 (Fast Ion Beam)," 

provides a visual summary and comparison for the fast ion beam case 

we've just analyzed. 

At the top, there's a diagram labeled "Fast Ion Beam Interacting with Laser 

Probe." Let me describe it. On the far left, an "Ion Source" is indicated, from 

which a "Fast Ion Beam" emerges, moving horizontally to the right. The 

speed is noted as 𝑣 = 3.0 × 106 m/s. The ions are represented as small 

blue dots. 



This ion beam passes through a "Laser Beam," which is depicted as a very 

narrow vertical red bar. The region where the ion beam and the laser beam 

overlap, and thus where interaction occurs, is highlighted by a yellow 

dashed box labeled "Laser-Probe Region." The width of this laser beam 

(and interaction region) is dimensioned as 𝑑 = 1.0 × 10−3 m, our familiar 1 

millimeter. This diagram effectively shows the very brief passage of these 

extremely fast ions through the laser probe. 

Below this interaction diagram, we have a "Timescale Comparison" graph. 

This is a simple horizontal bar chart designed to make the relative 

magnitudes of the transit time and spontaneous lifetime visually apparent. 

There are two bars: The first, short green bar is labeled "Transit Time (T):" 

and its length corresponds to 0.33 ns. 

The second, much longer orange bar is labeled "Spontaneous Lifetime 

(𝜏sp):" This bar extends significantly further to the right, representing a 

timescale of approximately 10 ns, and it's noted that it can go up to 100 ns. 

A horizontal axis below these bars is marked with 0 ns, then 0.33 ns 

(aligning with the end of the green bar), and further to the right, 10 ns 

(aligning with the start of where the bulk of the orange bar shows its 

length). It's abundantly clear from this visual that the orange bar 

representing 𝜏sp absolutely dwarfs the tiny green bar representing 𝑇. 

A note at the bottom of the graph quantifies this visual: "Note: 𝑇 = 0.33 ns 

is approximately 30 times shorter than the lower end of 𝜏sp = 10 ns." This 

confirms our earlier calculation and strongly reinforces the conclusion that 

in this fast ion beam scenario, the interaction time 𝑇 is far, far shorter than 

the spontaneous lifetime 𝜏sp, ensuring that transit-time broadening will be 

the dominant broadening mechanism. 
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Slide 5: Finite-Duration Oscillator Model — Physical Analogy 



Now we transition to "Slide 5: Finite-Duration Oscillator Model — Physical 

Analogy." To understand the lineshape that results from a finite interaction 

time, it's helpful to use a simplified model. This slide introduces a classical 

analogy. 

The first bullet point suggests: "Model an atom or molecule as a classical 

electric dipole (oscillator) with natural frequency omega naught (𝜔0)." This 

is a common approach in introductory treatments of light-matter interaction. 

We imagine that the atom or molecule, when interacting with light, behaves 

like a tiny classical oscillator – perhaps an electron bound to a nucleus by a 

spring-like force. This oscillator has a natural frequency, 𝜔0 (omega sub 

zero, an angular frequency in radians per second), at which it prefers to 

oscillate. This 𝜔0 corresponds to the resonant frequency of the quantum 

mechanical transition. 

The second bullet point applies the finite interaction concept: "The dipole is 

excited and oscillates during a finite interval 0 ≤ 𝑡 ≤ 𝑇." (zero is less than or 

equal to small t, which is less than or equal to capital T). So, imagine the 

laser field excites this classical dipole. The dipole starts to oscillate, but it 

only does so for the duration it's actually within the laser beam – that is, for 

the transit time, capital T. After it leaves the beam, we assume its 

oscillation is abruptly cut off or ceases to be driven in the same way. 

The third bullet point, "Mathematically, position coordinate," simply sets the 

stage for the equation on the next slide, which will describe the oscillator's 

motion. 

This classical model, while a simplification of the true quantum mechanical 

picture, allows us to use the powerful tools of Fourier analysis to predict the 

spectral consequences of this finite oscillation time. 
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Here we see the mathematical description of our finite‐ duration oscillator's 

position coordinate, 𝑥(𝑡): 



𝑥(𝑡) is given by a two‐ part definition: It equals 𝑥0cos(𝜔0𝑡), for the time 

interval where 0 ≤ 𝑡 ≤ 𝑇. And, 𝑥(𝑡) = 0 for 𝑡 > 𝑇. 

Let's interpret these terms: 

* 𝑥(𝑡) represents the displacement of our classical oscillator at any given 

time '𝑡'. This displacement is directly related to the oscillating electric dipole 

moment of the atom or molecule. 

* 𝑥0 is the amplitude of this oscillation. 

* 𝜔0 is the natural angular frequency of the oscillator, which, as we said, 

corresponds to the resonant transition frequency. 

* The crucial part is the time constraint: the oscillation occurs with this 

cosine form only for the duration 𝑇, from 𝑡 = 0 (when it enters the beam, 

say) to 𝑡 = 𝑇 (when it leaves). 

* For all times 𝑡 greater than 𝑇 (after leaving the beam), the oscillation 

amplitude 𝑥(𝑡) is zero. This represents the abrupt cessation of the driven 

oscillation. 

The first bullet point clarifies the physical meaning of this mathematical 

truncation: "The sudden shut-off at 𝑡 = 𝑇 emulates the particle leaving the 

laser field." 

This is the key approximation in this simple model. Once the particle is 

outside the laser beam, the interaction stops, and in this model, its induced 

oscillation stops. 

The second bullet point states our objective: "Goal: compute the emitted 

spectrum via the Fourier transform of 𝑥(𝑡)." 

This is a fundamental principle in physics: the frequency spectrum of a 

time‐ dependent signal is given by its Fourier transform. If our oscillating 

dipole 𝑥(𝑡) is responsible for emitting radiation, then the spectrum of that 

emitted radiation will be related to the Fourier transform of 𝑥(𝑡). Since 𝑥(𝑡) 



is non‐ zero only for a finite duration 𝑇, we anticipate from the properties of 

Fourier transforms that its spectrum will have a certain width, and this width 

will be inversely related to 𝑇. This is precisely how we will mathematically 

derive the transit‐ time broadened lineshape. 
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Slide 6: Fourier Transform — Step-by-Step Integration 

Now we move to "Slide 6: Fourier Transform — Step-by-Step Integration." 

We're going to carry out the Fourier transform of the truncated oscillator 

signal 𝑥(𝑡) that we just defined. 

The first step is to "Define spectral amplitude, 𝐴(𝜔)": The equation given is: 

𝐴(𝜔) =
1

√2𝜋
∫ 𝑥0

𝑇

0

cos(𝜔0𝑡)𝑒
−𝑖𝜔𝑡  𝑑𝑡 

Let's break this down: 

• 𝐴(𝜔) is the spectral amplitude at a given angular frequency 𝜔 (omega). 

The set of all 𝐴(𝜔) values for different 𝜔 makes up the frequency spectrum. 

• The factor of 
1

√2𝜋
 is a common normalization convention for Fourier 

transforms. 

• The integral is taken from 𝑡 = 0 to 𝑡 = 𝑇 because our signal 𝑥(𝑡) is non-

zero only in this interval. 

• The integrand is 𝑥(𝑡) = 𝑥0cos(𝜔0𝑡) multiplied by the complex 

exponential 𝑒−𝑖𝜔𝑡, which is the kernel of the Fourier transform. 

• 𝑑𝑡 indicates integration with respect to time. 

This integral will tell us how much of each frequency component 𝜔 is 

present in our time-limited signal. 



To make the integration easier, the second bullet point suggests: "Express 

cosine via exponentials:" Using Euler's formula, we can write: 

cos(𝜔0𝑡) =
1

2
(𝑒𝑖𝜔0𝑡 + 𝑒−𝑖𝜔0𝑡) 

This is a standard mathematical identity that converts a trigonometric 

function into a sum of complex exponentials, which are often easier to 

integrate when multiplied by other exponentials. 

The third bullet point is an instruction: "Insert and integrate term-by-term:" 

This means we'll substitute this exponential form of cosine into our integral 

for 𝐴(𝜔) and then integrate the resulting two exponential terms separately. 

This process will be shown on the next slide. 
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Continuing our Fourier transform calculation, after substituting the 

exponential form of cosine, the expression for the spectral amplitude 𝐴(𝜔) 

becomes: 

𝐴(𝜔) =
𝑥0

2√2𝜋
∫ [𝑒𝑖(𝜔0−𝜔)𝑡 + 𝑒−𝑖(𝜔0+𝜔)𝑡]
𝑇

0

 𝑑𝑡 

Here, we've combined the 𝑒−𝑖𝜔𝑡 from the Fourier transform kernel with the 

two terms from the cosine expansion. This results in two terms inside the 

integral: one with an exponent involving 𝜔0 −𝜔 and another with an 

exponent involving −(𝜔0 + 𝜔). 

Now, we need to "Evaluate integrals of the form" shown in the next bullet 

point: 

∫ 𝑒𝑖𝛥𝜔 𝑡
𝑇

0

 𝑑𝑡 

This is a standard integral. The result is: 



𝑒𝑖𝛥𝜔𝑇 − 1

𝑖𝛥𝜔
 

This result is obtained by performing the integration: ∫ 𝑒𝑎𝑥  𝑑𝑥 =
1

𝑎
𝑒𝑎𝑥. Here, 

𝑎 = 𝑖𝛥𝜔. We evaluate this from 0 to 𝑇. At 𝑡 = 𝑇, we get 
𝑒𝑖𝛥𝜔𝑇

𝑖𝛥𝜔
. At 𝑡 = 0, we 

get 
𝑒0

𝑖𝛥𝜔
=

1

𝑖𝛥𝜔
. Subtracting the lower limit from the upper limit gives the result 

shown. 

The term capital Delta omega here represents the coefficient of "it" in the 

exponent. In our 𝐴(𝜔) integral, we have two such forms: * For the first term, 

capital Delta omega equals 𝜔0 −𝜔. * For the second term, capital Delta 

omega equals −(𝜔0 + 𝜔). 

The final bullet point on this slide introduces a crucial approximation: "Keep 

only the first term, where capital Delta omega equals 𝜔0 −𝜔, for the 

condition where the absolute value of 𝜔 −𝜔0 is much, much less than 𝜔0. 

This is known as the rotating-wave approximation (RWA). And we drop the 

second, rapidly oscillating term." 

Let's understand this. We are usually interested in the spectrum 𝐴(𝜔) for 

frequencies 𝜔 that are close to the natural resonance frequency 𝜔0 of the 

oscillator. 

* The first term in our integral involves 𝑒𝑖(𝜔0−𝜔)𝑡. If 𝜔 is close to 𝜔0, then 

𝜔0 −𝜔 is a small frequency (the detuning). This term oscillates relatively 

slowly. * The second term involves 𝑒−𝑖(𝜔0+𝜔)𝑡. If 𝜔 is positive and near 𝜔0, 

then 𝜔0 +𝜔 is approximately 2𝜔0, which is a very high frequency (twice the 

resonant frequency). This term oscillates very rapidly. 

When integrated over the time interval 𝑇 (assuming 𝑇 is long enough to 

encompass many cycles of 2𝜔0), the contribution from this rapidly 

oscillating second term tends to average out to a very small value 

compared to the contribution from the first, near-resonant term. 



The rotating-wave approximation consists of neglecting this second, 

"counter-rotating" or "off-resonant" term. This greatly simplifies the 

mathematics and is a very common and usually highly accurate 

approximation in laser spectroscopy and quantum optics when considering 

resonant or near-resonant interactions. The condition |𝜔 − 𝜔0| ≪ 𝜔0 

ensures we are looking at the spectrum near the resonance peak, where 

the RWA is most valid. 
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This slide, “Slide 7: Resulting Intensity Profile — Sinc² Function,” shows us 

the outcome of our Fourier transform after applying the rotating-wave 

approximation. 

The first bullet says, “After simplification,” (which refers to applying the 

RWA and performing the integration for the remaining term), the spectral 

amplitude 𝐴(𝜔) is approximately: 

𝐴(𝜔) ≈
𝑥0

2√2𝜋
⋅
𝑒𝑖(𝜔0−𝜔)𝑇 − 1

𝑖(𝜔0 − 𝜔)
 

This is the result of integrating only the 𝑒𝑖(𝜔0−𝜔)𝑡 term using the formula 

from the previous slide, with 𝛥𝜔 = (𝜔0 −𝜔). 

Now, what we usually measure in an experiment is not the complex 

spectral amplitude 𝐴(𝜔), but rather the spectral intensity, 𝐼(𝜔), which is 

proportional to the square of the magnitude of 𝐴(𝜔). So, the second bullet 

point states: 

“Spectral intensity 𝐼(𝜔) equals the magnitude of 𝐴(𝜔) squared:” 

The resulting expression for 𝐼(𝜔) is given as: 

𝐼(𝜔) = 𝐶 
sin2 [

(𝜔 − 𝜔0)𝑇
2

]

(𝜔 − 𝜔0)
2  



And the constant 𝐶 here is defined as 

𝐶 =
𝑥0
2

8𝜋
 

Let's briefly trace how we get from |𝐴(𝜔)|2 to this form. The term 

|𝑒𝑖𝜃 − 1|
2
 

equals 

(cos𝜃 − 1)2 + sin2𝜃 = cos2𝜃 − 2cos𝜃 + 1 + sin2𝜃 = 2 − 2cos𝜃

= 2(1 − cos𝜃). 

Using the half-angle identity 

1 − cos𝜃 = 2sin2 (
𝜃

2
), 

this becomes 

4sin2 (
𝜃

2
). 

In our 𝐴(𝜔), 𝜃 = (𝜔0 −𝜔)𝑇. So, 

|𝑒𝑖(𝜔0−𝜔)𝑇 − 1|
2
= 4sin2 (

(𝜔0 − 𝜔)𝑇

2
) = 4sin2 (

(𝜔 − 𝜔0)𝑇

2
) 

because sin2(−𝑥) = sin2(𝑥). 

The denominator in 𝐴(𝜔) was 𝑖(𝜔0 −𝜔). Its magnitude squared is 

(𝜔0 − 𝜔)
2 = (𝜔 − 𝜔0)

2. 

The prefactor in 𝐴(𝜔) was 
𝑥0

2√2𝜋
. Squaring its magnitude gives 

𝑥0
2

8𝜋
. 

So, 



|𝐴(𝜔)|2 ≈
𝑥0
2

8𝜋
⋅
4sin2 (

(𝜔 − 𝜔0)𝑇
2

)

(𝜔 − 𝜔0)
2

. 

This simplifies to 

|𝐴(𝜔)|2 ≈
𝑥0
2

2𝜋
⋅
sin2 (

(𝜔 − 𝜔0)𝑇
2

)

(𝜔 − 𝜔0)
2 . 

The slide has 𝐶 =
𝑥0
2

8𝜋
. So, if 

𝐼(𝜔) = 𝐶 ⋅
sin2 [

(𝜔 − 𝜔0)𝑇
2

]

(𝜔 − 𝜔0)
2 , 

then with the slide’s 𝐶, the expression becomes 

𝐼(𝜔) =
𝑥0
2

8𝜋
⋅
sin2 [

(𝜔 − 𝜔0)𝑇
2

]

(𝜔 − 𝜔0)
2 . 

This form is proportional to what’s known as the sinc-squared function. 

Specifically, the function sinc(𝑥) is defined as 

sinc(𝑥) =
sin(𝑥)

𝑥
, 

so 

sinc2(𝑥) =
sin2(𝑥)

𝑥2
. 

If we let 

𝑋 =
(𝜔 − 𝜔0)𝑇

2
, 

then sin2(𝑋) is the numerator. The denominator on the slide is (𝜔 − 𝜔0)
2, 

which is 



(
2 𝑋

𝑇
)
2

. 

So the expression is proportional to 

sin2(𝑋)

(
2 𝑋
𝑇
)
2 =

𝑇2

4
⋅
sin2(𝑋)

𝑋2
=
𝑇2

4
 sinc2 (

(𝜔 − 𝜔0)𝑇

2
). 

The exact prefactors depend on definitions, but the functional form, 

characterized by this (
sin(argument)

argument
)
2

 shape, is what’s key. This is the 

characteristic lineshape for an interaction that is abruptly turned on for a 

duration 𝑇 and then abruptly turned off – essentially the Fourier transform 

of a rectangular pulse in time. 
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Let's examine the "Key features of 𝐼(𝜔)," the spectral intensity profile we 

just derived. 

First, there's a "Central maximum at 𝜔 = 𝜔0." If you look at the expression 

𝐼(𝜔) = 𝐶 ⋅
sin2[

(𝜔−𝜔0)𝑇

2
]

(𝜔−𝜔0)
2

, it might seem like there's a problem when 𝜔 = 𝜔0 

because the denominator becomes zero. However, the numerator also 

becomes zero (sin(0) = 0). We need to evaluate the limit as 𝜔 approaches 

𝜔0. 

Let 𝑋 =
(𝜔−𝜔0)𝑇

2
. As 𝜔 → 𝜔0, 𝑋 → 0. The function is proportional to 

(
sin𝑋

2 𝑋
𝑇

)

2

= (
𝑇

2
)
2

(
sin𝑋

𝑋
)
2

. 

We know from calculus that the limit of 
sin𝑋

𝑋
 as 𝑋 approaches 0 is 1. 

Therefore, (
sin𝑋

𝑋
)
2
 approaches 1. So, at 𝜔 = 𝜔0, the function reaches its 



maximum value. The intensity is proportional to 𝑇2. A longer interaction 

time 𝑇 not only makes the line narrower but also increases its peak height, 

assuming the oscillator amplitude 𝑥0 is constant. 

Second, there are "Zeros whenever 

(𝜔 − 𝜔0)𝑇

2
= 𝑛𝜋, 

where 𝑛 is an element of the set of integers excluding zero (𝑛 ∈ ℤ\{0})." 

This means 
(𝜔−𝜔0)𝑇

2
= 𝑛𝜋. The sine function, sin(𝑋), is zero whenever 𝑋 is 

an integer multiple of 𝜋 (i.e., 𝑋 = 𝑛𝜋, where 𝑛 is an integer). The case 𝑛 =

0 corresponds to 𝑋 = 0, which is the central maximum we just discussed. 

For all other integer values of 𝑛 (𝑛 = ±1,±2,±3, …), sin(𝑛𝜋) = 0, so 

sin2(𝑛𝜋) = 0. This means the spectral intensity 𝐼(𝜔) drops to zero at these 

frequencies. These zeros define the edges of the central lobe and the 

subsequent side lobes of the lineshape. 

Third, the presence of "Side lobes characteristic of a finite rectangular time 

window (Fourier transform of a box)." Between the zeros, the sinc-squared 

function has secondary maxima, which are called side lobes. The first side 

lobe (between 𝑋 = 𝜋 and 𝑋 = 2𝜋, and 𝑋 = −𝜋 and 𝑋 = −2𝜋) is the largest, 

but it's significantly smaller in amplitude than the central maximum. 

Subsequent side lobes decrease in amplitude as |𝜔 − 𝜔0| increases. This 

overall pattern – a strong central peak with decaying, oscillatory side lobes 

– is the hallmark of the Fourier transform of a rectangular function (often 

called a boxcar function or a gate function). Our model of an oscillator that 

is "on" for a time 𝑇 and then "off" is precisely such a rectangular temporal 

window. 

Finally, we come to the width of this lineshape. The slide gives the "Full 

halfwidth at half maximum (HWHM):" and then an equation 

𝛿𝜔T =
5.6

𝑇
. 



Now, "Full halfwidth at half maximum" is a slightly ambiguous term. 

Standard terms are HWHM (Half Width at Half Maximum) or FWHM (Full 

Width at Half Maximum). Given the numerical value, this 𝛿𝜔T almost 

certainly refers to the FWHM. To find the FWHM, we need to solve for the 

frequencies 𝜔 where 𝐼(𝜔) is half of its peak value. This involves solving 

(
sin𝑋

𝑋
)
2

=
1

2
, 

or 

sin𝑋

𝑋
=
1

√2
. 

This equation must be solved numerically. The principal solution (for the 

first point where it drops to half) is 𝑋 ≈ 1.39156 radians. 

Remember 𝑋 =
(𝜔−𝜔0)𝑇

2
. So, at the half-maximum points, 

|𝜔 − 𝜔0|𝑇

2
≈ 1.39156. 

This means 

|𝜔 − 𝜔0| ≈
2 × 1.39156

𝑇
=
2.783

𝑇
. 

This quantity, |𝜔 − 𝜔0| at the half-height, is the HWHM. The FWHM is twice 

the HWHM, so 

FWHM ≈ 2 ×
2.783

𝑇
=
5.566

𝑇
. 

The value 
5.6

𝑇
 given on the slide is this FWHM, rounded slightly. So, the Full 

Width at Half Maximum of the transit-time broadened line, in angular 

frequency units (radians per second), is approximately 
5.566

𝑇
. 
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This slide presents a graph titled "Spectral Intensity Profile: $I(\omega) 

\propto \text{sinc}^{2\!\left(\frac{}}{(\omega-\omega_0)T}{2}\right)$." This 

notation, $I(\omega) \propto \text{sinc}^{2\!\left(\frac{}}{(\omega-

\omega_0)T}{2}\right)$, correctly identifies the functional form. 

Let's describe the graph. 

The vertical axis is labeled 
𝐼(𝜔)

𝐶
 (Normalized Intensity), meaning the 

intensity is normalized to its peak value at the center of the line. This axis 

ranges from 0.0 up to 1.0. 

The horizontal axis is labeled 
(𝜔−𝜔0)𝑇

2
. This is precisely the argument "X" of 

the sinc function we discussed. The axis is marked with values like −3𝜋, 

−2𝜋, −𝜋, 0, 𝜋, 2𝜋, 3𝜋, which correspond to where the zeros of the sine 

function (and thus the sinc function, except at 𝑋 = 0) occur. 

The plotted curve is a beautiful depiction of the sinc-squared function. 

* There's a prominent "Central Maximum" at the horizontal axis value of 0 

(i.e., when 𝜔 = 𝜔0). The normalized intensity here is 1.0. 

* The intensity drops sharply from this central peak. It reaches zero at 

horizontal axis values of ±𝜋, ±2𝜋, ±3𝜋, and so on. These points are 

explicitly labeled as "Zeros" with arrows. 

* Between these zeros, we see the characteristic "Side Lobes." The first 

side lobe (peaking around 𝑋 ≈ ±1.43𝜋 or ±4.49 radians) is the largest of 

the side lobes, reaching an intensity of about (
sin(1.43𝜋)

1.43𝜋
)
2

≈ 0.047, or 

roughly 4.7% of the central maximum's intensity. Subsequent side lobes 

are even weaker. 

The graph includes helpful annotations related to the linewidth: 

* A dashed horizontal red line is drawn at the normalized intensity level of 

0.5, indicating the half-maximum height. 



* The "HWHM ≈ 1.39" is indicated by a red double-headed arrow extending 

from the center (𝑋 = 0) to where the curve intersects the 0.5 intensity line 

on one side. This value, 1.39, is the 𝑋 value (
(𝜔−𝜔0)𝑇

2
) at the half-maximum, 

consistent with our earlier calculation (1.39156). 

* The "FWHM ≈ 2.78" is also shown by a red double-headed arrow 

spanning the full width of the central peak at the 0.5 intensity level. This 

FWHM, in terms of 𝑋, is 2 × 1.39, which is 2.78. 

* A note clarifies: "(Note: (𝜔 − 𝜔0)FWHM ⋅ 𝑇 ≈ 5.57, cf. slide value 5.6)". This 

confirms our derivation: if $X_{\text{FWHM}} = 

\text{FWHM\_\text{X}\_\text{values}} = 2.783$, and 𝑋 =
𝛥𝜔⋅𝑇

2
, then for the 

FWHM of the 𝛥𝜔 distribution, 

$$\frac{\Delta\omega_{\text{FWHM}} \cdot T}{2} = 

X_{\text{HWHM\_\text{value}}} = 1.39156.$$ 

So 𝛥𝜔FWHM ⋅ 𝑇 = 2 × 1.39156 = 2.78312. Oh, wait. 

The 𝑋 on the graph is 
(𝜔−𝜔0)𝑇

2
. 

The FWHM is the difference between the two 𝜔 values where the intensity 

is half. Let these be 𝜔1 and 𝜔2. 

So 
(𝜔1−𝜔0)𝑇

2
= −1.39156 and 

(𝜔2−𝜔0)𝑇

2
= +1.39156. 

The FWHM is 𝜔2 − 𝜔1 = [(𝜔2 − 𝜔0) − (𝜔1 −𝜔0)]. 

So, 

FWHM ⋅ 𝑇

2
= 1.39156 − (−1.39156) = 2 × 1.39156 = 2.78312. 

Therefore, 

$$\text{FWHM\_\text{angular}\_\text{frequency}} = \frac{2 \times 

2.78312}{T} = \frac{5.56624}{T}.$$ 



The graph's FWHM annotation of "≈ 2.78" refers to the width on the 𝑋-axis, 
(𝜔2−𝜔1)𝑇

2
. 

The note (𝜔 − 𝜔0)FWHM ⋅ 𝑇 ≈ 5.57 means the actual FWHM in (𝜔 − 𝜔0) 

units, multiplied by 𝑇, is 5.57. This is 𝛥𝜔FWHM ⋅ 𝑇 = 5.57, which means 

𝛥𝜔FWHM =
5.57

𝑇
. This perfectly matches our prior result for the FWHM of the 

spectral line. 

This graph provides an excellent visual summary of the sinc-squared 

lineshape, its central peak, its zeros, its side lobes, and the definition of its 

width. 
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We now arrive at "Slide 8: Connecting Model to a Rectangular Laser 

Beam." This is where we link our abstract finite-duration oscillator model 

back to a more physical picture of a laser beam. 

The first bullet point makes an assumption about the laser beam's profile: 

"Rectangular spatial intensity profile implies that the particle experiences 

constant field amplitude while inside the beam." Imagine a laser beam that 

has a "top-hat" or "cookie-cutter" profile. Its intensity is perfectly uniform 

across its diameter 𝑑 and abruptly drops to zero outside this diameter. If a 

particle passes through such a beam, the electric field amplitude it 

experiences will be constant while it's inside, and zero when it's outside. 

This scenario directly corresponds to our classical oscillator model where 

the oscillation amplitude 𝑥0 was constant for the duration 𝑇 (while inside the 

beam) and then dropped to zero. So, the rectangular beam profile justifies 

the rectangular time window in our oscillator model. 

The second bullet point establishes the crucial connection for the time 

duration: "Interaction time 𝑇 =
𝑑

|𝑣|
 effectively replaces the mathematical 

window length in the oscillator model." The abstract time duration "capital 

T" that we used in our Fourier transform derivation is now given a concrete 



physical meaning: it is the transit time of the particle, calculated as the 

beam diameter 𝑑 divided by the particle's perpendicular speed, magnitude 

of 𝑣. 

Therefore, as the third bullet point indicates, we can now write down the 

transit-time broadening for this rectangular beam case directly: 

𝛿𝜔rect ≈
5.6 |𝑣|

𝑑
 

Let's see how this comes about. 

From our analysis of the sinc-squared lineshape (page 19), we found that 

the Full Width at Half Maximum, which we called 𝛿𝜔T (using 𝑇 as the 

generic interaction time), was approximately 
5.6

𝑇
. Now, we simply substitute 

𝑇 =
𝑑

|𝑣|
 into this expression. So, 𝛿𝜔rect (where "rect" reminds us this is for a 

rectangular beam profile) equals 
5.6

(𝑑/|𝑣|)
, which is 

5.6 |𝑣|

𝑑
. 

This is a very important result. It tells us that for a top-hat beam profile, the 

transit-time broadening (FWHM in angular frequency) is: 

1. Directly proportional to the particle's speed |𝑣|. Faster particles lead to 

more broadening. 

2. Inversely proportional to the beam diameter 𝑑. Wider beams lead to less 

broadening. 

This intuitive relationship falls directly out of the Fourier analysis. 
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This slide continues by explicitly defining "Each symbol:" used in the 

formula for transit-time broadening for a rectangular beam, 𝛿𝜔rect ≈ 5.6 
|𝑣|

𝑑
. 

First: "𝛿𝜔rect equals full width at half maximum (FWHM), in units of radians 

per second (rad s
−1

)." This confirms that 𝛿𝜔rect represents the FWHM of 



the spectral line in terms of angular frequency. It's the spread between the 

two points where the intensity drops to half its maximum value. 

Second: "magnitude of 𝑣 (vertical bar 𝑣 vertical bar) equals particle speed, 

in meters per second (m s−1)." This is the speed of the atom or molecule as 

it transits perpendicularly across the laser beam. 

Third: "𝑑 equals beam diameter where intensity is uniform, in meters (m)." 

This '𝑑' is the physical width of our idealized rectangular laser beam. The 

"intensity is uniform" part emphasizes that we are using the top-hat model 

here. 

Finally, and very importantly, the "Implication:" "Doubling the beam 

diameter halves the width; reducing the speed has the same effect." This 

follows directly from the formula 𝛿𝜔rect ∝
|𝑣|

𝑑
. 

* If you double 𝑑 (make the beam twice as wide), keeping |𝑣| constant, 

𝛿𝜔rect will be halved. This is because the transit time 𝑇 =
𝑑

|𝑣|
 doubles, and 

broadening is inversely proportional to 𝑇. 

* Similarly, if you reduce the particle speed |𝑣| by half, keeping 𝑑 constant, 

𝛿𝜔rect will also be halved. This is again because the transit time 𝑇 doubles. 

These implications are not just mathematical consequences; they point 

directly to the fundamental strategies one can employ to reduce transit-time 

broadening in experiments: either make the interaction region larger 

(increase 𝑑) or make the particles slower (reduce |𝑣|). We will explore 

these strategies in more detail later. 
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Our discussion so far has relied on a somewhat idealized rectangular ("top-

hat") laser beam profile. "Slide 9: Realistic Laser Beams — Gaussian 

Spatial Profile" now moves us to a more common and physically accurate 

description of laser beams. 



The first bullet states: "Fundamental T E M sub zero zero mode intensity 

varies as Gaussian in radial coordinate 𝑟." Most well-behaved lasers, when 

properly aligned, operate in their lowest-order transverse mode, known as 

the TEM00 mode (Transverse ElectroMagnetic mode zero-zero). A key 

characteristic of this mode is that its intensity profile, when cut 

perpendicularly to the direction of propagation, is not uniform but rather has 

a Gaussian shape. The intensity is highest at the center of the beam (on 

the optical axis) and falls off smoothly and symmetrically in the radial 

direction 𝑟 away from the axis, following a Gaussian curve. 

The second bullet gives the "Electric field amplitude:" for such a beam. The 

equation is: 

𝐸(𝑟, 𝑡) = 𝐸0 𝑒
−
𝑟2

𝑤0
2
cos(𝜔𝑡) 

Let's break down this expression: * 𝐸(𝑟, 𝑡) is the electric field of the laser 

light at a radial position 𝑟 from the beam axis and at time 𝑡. * 𝐸0 (E sub 

zero) is the peak electric field amplitude, which occurs at the center of the 

beam (𝑟 = 0). * The term 𝑒
−
𝑟2

𝑤0
2
 is the Gaussian spatial envelope. 𝑟 is the 

radial distance from the beam axis. * 𝑤0 (w sub naught, often called the 

beam waist radius or simply beam radius) is a characteristic parameter of 

the Gaussian beam. It defines the "width" of the Gaussian profile. * The 

term cos(𝜔𝑡) represents the rapid temporal oscillation of the electric field at 

the optical angular frequency 𝜔. 

The slide then defines 𝑤0 more precisely: "where 𝑤0 = beam waist radius 

(m) at which the magnitude of the electric field, |𝐸|, equals 
𝐸0

𝑒
 (Euler's 

number)." So, 𝑤0 is the specific radial distance 𝑟 at which the electric field 

amplitude 𝐸(𝑟) has decreased to 
1

𝑒
 (approximately 36.8%) of its peak value 

𝐸0. It's important to note that the intensity of the light, which is proportional 

to 𝐸2, will fall off as 𝑒
−
2 𝑟2

𝑤0
2
. So, at 𝑟 = 𝑤0, the intensity will have decreased 



to (
1

𝑒
)
2
 or 

1

𝑒2
 (approximately 13.5%) of its peak value. The term "waist" 

radius specifically refers to the point along the beam's propagation axis (𝑧-

axis) where the beam is most tightly focused, and 𝑤0 is the radius at that 

narrowest point. More generally, away from the waist, the beam radius 

𝑤(𝑧) will be larger than 𝑤0. For simplicity in the context of transit-time 

broadening across a beam, we often characterize the beam by its local 

radius 𝑤. 
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Now that we have a Gaussian spatial profile for the laser beam, how does 

this affect the transit-time broadening? 

The first bullet point provides a link between the field and the 

atomic/molecular response: "Forced dipole amplitude proportional to field: 

𝑥 = 𝛼𝐸 with 𝛼 = polarizability [C m² V⁻ ¹]." This states that the amplitude 𝑥 

of our classical oscillator (representing the induced dipole moment in the 

atom/molecule) is proportional to the strength of the laser's electric field 𝐸 

that the particle experiences. The proportionality constant 𝛼 (alpha) is the 

polarizability of the atom or molecule, with units of Coulomb meter squared 

per Volt. 

Crucially, if the electric field 𝐸 has a Gaussian spatial profile, 𝐸(𝑟), then as 

a particle transits through this beam, the amplitude of its induced oscillation 

𝑥 will also vary in time following a Gaussian envelope, assuming its 

response is linear and instantaneous. That is, the particle experiences a 

stronger interaction at the center of the beam and a weaker interaction in 

the wings. 

This leads to the second bullet point: "Gaussian spatial envelope maps 

onto Gaussian frequency envelope after transit-time Fourier transform." 

This is a remarkable and very useful property of the Fourier transform: the 

Fourier transform of a Gaussian function is another Gaussian function. So, 

if the particle effectively "sees" a Gaussian pulse in time as it flies through 



the spatially Gaussian laser beam (i.e., its 𝑥(𝑡) has a Gaussian envelope in 

time), then the resulting frequency spectrum 𝐼(𝜔) of the emitted or 

absorbed light will also have a Gaussian lineshape. This is a more realistic 

lineshape for transit-time broadening in most laser experiments compared 

to the sinc
2
 function derived from the rectangular beam model. 

The third bullet point presents the "Derived Gaussian line shape:" 

𝐼(𝜔) = 𝐼0exp [−
(𝜔 − 𝜔0)

2𝑤0
2

2|𝑣|2
] 

Let's analyze this Gaussian function: 

* 𝐼(𝜔) is the spectral intensity at angular frequency 𝜔. 

* 𝐼0 is the peak intensity, occurring at the center of the line. 

* The exponential term defines the Gaussian shape. 

* The center of the Gaussian is at 𝜔 = 𝜔0 (omega naught), the natural 

resonance frequency. This is because the term (𝜔 − 𝜔0)
2 is zero when 𝜔 =

𝜔0, making the exponent zero, and 𝑒0 = 1, so 𝐼(𝜔0) = 𝐼0. 

* The "width" of this Gaussian is determined by the terms in the 

denominator of the exponent's argument: 𝑤0
2 (the square of the beam 

radius) and |𝑣|2 (the square of the particle speed). 

* Specifically, a standard Gaussian function is often written as exp (−
𝑦2

2𝜎2
). 

Comparing this to our exponent, 𝑦 = (𝜔 − 𝜔0), and 
1

2𝜎𝜔
2 =

𝑤0
2

2|𝑣|2
. 

* So, 𝜎𝜔
2 =

|𝑣|2

𝑤0
2 , which means the standard deviation of this Gaussian 

lineshape in angular frequency, 𝜎𝜔, is equal to 
|𝑣|

𝑤0
. 

* This tells us that the width of the Gaussian lineshape (represented by 𝜎𝜔) 

is directly proportional to the particle speed |𝑣| and inversely proportional to 



the beam radius 𝑤0. This is qualitatively the same dependence we found 

for the rectangular beam model (𝛿𝜔rect ∝
|𝑣|

𝑑
), but the numerical factors and 

the exact lineshape (Gaussian vs. sinc
2
) will be different. 
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This slide, also associated with "Slide 9," presents a helpful visual: 

"Gaussian Laser Beam and Resulting Frequency Spectrum." It consists of 

two panels side-by-side, illustrating the connection we just discussed. 

On the left panel, titled "Spatial Profile (TEM00)," we see a representation of 

the laser beam's cross-section. It's depicted as a circular spot that is bright 

red and intense at its center, gradually fading outwards towards the edges. 

This visually represents the Gaussian intensity distribution of the TEM00 

laser mode. Arrows indicate the diameter 2 𝑤 (presumably 2 𝑤0) and a 

radius 𝑤 (presumably 𝑤0), characterizing the size of this Gaussian profile. 

Below this, it's labeled "Beam Cross-section." 

A black arrow labeled "Particle Transit" and "Fourier Transform" points from 

this left panel (spatial profile) to the right panel (frequency spectrum). This 

arrow signifies the conceptual link: a particle transiting through this spatially 

Gaussian beam experiences a temporally Gaussian interaction, and the 

Fourier transform of this temporal interaction yields the frequency 

spectrum. 

The right panel is titled "Frequency Spectrum." It shows a plot with 𝐼(𝜔) 

(spectral intensity) on the vertical axis and 𝜔 (angular frequency) on the 

horizontal axis. The curve plotted is a smooth, symmetric, bell-shaped 

Gaussian curve. It peaks at a central frequency (which should be 𝜔0, the 

resonant frequency) and falls off smoothly on either side. A dashed vertical 

red line marks the center of this peak. This curve is labeled "Line Shape 

from Particle Transit." 



In summary, this diagram beautifully illustrates the core idea: a particle that 

transits through a laser beam with a Gaussian spatial intensity profile will 

exhibit a transit-time broadened spectral lineshape that is also Gaussian. 

This is a more refined and often more accurate model for transit-time 

broadening than the sinc
2
 profile derived from an idealized rectangular 

beam. 
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Slide 10: Transit-Time Limited Width for Gaussian Beam. 

We are now at "Slide 10: Transit-Time Limited Width for Gaussian Beam." 

Having established that a Gaussian beam profile leads to a Gaussian 

lineshape, we now need to quantify its width. 

The first bullet point addresses the "Full width at half maximum (FWHM) in 

angular frequency:" 

The formula given is: 

𝛿𝜔𝑡 = 2(
|𝑣|

𝑤
)√2ln2 

This is then approximated as 

𝛿𝜔𝑡 ≈ 2.4 (
|𝑣|

𝑤
) 

Let's break this down. 

* 𝛿𝜔t is the FWHM of the transit-time broadened line, in angular frequency 

units (radians per second). 

* |𝑣| is the particle speed, and "w" is the beam radius (specifically 𝑤0, the 

1/e field radius, from our previous definition of the Gaussian beam). 



* The factor √2ln2 is characteristic of Gaussian functions. The natural 

logarithm of 2, ln2, is approximately 0.693. So, 2ln2 is approximately 1.386. 

The square root of 1.386 is approximately 1.177. 

* Therefore, the FWHM is 2 (
|𝑣|

𝑤
) × 1.177, which is approximately 2.355 (

|𝑣|

𝑤
). 

* The slide approximates this coefficient 2.355 as 2.4, which is a common 

and convenient rounding for quick calculations. 

This formula tells us, just like for the rectangular beam, that the transit-time 

broadening for a Gaussian beam is directly proportional to the particle 

speed |𝑣| and inversely proportional to the beam radius "w". The numerical 

prefactor is different (2.355 or 2.4 here, versus 5.6 for the rectangular beam 

if "d" was taken as 2w, but the definitions of width were different there so 

direct comparison of numbers needs care. The key is the 
|𝑣|

𝑤
 dependence). 

The second bullet point shows how to "Convert to ordinary frequency (Hz):" 

Ordinary frequency 𝜈 (nu) is related to angular frequency 𝜔 (omega) by 

𝜔 = 2𝜋𝜈. 

Therefore, a spread 𝛿𝜔 corresponds to a spread 

𝛿𝜈 =
𝛿𝜔

2𝜋
. 

The formula given is: 

𝛿𝜈𝑡 =
𝛿𝜔𝑡
2𝜋

 

This is then approximated as 

𝛿𝜈𝑡 ≈ 0.4 (
|𝑣|

𝑤
). 

Let's check this approximation. If 𝛿𝜔t ≈ 2.355
|𝑣|

𝑤
, then 



𝛿𝜈t ≈ (
2.355

2𝜋
)
|𝑣|

𝑤
. 

Since 2𝜋 is approximately 6.283, the coefficient 
2.355

2𝜋
 is approximately 

0.3748. The slide rounds this coefficient to 0.4. So, a useful rule of thumb 

for the FWHM transit-time broadening in Hertz for a Gaussian beam is 

about 0.4 times the particle speed divided by the beam radius. 

If we used the 2.4 approximation for 𝛿𝜔t, then 

2.4

2𝜋
≈ 0.382, 

which is also well approximated by 0.4. 

The third bullet point, "Symbol definitions:", indicates that the definitions of 

these symbols will follow on the next slide. 
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This slide continues with the "Symbol definitions" for the transit-time limited 

width of a Gaussian beam. 

First: "w = beam waist radius (m)." This clarifies that 𝑤 in the formulas 

𝛿𝜔t ≈ 2.4
|𝑣|

𝑤
 and 𝛿𝜈t ≈ 0.4

|𝑣|

𝑤
 refers to the beam waist radius, which we 

previously denoted as 𝑤0. This is the 1/𝑒 amplitude radius of the Gaussian 

beam, typically at its narrowest point, in meters. 

Second: "magnitude of v (vertical bar v vertical bar) = particle speed (m 

s⁻ ¹)." This is, as before, the speed of the particle traversing the beam, in 

meters per second. 

The third bullet point introduces an important relationship in Gaussian 

beam optics: "Beam waist relates to wavelength 𝜆 (lambda) and Rayleigh 

range 𝑅 (capital R) (to be defined later):" 



𝑤 = √
𝜆𝑅

2𝜋
 

Let's be careful here. The standard definition of the Rayleigh range, often 

denoted 𝑍R (Z sub R), for a Gaussian beam with waist radius 𝑤0 is 

𝑍R =
𝜋𝑤0

2

𝜆
 

If we rearrange this for 𝑤0, we get 𝑤0
2 =

𝜆𝑍R

𝜋
, so 

𝑤0 = √
𝜆𝑍R

𝜋
 

The formula on the slide is 𝑤 = √
𝜆𝑅

2𝜋
. If the "R" on the slide is indeed the 

Rayleigh range (𝑍R), then there's a factor of √2 difference between the 

standard formula and the one presented here (denominator 𝜋 vs. 2𝜋 under 

the square root). 

It's possible that "R" here might refer to something else, or it's a slightly 

different convention. The parenthetical note "(to be defined later)" is crucial. 

For now, we will take this formula as given, understanding that 𝑤 (our 

beam waist radius), 𝜆 (the wavelength of light), and this quantity 𝑅 (related 

to how strongly the beam is focused or how far it propagates before 

diverging significantly) are interconnected. This relationship is fundamental 

when designing optical systems where a specific spot size 𝑤 is desired. 

We'll need to await the formal definition of this 𝑅 to fully reconcile it. 
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Following the symbol definitions, this slide highlights the "Key 

proportionalities:" which are crucial for understanding how to manage 

transit-time broadening with Gaussian beams. The statement is: "reduce 

width by either enlarging 𝑤 or lowering |𝑣|." 



This advice comes directly from our formulas for the transit-time broadened 

linewidth, for example, 𝛿𝜈t ≈ 0.4
|𝑣|

𝑤
 (for FWHM in Hertz). To achieve a 

narrower spectral line (i.e., to reduce 𝛿𝜈t), we need to: 

1. Enlarge '𝑤' (the beam waist radius): If the laser beam is wider, particles 

will spend a longer time traversing it (assuming their speed |𝑣| is constant). 

A longer interaction time, according to the uncertainty principle, leads to a 

smaller frequency uncertainty and thus a narrower line. 

2. Lower '|𝑣|' (the particle speed): If the particles are moving more slowly, 

they will also take a longer time to cross a beam of a given radius '𝑤'. 

Again, this longer interaction time results in a narrower line. 

These are the two fundamental levers we can pull to combat transit-time 

broadening. As we'll see shortly, various experimental techniques are 

designed to do precisely these things: either make the laser beam very 

wide or make the atoms/molecules very slow (cold). This simple 

proportionality encapsulates the core strategies for minimizing this 

ubiquitous broadening effect. 
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This brings us to "Slide 11: How To Reduce Transit-Time Broadening." 

Here, we'll discuss concrete strategies based on the proportionalities we 

just identified. 

Strategy 1 — Increase beam diameter 2 𝑤: (Here, '𝑤' is used as the 

radius, so 2 𝑤 is the diameter). 

* The first sub-bullet explains how: "Optical lenses can expand the waist." 

This refers to standard optical techniques. For instance, a beam expander, 

which typically consists of a pair of lenses (like a Galilean or Keplerian 

telescope configuration), can be used to increase the diameter of a 

collimated laser beam. By increasing '𝑤', we increase the transit time and 

thus reduce the broadening. 



* The second sub-bullet points out a practical consideration: "Trade-off: 

lower intensity at fixed power." If you have a laser with a fixed total power, 

𝑃, and you expand its beam area (which is proportional to 𝑤2), the intensity 

(power per unit area, 𝐼 ≈
𝑃

𝜋𝑤2
) will decrease. This can be a problem if your 

spectroscopic technique requires high intensity, for example, to saturate a 

transition (as in saturated absorption spectroscopy) or to drive a multi-

photon process efficiently. So, while expanding the beam helps with transit-

time broadening, it might negatively impact the signal strength or the ability 

to perform certain types of spectroscopy. 

Strategy 2 — Reduce particle velocity |𝑣|: 

* The first sub-bullet here is: "Cool translational motion (cryogenic beams, 

buffer-gas cooling)." This refers to methods of reducing the kinetic energy, 

and thus the speed, of the atoms or molecules. * Cryogenic beams: One 

common technique is supersonic expansion. A gas (perhaps the species of 

interest seeded in a light carrier gas like helium or argon) is expanded from 

a high-pressure reservoir through a small nozzle into a vacuum. This 

expansion process converts random thermal motion into directed flow, and 

through collisions during the expansion, it can lead to very significant 

cooling of the translational temperature of the gas in the moving frame, 

sometimes to just a few Kelvin or even lower. This reduces the average 

speed |𝑣|. * Buffer-gas cooling: Another method involves introducing the 

species of interest into a cell filled with a cold, inert buffer gas (like helium) 

that is maintained at cryogenic temperatures (e.g., by a cryocooler). 

Collisions between the particles and the cold buffer gas atoms thermalize 

the particles, reducing their average speed to values corresponding to the 

cryogenic temperature. 

* The second sub-bullet highlights a very powerful approach: "Laser cooling 

provides dramatic velocity reduction." Laser cooling encompasses a variety 

of techniques that use the momentum exchange between photons and 

atoms (and increasingly, some molecules) to reduce their temperature, 



often to extremely low values – microkelvin or even nanokelvin regimes. At 

these ultra-low temperatures, the particle velocities |𝑣| become exceedingly 

small. This leads to very long transit times and can dramatically reduce or 

nearly eliminate transit-time broadening. Techniques like Doppler cooling, 

Sisyphus cooling, and evaporative cooling (after trapping) fall under this 

umbrella. Laser cooling is a cornerstone of modern atomic physics and 

precision measurements. 
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Continuing with strategies to reduce transit-time broadening: 

Strategy 3 — Combine both: optical cavities support large spot sizes at 

high intensity. This strategy addresses the trade-off mentioned in Strategy 

1 (larger beam leading to lower intensity). An optical cavity, such as a 

Fabry-Pérot resonator, is formed by two highly reflective mirrors. If laser 

light is coupled into such a cavity resonantly, the light can make many 

round trips between the mirrors, leading to a significant build-up of optical 

power inside the cavity. This means you can achieve very high intensities 

within the cavity mode. 

Furthermore, the transverse mode structure within a cavity can be 

designed to have a relatively large spot size 𝑤. So, by using an optical 

cavity, it's possible to have both a large interaction region (large 𝑤) and 

maintain a high circulating laser intensity simultaneously. This effectively 

allows you to increase 𝑤 (good for reducing transit-time broadening) 

without suffering the penalty of reduced intensity that would occur with 

simple external beam expansion of a fixed power laser. This is a very 

powerful combination, employed in techniques like cavity-enhanced 

absorption spectroscopy or when performing spectroscopy on particles 

inside a build-up cavity. 

The final bullet point on this slide provides crucial validation: "Experimental 

verification: discussed in detail in Volume 2, Sections 2.3 & 9.2; record-

narrow molecular lines achieved using both methods." This is an important 



reminder that these strategies are not just theoretical constructs. They are 

well-established experimental techniques that have been successfully 

implemented. The reference to "Volume 2" (presumably of a textbook like 

Demtröder's "Laser Spectroscopy" or similar comprehensive texts) points to 

where one can find detailed descriptions of these advanced experimental 

methods and their applications. The phrase "record-narrow molecular lines 

achieved" underscores the success of these approaches in pushing the 

limits of spectroscopic resolution by effectively tackling transit-time 

broadening, among other effects. This could involve, for example, 

achieving linewidths that are at or even below the natural linewidth if the 

natural lifetime is very long and transit time was previously the limiting 

factor. 
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This slide presents a "Flowchart: Strategies to Reduce Transit-Time 

Broadening," which neatly summarizes the discussion we've just had. 

At the very top, a blue box states the overall goal: "Reduce Transit-Time 

Broadening," and it reminds us of the approximate formula for Gaussian 

beams: 𝛥𝜈t ≈ 0.4 
|𝑣|

𝑤
. 

From this main goal, the flowchart branches into three primary strategies: 

1. Strategy 1 (on the left, green box): "Increase Beam Diameter (𝑤)" * 

Flowing down from this, a yellow box details the "Method: Optical Lenses." 

It also notes the "Trade-off: Lower intensity at fixed power." * A small 

diagram below this shows a lens expanding a laser beam, with the beam 

radius 𝑤′ after the lens being larger than the initial radius 𝑤 (𝑤′ > 𝑤). 

2. Strategy 2 (on the right, green box): "Reduce Particle Velocity (|𝑣|)" 

* This branches into two methods, both in yellow boxes: * The first is 

"Method: Cryogenic / Buffer-Gas Cooling." A diagram shows a "Cold Cell" 

where the temperature 𝑇 is lowered (𝑇 ↓), resulting in a reduced velocity 𝑣′ 

being less than 𝑣 (𝑣′ < 𝑣). * The second is "Method: Laser Cooling 



(Dramatic reduction)." A diagram shows lasers acting on particles, 

indicating that the velocity 𝑣 is dramatically reduced (𝑣 ↓ dramatically). 

3. Strategy 3 (in the center, orange box): "Combine Both (Large 𝑤 & 

Low |𝑣|)" * Flowing down from this, a yellow box describes the "Method: 

Optical Cavities." It states that this "Supports large spot size at high 

intensity." * A diagram shows particles (noted as "cooled optional") 

interacting within an optical cavity that has a large mode diameter ("Large 

𝑤"). 

Finally, all three strategic paths converge at the bottom to a blue box 

labeled: "Experimental Verification: Record-Narrow Molecular Lines." It also 

adds "(Details: Vol. 2, Sec. 2.3 & 9.2)," referencing where more information 

can be found. 

This flowchart is an excellent visual aid. It clearly lays out the fundamental 

approaches (manipulating 𝑤 and |𝑣|), the common experimental 

techniques used to implement these approaches, and the powerful 

combination strategy using optical cavities. It also reinforces that these 

methods are experimentally proven to be effective in achieving ultra-high 

spectroscopic resolution. 
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Slide 12: Transit-Time Broadening vs Natural Width — Example 3.6(a) 

Now let's look at "Slide 12: Transit-Time Broadening vs Natural Width — 

Example 3.6(a)." This example will help us compare the magnitudes of 

transit-time broadening and natural broadening in a specific case. 

First, the "Species:" is given as nitrogen dioxide, NO₂ . Nitrogen dioxide is 

a well-studied molecule, important in atmospheric chemistry and as a 

benchmark system in molecular spectroscopy due to its complex visible 

absorption spectrum. 



Next, the "Mean thermal velocity:" This is given as 𝑣‾ = 600 m s−1. This is a 

reasonable thermal speed for NO₂  (molar mass about 46 g/mol) at a 

temperature somewhat above room temperature, or it could be a typical 

speed in a molecular beam. 

Then, the "Focused laser beam waist:" The beam waist radius is given as 

𝑤 = 0.10 mm. Converting to meters, 0.10 mm = 0.10 × 10−3 m = 1.0 ×

10−4 m. This represents a fairly tightly focused laser beam (a waist radius 

of 100 micrometers). 

With these parameters – the species, its speed, and the laser beam size – 

we can now calculate the transit-time broadening and compare it to an 

assumed natural linewidth for NO₂ . 
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Continuing with our nitrogen dioxide (NO₂ ) example from Slide 12: 

First, let's calculate the "Transit-time width (Hz):" We'll use the formula for a 

Gaussian beam: 𝛿𝜈t ≈ 0.4 ×
|𝑣|

𝑤
. Given |𝑣| (or 𝑣‾) = 600 m/s and 𝑤 = 1.0 ×

10−4 m. So, 𝛿𝜈t is approximately 0.4 × 600 (meters per second), divided by 

1.0 × 10−4 (meters). 0.4 × 600 = 240. So, 

𝛿𝜈t ≈
240

1.0 × 10−4
 Hz 

. This is 240 × 104 Hz, which equals 2.4 × 106 Hz. Since 106 Hz is 1 

Megahertz (MHz), the transit-time width is 2.4 MHz. This is a substantial 

linewidth in frequency units. 

Now, let's compare this to the natural linewidth. The slide states: "Natural 

linewidth 𝛿𝜈n (delta nu sub n) is approximately 10 kHz (kilohertz)." This 

value for the natural linewidth would depend on the specific electronic 

transition in NO₂  being probed. A 10 kHz linewidth corresponds to an 

excited state lifetime of 



𝜏 =
1

2𝜋𝛿𝜈n

≈
1

2𝜋 × 104 Hz
≈

1

62831 Hz
≈ 15.9 𝜇s. 

This is a plausible lifetime for some longer-lived excited states or could be 

limited by other fast non-radiative processes in a complex molecule like 

NO₂ . Let's take this 10 kHz value as given for this example. 

Now, the crucial comparison: 

The transit-time broadening 𝛿𝜈t is 2.4 MHz, which is 2400 kHz. The natural 

linewidth 𝛿𝜈n is 10 kHz. Clearly, 𝛿𝜈t is much, much larger than 𝛿𝜈n. 

The slide concludes: "transit-time broadening exceeds natural width by 

factor ~ 240." Let's check the factor: 

2400 kHz

10 kHz
= 240. 

Indeed, in this scenario, the transit-time broadening is 240 times greater 

than the natural linewidth. This means that if one were to perform 

spectroscopy on NO₂  under these conditions (thermal velocity of 600 m/s 

and a 100 𝜇m beam waist), the observed spectral lines would be almost 

entirely broadened by the transit-time effect. Any attempt to resolve 

features at the scale of the natural linewidth, or to measure the natural 

linewidth itself, would be completely futile. The resolution would be limited 

to about 2.4 MHz by the short transit time of the molecules through the 

focused laser beam. 
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Let's turn to another illustrative case: "Slide 13: Transit-Time Broadening vs 

Natural Width — Example 3.6(b)." This example focuses on a transition 

often used in frequency standards. 

The first point identifies the "Frequency standard transition: methane (CH₄ ) 

at 𝜆 = 3.39 𝜇m." Methane, CH₄ , has a rovibrational transition in its 𝜈3 

absorption band, specifically the 𝐹2
(2)

 component of the P(7) line, which 



occurs at a wavelength of 3.39 𝜇m. This transition is historically very 

important because it coincides with the emission line of the Helium-Neon 

(HeNe) laser operating at 3.39 𝜇m. Consequently, it has been extensively 

studied and used as a highly stable frequency and wavelength standard in 

the infrared region. Its natural linewidth is known to be very narrow. 

Next, the "Mean molecular speed:" This is given as 𝑣‾ = 7.0 × 104  cm/s. 

Converting to S.I. units, this is 7.0 × 102 m/s, or 700 m/s. This is a typical 

thermal speed for methane (molar mass about 16 g/mol) near room 

temperature. 

Finally, the "Desired limit: 𝛿𝜈t ≤ 10 kHz." This sets a target for the transit-

time broadening. We want the transit-time contribution to the linewidth, 𝛿𝜈t, 

to be less than or equal to 10 kHz. This target might be chosen because the 

natural linewidth of this methane transition is known to be in that regime (or 

even narrower), and we want to approach or be limited by the natural 

linewidth for use as a frequency standard. 

So, the challenge is: given the methane speed, what laser beam 

parameters are needed to achieve a transit-time broadening of 10 kHz or 

less? 

Page 35: 

Continuing with our methane example, where we desire a transit-time 

broadening 𝛿𝜈t of no more than 10 kHz, and the mean molecular speed 𝑣‾ is 

700 m/s: 

The first bullet point addresses the "Required beam waist: solving 0.4 ×

𝑣‾/𝑤 = 10 kHz." We start with our approximate formula for the FWHM 

transit-time broadening for a Gaussian beam: 𝛿𝜈t ≈ 0.4 
|𝑣|

𝑤
. We are given 

𝛿𝜈t = 10 kHz = 104 Hz, and 𝑣‾ = 700 m/s. We need to solve for 'w'. 

Rearranging the formula, 𝑤 ≈ 0.4 × 𝑣‾/𝛿𝜈t. Plugging in the values: 



𝑤 ≈
(0.4 × 700 m/s)

(104  Hz)
. 

0.4 × 700 = 280. So, 

𝑤 ≈
280

10000
 m = 0.028 m. 

0.028 m is equal to 2.8 cm. 

The slide presents the calculation slightly differently but arrives at a similar 

result: " 𝑤 =
0.4×𝑣‾

2𝜋 𝛿𝜈t

. This is then written as 
0.4×700

2𝜋×104
, which is approximately 

equal to 3.0 cm." There seems to be a slight inconsistency in the formula 

presentation here versus the typical usage of 𝛿𝜈t in Hertz. If we assume the 

result of 3.0 cm for 'w' is the intended target derived from these parameters, 

it means the effective coefficient in 𝑤 ≈ 𝐾 
|𝑣|

𝛿𝜈t

 is 

𝐾 =
𝑤 𝛿𝜈t

|𝑣|
=
(0.03 m) × 104 Hz

700 m/s
=
300

700
=
3

7
≈ 0.428. 

So, using a coefficient of about 0.428 or 0.43 in the 𝛿𝜈t relation leads to a 

required beam waist radius 𝑤 of approximately 3.0 cm. This is a remarkably 

large beam waist radius! 

The slide then states: "so diameter 2 𝑤 ≈ 6 cm." If the radius 𝑤 is 3.0 cm, 

then the beam diameter 2 𝑤 is indeed 6.0 cm. Imagine a laser beam that is 

6 centimeters wide – that's quite substantial for typical lab setups. 

The "Practical implication:" is profound: "frequency-standard cells employ 

large-mode cavities to satisfy this requirement." To achieve such a narrow 

transit-time broadening with thermal methane molecules, one needs an 

unusually large laser beam diameter. Generating such a wide, collimated 

beam with sufficient intensity using simple optics can be challenging. This 

is where Strategy 3 (combining large 𝑤 with high intensity using optical 

cavities) becomes essential. For methane frequency standards, this often 



involves using long absorption cells placed inside a laser cavity, or 

employing external optical resonators (build-up cavities) to create a large 

interaction volume with high effective laser power. This example vividly 

illustrates the demanding requirements that transit-time broadening can 

impose when striving for ultra-high resolution or stability. 
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This slide presents a bar chart titled "CH₄ : Natural vs. Transit-Time 

Linewidth vs. Beam Diameter." This visual powerfully summarizes the 

trade-offs for the methane example we've been discussing. 

Let me describe the chart: 

• The vertical axis represents "Linewidth (Hz)" and is plotted on a 

logarithmic scale, ranging from 1 kHz at the bottom, through 10 kHz, 

100 kHz, 1.0 MHz, up to 10 MHz at the top. 

• The horizontal axis shows "Laser Beam Diameter (2 𝑤)" with five 

different values: 0.2 mm, 2 mm, 2 cm, 6 cm, and 12 cm. 

• There's a legend indicating that blue bars represent the Natural 

Linewidth (𝛿𝜈n) and orange bars represent the Transit-Time Linewidth 

(𝛿𝜈t). 

Now, let's interpret the data presented in the bars: 

• Natural Linewidth (Blue Bars): For all five beam diameters shown, the 

natural linewidth for this methane transition is consistently depicted as a 

blue bar at 10 kHz. This serves as our reference – the ultimate linewidth 

limit we are trying to approach or match. 

• Transit-Time Linewidth (Orange Bars): This is where the effect of 

beam diameter becomes evident. We're assuming a methane speed of 𝑣‾ =

700 m/s.     • At a very small beam diameter of 0.2 mm (so 𝑤 =

0.1 mm = 10−4 m): The orange bar for 𝛿𝜈t skyrockets to 2.8 MHz 

(2800 kHz). This is vastly larger (280 times) than the 10 kHz natural 



linewidth. Using 𝛿𝜈t ≈ 0.428 ×
|𝑣|

𝑤
, we get 0.428 ×

700

10−4
≈ 2.996 MHz, which is 

consistent with 2.8 MHz. 

  • At a diameter of 2 mm (𝑤 = 1 mm = 10−3 m): The transit-time width 

𝛿𝜈t decreases to 280 kHz. This is a factor of 10 improvement, as expected 

for a 10-fold increase in diameter, but still 28 times larger than the natural 

width. 

  • At a diameter of 2 cm (𝑤 = 1 cm = 10−2 m): 𝛿𝜈t further reduces to 

28 kHz. Now we are getting closer, only about 2.8 times the natural width. 

  • At a diameter of 6 cm (𝑤 = 3 cm = 0.03 m) – which was our target 

from the previous calculation: The transit-time width 𝛿𝜈t is shown as 

9.33 kHz. This is now just below the 10 kHz natural linewidth! This 

demonstrates that with a 6 cm beam diameter, transit-time broadening can 

indeed be made comparable to or even less than the natural linewidth for 

thermal methane.  (0.428 ×
700

0.03
≈ 9986 Hz ≈ 10 kHz or 9.33 kHz using a 

slightly different coefficient or precise 𝑣). 

  • Finally, at a very large diameter of 12 cm (𝑤 = 6 cm = 0.06 m): 𝛿𝜈t 

becomes even smaller, at 4.67 kHz, roughly half of the previous value, as 

expected for doubling the diameter. 

The overall message from this graph is crystal clear: to reduce transit-time 

broadening to the level of the narrow natural linewidth of the methane 

3.39 𝜇m transition using room-temperature molecules, one requires laser 

beam diameters on the scale of many centimeters. This powerfully 

illustrates the challenge posed by transit-time broadening in high-resolution 

spectroscopy and for frequency standards, and it underscores why 

techniques like molecular cooling or cavity-enhanced interaction zones are 

so vital. 
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Slide 14: Beyond Plane Waves — Curved Phase Fronts in Focused 

Beams. 

We now shift our focus slightly with "Slide 14: Beyond Plane Waves — 

Curved Phase Fronts in Focused Beams." So far, in our discussion of 

transit time, we've implicitly assumed that the laser beam consists of plane 

waves, or at least that the phase of the laser field is constant across the 

beam's transverse profile at any given point along its axis. However, real 

laser beams, especially when focused, do not have perfectly flat phase 

fronts. 

The first bullet point states: "Real Gaussian beams possess spherical 

phase fronts with radius of curvature 𝑅(𝑧)." A fundamental property of 

propagating Gaussian beams (like the TEM00 mode we discussed) is that 

their surfaces of constant phase – the wavefronts – are spherical. The 

radius of curvature of these spherical wavefronts, denoted as 𝑅(𝑧), 

changes as the beam propagates along its axis (the 𝑧-direction). At the 

beam waist (the point of tightest focus), the wavefronts are actually planar, 

meaning 𝑅 is infinite. As you move away from the waist in either direction, 

the wavefronts become curved, with 𝑅(𝑧) initially decreasing and then 

increasing again further away. 

The second bullet point highlights a consequence: "Atom moving radially 

(along 𝑟) experiences spatial phase variation." Imagine an atom that is not 

perfectly on the beam axis (𝑟 = 0) but is at some radial position 𝑟 within the 

beam. Or consider an ensemble of atoms spread across the beam's profile. 

If the wavefronts are curved, then an atom at a larger radial distance 𝑟 will 

encounter a slightly different phase of the laser's electric field compared to 

an atom on the axis, even if they are at the same longitudinal position 𝑧. 

This spatial variation of phase across the beam profile can lead to an 

additional broadening effect, distinct from the simple transit time effect 

we've considered so far. This is because the interaction depends on the 

phase relationship between the atom and the field. 



The third bullet point sets up the calculation for this effect: "Maximum 

longitudinal phase shift between center 𝑟 = 0 and edge 𝑟 = 𝑟1:" Here, 𝑟1 

represents some characteristic radial extent of the interaction, perhaps 

related to the beam radius 𝑤. We are interested in the difference in the 

phase of the light wave experienced by an atom at this radial position 𝑟1 

compared to an atom at the center of the beam (𝑟 = 0). This phase 

difference arises because of the "sag" of the curved wavefront. 
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To calculate this phase shift due to wavefront curvature, we start with the 

fundamental relationship between optical path difference and phase shift. 

The first equation is: 

𝛥𝜙 =
2𝜋𝑥

𝜆
 

Here, 𝛥𝜙 (Delta phi) is the phase shift, 'x' is the optical path difference, and 

𝜆 (lambda) is the wavelength of the light. This formula tells us that a path 

difference of one wavelength corresponds to a phase shift of 2𝜋 radians. 

The slide clarifies: "where x = optical path difference." 

Now, to find this optical path difference 'x' arising from a spherical 

wavefront, we use the "Geometry of circle:" (approximating the spherical 

wavefront by a circular arc in a 2D cross-section). The equation given is: 

𝑟2 = 𝑅2 − (𝑅 − 𝑥)2 

This describes a situation where 'R' is the radius of curvature of the 

wavefront, 'r' is the radial distance from the optical axis (where the 

wavefront is at some reference position), and 'x' is the longitudinal 

displacement (the "sagitta") of the wavefront at this radial distance 'r' 

compared to its on-axis position. 

Expanding (𝑅 − 𝑥)2 gives 



(𝑅 − 𝑥)2 = 𝑅2 − 2 𝑅𝑥 + 𝑥2. 

So, 

𝑟2 = 𝑅2 − (𝑅2 − 2 𝑅𝑥 + 𝑥2) = 2 𝑅𝑥 − 𝑥2. 

If we assume that 'x' is much, much smaller than 'R' (which is often true for 

typical laser beam curvatures not too far from the waist, or for r not too 

large compared to R), we can neglect the 𝑥2 term compared to the 2 𝑅𝑥 

term. 

So, 

𝑟2 ≈ 2 𝑅𝑥. 

Rearranging this for 'x', we get: 

𝑥 ≈
𝑟2

2 𝑅
. 

This formula, 𝑥 ≈
𝑟2

2 𝑅
, tells us that the optical path difference 'x' due to 

wavefront curvature is proportional to the square of the radial distance 'r' 

and inversely proportional to the radius of curvature 'R'. A larger radius of 

curvature (flatter wavefront) means a smaller path difference 'x' for a given 

'r'. 

The slide then says, "Therefore," leading us to substitute this expression for 

'x' into our phase shift formula, which will be shown on the next page. 
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Following from the previous slide's derivation of the optical path difference 

𝑥 ≈
𝑟2

2 𝑅
, we can now write the phase shift 𝛥𝜙. 

The boxed equation on this slide is: 

𝛥𝜙 =
𝑘𝑟2

2 𝑅
=
𝜔𝑟2

2 𝑐𝑅
 



Let's see how this is derived: 

We had 𝛥𝜙 =
2𝜋𝑥

𝜆
 from the general relation, and we found 𝑥 ≈

𝑟2

2 𝑅
. 

Substituting 'x', we get 𝛥𝜙 ≈
2𝜋

𝜆
⋅
𝑟2

2 𝑅
. 

The quantity 
2𝜋

𝜆
 is the wave number (or wavevector magnitude), denoted by 

𝑘. 

So, 𝛥𝜙 ≈
𝑘𝑟2

2 𝑅
. This is the first part of the boxed equation. 

Now, for the second part: We know that the angular frequency 𝜔 (omega) 

of the light is related to the wave number 𝑘 and the speed of light 𝑐 by 𝜔 =

𝑘𝑐. 

Therefore, 𝑘 =
𝜔

𝑐
. 

Substituting this expression for 𝑘 into our formula for 𝛥𝜙, we get: 𝛥𝜙 ≈
𝜔

𝑐
⋅

𝑟2

2 𝑅
=

𝜔𝑟2

2 𝑐𝑅
. This is the second part of the boxed equation. 

So, the phase shift 𝛥𝜙 experienced by a particle at a radial distance 'r' from 

the beam axis, due to a wavefront with radius of curvature 'R', is given by 

these equivalent expressions. 

Let's recap the terms: * 𝛥𝜙 is the phase shift in radians. * 𝑘 is the wave 

number (
2𝜋

𝜆
). * 𝑟 is the radial distance from the beam axis. * 𝑅 is the radius 

of curvature of the wavefront. * 𝜔 is the angular frequency of the light. * 𝑐 is 

the speed of light. 

This phase shift means that different parts of an atomic ensemble, or even 

different parts of a single extended molecule if it's comparable in size to 'r', 

will experience slightly different phases of the laser field simultaneously. 

This dephasing across the beam profile can lead to an effective broadening 



of the spectral line, an effect that is in addition to the transit-time 

broadening caused by the finite interaction duration. 
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This slide, also titled "Beyond Plane Waves — Curved Phase Fronts in 

Focused Beams," provides a diagram to visualize the concept of phase 

shift due to wavefront curvature. 

Let me describe the diagram: 

* A horizontal line labeled "Optical Axis (𝑧)" runs through the center, 

representing the propagation axis of the laser beam. 

* To the left, a point "C" is marked on this axis. This represents the center 

from which the radius of curvature is measured. 

* A blue curved line, representing a "Spherical Wavefront," is drawn. An 

arrow from "C" to the point where this wavefront intersects the optical axis 

is labeled "𝑅(𝑧)," indicating the radius of curvature. 

* To the right of this curved wavefront, a vertical dashed line is shown, 

labeled "Tangent Plane." This tangent plane touches the spherical 

wavefront on the optical axis (at 𝑟 = 0). 

* An "Atom's radial motion" is indicated by a red dot representing an atom 

located at some radial distance 𝑟1 from the optical axis. An arrow suggests 

it might be moving radially, although the phase difference exists even for a 

static off-axis position. 

* The crucial feature is the region labeled "Phase variation region 𝛥𝜙 ∝ 𝑥." 

Between the curved wavefront and the tangent plane, at the radial position 

𝑟1 of the atom, there's a small longitudinal distance labeled 'x'. This 'x' is 

precisely the optical path difference we calculated earlier (𝑥 ≈
𝑟1
2

2 𝑅
). It's the 

"sag" of the wavefront at radius 𝑟1 relative to the on-axis point. 



* The annotation "𝛥𝜙 ∝ 𝑥" reminds us that the phase shift experienced by 

the atom is directly proportional to this path difference 'x'. 

* At the bottom of the diagram, the formula we derived is reiterated: "𝛥𝜙 =

𝑘𝑟1
2

2 𝑅
=

𝜔𝑟1
2

2 𝑐𝑅
," explicitly using 𝑟1 for the radial position. 

This diagram effectively illustrates how an off-axis atom (at 𝑟1) encounters 

the laser field with a phase that is shifted relative to an atom on the optical 

axis (𝑟 = 0), due to the wavefront's curvature. This path difference 'x' and 

the resulting phase shift 𝛥𝜙 are the origin of the wavefront curvature 

broadening effect. 
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Slide 15: Linewidth Including Wave-Front Curvature 

Now we arrive at "Slide 15: Linewidth Including Wave-Front Curvature." 

This slide presents a formula that combines the effects of both transit time 

and this newly introduced phase curvature. 

The first bullet point states: "Combined effect of transit time and phase 

curvature derived in Ref. [105]:" This indicates that the following formula is 

a result from a more detailed theoretical treatment, likely found in an 

advanced textbook or research paper (Reference [105] would be in the 

bibliography of the source material). This often involves a more 

sophisticated Fourier analysis that accounts for both the finite transit time 

and the spatially varying phase across the beam. 

The equation for the total angular frequency linewidth, 𝛿𝜔 (delta omega), is 

given as: 

𝛿𝜔 = (
2|𝑣|

𝑤
√2ln2)√1 + (

𝜋𝑤2

𝑅𝜆
)

2

. 

Let's break this somewhat formidable expression down: 



* The first part of the expression, 
2|𝑣|

𝑤
√2ln2, should look very familiar. This 

is precisely the FWHM transit-time broadening for a Gaussian beam in 

angular frequency that we encountered on Slide 10 (which we called 𝛿𝜔t, 

with 'w' being the beam radius 𝑤0). Let's call this purely transit-time 

component 𝛿𝜔𝑡𝑡 for clarity here. 

* The second part, the term √1 + (
𝜋𝑤2

𝑅𝜆
)
2

 (i.e., the square root of that 

bracketed quantity), acts as a correction factor or a multiplier. This factor 

accounts for the additional broadening due to the wavefront curvature. 

To make this clearer, the second bullet point explicitly says: "Define purely 

transit-time component". And the formula is given: 𝛿𝜔𝑡𝑙 (where 'tl' likely 

stands for transit-limited) equals 

𝛿𝜔𝑡𝑙 =
2|𝑣|

𝑤
√2ln2. 

This simply isolates the first part of the combined formula, which is indeed 

the transit-time broadening we are already familiar with (approximately 

2.355 
|𝑣|

𝑤
). 

So, the total linewidth 𝛿𝜔 can be seen as the original transit-time linewidth 

(𝛿𝜔𝑡𝑙) multiplied by a factor that depends on 𝑤, 𝑅, and 𝜆, representing the 

wavefront curvature effect. 
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To simplify the expression for the combined linewidth and to better 

understand the impact of wavefront curvature, this slide introduces a key 

dimensionless parameter. 

The first bullet point says: "Introduce dimensionless phase-front 

parameter". This parameter is denoted as capital Delta Phi (𝛥𝛷) and is 

defined by the equation: 



𝛥𝛷 =
𝜋𝑤2

𝑅𝜆
. 

Let's examine this parameter: 

* 𝑤 is the beam radius (e.g., 𝑤0). * 𝑅 is the radius of curvature of the 

wavefront. * 𝜆 (lambda) is the wavelength of the light. * 𝜋 (pi) is the 

mathematical constant. 

You can verify that this combination of quantities is indeed dimensionless. 

This 𝛥𝛷 parameter effectively quantifies the "amount" of phase variation 

across the beam radius 𝑤 due to the curvature 𝑅 at wavelength 𝜆. It is 

directly related to the phase shift 𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
 that we calculated at 𝑟 = 𝑤 on 

page 39 (if we identify 𝛥𝜙 there with this 𝛥𝛷). 

With this definition, the expression for the total linewidth can be written in a 

very "Compact form:", as shown in the second bullet point within a box: 

𝛿𝜔 = 𝛿𝜔𝑡𝑙√1 + 𝛥𝛷
2 . 

Here, 𝛿𝜔 is the total FWHM linewidth in angular frequency. 𝛿𝜔𝑡𝑙 is the 

purely transit-time limited FWHM linewidth (
2|𝑣|

𝑤
√2ln2). And √1 + 𝛥𝛷2 is 

the multiplicative factor due to wavefront curvature. 

The third bullet point provides a crucial interpretation: "Curvature adds in 

quadrature; significant only when 𝛥𝛷 ≥ 1." The term "adds in quadrature" 

refers to the mathematical form √𝐴2 + 𝐵2. Our expression can be rewritten 

as 

𝛿𝜔 = √(𝛿𝜔𝑡𝑙)
2 (1 + 𝛥𝛷2) = √(𝛿𝜔𝑡𝑙)

2 + (𝛿𝜔𝑡𝑙  𝛥𝛷)
2. 

This shows that the square of the total linewidth is the sum of the square of 

the transit-time linewidth and the square of another term related to 

curvature (𝛿𝜔𝑡𝑙  𝛥𝛷). 

The significance of this is: 



* If 𝛥𝛷 ≪ 1, then 𝛥𝛷2 is very small. The term √1 + 𝛥𝛷2 is approximately 1. 

In this case, 𝛿𝜔 ≈ 𝛿𝜔𝑡𝑙, meaning the wavefront curvature effect is 

negligible, and the linewidth is essentially determined by transit time alone. 

This occurs if 𝑅 is very large (flat wavefronts) or 𝑤 is very small relative to 
𝑅𝜆

𝜋
. 

* However, if 𝛥𝛷 ≥ 1, then the factor √1 + 𝛥𝛷2 becomes significantly 

greater than 1. For example, if 𝛥𝛷 = 1, the factor is √2 ≈ 1.414, meaning 

the linewidth is increased by about 41% due to curvature. If 𝛥𝛷 is even 

larger, the increase is more dramatic. 

So, the condition 𝛥𝛷 < 1 is generally what one aims for if wavefront 

curvature broadening is to be kept small compared to transit-time 

broadening. 
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This slide, "Slide 16: Condition For Negligible Curvature Broadening," 

focuses on establishing a practical rule for when we can ignore the effects 

of wavefront curvature. 

The first bullet point states: "Require phase variation over 𝑟 = 𝑤 to be 

much less than 𝜋 (pi):" This refers to the phase shift 𝛥𝜙 that an atom 

experiences at the edge of the beam (radial position 𝑟 = 𝑤) compared to 

the center (𝑟 = 0), due to wavefront curvature. We want this phase shift to 

be small. "Much less than 𝜋" is a common criterion for "small" in phase 

terms, as a phase shift of 𝜋 would mean a complete phase reversal for part 

of the wave. 

The equation given is: capital Delta phi equals pi w squared divided by 

(Capital R lambda), and this quantity must be much, much less than pi. 

𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
≪ 𝜋 



This 𝛥𝜙 is precisely the dimensionless phase-front parameter we called 𝛥𝛷 

on the previous slide (𝛥𝛷 =
𝜋𝑤2

𝑅𝜆
). So the condition is essentially our 𝛥𝛷 ≪

𝜋. 

The second bullet point shows how this "Simplifies to" a very useful 

condition, presented in a box: Capital R is much, much greater than 
𝑤2

𝜆
. 

Let's derive this. Starting from 

𝜋𝑤2

𝑅𝜆
≪ 𝜋: 

1. Divide both sides by 𝜋:   
𝑤2

𝑅𝜆
≪ 1. 

2. Multiply both sides by 𝑅:   
𝑤2

𝜆
≪ 𝑅. 

3. Rewrite it as:   𝑅 ≫
𝑤2

𝜆
. 

This is a very important and widely used condition in Gaussian beam optics 

and laser spectroscopy. It states that for wavefront curvature effects to be 

negligible, the radius of curvature 𝑅 of the wavefronts in the interaction 

region must be much larger than the characteristic length scale 
𝑤2

𝜆
. 

This term 
𝑤2

𝜆
 is closely related to the Rayleigh range, 𝑍R =

𝜋𝑤2

𝜆
. Specifically, 

𝑤2

𝜆
=

𝑍R

𝜋
. So the condition can also be written as 

𝑅 ≫
𝑍R

𝜋
. 

Since 𝜋 is about 3, this means 𝑅 should be significantly larger than about 

one-third of the Rayleigh range. Ideally, one operates near the beam waist 

where 𝑅 is infinite, or at least well within one Rayleigh range of the waist, 

where 𝑅 is typically ≥ 𝑍R. 



The third bullet point, "Interpretation:", will be elaborated on the next slide. 
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Here we delve into the "Interpretation:" of the condition 𝑅 ≫
𝑤2

𝜆
 for 

negligible curvature broadening. 

The first point is quite intuitive: "Larger 𝑅 (flatter wavefronts) → smaller 

phase spread." If the radius of curvature 𝑅 is very large, it means the 

wavefronts are very nearly flat. If they are flat, then the optical path 

difference 𝑥 for off-axis particles is minimal, leading to a very small phase 

shift 𝛥𝜙 across the beam. This directly translates to a smaller contribution 

from wavefront curvature to the overall linewidth. 

The second point reveals an important trade-off: "For fixed 𝑅, widening the 

beam (𝑤 ↑) increases curvature broadening — trade-off with earlier 

strategy." Let's look at our dimensionless parameter 𝛥𝛷 =
𝜋𝑤2

𝑅𝜆
. If we keep 

𝑅 and 𝜆 fixed, then 𝛥𝛷 is proportional to 𝑤2. This means that if we increase 

the beam radius 𝑤, the parameter 𝛥𝛷 actually increases, making the 

curvature broadening effect more significant. This is a crucial insight! Recall 

our earlier strategy (Strategy 1 on Slide 29) for reducing transit-time 

broadening was to increase the beam diameter 𝑤 (because 𝛿𝜔𝑡𝑙 ∝
1

𝑤
). 

However, this slide tells us that simply making 𝑤 larger, without also 

ensuring that 𝑅 increases appropriately, can exacerbate the problem of 

curvature-induced broadening. This highlights the importance of the full 

condition 𝑅 ≫
𝑤2

𝜆
. There's a delicate balance. If you increase 𝑤 to decrease 

transit-time effects, you must ensure your optics are designed such that 𝑅 

also increases sufficiently to keep 𝛥𝛷 small. 

The third point offers guidance on "Experimental design:" "Choose focusing 

optics that place interaction region near beam waist but with sufficiently 

large 𝑅." 



* Near beam waist (𝑧 ≈ 0): At the precise beam waist of a Gaussian beam, 

the wavefronts are planar (𝑅 is infinite). So, if the interaction could be 

confined exactly to the waist, curvature effects would be zero. 

* Sufficiently large 𝑅: In practice, the interaction region has some finite 

length. The Rayleigh range 𝑍R =
𝜋𝑤0

2

𝜆
 defines the confocal parameter of the 

beam, essentially the region around the waist where the beam remains 

reasonably collimated and the wavefront radius 𝑅(𝑧) remains large. For 

example, at 𝑧 = ±𝑍R (one Rayleigh range away from the waist), the radius 

of curvature 𝑅(𝑍R) = 2 𝑍R. 

The goal is to ensure that throughout the interaction volume, the condition 

𝑅(𝑧) ≫
𝑤(𝑧)2

𝜆
 is met. This usually means working well within one Rayleigh 

range of the beam waist, or using beams that are very weakly focused (i.e., 

large 𝑤0, which implies a very long Rayleigh range 𝑍R and thus large 𝑅 

over a significant distance). 
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This slide presents a graph illustrating the "Effect of Wave-Front Curvature 

on Linewidth Broadening." 

Let's examine the axes: 

* The vertical axis is labeled "Linewidth Broadening Factor (
𝛿𝜔

𝛿𝜔𝑡𝑙
)". This is 

the factor by which the purely transit-time limited linewidth (𝛿𝜔𝑡𝑙) is 

multiplied to get the total linewidth (𝛿𝜔). This factor is √1 + 𝛥𝜙2, where 𝛥𝜙 

is the dimensionless phase-front parameter. The axis ranges from 0 to 3.5. 

* The horizontal axis is labeled "Dimensionless Phase-Front Parameter 

(𝛥𝜙)". This is our parameter 𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
. The axis ranges from 0 to 3. 

Now, let's look at the plotted blue curve: 



* The curve starts at the point (𝛥𝜙 = 0, Factor=1). This means that when 

the phase-front parameter 𝛥𝜙 is zero (e.g., perfectly flat wavefronts, 𝑅 =

∞), the broadening factor is 1, so the total linewidth 𝛿𝜔 is just equal to the 

transit-time limited linewidth 𝛿𝜔𝑡𝑙. There's no additional broadening from 

curvature. 

* As 𝛥𝜙 increases from zero, the broadening factor √1 + 𝛥𝜙2 also 

increases. 

* A significant point is marked on the curve with a red dot: This is at 𝛥𝜙 =

1. At this point, the broadening factor is √1 + 12 = √2, which is 

approximately 1.414. This point is explicitly labeled "(1, √2 ≈ 1.414)". 

* A vertical dashed line is drawn at 𝛥𝜙 = 1. To the right of this line (for 

𝛥𝜙 ≥ 1), the region is shaded and labeled "Curvature effect significant 

(𝛥𝜙 ≥ 1)". 

Interpretation of the graph: 

* For small values of 𝛥𝜙 (e.g., 𝛥𝜙 < 0.5), the broadening factor is very 

close to 1, meaning that curvature effects contribute little to the total 

linewidth. 

* When 𝛥𝜙 reaches 1, the linewidth has already increased by about 41.4% 

compared to the pure transit-time limit. This is a substantial increase. 

* For 𝛥𝜙 > 1, the broadening factor continues to rise steeply. For instance, 

if 𝛥𝜙 = 2, the factor is √1 + 22 = √5 ≈ 2.236 (a 123.6% increase). If 𝛥𝜙 =

3, the factor is √1 + 32 = √10 ≈ 3.162 (a 216.2% increase). 

This graph powerfully reinforces the idea that to keep curvature-induced 

broadening from becoming a dominant problem, one must strive to keep 

the dimensionless phase-front parameter 𝛥𝜙 significantly less than 1. 
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Slide 17: Numerical Example 3.7 — Quantifying Curvature Effects 

This example will help us put some concrete numbers to the concepts of 

wavefront curvature. 

First, the given parameters for this example: 

* "Wavelength": 𝜆 = 1.0 𝜇m. This is a common wavelength in the near-

infrared region, for example, from a Nd:YAG laser (1.064 𝜇m) or similar 

solid-state lasers. 1.0 𝜇m = 10−6 meters. 

* "Beam waist radius": 𝑤 = 1.0 cm. This is a relatively large beam waist 

radius. 1.0 cm = 10−2 meters. 

* "Desired 𝛥𝜙 ≪ 2𝜋." Here, 𝛥𝜙 refers to our dimensionless phase-front 

parameter, 𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
. The goal is to have this parameter be "much less 

than 2𝜋". Recall that on the previous graph, significant broadening started 

when 𝛥𝜙 ≈ 1. The condition 𝛥𝜙 ≪ 2𝜋 (where 2𝜋 ≈ 6.28) is a less stringent 

condition than 𝛥𝜙 ≪ 1. It suggests we want to avoid extremely large phase 

variations. Perhaps the goal here is just to illustrate the calculation rather 

than achieve ultimate precision. 

With these parameters, we can now explore the requirements on the radius 

of curvature 𝑅 and the consequences if 𝑅 is too small. 
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Continuing with Numerical Example 3.7, we first "Compute required radius 

of curvature:" based on the condition for negligible curvature broadening, 

which was 𝑅 ≫
𝑤2

𝜆
 (from Slide 43). 

The calculation shown is: Capital 𝑅 must be much, much greater than 𝑤2 

divided by 𝜆. Let's plug in the values: 𝑤 = 1.0 cm = 1.0 × 10−2 m. 𝜆 =

1.0 𝜇m = 1.0 × 10−6 m. So, 𝑤2 = (1.0 × 10−2 m)2 = 1.0 × 10−4 m2. And 



𝑤2

𝜆
=
1.0 × 10−4 m2

1.0 × 10−6 m
= 1.0 × 102 m. 

This is 100 meters. Converting to centimeters, 100 m = 100 × 100 cm =

1.0 × 104 cm. So, for curvature effects to be truly negligible, the radius of 

curvature 𝑅 should be much, much greater than 100 meters (or 10,000 

cm). 

Now, the slide considers a specific scenario: "If 𝑅 = 5.0 × 103 cm (focusing 

too strong), then" This value for 𝑅 is 5000 cm, which is 50 meters. 

Comparing this to our requirement: 50 meters is not much greater than 100 

meters; in fact, it's smaller. So, we should expect significant curvature 

effects with this 𝑅. 

Let's calculate the dimensionless phase-front parameter 

𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
 

for this case: 

𝛥𝜙 =
𝜋 × (1.0 × 10−2 m)2

(50 m) × (1.0 × 10−6 m)
. 

The numerator is 𝜋 × 10−4 m2. The denominator is 50 × 10−6 m2 = 5 ×

10−5 m2. 

So, 

𝛥𝜙 =
𝜋 × 10−4

5 × 10−5
=
𝜋

5
× 101 =

10𝜋

5
= 2𝜋. 

As the slide indicates, for these parameters, 𝛥𝜙 = 2𝜋. Our desired 

condition was 𝛥𝜙 ≪ 2𝜋. Here, 𝛥𝜙 equals 2𝜋, so we are certainly not 

meeting the "much, much less than" condition. 



What is the consequence for the linewidth? The slide states: "leading to 

√1 + 𝛥𝜙2 ≈ 6.5 times additional linewidth!" The broadening factor is 

√1 + 𝛥𝜙2. If 𝛥𝜙 = 2𝜋, then 

𝛥𝜙2 = (2𝜋)2 ≈ (6.283)2 ≈ 39.478. 

So the factor is 

√1 + 39.478 = √40.478 ≈ 6.362. 

The slide approximates this as "≈ 6.5," which is reasonably close. This 

means that with a radius of curvature 𝑅 = 50 m (for a 1 cm radius beam at 

1 µm wavelength), the total linewidth will be about 6.4 to 6.5 times larger 

than the purely transit-time limited linewidth! This is a very substantial 

increase due to wavefront curvature. The wording "additional linewidth" is a 

bit imprecise; it's a multiplicative factor on the total linewidth compared to 

the transit-only case. 
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This slide draws the "Conclusion:" from the numerical example we just 

worked through (Example 3.7). It states: "Conclusion: for precision work, 

ensure 𝑅 well above 104 cm or expand the beam to reduce 𝑤." 

Let's break this down: 

1. "ensure 𝑅 well above 104 cm": We calculated that for 𝑤 = 1 cm and 𝜆 =

1 𝜇m, the characteristic length 
𝑤2

𝜆
 is 100 meters, which is 104 cm. The 

condition for negligible curvature broadening was 𝑅 ≫
𝑤2

𝜆
. So, indeed, for 

precision work where we want to minimize this broadening, the radius of 

curvature 𝑅 of our wavefronts in the interaction region must be significantly 

larger than 100 meters. This implies using very weakly focused beams or 

ensuring the interaction occurs very close to the beam waist where 𝑅 is 

nominally infinite. 



2. "or expand the beam to reduce 𝑤": This part of the statement, "expand 

the beam to reduce 𝑤," seems contradictory as written. Expanding a beam 

means increasing its radius 𝑤. Reducing 𝑤 means focusing the beam more 

tightly. Let's re-examine the dimensionless parameter 𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
. If we want 

to reduce 𝛥𝜙 (to reduce curvature effects), and if 𝑅 and 𝜆 are fixed, we 

would need to reduce  𝑤. So, a tighter focus (smaller 𝑤) would lead to a 

smaller 𝛥𝜙, if 𝑅 remained constant*. However, usually when you focus a 

beam more tightly (reduce 𝑤), the radius of curvature 𝑅 near the new, 

smaller waist also tends to get smaller (the beam diverges more rapidly). 

The key is always the interplay captured by 𝑅 ≫
𝑤2

𝜆
. * Perhaps the intention 

was: "or, if 𝑅 is limited, ensure 𝑤 is small enough such that 𝑅 is still ≫
𝑤2

𝜆
." * 

Alternatively, if the idea is to "expand the beam" (increase 𝑤), then to keep 

𝛥𝜙 small, 𝑅 would have to increase even more dramatically (as 𝑅 must be 

≫
𝑤2

𝜆
, and 𝑤2 is now larger). This usually means using an even more 

weakly focused beam, which has a larger 𝑤 and a correspondingly much 

larger 𝑅 near its waist. 

The most direct way to state the strategy for minimizing curvature effects, 

given 𝑅 ≫
𝑤2

𝜆
 or 𝛥𝜙 =

𝜋𝑤2

𝑅𝜆
≪ (some small number like 1 or 𝜋), is: 

* Maximize 𝑅 for a given 𝑤 (i.e., have flatter wavefronts). This is best 

achieved by interacting at or very near the beam waist. 

* If 𝑅 is limited by the optics, then 𝑤 must be chosen small enough to 

satisfy the condition. However, one must then consider the trade-off with 

transit-time broadening, which increases as 𝑤 decreases (𝛿𝜔𝑡𝑙 ∝
1

𝑤
). 

So, the conclusion emphasizes the critical need to manage the 𝑅 vs. 
𝑤2

𝜆
 

relationship. For precision, 𝑅 must dominate 
𝑤2

𝜆
. This often leads to designs 

with large beam radii 𝑤 (to minimize transit time) and even larger radii of 



curvature 𝑅 (often by working near a waist or using very long focal length 

optics), which in turn implies large Rayleigh ranges. 
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This slide provides a tabular summary for "Numerical Example 3.7 — 

Quantifying Curvature Effects," which beautifully illustrates the impact of 

varying the radius of curvature 𝑅. 

First, the "Given Parameters" are restated: 

• Wavelength (𝜆): 1.0 𝜇m = 1.0 × 10−6 m = 1.0 × 10−4 cm. 

• Beam waist radius (𝑤): 1.0 cm. 

• Desired phase shift condition: 𝛥𝜙 ≪ 2𝜋 (where 𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
). 

• Critical Radius (𝑅crit =
𝑤2

𝜆
): 

(1.0 cm)2

(1.0×10−4  cm)
= 1.0 × 104 cm (which is 100 m).   

This 𝑅crit is the value of 𝑅 for which the parameter 𝛥𝜙 =
𝜋𝑤2

𝑅𝜆
 becomes 𝜋 

(since if 𝑅 =
𝑤2

𝜆
, then 𝛥𝜙 = 𝜋). So, 𝑅crit is the point where 𝛥𝜙 = 𝜋. 

Now, the "Table: Curvature Effects on Phase Shift and Linewidth Factor": It 

has columns for 𝑅 (cm), the ratio 
𝑅

𝑅crit

, the phase parameter 𝛥𝜙, the 

linewidth broadening factor √1 + 𝛥𝜙2, and a Qualitative Assessment. 

Let's examine a few rows: 

• Row 1: 𝑅 = 5.0 × 103 cm (50 m).   • 
𝑅

𝑅crit

=
50 m

100 m
= 0.5.   • 𝛥𝜙 =

2𝜋 (as we calculated, since 𝛥𝜙 =
𝜋

(𝑅/𝑅crit)
=

𝜋

0.5
= 2𝜋).   • √1 + 𝛥𝜙2 =

√1 + (2𝜋)2 ≈ 6.362.   • Assessment: "Focusing too strong." The 

linewidth is blown up by a factor of over 6! 



• Row 2: 𝑅 = 1.0 × 104 cm (100 m).   • 
𝑅

𝑅crit

= 1.0.   • 𝛥𝜙 = 𝜋 

(since 𝑅 = 𝑅crit).   • √1 + 𝛥𝜙2 = √1 + 𝜋2 ≈ 3.297.   • Assessment: 

"Threshold (𝑅 = 𝑅crit)." Even at this "critical radius," the linewidth is still 

increased by a factor of ~3.3. This suggests 𝑅crit is not where the effect is 

negligible, but where it's already quite substantial. 

• Row 3: 𝑅 = 2.0 × 104 cm (200 m).   • 
𝑅

𝑅crit

= 2.0.   • 𝛥𝜙 =
𝜋

2
.   

• √1 + 𝛥𝜙2 = √1 + (
𝜋

2
)
2
≈ 1.862.   • Assessment: "Moderate 

Curvature." Factor of ~1.86 increase. 

• Row 4: 𝑅 = 5.0 × 104 cm (500 m).   • 
𝑅

𝑅crit

= 5.0.   • 𝛥𝜙 =
𝜋

5
.   

• √1 + 𝛥𝜙2 = √1 + (
𝜋

5
)
2
≈ 1.181.   • Assessment: "Weak Curvature 

(Good for Precision)." Now the broadening factor is down to ~1.18, about 

an 18% increase. This is becoming acceptable for more precise work. 

• Row 5: 𝑅 = 1.0 × 105 cm (1000 m = 1 km).   • 
𝑅

𝑅crit

= 10.0.   • 

𝛥𝜙 =
𝜋

10
.   • √1 + 𝛥𝜙2 = √1 + (

𝜋

10
)
2
≈ 1.048.   • Assessment: 

"Very Weak Curvature (High Precision)." Only about a 5% increase in 

linewidth. 

• Row 6: 𝑅 = 1.0 × 106 cm (10,000 m = 10 km).   • 
𝑅

𝑅crit

= 100.0.   • 

𝛥𝜙 =
𝜋

100
.   • √1 + 𝛥𝜙2 = √1 + (

𝜋

100
)
2
≈ 1.00049, which the table 

rounds to 1.000.   • Assessment: "Near Flat Wavefront (Excellent)." 

The curvature effect is now truly negligible. 

This table very effectively demonstrates that to minimize wavefront 

curvature broadening, the radius of curvature 𝑅 needs to be substantially 



larger than the 𝑅crit =
𝑤2

𝜆
 value. For high precision, 𝑅 should be at least 5 to 

10 times 𝑅crit, and ideally even more. 
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We've reached "Slide 18: Key Takeaways & Experimental Guidelines," 

which serves as a summary of our discussion on transit‐ time broadening 

and wavefront curvature effects. 

The first key takeaway is: "Transit‐ time broadening scales linearly with the 

magnitude of 𝑣 (particle speed) and inversely with beam size: mitigate by 

cooling and/or beam expansion." 

This encapsulates the core physics of transit‐ time broadening (e.g., 𝛿𝜈t ≈

0.4 
|𝑣|

𝑤
 for Gaussian beams). 

To reduce it, you either make the particles slower ('cooling', reducing |𝑣|) or 

you make the interaction region larger ('beam expansion', increasing 𝑤 or 

𝑑). 

These are the primary strategies we discussed. 

The second point highlights the lineshapes: "Gaussian beams give 

Gaussian line shapes; rectangular beams give sinc
2
 profiles — choose 

geometry deliberately." 

Real laser beams are often Gaussian (TEM00 mode), leading to Gaussian 

transit‐ time broadened lineshapes. 

The sinc
2
 profile arises from the idealized model of a rectangular (top‐ hat) 

beam, which serves as a useful pedagogical tool and can sometimes be 

approximated with specialized optics. 

The message "choose geometry deliberately" implies that understanding 

your beam profile is crucial for accurately modeling or predicting the 

observed lineshape. 



In some advanced techniques, one might even try to shape the beam 

profile to optimize the lineshape for a specific purpose. 

The third key takeaway addresses wavefront curvature: "Wave‐ front 

curvature can substantially enlarge linewidth unless Capital 𝑅 is much, 

much greater than 
𝑤2

𝜆
 ( 𝑅 ≫

𝑤2

𝜆
 )." 

This is the critical condition we derived for ensuring that the additional 

broadening due to non‐ planar wavefronts remains small. 

If this condition is not met, especially in focused beams away from the 

waist, the observed linewidth can be significantly larger than what transit 

time alone would predict. 

This necessitates careful optical design in high‐ resolution experiments. 

These three points neatly summarize the main practical lessons from our 

study of these broadening mechanisms. 
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This slide continues with further key takeaways and a look towards the 

future. 

The first point here emphasizes the practical implications for metrology: 

"Precision frequency standards (e.g., CH4 at 3.39 𝜇m) demand cm-scale 

waists or ultra-cold molecules to stay within natural linewidths." 

Our numerical example for methane vividly illustrated this. To get the 

transit-time broadening down to the level of methane's very narrow natural 

linewidth (around 10 kHz or less) using room-temperature molecules, we 

found that beam waist radii 𝑤 on the order of several centimeters were 

required. Achieving such large beam waists with sufficient intensity often 

necessitates optical cavities. The alternative, or complementary, approach 

is to use "ultra-cold molecules." If the molecular speed |𝑣| could be 

drastically reduced through cooling, then the requirement for such an 



extremely large 𝑤 would be relaxed, making it easier to achieve natural-

linewidth-limited spectroscopy. 

The final point looks to the "Future frontier:" "Laser cooling and optical 

trapping enable interaction times much, much greater than 𝜏sp, effectively 

eliminating transit-time limits altogether." This points towards the ultimate 

solution for overcoming transit-time broadening. 

* Laser cooling can reduce atomic (and increasingly, molecular) speeds to 

extremely low values, drastically increasing the transit time through a given 

beam. 

* Optical trapping (e.g., using optical tweezers or dipole traps) can confine 

particles within the laser beam for extended periods, potentially seconds or 

even longer. 

If the effective interaction time, 𝑇interaction, achieved through these methods 

can be made much, much longer than the spontaneous lifetime 𝜏sp of the 

excited state, then the uncertainty principle tells us that the broadening will 

be dominated by 1/𝜏sp (the natural linewidth) rather than 1/𝑇interaction. 

In this regime, transit-time broadening ceases to be a limiting factor. This is 

the holy grail for many ultra-high resolution spectroscopy experiments and 

for the development of next-generation optical atomic clocks, where 

interaction times can be engineered to be so long that other subtle effects, 

or the natural linewidth itself, become the true limitations to precision. 

This concludes our detailed discussion of transit-time broadening and 

related effects. It's a crucial topic, and understanding these principles is 

essential for designing and interpreting high-resolution laser spectroscopy 

experiments. 

 

 

  


