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Welcome, everyone, to this segment of our Phys 608 Laser Spectroscopy 

course. Today, we embark on a crucial topic: Chapter 3.3, focusing on the 

Collisional Broadening of Spectral Lines. 

This material, as you know, is prepared by Distinguished Professor Doctor 

M A Gondal for our course here at KFUPM. Collisional broadening, as we'll 

see, is a fundamental phenomenon that profoundly impacts the way we 

interpret spectroscopic data, especially in gaseous media and plasmas. 

Understanding it is key to unlocking a wealth of information from the 

spectra we observe. 
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So, let's begin by addressing a fundamental question: Why should we 

dedicate our time to studying collisional broadening, which is also often 

referred to as pressure broadening? The first point on this slide highlights a 

very practical reason: many, if not most, laser-atom or laser-molecule 

interaction experiments – the very bread and butter of laser spectroscopy – 

are conducted in gaseous environments. And in a gas, particles are 

constantly in motion, leading to frequent collisions. It's an unavoidable 

aspect of working with these systems. 

Now, the second point gets to the heart of why these collisions matter 

spectroscopically: each collision event has the potential to perturb, or alter, 

the energy levels of the atoms or molecules involved. Think back to our 

quantum mechanics. The energy levels are what dictate the frequencies of 

light that can be absorbed or emitted. If these levels are momentarily 

shifted or their lifetime is altered due to a collision, then the observed 

spectral lines will reflect this. Specifically, as the slide notes, these lines 

can be broadened – meaning they span a wider range of frequencies – 

they can be shifted from their unperturbed positions, or their overall shape 

can be significantly changed. These are not subtle effects; they can 

dominate the appearance of a spectrum. 



This brings us to the third crucial point: a thorough understanding of these 

collisional effects is not just an academic exercise; it is absolutely essential 

for a variety of high-precision applications. The slide lists a few, and we'll 

expand on them. First, precision frequency metrology. If you're trying to 

measure a transition frequency to an extremely high degree of accuracy, 

perhaps for fundamental constant determination or for atomic clocks, you 

must account for any shifts or broadening caused by collisions. Failing to 

do so will lead to systematic errors in your measurements. Second, 

atmospheric remote-sensing. When we use lasers to probe the composition 

of the atmosphere – for instance, to measure pollutant concentrations or 

greenhouse gases – the spectral lines we observe are inherently pressure-

broadened. Accurate retrieval of atmospheric parameters relies critically on 

precise models of this broadening. Think about trying to quantify a trace 

gas; its absorption profile will be shaped by collisions with nitrogen, oxygen, 

and other atmospheric constituents. Without understanding this, you cannot 

accurately determine its concentration. 
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Continuing our discussion on the importance of understanding collisional 

broadening, we come to further applications. The third point listed is 

plasma diagnostics. Plasmas are ionized gases, teeming with ions and 

electrons, and collisions are rampant. The shapes and shifts of spectral 

lines emitted from a plasma are powerful diagnostic tools. By carefully 

analyzing these line profiles, we can deduce crucial plasma parameters 

such as electron density and temperature. For example, Stark broadening, 

which we'll touch upon later, is a direct consequence of collisions with 

charged particles and is a primary method for measuring electron densities 

in plasmas. 

Fourth on the list is laser design and optimization. For gas lasers, the gain 

medium is, of course, a gas. Collisional processes within this gas can 

significantly affect the laser's gain profile, its output power, and its 

efficiency. For instance, pressure broadening determines the range of 



frequencies over which stimulated emission can occur. Understanding and 

sometimes even manipulating these collisional effects is key to designing 

lasers with specific desired characteristics, such as tunability or narrow 

linewidth. 

Now, beyond these specific applications, there's a more fundamental 

scientific motivation, highlighted by the final bullet point on this slide. 

Collisional line-shape theory provides a profound link: it connects the 

macroscopic, measurable spectral line profiles, which we denote as 𝐼(𝜔) – 

capital I of lowercase Greek letter omega, where 𝜔 is the angular 

frequency – to the microscopic interaction potentials, 𝑉(𝑅) – capital V of 

capital R – between the colliding particles, where capital R is their 

separation. This is incredibly powerful. By carefully analyzing the shape of 

a spectral line, we can essentially work backwards to learn about the forces 

that atoms and molecules exert on each other at very short distances. This 

is a direct window into the intermolecular forces that govern the behavior of 

matter. The dashed lines indicate the end of this introductory thought, and 

we'll delve deeper into these concepts. The preparation note is, of course, 

consistent throughout these slides. 
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Alright, let's now move to defining the key players and concepts in our 

discussion of collisional broadening. We're looking at "Collision Partners 

and Interaction Potentials". To understand collisions, we need to simplify 

the picture initially. So, we consider two interacting particles. 

First, we have what we'll call particle A. This is our atom or molecule of 

interest – the one whose spectrum we are observing. It's referred to as the 

"absorber" if it's absorbing radiation, or the "emitter" if it's emitting radiation. 

This particle A possesses a set of internal energy levels, and for a specific 

spectroscopic transition, we're typically interested in two of them: an initial 

state with energy 𝐸i (capital E subscript lowercase i) and a final state with 

energy 𝐸k (capital E subscript lowercase k). 



Second, we have particle B. This is the "perturber". It's the other particle 

involved in the collision. As the slide notes, particle B can be any other 

atom, molecule, or even an ion. It's the presence and interaction of this 

perturber B with our spectroscopically active particle A that leads to the line 

broadening and shifting effects we are discussing. 

Now, a crucial concept when describing the interaction between these two 

particles is their separation. Specifically, the "center-of-mass separation", 

denoted by 𝑅, which is a function of the positions of A and B, so we can 

write it as 𝑅(𝐴, 𝐵). For most of our purposes in understanding the 

interaction potentials that cause broadening, this scalar distance 𝑅 between 

the centers of mass of A and B is the single most important coordinate. The 

interaction potential, and therefore the perturbation of the energy levels of 

A, will depend strongly on this separation 𝑅. 
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Continuing with interaction potentials, the first point here delves into how 

these potentials arise and what they signify. The interatomic potential 

energy curves, which describe the energy of particle A when it's in state 'i' 

or state 'k' as a function of its separation 𝑅 from perturber B, are denoted 

as 𝐸i(𝑅) – capital E subscript lowercase i, of capital R – and 𝐸k(𝑅) – capital 

E subscript lowercase k, of capital R. These potential curves fundamentally 

arise from the interactions between the electronic wave functions of particle 

A and particle B. As the two particles approach each other, their electron 

clouds begin to overlap and interact. This interaction modifies the energy of 

the system. 

The slide then provides a simple but important rule for interpreting the 

nature of this interaction based on the potential energy 𝐸(𝑅) relative to the 

energy when the particles are infinitely separated, 𝐸(∞). If 𝐸(𝑅) is greater 

than 𝐸(∞), the interaction is repulsive; the system's energy increases as 

the particles get closer, meaning they repel each other. Conversely, if 𝐸(𝑅) 

is less than 𝐸(∞), the interaction is attractive; the system's energy is 



lowered as the particles approach, indicating an attractive force between 

them. 𝐸(∞) represents the energy of the state of particle A when it's 

isolated, unperturbed by B. 

Now, for spectroscopy, we're interested in transitions between energy 

levels. So, the crucial quantity is not the absolute energy of a single state, 

but the energy difference between the two states involved in the transition. 

This is given by 𝛥𝐸(𝑅) = 𝐸k(𝑅) − 𝐸i(𝑅). This 𝛥𝐸(𝑅) is the energy of the 

photon that would be emitted or absorbed if the transition occurred while 

particle A is at a separation 𝑅 from perturber B. 

The final point ties this directly to line broadening: during a collision, the 

separation 𝑅 is not fixed. It changes as the particles approach and then 

recede from each other. Consequently, if 𝑅 changes, then 𝛥𝐸(𝑅) also 

changes. And since the radiation frequency, 𝜈 or 𝜔, is directly proportional 

to this energy difference (through ℎ𝜈 = 𝛥𝐸, or ℏ𝜔 = 𝛥𝐸), a varying 𝛥𝐸(𝑅) 

means that the frequency of the radiation emitted or absorbed will also vary 

during the course of the collision. This variation is the fundamental origin of 

collisional broadening. Instead of a single, sharply defined transition 

frequency, we get a range of frequencies corresponding to the range of 

𝛥𝐸(𝑅) values experienced during collisions. 
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This slide presents a crucial visual: "Potential Energy Curves for Collisional 

Broadening". Let's take a moment to carefully examine this graph. On the 

vertical axis, we have "Potential Energy 𝐸(𝑅)", plotted in arbitrary units, 

let's say. It ranges from approximately −2.0 up to 80. The horizontal axis 

represents "R, the center-of-mass separation" between our 

absorber/emitter A and perturber B, also in arbitrary units, perhaps 

angstroms or Bohr radii, ranging from about 1 to 7. 

We see two distinct potential energy curves plotted. The lower curve, 

shown in blue, is labeled 𝐸i(𝑅) (capital E subscript lowercase i of R) for 



large 𝑅. This represents the potential energy of our particle A when it is in 

its initial (often ground) state "i", as a function of its separation 𝑅 from 

particle B. Notice its behavior: at very small 𝑅, the energy is very high, 

indicating a strong repulsive interaction – this is often due to Pauli repulsion 

when the electron clouds overlap significantly. The label "Repulsive 

(𝐸i(𝑅) > 𝐸i(∞))" correctly points to this region. As 𝑅 increases, the potential 

𝐸i(𝑅) drops, passes through a minimum – an attractive well – around 𝑅 = 3 

units, indicating an attractive force. The label "Attractive (𝐸i(𝑅) < 𝐸i(∞))" 

highlights this region. Finally, as 𝑅 becomes very large, the curve 

asymptotes to a constant value labeled 𝐸i(∞) (capital E subscript 

lowercase i of (infinity)), which represents the energy of the isolated atom in 

state "i". On this graph, 𝐸i(∞) is shown near zero potential energy. 

The upper curve, shown in red, is labeled 𝐸k(𝑅) (capital E subscript 

lowercase k of R) for large 𝑅. This represents the potential energy of 

particle A when it is in its excited state "k", again as a function of separation 

𝑅. It shows qualitatively similar behavior: strong repulsion at very small 𝑅, 

though perhaps less steep than for the ground state in this particular 

depiction. It also may exhibit an attractive well, though in this diagram it's 

much shallower and occurs at a slightly larger 𝑅, around 𝑅 = 4 units, before 

asymptoting to its own isolated energy value, 𝐸k(∞) (capital E subscript 

lowercase k of (infinity)). Importantly, 𝐸k(∞) is higher than 𝐸i(∞), as state 

"k" is an excited state. 

Now, the critical spectroscopic quantity, as we discussed, is the energy 

difference between these two states at a given 𝑅. This is illustrated by the 

vertical double-headed arrow labeled 𝛥𝐸(𝑅). This is 𝐸k(𝑅) − 𝐸i(𝑅). You can 

visually see that as 𝑅 changes, the length of this arrow, and thus 𝛥𝐸(𝑅), 

changes. For example, at very small 𝑅, both potentials are steep, and 

𝛥𝐸(𝑅) might be very different from its value at large 𝑅, which is 𝛥𝐸(∞) =

𝐸k(∞) − 𝐸i(∞). This 𝛥𝐸(∞) corresponds to the unperturbed transition 

frequency. It's this 𝑅-dependence of 𝛥𝐸(𝑅) that leads to the broadening 

and shifting of the spectral line. If, for instance, 𝛥𝐸(𝑅) is larger than 𝛥𝐸(∞), 



the transition will be blue-shifted during that part of the collision. If it's 

smaller, it will be red-shifted. The dashed lines guide the eye to the 

asymptotic energy levels 𝐸i(∞) and 𝐸k(∞). 
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Now that we've established the concept of interaction potentials, let's move 

on to 'Defining a "Collision" in Spectroscopic Terms'. How do we quantify 

what we mean by a collision in this context? 

First, we introduce the concept of a "collision radius", denoted as 𝑅c (capital 

R subscript lowercase c). This isn't a hard, fixed boundary like for billiard 

balls. Instead, it's a characteristic distance. As the slide defines it, 𝑅c is "the 

maximum separation 𝑅 for which the perturbation potential, the absolute 

value of 𝑉(𝑅), is large enough to modify the transition energy, 𝛥𝐸, 

noticeably." So, if the perturber comes within this radius 𝑅c of our atom A, 

we consider a spectroscopically significant interaction to be occurring. 

Outside this radius, the perturbation is assumed to be negligible for the 

purpose of broadening or shifting the line significantly. The term 

"noticeably" implies there's some threshold, perhaps related to the natural 

linewidth or the resolution of our spectrometer. 

Given this collision radius, we can then define a "collision time", denoted by 

the Greek letter 𝜏c (lowercase tau subscript c). This is an estimate of how 

long the significant interaction lasts. It's approximated, as shown in the 

equation, by: 

𝜏c ≈
𝑅c

𝑣
 

Here, 𝑅c is the collision radius we just defined. And 𝑣, the relative speed, is 

what we'll clarify next. 
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Continuing our definition of collision parameters, we clarify the term '𝑣' from 

the previous equation for collision time. As the first bullet point states: '𝑣 

equals the relative speed of particles A and B', and its units are typically 

meters per second (m s−1). So, the collision time, 𝜏c, which is 
𝑅c

𝑣
, indeed 

'approximates the duration of significant interaction.' It's the characteristic 

timescale over which the perturber is close enough to cause a noticeable 

change in the energy levels of A. 

Now, it's important to classify collisions, as not all collisions have the same 

effect. The slide introduces two main types: 

First, an 'Elastic collision'. In an elastic collision, the internal quantum states 

of the colliding particles (A and B) remain unchanged after the collision. For 

example, if particle A was in state 𝐸i before the collision, it's still in state 𝐸i 

after. While the energy levels 𝐸i of R and 𝐸k of R might be perturbed during 

the collision, there's no net transfer of population between states. In such 

collisions, the total kinetic energy of the system (A plus B) is conserved. 

These collisions are primarily responsible for phase shifts and pressure 

broadening without changing the lifetime of the states significantly, other 

than through phase interruption. 

Second, we have 'Inelastic collisions', which are often referred to as 

'quenching' collisions, especially when they de-excite a particle. In an 

inelastic collision, there is a change in the internal quantum states. For 

instance, particle A might be in an excited state 𝐸k, and after colliding with 

B, it might transition to a lower state 𝐸i, or even to a different state 

altogether. Population is transferred between internal states. In this case, 

total kinetic energy is not conserved by itself; rather, some internal energy 

is converted into kinetic energy of the particles, or vice-versa, to conserve 

the total energy of the system. So, kinetic energy compensates for the 

change in internal energy. 
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This slide brings in an important concept related to the timescale of the 

collision and how the electronic structure responds. It states that: 'During 

the collision time 𝜏c, the electronic cloud "adiabatically" follows the 

interaction potential 𝑉(𝑅). This is often understood within the Born-

Oppenheimer picture, and the reason for this adiabatic following is that 

electronic motion is much, much faster than nuclear motion.' 

Let's unpack this. The Born-Oppenheimer approximation, which you'll recall 

from quantum chemistry and molecular physics, allows us to separate the 

motion of electrons from the motion of the much heavier nuclei. Because 

electrons are so light, they can rearrange themselves almost 

instantaneously in response to changes in the positions of the nuclei. 

Now, apply this to a collision. As particle B (a nucleus with its electrons) 

moves relative to particle A (another nucleus with its electrons), the 

internuclear separation 𝑅 changes. The collision time 𝜏c is typically on the 

order of picoseconds, as we'll see. While this is very short, it's often long 

compared to the timescale of electronic rearrangement, which can be 

femtoseconds or even faster. 

So, as 𝑅 changes relatively slowly (on the electronic timescale) during the 

collision, the electron cloud of the A-B system continuously adjusts itself to 

the current internuclear separation. This means that the system stays on a 

single potential energy curve, like the 𝐸i(𝑅) or 𝐸k(𝑅) we saw earlier, rather 

than making sudden jumps between different electronic states caused by 

the nuclear motion itself. This is what 'adiabatically follows' means. The 

electronic state evolves smoothly with 𝑅. 

This adiabatic assumption is crucial for the validity of using potential energy 

curves that are solely functions of 𝑅. If collisions were very fast or involved 

strong non-adiabatic couplings, then the picture would become much more 

complicated, potentially involving transitions between these potential 

energy curves even in the absence of radiative processes. The dashed 



lines here signify the end of this point, and again, we see the standard 

attribution. 
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Let's put some numbers to these concepts with a "Numerical Example – 

Typical Collision Time". This will help us get a feel for the magnitudes 

involved. 

First, we need to "choose representative values" for the parameters in our 

collision time formula. 

For the relative speed 𝑣, a typical value for atoms or small molecules at 

room temperature might be around 5 × 102 meters per second, or 500 

meters per second. This corresponds to typical thermal velocities. 

For the collision radius 𝑅c, let's take a value of 1 nanometer (1 nm), which 

is 1 × 10−9 meters. This is a reasonable order of magnitude for the range 

over which interatomic potentials are significant. 

Now, we "insert these values into the definition" for the collision time, 𝜏c: 

𝜏c =
𝑅c

𝑣
 

Substituting the values, we get: 

𝜏c =
1 × 10−9 m

5 × 102 m/s
 

Calculating this out: 
1

5
= 0.2. And 

10−9

102
= 10−11. 

So, 𝜏c = 0.2 × 10−11 s. 

This can be written more conveniently as 

𝜏c = 2 × 10−12 s 

And 10−12 s is, by definition, one picosecond (ps). 



So, a typical collision time, 𝜏c, is on the order of 2 picoseconds. This is a 

very short duration, but, as we'll see, it's highly significant for spectroscopic 

lineshapes. 
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Now, let's consider the "Interpretation" of this typical collision time of 2 ps 

that we just calculated. What does it mean in the broader context of 

spectroscopy? 

The first point of interpretation is crucial: "2 picoseconds is extremely short 

compared with typical radiative lifetimes." Radiative lifetimes, 𝜏rad 

(lowercase tau subscript r-a-d), which is the average time an isolated atom 

spends in an excited state before spontaneously emitting a photon, are 

typically in the range of nanoseconds (ns, 10−9 seconds) to microseconds 

(𝜇s, 10−6 seconds) for many common transitions. So, we have 𝜏c, the 

collision duration, around 2 × 10−12 seconds, while 𝜏rad is around 

10−9 seconds or longer. This means 𝜏rad is at least a thousand to a million 

times longer than 𝜏c. A single collision is a very fleeting event compared to 

the natural lifetime of an excited state. However, in a gas at reasonable 

pressure, an atom might undergo many such collisions during one radiative 

lifetime. 

The second point of interpretation is also very important, particularly for 

understanding line shapes in the quasi-static approximation, which we'll 

touch upon. It states that this short collision time "justifies the 'vertical 

transition' assumption: 𝑅 stays essentially fixed during the optical emission 

or absorption event itself." Let's clarify this. The act of absorbing or emitting 

a photon is an electronic process that happens very rapidly, on a timescale 

typically much shorter than even the picosecond collision time. Think of it 

as an almost instantaneous quantum jump for the electrons. During this 

very brief moment of photon interaction, the nuclei, which are much 

heavier, barely have time to move. Therefore, the internuclear separation 𝑅 

can be considered essentially constant during the optical transition itself. 



This is analogous to the Franck-Condon principle in molecular 

spectroscopy, where electronic transitions are often depicted as vertical 

lines on potential energy diagrams because the nuclear geometry doesn't 

change significantly during the rapid electronic transition. So, even though 

𝑅 is changing throughout the collision (which lasts about 2 ps), at the 

specific instant the photon is emitted or absorbed, 𝑅 is well-defined. This 

allows us to think about a transition frequency that is characteristic of that 

specific 𝑅. The dashes, as before, signify the end of this interpretive 

section. 
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We now come to a very important classification: 'Two Fundamental 

Broadening Mechanisms'. Understanding spectral line broadening requires 

us to distinguish between the primary ways collisions can affect our 

quantum system. 

The first category is 'Inelastic collisions', which, as we've mentioned, are 

also known as 'quenching' collisions. What is their main effect? They 

'shorten the excited-state lifetime'. If an atom in an excited state can lose its 

energy not just by radiating a photon, but also by transferring that energy to 

a collision partner (e.g., converting it to kinetic energy or exciting the 

partner), then its effective lifetime in that excited state is reduced. And what 

is the spectroscopic consequence of a shortened lifetime? This leads to 

'Lorentzian broadening'. You'll recall from our earlier discussions on natural 

broadening that a finite lifetime, by the uncertainty principle (𝛥𝐸𝛥𝑡 ≈ ℏ), 

implies an uncertainty in the energy of the state, which translates to a 

broadening of the spectral line. This broadening due to lifetime reduction is 

typically Lorentzian in shape. So, inelastic collisions 'produce an additional 

damping term', which we can denote as 𝛾col. This collisional damping rate 

adds to the natural radiative damping rate. 

The second fundamental mechanism involves 'Elastic (phase-perturbing) 

collisions'. In contrast to inelastic collisions, elastic collisions, by definition, 



do not change the populations of the energy states. If the atom was in the 

excited state, it remains in the excited state after an elastic collision. 

However, these collisions are not without effect! They 'modify the oscillator 

phase without changing state population.' Imagine the atom's wavefunction, 

or more classically, its radiating dipole, as an oscillating system. An elastic 

collision can abruptly change the phase of this oscillation. While the atom is 

still excited and capable of radiating, the coherence of its emission is 

interrupted. These random phase interruptions also lead to line broadening, 

typically Lorentzian as well, and can also cause shifts in the line center. 

We'll explore this phase perturbation in more detail later. 
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Continuing our discussion of the two fundamental broadening mechanisms, 

particularly focusing now on the consequences of elastic, phase-perturbing 

collisions. These collisions, by modifying the oscillator phase, can 'cause a 

frequency shift', denoted as 𝛥𝜔, and also contribute an 'additional width 

through phase diffusion'. Think of the emitted wave train: each collision 

resets its phase. An accumulation of many random phase shifts effectively 

broadens the frequency spectrum of the radiation. 

So, when we consider the 'total observed effects' on a spectral line due to 

collisions, we generally see both a shift and a change in width. The slide 

summarizes this: The 'Shift' is 𝛥𝜔. The 'Halfwidth' of the spectral line, which 

we'll denote by 𝛾, is now the sum of the natural radiative halfwidth, 𝛾n, and 

the collisional halfwidth, 𝛾𝑐𝑜𝑙. So, 𝛾 = 𝛾n + 𝛾𝑐𝑜𝑙. 

The term 𝛾n is explicitly defined as the 'natural radiative halfwidth' – this is 

the width the line would have even in the complete absence of collisions, 

due solely to the finite radiative lifetime of the excited state. It represents 

the contribution from spontaneous emission. 

𝛾𝑐𝑜𝑙, then, encompasses the broadening contributions from both inelastic 

(quenching) collisions, which reduce the lifetime, and elastic (phase-

perturbing) collisions. 



A very important practical point is highlighted next: 'Both mechanisms 

simultaneously act; separating them experimentally needs careful analysis.' 

In a real gas, an atom experiences a variety of collisions. Some might be 

inelastic, others elastic and phase-perturbing. The observed line shape is a 

result of the combined effects. Distinguishing the contribution of quenching 

from phase perturbation, or even separating collisional effects from other 

broadening mechanisms like Doppler broadening, often requires careful 

experimental design and data analysis, perhaps by studying the line shape 

as a function of perturber pressure and temperature. The triple dash 

indicates the end of this section. 
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Let's now consider the 'Instantaneous Transition Frequency During a 

Collision'. This perspective, often called the quasi‐ static approximation, is 

particularly useful for understanding the wings of a broadened line. 

The first point considers a "radiative transition from state 𝐸i to 𝐸k occurring 

at a fixed internuclear separation 𝑅". As we discussed with the concept of 

vertical transitions, if the photon emission or absorption happens at a 

specific moment when the colliding particles have a separation 𝑅, the 

frequency of that photon will be determined by the energy difference 𝛥𝐸(𝑅) 

of 𝑅 at that specific 𝑅. 

The equation for this instantaneous angular frequency, 𝜔𝑖𝑘(𝑅) (lowercase 

omega subscript i-k of 𝑅), is given by: 

𝜔𝑖𝑘(𝑅) =
|𝐸k(𝑅) − 𝐸i(𝑅)|

ℏ
 

Here, 𝐸k(𝑅) and 𝐸i(𝑅) are the energies of the excited and initial states, 

respectively, perturbed by the presence of the collision partner at 

separation 𝑅. This is simply the Bohr frequency condition, applied at a 

specific 𝑅. 



Now, the crucial insight is in the second point: "Because 𝑅(𝑡)" – that is, the 

internuclear separation as a function of time – "fluctuates randomly in a 

gas, the measured fluorescence or absorption spectrum spans a 

distribution of frequencies." In a gas, collisions are constantly occurring. At 

any given instant, an emitting or absorbing atom will find itself at some 

separation 𝑅 from a perturber. Since 𝑅 is varying due to the thermal motion 

and trajectories of the particles, the instantaneous transition frequency 

𝜔𝑖𝑘(𝑅) will also vary. Some atoms might emit when 𝑅 is small, others when 

𝑅 is larger. The collection of all such emitted or absorbed photons will 

therefore not have a single frequency, but a distribution of frequencies. 

This distribution is often centered, or has a maximum intensity, around a 

frequency 𝜔𝑚𝑎𝑥 (lowercase omega subscript m-a-x), which corresponds to 

the transition frequency 𝜔𝑖𝑘 at some particular separation 𝑅m (capital R 

subscript m). As the slide indicates, this 𝑅m is a separation that, for reasons 

we will explore, maximizes the emission or absorption probability, or 

perhaps corresponds to a stationary point in the difference potential. 
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Continuing our discussion from the previous slide, we clarify the meaning of 

𝑅m (capital R subscript m). It's stated that 𝑅m is the separation that 

"maximizes the emission probability." This often corresponds to a region 

where the difference potential, 𝛥𝐸(𝑅), has an extremum, or where atoms 

spend a relatively longer time, leading to a higher probability of radiating at 

the frequency associated with that 𝑅. This gives rise to features like 

satellite lines, which we'll discuss later. 

Now, with this concept of 𝜔max (lowercase omega subscript m-a-x) – the 

frequency around which the perturbed line profile is often most intense – 

we can define the "measurable line shift". The line shift, denoted by 𝛥𝜔 

(capital Delta lowercase Greek letter omega), is given by the equation: 

𝛥𝜔 = 𝜔0 −𝜔max. 



Here, "omega sub zero" (lowercase omega subscript zero) is explicitly 

defined as the "transition frequency of an isolated atom." This is the 

frequency we would observe if there were no collisions, i.e., when 𝑅 goes 

to ∞, so 𝜔0 corresponds to 𝛥𝐸(∞)/ℏ. So, the shift 𝛥𝜔 measures how much 

the peak (or most probable frequency) of the collisionally perturbed line, 

𝜔max, has moved from the unperturbed line position, 𝜔0. A positive 𝛥𝜔 (if 

defined this way) would mean 𝜔max is less than 𝜔0, indicating a red shift, 

while a negative 𝛥𝜔 would indicate a blue shift. The convention for the sign 

of the shift can sometimes vary, so it's always good to be clear about the 

definition. The three dashes signify the end of this point. 
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We now shift our focus to a statistical aspect of collisions, crucial for 

calculating the overall line shape. This slide is titled "Probability of Finding a 

Perturber at Distance 𝑅", and it begins the derivation of a quantity 𝑁(𝑅), 

which represents the number of perturber particles (type B) that are found 

in a spherical shell between radius 𝑅 and 𝑅 + 𝑑𝑅, centered on our atom A. 

To determine this, we need a few ingredients. 

First, we consider the "spherical shell volume", 𝑑𝑉. If we have a shell of 

radius 𝑅 and thickness 𝑑𝑅, its volume is the surface area of the sphere 

times the thickness. So, 

𝑑𝑉 = 4𝜋𝑅2 𝑑𝑅. 

Second, we need to account for the fact that the perturbers are not 

necessarily uniformly distributed if there's an interaction potential between 

them and particle A. The "Boltzmann factor" gives us the relative probability 

of finding a perturber at a separation 𝑅 where the interaction potential is 

𝑉(𝑅), compared to a region where the potential is zero. This slide 

specifically mentions the "ground-state interaction potential 𝑉(𝑅)". 

Assuming particle A is in its ground state (or, more generally, the initial 

state of the transition, 𝑉i(𝑅)), the Boltzmann factor is: 



exp [−
𝑉(𝑅)

𝑘𝑇
]. 

Here, 𝑘 is the Boltzmann constant, and 𝑇 is the absolute temperature in 

Kelvin. This factor tells us that configurations with lower energy (e.g., 

attractive 𝑉(𝑅)) are more probable, and configurations with higher energy 

(repulsive 𝑉(𝑅)) are less probable, than if there were no interaction. 

Third, we need to know the "average perturber density", 𝑁0. This is the 

number of perturber particles per unit volume (e.g., in units of m−3) far 

away from particle A, or if there were no interaction potential. It's the bulk 

density of perturbers. 
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Continuing from the previous slide where we introduced the components, 

we now "combine these factors" to get the expression for 𝑁(𝑅) 𝑑𝑅, the 

number of B particles in the shell between 𝑅 and 𝑅 + 𝑑𝑅. 

The equation is: 

𝑁(𝑅) 𝑑𝑅 = 𝑁0 4𝜋𝑅
2 exp [−

𝑉(𝑅)

𝑘𝑇
]  𝑑𝑅. 

(capital 𝑁(𝑅), lowercase 𝑑𝑅, equals capital 𝑁0, times 4, lowercase 𝜋, 

capital 𝑅2, times exponential open square bracket minus capital 𝑉(𝑅) 

divided by open parenthesis lowercase 𝑘𝑇 close parenthesis close square 

bracket, lowercase 𝑑𝑅). 

Let's break this down: 

𝑁0 is the average number density of perturbers. 

4𝜋𝑅2 𝑑𝑅 is the geometric volume of the shell. 

The exponential term, exp [−
𝑉(𝑅)

𝑘𝑇
], is the Boltzmann factor, which adjusts 

the probability of finding a particle in that shell based on the interaction 



potential 𝑉(𝑅). Again, this 𝑉(𝑅) is typically the potential for the initial state 

of the spectroscopic transition, often the ground state, as this determines 

the statistical distribution of perturbers before the spectroscopic interaction 

(photon absorption) occurs. 

To ensure clarity, the slide then explicitly defines the symbols used in the 

Boltzmann factor, to "avoid ambiguity": 

"𝑘" is the Boltzmann constant, with a value of 1.38 × 10−23 Joules per 

Kelvin ( 1.38 × 10−23 J K
−1

, or Joules Kelvin−1). 

"𝑇" is the absolute temperature, measured in Kelvin (𝐾). 

This expression for 𝑁(𝑅) 𝑑𝑅 is fundamental because the overall spectral 

line shape will be an integral over contributions from all possible perturber 

distances 𝑅, weighted by this probability of finding a perturber at that 

distance. 

The triple dash signifies the end of this definition. 
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Now we move towards 'Building the Intensity Profile – Integral Expression'. 

We want to understand how the total observed spectral intensity 𝐼(𝜔) is 

constructed from all these microscopic interactions. 

The first point notes that the "Spontaneous Einstein-A-coefficient" can itself 

depend on the internuclear separation 𝑅. We denote this as 𝐴𝑖𝑘(𝑅). Recall 

that the A coefficient governs the rate of spontaneous emission. If the 

wavefunctions of states 𝑖 and 𝑘 are perturbed by the collision, the transition 

dipole moment, and hence 𝐴𝑖𝑘(𝑅), can change with 𝑅. This is often a 

secondary effect compared to the change in transition energy but can be 

important for accurate line shape modeling, especially in the far wings. 

The second point introduces "P sub col of R" (capital P subscript c-o-l of 

R), defined as the "probability per unit time that the internuclear separation 

𝑅 lies in the range 𝑅 to 𝑅 + 𝑑𝑅". This is essentially related to 𝑁(𝑅), which 



we just derived, representing the statistical likelihood of finding a perturber 

configuration. 

The third point gives us the "intensity contribution from a shell 𝑑𝑅". This is 

the crucial step. The differential intensity, 𝑑𝐼(𝜔), emitted at frequencies 

corresponding to separations within the shell 𝑑𝑅, is proportional to several 

factors: 𝑑𝐼(𝜔) is proportional to 𝐴𝑖𝑘(𝑅), times 𝑃col(𝑅), times the quantity 

[𝐸i(𝑅) − 𝐸k(𝑅)], times 𝑑𝑅. 

𝑑𝐼(𝜔) ∝ 𝐴𝑖𝑘(𝑅) 𝑃col(𝑅) [𝐸i(𝑅) − 𝐸k(𝑅)] 𝑑𝑅. 

Let's examine the energy term: [𝐸i(𝑅) − 𝐸k(𝑅)]. This represents the energy 

of the emitted photon. For emission, if 𝐸k(𝑅) is the upper state and 𝐸i(𝑅) is 

the lower state, this should correctly be 𝐸k(𝑅) − 𝐸i(𝑅), which is a positive 

quantity, and indeed, intensity should be proportional to the photon energy 

(ℏ𝜔) and the rate. The expression as written with (𝐸i(𝑅) − 𝐸k(𝑅)) would be 

negative if 𝑘 is the upper state. Assuming this is related to a definition of a 

difference potential that appears in the overall context of Equation 3.35 

from the source material, where perhaps 𝜔 is defined as 𝜔 =
𝑉i−𝑉k

ℏ
. We 

should consider this an energy factor proportional to ℏ𝜔(𝑅). 

The slide notes this is a rewritten form of an "Original Equation 3.35" from 

the course text or notes. 

Finally, to make this more concrete, we "substitute 𝑃col(𝑅) as being 

proportional to 𝑁(𝑅)" (the number of perturbers in the shell, which we 

derived on the previous slide) "to obtain an explicit 𝑅-dependence". This 

means the probability of finding a perturber at 𝑅, which includes the 

Boltzmann factor and the 𝑅2 geometric factor, directly weights the 

contribution to the spectrum from that separation 𝑅. 
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This slide offers a concise but very insightful "Result". It states that the 

"collision-broadened line shape mirrors the difference of potential curves: 

𝑉[𝐴(𝐸i), 𝐵] − 𝑉[𝐴(𝐸k), 𝐵]." (𝑉[𝐴(𝐸i), 𝐵] − 𝑉[𝐴(𝐸k), 𝐵]). 

Let's interpret this carefully. 

𝑉[𝐴(𝐸x), 𝐵] represents the potential energy of atom A when it is in 

electronic state 𝐸x (either 𝐸i or 𝐸k), interacting with perturber B, as a 

function of their separation 𝑅. This is what we previously called 𝐸i(𝑅) or 

𝐸k(𝑅). 

So the "difference of potential curves" refers to 𝐸i(𝑅) − 𝐸k(𝑅) (as written on 

the slide). 

This quantity, when divided by ℏ, gives the instantaneous angular 

frequency of the transition, 𝜔(𝑅), possibly relative to the unperturbed 

frequency 𝜔0 or including it. Specifically, if ℏ𝜔(𝑅) = 𝐸k(𝑅) − 𝐸i(𝑅) for 

emission, then the slide's 𝑉[𝐴(𝐸i), 𝐵] − 𝑉[𝐴(𝐸k), 𝐵] would be −ℏ𝜔(𝑅). The 

line shape mirrors this difference. 

The statement means that the observed spectrum, 𝐼(𝜔), is essentially a 

map of how often different values of this difference potential (and thus 

different frequencies) occur, weighted by factors like the statistical 

probability of finding a perturber at the corresponding separation 𝑅 (𝑁(𝑅)) 

and by the transition probability (𝐴𝑖𝑘(𝑅)). 

If the difference potential, let's call it 𝛥𝑉(𝑅) = 𝐸k(𝑅) − 𝐸i(𝑅), varies 

significantly with 𝑅, then we will see a broad range of frequencies in our 

spectrum. 

If this difference potential 𝛥𝑉(𝑅) has an extremum at some 𝑅s, we might 

see a "satellite" feature in the spectrum, as many 𝑅 values around 𝑅s 

contribute to nearly the same frequency. 

This is a cornerstone of the quasi-static theory of line broadening: the 

spectrum directly reflects the 𝑅-dependent energy difference between the 



two states involved in the transition. The triple dash here concludes this 

point. 

Page 20: 

This slide, titled “From R to Observable Frequency 𝜔,” details how we 

connect the theoretical dependence on internuclear separation 𝑅 to the 

experimentally measured frequency 𝜔. 

The first point reiterates the fundamental “relation between separation and 

frequency”. The energy of a photon emitted or absorbed, ℏ𝜔(𝑅), is equal to 

the difference in the potential energies of the initial and final states at that 

separation 𝑅. The slide writes this as: 

ℏ𝜔(𝑅) = 𝑉i(𝑅) − 𝑉k(𝑅). 

Here, 𝑉i(𝑅) and 𝑉k(𝑅) represent the potential energies of the atom when it's 

in state “i” or state “k”, respectively, at separation 𝑅 from the perturber. 

These are effectively the same as 𝐸i(𝑅) and 𝐸k(𝑅) from our earlier 

discussion. The choice of 𝑉i − 𝑉k (or 𝑉k − 𝑉i) determines the sign convention 

for 𝜔 relative to the energy levels. For emission from upper state 𝑘 to lower 

state 𝑖, typically ℏ𝜔 = 𝐸k − 𝐸i. If 𝑉i and 𝑉k are the interaction potentials 

added to unperturbed energies 𝐸i
0 and 𝐸k

0, then 

ℏ𝜔(𝑅) = (𝐸k
0 + 𝑉k(𝑅)) − (𝐸i

0 + 𝑉i(𝑅)) = ℏ𝜔0 + (𝑉k(𝑅) − 𝑉i(𝑅)). 

The slide’s 𝑉i(𝑅) − 𝑉k(𝑅) definition for ℏ𝜔(𝑅) may represent a shift from an 

unperturbed value, or defines 𝜔 in a specific way. The key is that 𝜔 is a 

function of 𝑅. 

Now, our intensity expression 𝑑𝐼 on a previous slide contained a 𝑑𝑅. 

However, we measure spectra as a function of 𝜔, not 𝑅. So, we need to 

“differentiate to transform 𝑑𝑅 into 𝑑𝜔”. This is a standard change of 

variables technique in integration. 

We start with 



ℏ𝜔(𝑅) = 𝑉i(𝑅) − 𝑉k(𝑅). 

Differentiating both sides with respect to 𝑅, we get: 

ℏ
𝑑𝜔

𝑑𝑅
=
𝑑

𝑑𝑅
[𝑉i(𝑅) − 𝑉k(𝑅)]. 

This gives us a relationship between the differential 𝑑𝜔 and the differential 

𝑑𝑅. 

The final step is to “insert this transformation into the intensity expression” 

we had for 𝑑𝐼 (which was proportional to something times 𝑑𝑅). By 

substituting 𝑑𝑅 in terms of 𝑑𝜔 (or vice versa), we can get an expression for 

𝑑𝐼(𝜔), or 𝐼(𝜔), which is the intensity per unit frequency interval. This yields 

an “experimentally useful form” because spectra are measured as intensity 

versus frequency. This transformation is particularly important in the quasi-

static theory, where it relates the spectral intensity at a frequency 𝜔 to the 

probability of finding a perturber at the specific radius (or radii) 𝑅 that 

produce that frequency 𝜔, divided by the rate of change of frequency with 

𝑅 (the derivative term, which acts as the Jacobian of the transformation). 
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This slide presents the resulting expression for the spectral intensity 

distribution, 𝐼(𝜔) 𝑑𝜔 (capital I of lowercase omega, lowercase d lowercase 

omega), after performing the change of variables from 𝑅 to 𝜔. The equation 

is given as: 

𝐼(𝜔) 𝑑𝜔 = 𝐶 𝑅2exp [−
𝑉i(𝑅)

𝑘𝑇
] (

𝑑𝑅

𝑑[𝑉i(𝑅) − 𝑉k(𝑅)]
) 𝑑𝜔. 

Let's carefully interpret the term in the square brackets, 
𝑑𝑅

𝑑[𝑉i(𝑅)−𝑉k(𝑅)]
. This 

term is the reciprocal of the derivative of the difference potential (𝑉i − 𝑉k) 

with respect to 𝑅. That is, it's (
𝑑[𝑉i(𝑅)−𝑉k(𝑅)]

𝑑𝑅
)
−1

. Recall that ℏ 𝜔(𝑅) = 𝑉i(𝑅) −

𝑉k(𝑅) (using the convention from the previous slide). Therefore, the term 



𝑑[𝑉i(𝑅) − 𝑉k(𝑅)] 

is equal to ℏ 𝑑𝜔. So the fraction in the equation, 
𝑑𝑅

𝑑[𝑉i(𝑅)−𝑉k(𝑅)]
, can be written 

as 

𝑑𝑅

ℏ 𝑑𝜔
. 

The equation for 𝐼(𝜔) 𝑑𝜔 then has 
𝑑𝑅

ℏ 𝑑𝜔
 multiplied by 𝑑𝜔, which means the 

intensity 𝐼(𝜔) would be 

𝐶 𝑅2exp [−
𝑉i(𝑅)

𝑘𝑇
] × (

1

ℏ
) × (dR that corresponds to the R that gives 𝜔). 

This needs careful formulation. 

More standardly, 

𝐼(𝜔) =∑

{
 
 

 
 
𝑁(𝑅j) 𝐴(𝑅j) 𝑅j

2

|
𝑑𝑉diff(𝑅j)

𝑑𝑅j
|
}
 
 

 
 

j

 

where 𝑅j are the roots of ℏ 𝜔 = 𝑉diff(𝑅). 

The term on the slide, 
𝑑𝑅

𝑑[𝑉i(𝑅)−𝑉k(𝑅)]
, is actually (

𝑑[𝑉i(𝑅)−𝑉k(𝑅)]

𝑑𝑅
)
−1

. And 

𝑑[𝑉i(𝑅) − 𝑉k(𝑅)]

𝑑𝑅
= ℏ 

𝑑𝜔

𝑑𝑅
. 

So, 
𝑑𝑅

𝑑[𝑉i(𝑅)−𝑉k(𝑅)]
 becomes 

1

ℏ 
𝑑𝜔
𝑑𝑅

. 

Thus, 



𝐼(𝜔) 𝑑𝜔 = 𝐶 𝑅2exp [−
𝑉i(𝑅)

𝑘𝑇
] [

1

ℏ  |
𝑑𝜔
𝑑𝑅
|
] 𝑑𝜔. 

The absolute value on 
𝑑𝜔

𝑑𝑅
 is important because intensity must be positive. 

Here, 𝑅 is the specific separation (or separations, if the function 𝜔(𝑅) is not 

monotonic) that produces the frequency 𝜔. The 𝑉i(𝑅) in the Boltzmann 

factor is the interaction potential for the initial state, determining the 

statistical probability of finding a perturber at 𝑅. The 𝑅2 comes from the 

𝑁(𝑅) term which includes 4𝜋𝑅2. Points where 
𝑑𝜔

𝑑𝑅
 is zero are singularities 

called "classical satellites," where the intensity can peak. 

The slide also notes that "the constant C absorbs universal prefactors and 

the average number density 𝑁0." This 𝑁0 (capital N subscript zero) is the 

bulk density of perturbers. The constant C would also include things like 4𝜋 

(four pi) from the spherical shell volume, and potentially factors from the 

Einstein 𝐴 coefficient if it's assumed constant, and other fundamental 

constants like 
1

ℏ
. This equation forms the basis of the quasi-static theory for 

line shapes. The three dashes indicate the end of this segment. 
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This slide, titled "Extracting Ground-State Potential via Temperature 

Dependence," presents a very clever experimental technique to determine 

the ground-state interaction potential, 𝑉i(𝑅), from spectral line shape 

measurements. 

Recall the expression for 𝐼(𝜔, 𝑇) we just discussed, which contained the 

Boltzmann factor, exp [−
𝑉i(𝑅)

𝑘𝑇
]. This exponential term has a clear 

temperature dependence. The idea here is to exploit this. 

The first instruction is to "Take the derivative of the measured intensity 

𝐼(𝜔, 𝑇) with respect to temperature 𝑇". We assume that the frequency 𝜔 



has been chosen, which in turn fixes the corresponding 𝑅 (or 𝑅's) that 

contribute at that 𝜔. 

The equation provided is: 

∂𝐼(𝜔, 𝑇)

∂𝑇
=
𝑉i(𝑅)

𝑘𝑇2
 𝐼(𝜔, 𝑇) 

This equation arises directly from differentiating the Boltzmann factor within 

the expression for 𝐼(𝜔, 𝑇). If 𝐼 is proportional to exp [−
𝑉i

𝑘𝑇
], then 

𝑑𝐼

𝑑𝑇
 is 

proportional to exp [−
𝑉i

𝑘𝑇
] times (−

𝑉i

𝑘
) times (−

1

𝑇2
), which simplifies to 

𝑉i

𝑘𝑇2
 

times 𝐼. The other 𝑅-dependent terms in 𝐼 (like 
𝑅2

|
𝑑𝜔

𝑑𝑅
|
) are assumed to be less 

sensitive to 𝑇, or their 𝑇-dependence is weaker than the Boltzmann 

factor's. 

Now, the brilliant part is when this equation is "Rearranged" to solve for 

𝑉i(𝑅): 

𝑉i(𝑅) = 𝑘𝑇2 (
1

𝐼(𝜔, 𝑇)
) (
∂𝐼(𝜔, 𝑇)

∂𝑇
) 

Here, 𝐼 is 𝐼(𝜔, 𝑇). 

This equation is remarkable because it allows us to determine the ground 

state (or more generally, initial state) interaction potential 𝑉i at a specific 

separation 𝑅 (the 𝑅 corresponding to our chosen 𝜔) by measuring the 

intensity of the spectrum at that 𝜔, 𝐼(𝜔, 𝑇), and how that intensity changes 

with temperature, 
∂𝐼(𝜔,𝑇)

∂𝑇
. We also need to know the temperature 𝑇 and 

Boltzmann's constant 𝑘. 
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This slide elaborates on the significance and practical implementation of 

the method we just discussed for extracting the ground-state potential. 



The key takeaway is summarized: 'Thus, temperature-scanned line profiles 

provide direct experimental access to 𝑉𝑖(𝑅)' – the initial state interaction 

potential – 'without independent knowledge of the excited-state potential, 

𝑉𝑘(𝑅).' This is a very powerful feature. Often, calculating or experimentally 

determining excited state potentials can be more challenging. This method 

bypasses that need for 𝑉𝑖(𝑅) determination, as only 𝑉𝑖(𝑅) appears in the 

Boltzmann factor that gives rise to the temperature dependence being 

exploited. Of course, to relate the observed 𝜔 to a specific 𝑅, one still 

needs to know the difference potential, 𝑉𝑖(𝑅) − 𝑉𝑘(𝑅) (or 𝑉𝑘(𝑅) − 𝑉𝑖(𝑅)), 

which defines 𝜔(𝑅). But the extraction of 𝑉𝑖(𝑅) itself from the temperature 

dependence relies only on 𝑉𝑖 being in the Boltzmann factor affecting the 

population of 𝑅 states. 

Now, for the 'Practical' implementation: 

To use the formula 𝑉𝑖(𝑅) = 𝑘𝑇2 ×
1

𝐼
×

∂𝐼

∂𝑇
, we need to measure the partial 

derivative of intensity with respect to temperature. Experimentally, this is 

often done by performing spectral measurements, i.e., obtaining 𝐼(𝜔), at 'at 

least three or more different temperatures' (greater than or equal to 3 

temperatures). 

With intensity data at several temperatures for a fixed 𝜔 (which 

corresponds to a fixed 𝑅), one can then 'numerically compute the 

derivative' 
∂𝐼

∂𝑇
. For example, by fitting the 𝐼 versus 𝑇 data to a function or by 

using finite difference methods if enough data points are available. Having 

more than two temperatures allows for a more robust determination of the 

derivative and can help check the validity of the assumptions made. 

Once this derivative is found, 𝑉𝑖(𝑅) can be calculated for each 𝜔 (and thus 

each 𝑅) in the spectrum where the analysis is performed, allowing the 

potential to be mapped out. The three dashes indicate the conclusion of 

this point. 
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Now that we've discussed how interaction potentials 𝑉(𝑅) lead to line 

broadening and how they might even be experimentally determined, let's 

look at some 'Typical Model Interaction Potentials' that are often used in 

calculations and interpretations. These are analytical forms that 

approximate the true, complex interatomic potentials. 

Perhaps the most famous and widely used is the 'Lennard-Jones (12-6) 

potential'. This potential describes the interaction energy 𝑉(𝑅) between two 

neutral, nonpolar atoms or molecules as a function of their separation 𝑅. 

The mathematical form is given by: 

𝑉(𝑅) =
𝑎

𝑅12
−
𝑏

𝑅6
 

(capital 𝑉(𝑅) equals lowercase 𝑎 divided by 𝑅12, minus lowercase 𝑏 divided 

by 𝑅6). 

Here, 'a' and 'b' are positive constants specific to the interacting pair of 

particles. 

Let's look at the two terms: 

1. The 'First term', 
𝑎

𝑅12
, is the repulsive term. It dominates at very short 

ranges (small 𝑅) due to its high power of 𝑅 in the denominator. This term 

models the 'short-range Pauli repulsion' that occurs when the electron 

clouds of the two particles overlap significantly, arising from the Pauli 

exclusion principle. The 𝑅12 form is chosen largely for mathematical 

convenience, though it provides a steep repulsive wall. 

2. The 'Second term', −
𝑏

𝑅6
, is the attractive term (note the minus sign). It is 

longer-ranged than the repulsive term but falls off more slowly. This term 

represents the 'van der Waals attraction', specifically the London dispersion 

force, which arises from interactions between instantaneous fluctuating 

dipoles and the induced dipoles they create in neighboring 



atoms/molecules. This 𝑅−6 dependence has a stronger theoretical basis for 

induced-dipole-induced-dipole interactions. 

These 'adjustable coefficients 𝑎 and 𝑏' are typically determined empirically. 

They are 'fitted to reproduce observed experimental data', such as gas 

properties (like virial coefficients or viscosity) or, very relevant to our 

course, observed spectroscopic line shapes and shifts. 

By choosing appropriate '𝑎' and '𝑏' values for both the ground state 

potential 𝑉i(𝑅) and the excited state potential 𝑉k(𝑅), one can often model 

the collisionally broadened spectral profiles with reasonable accuracy. 

Page 25: 

Besides the Lennard-Jones potential, there are "Other common forms" for 

model interaction potentials that are frequently encountered. 

One simple and general form is the "Power‐ law potential", given by: 

𝑉(𝑅) =
𝐶

𝑅𝑛
 

(capital V of capital R equals capital C divided by capital R to the power of 

n). 

Here, 𝐶 is a constant (the potential strength coefficient) and 𝑛 is an integer 

exponent. The sign of 𝐶 determines whether the potential is attractive or 

repulsive. 

This form is often used to describe individual components of an interaction. 

For example: 

If 𝑛 = 6 and 𝐶 < 0, it represents the attractive van der Waals interaction we 

just saw. 

If 𝑛 = 12 and 𝐶 > 0, it's the repulsive core of the Lennard-Jones potential. 

Other values of 𝑛 describe different types of interactions. For instance, 𝑛 =

1 for Coulomb interactions, 𝑛 = 2 for charge‐ dipole, 𝑛 = 3 for 



dipole‐ dipole interactions, and so on. We'll see some specific examples of 

𝑛 later. 

The slide also mentions "Morse, Buckingham, or ab‐ initio tabulated 

potentials." 

The "Morse potential" is another common two-parameter potential that 

includes both attractive and repulsive parts and is often used to describe 

the vibrational energy of diatomic molecules because it has a more realistic 

shape for bound states, including dissociation. 

The "Buckingham potential", also known as the exp‐ 6 potential, combines 

an exponential term for repulsion (𝐴exp(−𝐵𝑅), 𝐴 times exponential of 

minus 𝐵𝑅) with an 𝑅−6 term for attraction, offering a slightly more physically 

grounded repulsive term than the 𝑅−12. 

Finally, "ab‐ initio tabulated potentials" represent a different approach. 

Instead of fitting simple analytical forms, these potentials are calculated 

from first principles using quantum chemistry methods. These calculations 

can be computationally intensive but can provide highly accurate potential 

energy surfaces, especially for smaller systems. The results are often 

presented as a table of energy values at various separations 𝑅, which can 

then be interpolated for use in line shape calculations. These are generally 

the most accurate but least convenient for quick analytical work. 

Page 26: 

This slide provides a visual representation of the 'Lennard-Jones (12 − 6) 

Potential' that we just discussed. Let's analyze the features of this graph. 

The vertical axis is 'Potential Energy 𝑉(𝑅)'. Key values are marked: zero 

energy, which is the energy of the two particles when infinitely separated. A 

depth −𝜖 (minus lowercase Greek letter epsilon), representing the 

minimum energy of the potential well. And 𝜖 itself, which is the well depth 

magnitude. 



The horizontal axis is 'Interatomic Separation (𝑅)'. Several characteristic 

distances are marked: 𝜎 (lowercase Greek letter sigma), which is the finite 

distance at which the potential 𝑉(𝑅) is zero. It represents an effective 

collision diameter. 𝑟e (lowercase r subscript e) is the equilibrium separation 

where the potential energy is at its minimum, 𝑉(𝑟e) = −𝜖. Also marked are 

multiples of 𝜎, like 1.5𝜎 (one point five sigma), 2.0𝜎 (two point zero sigma), 

and 2.5𝜎 (two point five sigma), to give a sense of scale. 

Now, let's trace the curve itself, which is typically plotted in blue. At very 

small 𝑅 (to the left), the potential rises extremely steeply. This is labeled the 

'Repulsive Wall', corresponding to the positive 
𝑎

𝑅12
 term. This signifies a 

strong repulsive force when the particles are very close. 

As 𝑅 increases, the potential energy drops rapidly, crosses the zero energy 

axis at 𝑅 = 𝜎, and reaches a minimum value of −𝜖 at 𝑅 = 𝑟e. This region 

around the minimum is labeled the 'Potential Well'. This well signifies the 

attractive part of the potential, dominated by the minus 
𝑏

𝑅6
 term, leading to a 

stable or quasi-stable bound state if particles are trapped in it. 

For 𝑅 > 𝑟e, the potential energy gradually rises, approaching zero as 𝑅 →

∞. This region for 𝑅 > 𝜎, where the potential is negative but increasing 

towards zero, is often called the 'Attractive Tail'. 

The two parameters often used to characterize the Lennard-Jones potential 

are 𝜖 (the well depth) and 𝜎 (the zero-crossing distance). The constants 𝑎 

and 𝑏 in the 𝑉(𝑅) =
𝑎

𝑅12
−

𝑏

𝑅6
 form can be related to 𝜖 and 𝜎: specifically, 𝑎 =

4𝜖𝜎12, and 𝑏 = 4𝜖𝜎6. So the potential is often written as 

𝑉(𝑅) = 4𝜖 [(
𝜎

𝑅
)
12

− (
𝜎

𝑅
)
6

]. 

This graphical representation is fundamental to understanding how the 

balance of short-range repulsion and longer-range attraction shapes the 

interaction between neutral particles. 



Page 27: 

We now turn our attention specifically to "Inelastic (Quenching) Collisions" 

and their impact on transition probabilities, or more accurately, rates. Recall 

that inelastic collisions are those that cause a change in the internal 

quantum state of the colliding particles, often leading to de-excitation. 

The first point considers the "Total depopulation rate of an excited level", 

let's say level "i". If "i" is an excited state, its population can decrease 

through two main channels: radiative decay and collisional quenching. The 

total depopulation rate, denoted as 𝐴i, is therefore the sum of the radiative 

decay rate and the collisional decay rate: 

𝐴i = 𝐴i
rad + 𝐴i

coll 

Here, 𝐴i
rad is the Einstein A coefficient for spontaneous emission from state 

"i" (summed over all possible lower states if "i" can decay to multiple 

levels). It's the rate of radiative decay in the absence of collisions. 𝐴i
coll is 

the rate of depopulation of state "i" due to inelastic collisions. 

The second point gives an expression for this "Collision contribution", 𝐴i
coll: 

𝐴i
coll = 𝑁B  𝑣‾ 𝜎i 

Let's define these terms, which will be detailed on the next slide but we can 

anticipate them: 𝑁B is the number density of the perturber particles B. The 

more perturbers there are, the higher the collision rate. 𝑣‾ (v with a bar) is 

the mean relative speed between our particle A (in state i) and the 

perturber particles B. Faster speeds mean more frequent encounters. 𝜎i 

(lowercase sigma subscript i) is the "inelastic (quenching) cross section" for 

state "i". This cross section is a crucial parameter. It represents an effective 

area presented by particle A to particle B for an inelastic collision to occur. 

If B passes within this area around A, quenching happens. It has units of 

area (e.g., meters squared) and encapsulates the quantum mechanical 



probability of the quenching process occurring during a typical encounter. 

The "where" indicates that the definitions will follow. 

Page 28: 

This slide continues by defining the terms in the expression for the 

collisional quenching rate, 𝐴i
coll. 

First, 𝑁B is the "perturber number density", with typical units of particles per 

cubic meter (m−3). This is simply how many perturber particles B are 

present per unit volume. 

Second, 𝑣‾ is the "mean relative speed" between the particle of interest A 

and the perturbers B. The rate of collisions will naturally depend on how 

fast, on average, they are approaching each other. 

Third, 𝜎i is the "inelastic (quenching) cross section" for the state "i" that is 

being depopulated. Its units are area, for example, meters squared (m2). 

This cross section effectively measures the "size" of the target for a 

quenching collision. It’s a critically important parameter that depends on the 

specific states involved and the nature of the interaction potential. 

Next, the slide provides an expression for the "Mean speed for a 

Maxwellian gas of reduced mass 𝜇". If the gas particles (A and B) are in 

thermal equilibrium, their speeds follow a Maxwell-Boltzmann distribution. 

The mean relative speed, 𝑣‾, between particles A and B is given by: 

𝑣‾ = √
8𝑘𝑇

𝜋𝜇
 

Here, 𝑘 is the Boltzmann constant, 𝑇 is the absolute temperature, and 𝜋 is 

the mathematical constant pi. 

The "reduced mass", 𝜇, of the colliding pair A and B is given by: 

𝜇 =
𝑚A𝑚B

𝑚A +𝑚B

 



(lowercase 𝜇 equals open parenthesis lowercase 𝑚A times lowercase 𝑚B 

close parenthesis divided by open parenthesis lowercase 𝑚A plus 

lowercase 𝑚B close parenthesis), where 𝑚A and 𝑚B are the masses of 

particles A and B, respectively. 

Finally, the slide points towards establishing a "Pressure-rate relation using 

the ideal gas law for the perturbers, 𝑝B = 𝑁B𝑘𝑇". Here, 𝑝B is the partial 

pressure of the perturber gas B. Since 𝑁B appears in the expression for 

𝐴i
coll, and 𝑁B is directly proportional to 𝑝B at a given 𝑇, it means the 

collisional quenching rate will be directly proportional to the perturber 

pressure. This is a key experimental signature of pressure broadening and 

quenching. 
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This slide combines the relationships we've just discussed to express the 

total depopulation rate 𝐴i in a very useful form, often encountered in 

experimental analysis. 

Recall that the total depopulation rate 𝐴i is 𝐴i
𝑟𝑎𝑑 plus 𝐴i

𝑐𝑜𝑙𝑙. 𝐴i
𝑟𝑎𝑑, the 

radiative rate, is simply the reciprocal of the natural radiative lifetime of 

state 'i', which we can denote as 𝜏p (lowercase tau subscript p, perhaps 'p' 

for "proper" lifetime or "purely radiative" lifetime). So, 𝐴i
𝑟𝑎𝑑 =

1

𝜏p

. And 𝐴i
𝑐𝑜𝑙𝑙 =

𝑁B  𝑣‾ 𝜎i. 

Using the ideal gas law, 𝑁B =
𝑝B

𝑘𝑇
, where 𝑝B is the perturber pressure. And 

𝑣‾ = √
8 𝑘𝑇

𝜋𝜇
. Substituting these into 𝐴i

𝑐𝑜𝑙𝑙, we get: 𝐴i
𝑐𝑜𝑙𝑙 =

𝑝B

𝑘𝑇
 𝜎i √

8 𝑘𝑇

𝜋𝜇
. 

This can be simplified. The total depopulation rate 𝐴i is expressed as: 

𝐴i =
1

𝜏p

+ 𝑎𝑝B 

(capital 𝐴i equals 
1

𝜏p

, plus lowercase 𝑎 times lowercase 𝑝B). 



Here, the coefficient 𝑎 groups together several terms: 𝑎 = 𝜎i√
8

𝜋𝜇𝑘𝑇
 

(lowercase 𝑎 equals lowercase 𝜎i times square root of open parenthesis 8 

divided by open parenthesis lowercase 𝜋 lowercase 𝜇 lowercase 𝑘 capital 

𝑇 close parenthesis close parenthesis). 

This form, 𝐴i =
1

𝜏p

+ 𝑎𝑝B, is very convenient. It shows that the total 

depopulation rate (which is also the observed linewidth, 𝛾, in angular 

frequency units, if this is the dominant broadening mechanism and 𝛾 = 𝐴i) 

is a linear function of the perturber pressure 𝑝B. The intercept of a plot of 𝐴i 

versus 𝑝B gives 
1

𝜏p

 (the natural radiative rate), and the slope gives the 

coefficient 𝑎. From this slope 𝑎, and knowing 𝑇 and 𝜇, one can then extract 

the inelastic quenching cross section, 𝜎i. This is a standard method for 

measuring quenching cross sections. The triple dash indicates the end of 

this development. 
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Now we connect the concept of lifetime shortening due to collisions directly 

to the observed spectral line shape. This slide is titled "Lorentzian Profile 

from Lifetime Shortening". 

We start by considering the "time-dependent dipole of a damped oscillator". 

In the classical picture, an emitting atom can be thought of as an oscillating 

dipole, 𝑑(𝑡) (lowercase 𝑑(𝑡)). If this oscillation is damped, meaning its 

amplitude decays over time, then the emitted radiation will not be perfectly 

monochromatic. 

The damping can come from natural radiative decay (rate 𝛾n, lowercase 𝛾n) 

and from collisional quenching (rate 𝛾𝑐𝑜𝑙, lowercase 𝛾𝑐𝑜𝑙). These rates add 

up. The amplitude of the dipole moment 𝑑(𝑡) is proportional to the 

exponential of minus (𝛾n + 𝛾𝑐𝑜𝑙)𝑡 divided by 2, i.e., 



𝑑(𝑡) ∝ 𝑒−
(𝛾n+𝛾𝑐𝑜𝑙)𝑡

2 . 

The factor of 
1

2
 in the exponent arises because the intensity (which is 

proportional to 𝑑2(𝑡)) decays at a rate 𝛾n + 𝛾𝑐𝑜𝑙. So the amplitude 𝑑(𝑡) 

decays at half that rate. Here, 𝛾n and 𝛾𝑐𝑜𝑙 are total decay rates (inverse of 

lifetime), which are FWHM values in angular frequency units. 

The fundamental connection between the time-domain behavior of the 

dipole and the frequency-domain spectrum is the "Fourier transform". 

Taking the Fourier transform of this exponentially decaying oscillating 

dipole (which would also have an 𝑒𝑖𝜔0𝑡 term for the oscillation frequency if 

we wrote it fully) yields the spectral line shape. 

The result is a "Lorentzian line shape" for the intensity 𝐼(𝜔) (capital I of 

lowercase omega): 

𝐼(𝜔) =
𝐶

(𝜔 − 𝜔0)
2 + (

𝛾n + 𝛾𝑐𝑜𝑙
2

)
2. 

Let's analyze this Lorentzian function: "C" is a constant related to the 

overall strength of the line. 𝜔0 (lowercase omega subscript zero) is the 

resonant angular frequency of the transition, i.e., the center frequency of 

the line if there are no collisional shifts (we are only considering lifetime 

shortening here). The term 𝛾n + 𝛾𝑐𝑜𝑙 is the total decay rate of the excited 

state population, or equivalently, the total homogeneous Full Width at Half 

Maximum (FWHM) in angular frequency units. Let's call this total rate 𝛤 =

𝛾n + 𝛾𝑐𝑜𝑙. Then the denominator is 

(𝜔 − 𝜔0)
2 + (

𝛤

2
)
2

. 

This function peaks at 𝜔 = 𝜔0. The FWHM of this Lorentzian profile is 

exactly 𝛤, or 𝛾n + 𝛾𝑐𝑜𝑙. 



So, inelastic collisions, by adding to 𝛾𝑐𝑜𝑙 and thus increasing 𝛤, directly 

broaden the spectral line, and this broadening is Lorentzian in shape. 
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This slide summarizes the 'Halfwidth parameters' that appear in the 

Lorentzian line shape arising from lifetime shortening, and clarifies some 

terminology. 

We just saw that the total Full Width at Half Maximum (FWHM) in angular 

frequency units is 𝛾, where 𝛾 = 𝛾n + 𝛾col. 

Let's look at the components: '𝛾col' (lowercase gamma subscript c-o-l), the 

collisional contribution to the FWHM, is directly proportional to the perturber 

pressure 𝑝B. We can write: 

𝛾col = 𝑎 𝑝B 

(lowercase gamma subscript c-o-l equals lowercase 𝑎 times lowercase 𝑝B). 

This 𝑎 is the same pressure broadening coefficient we encountered on 

page 29, which contains the quenching cross section 𝜎i and factors 

dependent on temperature and reduced mass. This explicitly shows the 

linear dependence of the collisional width on pressure. 

'𝛾n ' (lowercase gamma subscript n), the natural radiative contribution to the 

FWHM, is simply the radiative decay rate: 

𝛾n =
1

𝜏p

 

(lowercase gamma subscript n equals 
1

𝜏p

), where 𝜏p is the natural radiative 

lifetime. 

This leads to the important 'Terminology': The term "pressure broadening" 

often refers specifically to this 'linear growth of the total linewidth 𝛾 with the 

perturber pressure 𝑝B'. So, if you measure the linewidth 𝛾 (FWHM) as a 

function of pressure 𝑝B, you should expect to see a relationship like 



𝛾(𝑝B) = 𝛾n + 𝑎 𝑝B 

Plotting 𝛾 versus 𝑝B yields a straight line. The y-intercept (at 𝑝B = 0) gives 

the natural linewidth 𝛾n. The slope of this line is the pressure broadening 

coefficient 𝑎. This linear relationship is a hallmark of collisional broadening 

dominated by lifetime reduction (quenching) or phase-perturbing collisions, 

as we'll see. The triple dash ends this explanation. 
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We now turn our attention to the second fundamental broadening 

mechanism: 'Elastic Collisions – Phase Perturbations'. Unlike inelastic 

collisions that change the state population and shorten the lifetime, elastic 

collisions preserve the population of the state but can still significantly 

affect the spectral line. 

The key idea is stated first: 'Collisions change phase, not the amplitude of 

the dipole oscillator.' This means the atom remains in the excited state, but 

the phase of its radiating wavefunction (or classical dipole oscillation) is 

suddenly and randomly altered by each elastic collision. An accumulation 

of these random phase shifts over time leads to a dephasing of the 

ensemble of radiators, which results in line broadening. Furthermore, these 

phase shifts can also lead to a net 'frequency shift' of the line center. 

The slide then presents an 'Empirical Lorentzian with shift' that describes 

the line shape when both phase-perturbing elastic collisions and lifetime-

limiting effects (natural and inelastic) are present. The intensity 𝐼(𝜔) is 

given by: 

𝐼(𝜔) =
𝐶∗

[(𝜔 − 𝜔0 − 𝛥𝜔)
2 + (

𝛾
2
)
2
]
. 

Let's break this down: 'C star' is an overall strength constant. 'omega sub 

zero' (𝜔0) is the unperturbed resonant frequency. 'Capital Delta omega' 

(𝛥𝜔) is the 'collisional shift' of the line center, caused by the phase-



perturbing collisions. The line is now centered at 𝜔0 + 𝛥𝜔. 'gamma' (𝛾) is 

the total full width at half maximum (FWHM) of the Lorentzian profile, in 

angular frequency units. 

The next part shows how these 'Quantities are expressed through cross 

sections', similar to how we did for quenching: The collisional shift, capital 

Delta omega, is given by: 

𝛥𝜔 = 𝑁B  𝑣‾ 𝜎s. 

Here, 𝑁B is the perturber density, 𝑣‾ is the mean relative speed, and 'sigma 

sub s' (𝜎s) is the 'cross section for line shifting'. It's an effective area for 

collisions that cause a phase shift leading to a net frequency shift. 

The total linewidth, gamma, is given by: 

𝛾 = 𝛾n + 𝑁B  𝑣‾ 𝜎b. 

Here, 𝛾n is the natural radiative width. The collisional contribution to the 

width is 𝑁B  𝑣‾ 𝜎b, where 'sigma sub b' (𝜎b) is the 'cross section for line 

broadening' due to phase-perturbing elastic collisions (and can also include 

inelastic contributions if they are lumped together). Notice that both the shift 

𝛥𝜔 and the collisional part of the width are proportional to the perturber 

density 𝑁B (and thus to pressure), and they involve distinct cross sections, 

𝜎s for shift and 𝜎b for broadening. 
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This slide elaborates on the 'Distinct sigmas', or cross sections, that we just 

introduced for elastic phase-perturbing collisions: 𝜎s for shifts and 𝜎b for 

broadening. It's important to recognize that these are generally not the 

same. 

First, let's consider 𝜎s (lowercase sigma subscript s), the cross section 

associated with 'shifts'. The slide notes that shifting collisions can be 

'efficient even at large impact parameters'. The impact parameter, you'll 

recall, is the perpendicular distance between the path of the perturber and 



the target atom if they were to undergo no interaction. A large impact 

parameter means a distant, or "soft," collision. Even these distant 

encounters can cause small, cumulative phase shifts that result in an 

overall shift of the line center. This is because the long-range part of the 

interaction potential (like the 𝑅−6 van der Waals term) can still exert an 

influence at larger distances, perturbing the energy levels slightly and for a 

longer duration during the glancing fly-by. 

Next, consider 𝜎b (lowercase sigma subscript b), the cross section 

associated with 'broadening' due to phase interruption. This type of 

broadening is often 'dominated by close encounters', or collisions with 

small impact parameters. These are the "harder" collisions where the 

phase of the atomic oscillator is significantly disrupted, often by a large 

amount (e.g., a radian or more). While distant collisions also contribute to 

phase changes, strong phase interruptions that effectively terminate the 

coherence of the emitted wave train and thus lead to significant broadening 

typically require the perturber to come closer to the radiating atom. 

So, the key message is that the physical processes and the range of 

impact parameters that contribute most effectively to line shifting can be 

different from those that contribute most to line broadening. This is why 𝜎s 

and 𝜎b are distinct quantities. Their relative magnitudes will depend on the 

specific interaction potential 𝑉(𝑅) and the states involved. For example, for 

some potentials (like 𝑅−6), the ratio of broadening to shift cross section can 

be theoretically calculated. The triple dash marks the end of this point. 
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We now encounter an important reality check: 'Real-World Line Profiles Are 

Rarely Perfect Lorentzians'. While the Lorentzian profile is a good starting 

point and often provides a reasonable approximation, especially near the 

line center, actual experimental line shapes can exhibit significant 

deviations, particularly in the wings. 



Why is this so? The first point gives a crucial reason: 'The Einstein 𝐴𝑖𝑘(𝑅) 

coefficient, and the transition energy difference, 𝛥𝐸(𝑅), both depend non-

linearly on the internuclear separation 𝑅.' We've mostly assumed 𝐴𝑖𝑘 is 

constant and focused on 𝛥𝐸(𝑅). However, if 𝐴𝑖𝑘(𝑅) also varies, and 

especially if both vary in complex ways, the simple assumptions leading to 

a symmetric Lorentzian break down. This non-linear dependence often 

leads to an 'asymmetry between the red and blue wings' of the spectral 

line. The red wing (frequencies lower than line center) might have a 

different shape or extent than the blue wing (frequencies higher than line 

center). This asymmetry is a direct reflection of the details of the interaction 

potentials 𝐸𝑖(𝑅) and 𝐸𝑘(𝑅). 

The second point highlights another fascinating feature: 'A non-monotonic 

𝑉(𝑅) (or more accurately, a non-monotonic difference potential 𝛥𝐸(𝑅)) can 

produce "satellite" features far in the wings.' 

Consider the Lennard-Jones potential we saw earlier. It has a well. The 

difference potential, 𝛥𝐸(𝑅) = 𝐸𝑘(𝑅) − 𝐸𝑖(𝑅), can also be non-monotonic, 

meaning it might have a local maximum or minimum at some separation 𝑅𝑠 

( 𝑅 subscript 𝑠 ). At such an extremum, 
𝑑𝛥𝐸

𝑑𝑅
 is zero, which means 

𝑑𝜔

𝑑𝑅
 is zero. 

In our quasi-static intensity formula, 𝐼(𝜔) was proportional to 
1

|
𝑑𝜔

𝑑𝑅
|
. So, if 

𝑑𝜔

𝑑𝑅
 

goes to zero, the intensity formula blows up! This singularity indicates a 

"classical satellite" – a peak or enhanced intensity in the wing of the line at 

the frequency 𝜔𝑠 corresponding to this 𝑅𝑠. Many different collision 

trajectories passing through 𝑅 values near 𝑅𝑠 will all radiate at nearly the 

same frequency 𝜔𝑠, causing a pile-up of intensity there. These satellites 

are often seen in the far wings of pressure-broadened lines and are 

extremely sensitive probes of the shape of the difference potential. 

The concluding statement emphasizes the opportunity here: 'Analysis of 

these asymmetric profiles and satellite features can retrieve detailed 

information about intermolecular potentials.' While more complex to 



analyze than simple Lorentzians, these details in the line shape are not just 

nuisances; they are rich sources of information about the forces between 

atoms and molecules. 

Page 35: 

This slide offers a crucial piece of advice for experimentalists, flowing 

directly from our previous discussion about non-Lorentzian line shapes. It 

states: "Practical spectroscopy must fit experimental data with 

sophisticated (often numerical) models rather than simple Lorentzians," 

especially if one is interested in the details of the line wings or in extracting 

accurate information about collision dynamics and intermolecular 

potentials. 

While a simple Lorentzian fit might be adequate for determining the 

approximate line center and width in some cases, it will fail to capture 

asymmetries, satellite features, and the true behavior in the far wings. 

Using more sophisticated line shape models, which often require numerical 

computation, is necessary to accurately represent these complex profiles. 

These models might incorporate: 

1. The detailed 𝑅-dependence of both the difference potential 𝛥𝐸(𝑅) and 

the transition probability 𝐴𝑖𝑘(𝑅). 2. Statistical averaging over different 

collision trajectories, impact parameters, and velocities. 3. Consideration of 

both quasi-static effects (for the wings) and impact or phase-shift effects 

(for the core). 4. Sometimes, quantum mechanical scattering calculations 

are needed for the most accurate models, going beyond semi-classical 

approximations. 

Fitting experimental data with such models, while more challenging, allows 

for a much deeper understanding of the underlying physics and can yield 

quantitative information about the interaction potentials, cross sections for 

various collisional processes, and other microscopic parameters. Ignoring 

these complexities by just fitting a Lorentzian can lead to a loss of valuable 

information or even erroneous conclusions about the system under study. 



Page 36: 

This slide beautifully illustrates the points made on the previous two slides 

about 'Real-World Line Profiles'. It displays a graph titled 'Measured Line 

with Asymmetric Wings and Fitted Theoretical Curve'. 

Let's examine the plot. The vertical axis represents 'Intensity 𝐼, in arbitrary 

units', ranging from 0.0 to 1.1. The horizontal axis is 'Frequency 𝜔 

(lowercase Greek letter omega), also in arbitrary units', spanning from 55 to 

145. 

The solid blue line represents 'Measured Data'. Observe its features 

carefully. There is a main, strong peak centered roughly around 𝜔 = 100. 

However, the line is far from being a simple, symmetric Lorentzian. 

Notice the distinct asymmetry: the intensity drops off differently on the low-

frequency side (the "red wing," to the left of the main peak) compared to 

the high-frequency side (the "blue wing," to the right). 

More strikingly, there are clear 'satellite' features. An arrow points to a 

secondary peak in the red wing, around 𝜔 = 80, explicitly labeled 'Satellite 

(Red Wing)'. This indicates an extremum in the difference potential at a 

separation 𝑅 that produces this frequency. 

Similarly, on the blue wing, around 𝜔 = 115, another arrow points to a 

feature, possibly a shoulder or a less resolved satellite, labeled 'Satellite 

(Blue Wing)'. 

The red dashed line shows a 'Fitted Theoretical Curve'. Crucially, this 

theoretical curve is not a simple Lorentzian. It's clearly a more 

sophisticated model that has been tailored to reproduce the observed 

features, including the overall asymmetry and, importantly, the satellite 

peaks in both the red and blue wings. This demonstrates that with 

appropriate theoretical models, one can indeed account for these complex 

line shapes. The excellent agreement between the measured data and the 

fitted curve suggests that the model is capturing the essential physics of 



the interatomic interactions responsible for these features. This is a prime 

example of how detailed line shape analysis goes beyond simple peak 

fitting to probe fundamental molecular physics. 

Page 37: 

We now revisit a specific type of model potential: "Power-Law Potentials", 

which take the general form 

𝑉(𝑅) =
𝐶

𝑅𝑛
 

(capital 𝑉 of capital 𝑅 equals capital 𝐶 divided by capital 𝑅 to the power of 

𝑛). This form is very useful for understanding how different types of 

interactions influence line shapes. 

First, let's consider the "Ground and excited state potentials". We can 

assume that both the interaction potential for the initial state (let's call it 

𝑉i(𝑅)) and for the final state (𝑉k(𝑅)) can be approximated by a power law. 

The slide writes them as: 

𝑉i(𝑅) =
𝐶i

𝑅𝑛′
 

(capital 𝑉i(𝑅) =
𝐶i

𝑅𝑛′
). 

And 

𝑉k(𝑅) =
𝐶k

𝑅𝑛
 

(capital 𝑉k(𝑅) =
𝐶k

𝑅𝑛
). 

For simplicity, let's assume 𝑛′ = 𝑛, meaning both potentials have the same 

𝑅-dependence type. So, 

𝑉i(𝑅) =
𝐶i

𝑅𝑛
 and 𝑉k(𝑅) =

𝐶k

𝑅𝑛
 



. Here, 𝐶i and 𝐶k are the potential coefficients for the initial and final states, 

respectively. These are interaction potentials, representing the energy shift 

of the respective levels due to the perturber, relative to their unperturbed 

energies. 

The "Corresponding instantaneous frequency shift" from the unperturbed 

line center, 𝛥𝜔(𝑅) (capital Delta lowercase omega of 𝑅), is then given by 

the difference in these interaction potentials, divided by ℏ. The slide 

presents it as: 

ℏ 𝛥𝜔(𝑅) =
(𝐶i − 𝐶k)

𝑅𝑛
 

(capital Delta lowercase omega of 𝑅 equals 
(𝐶i−𝐶k)

𝑅𝑛
). 

If we define 𝛥𝐶 as (𝐶i − 𝐶k), this equation tells us how the frequency of the 

emitted/absorbed photon is shifted from its unperturbed value when the 

colliding particles are at a separation 𝑅. If the transition is from state 𝑖 to 𝑘, 

and 

ℏ 𝜔(𝑅) = (𝐸k
0 + 𝑉k(𝑅)) − (𝐸i

0 + 𝑉i(𝑅)) = ℏ 𝜔0 + (𝑉k(𝑅) − 𝑉i(𝑅)), 

then the frequency shift from 𝜔0 is 

𝑉k(𝑅) − 𝑉i(𝑅)

ℏ
=
𝐶k − 𝐶i

ℏ 𝑅𝑛
. 

So the slide's definition of 𝛥𝜔(𝑅) is effectively −(shift from 𝜔0). The 

magnitude and 𝑅-dependence are key. 

This power-law form particularly "highlights the influence of the exponent 

𝑛". The value of 𝑛 dictates how rapidly the frequency shift changes with 

internuclear separation, which in turn strongly influences the shape of the 

collisionally broadened line, especially its wings, and also determines the 

temperature dependence of the broadening and shifting coefficients. 

Page 38: 



This slide provides concrete examples of the exponent 𝑛 in the power-law 

potential, ℏ𝛥𝜔(𝑅) =
𝛥𝐶

𝑅𝑛
, for different types of physical interactions. 

Understanding these specific values of 𝑛 is crucial as they lead to distinct 

line shape characteristics. 

First, for "Van der Waals (dispersion) interaction", the exponent 𝑛 = 6. 

This is the interaction between instantaneous induced dipoles in two 

neutral atoms or nonpolar molecules. The interaction potential for each 

state (ground and excited) typically goes as 
1

𝑅6
. Therefore, the difference 

potential, 
𝛥𝐶

𝑅6
, also follows this 𝑅−6 dependence. This is a very common 

interaction responsible for broadening in neutral atom/molecule collisions. It 

leads to what's often called "van der Waals broadening." 

Second, for "Dipole-dipole resonant interaction", the exponent 𝑛 = 3. 

This occurs when two identical atoms or molecules interact, and one is in 

an excited state that can make an allowed dipole transition to the ground 

state, while the other is in the ground state. There's a resonant exchange of 

excitation energy, leading to an interaction potential that falls off as 
1

𝑅3
. This 

𝑅−3 dependence is much longer-ranged than the van der Waals 𝑅−6. This 

type of interaction often leads to very large broadening cross sections and 

is important in "self-broadening" where an atom is perturbed by other 

atoms of the same kind. 

Third, for "Coulomb (ion-electron) interaction", the exponent 𝑛 = 1. 

The fundamental Coulomb potential itself goes as 
1

𝑅
. This is the longest-

range interaction. Broadening due to collisions with charged particles is 

known as Stark broadening. If the perturbers are electrons or ions creating 

an electric field 𝐸, the energy shift can be linear in 𝐸 (linear Stark effect) or 

quadratic in 𝐸 (quadratic Stark effect). For an ion perturber, 𝐸 itself scales 

as 
1

𝑅2
, so linear Stark gives energy shift ∼

1

𝑅2
 (𝑛 = 2 for 

𝛥𝐶

𝑅𝑛
 type potential), 



and quadratic Stark gives energy shift ∼
1

𝑅4
 (𝑛 = 4). The 𝑛 = 1 here perhaps 

refers to the potential energy 𝑉(𝑅) ∼
1

𝑅
 itself, from which the field is derived, 

or a specific case like a hydrogenic ion interacting with an electron where 

the overall interaction scales this way. It underscores the long-range 

nature. 

These values of 𝑛 (6, 3, 1, and others like 4 for quadratic Stark by ions, or 2 

for charge-permanent dipole interactions) are critical inputs for theories that 

predict line shapes, widths, and shifts, and their temperature 

dependencies. 

Page 39: 

We now transition to a different theoretical approach for understanding 

collisional effects, focusing on the 'Phase Shift for a Single Collision'. This 

is central to the "impact approximation" or "phase shift theory" of line 

broadening, which is particularly useful for describing the core of the 

spectral line. We'll be using the 'Straight Path Approximation' for simplicity. 

First, let's define the 'Geometry' of the collision under this approximation. 

We have an 'Impact parameter, 𝑅0' (capital 𝑅0). This is defined as the 

'distance of closest approach' between the perturber and the radiating atom 

if there were no interaction potential to deflect their paths. A diagram on a 

subsequent slide will illustrate this. So, 𝑅0 characterizes how "head-on" or 

"glancing" a collision is. 

A key simplifying assumption is that the 'Relative velocity 𝑣' (lowercase 𝑣) 

between the two particles is 'assumed constant' throughout the collision, 

both in magnitude and direction. This means we are ignoring any 

acceleration or deceleration due to the interaction potential. Furthermore, 

the 'trajectory' of the perturber relative to the radiator is 'assumed to be a 

straight line'. This is a reasonable approximation for distant collisions or for 

high-velocity collisions where the deflection is minimal. 



Under these conditions, we want to calculate the total accumulated phase 

shift of the atomic oscillator during one complete collision event. This phase 

shift, let's call it 𝛥𝜙 (capital Delta, lowercase phi), is obtained by integrating 

the instantaneous frequency shift, 𝛥𝜔(𝑅, 𝑡), over the entire duration of the 

collision, from 𝑡 = −∞ to 𝑡 = +∞. 

The slide indicates 'Integral', implying we will set up this integral next. 

Page 40: 

Here, we see the integral for the total phase shift, 𝛥𝜙 (capital Delta 

lowercase phi), accumulated during a single collision characterized by an 

impact parameter 𝑅0 (capital R subscript zero). The phase shift 𝛥𝜙(𝑅0) is 

given by the integral of the instantaneous angular frequency shift, 𝛥𝜔(𝑅), 

with respect to time 𝑡, from 𝑡 = −∞ to 𝑡 = +∞: 

𝛥𝜙(𝑅0) = ∫ 𝛥
+∞

−∞

𝜔(𝑅(𝑡)) 𝑑𝑡. 

(capital Delta lowercase phi of capital R subscript zero equals integral from 

minus infinity to plus infinity of capital Delta lowercase omega of R of t, dt). 

Now, if we use the power-law form for the frequency shift from slide 37, 

where 

ℏ 𝛥𝜔(𝑅) =
𝐶i − 𝐶k

𝑅𝑛
, 

then 

𝛥𝜔(𝑅) =
𝐶i − 𝐶k

ℏ 𝑅𝑛
. 

Substituting this into the integral gives: 

𝛥𝜙(𝑅0) =
1

ℏ
∫

𝐶i − 𝐶k

[𝑅(𝑡)]𝑛

+∞

−∞

 𝑑𝑡. 



(equals one over aitch-bar, integral from minus infinity to plus infinity, of, 

open square bracket, open parenthesis capital C subscript i minus capital C 

subscript k close parenthesis, divided by, R of t to the power of n, close 

square bracket, dt). 

Here, 𝐶i − 𝐶k is the difference potential coefficient, let's call it 𝛥𝐶′. So 

𝛥𝜔(𝑅) =
𝛥𝐶′

ℏ 𝑅𝑛
. 

Now, we need to "Evaluate integral". 

First, for a straight-line trajectory with impact parameter 𝑅0 and constant 

relative speed 𝑣, the separation 𝑅(𝑡) at time 𝑡 is given by the Pythagorean 

theorem: 

𝑅(𝑡) = √𝑅0
2 + (𝑣𝑡)2. 

(R of t equals square root of open parenthesis capital R subscript zero 

squared plus open parenthesis lowercase v lowercase t close parenthesis 

squared close parenthesis). 

Here, 𝑡 = 0 is defined as the time of closest approach, when 𝑅(𝑡) = 𝑅0. 

Substituting this 𝑅(𝑡) into the integral and performing the integration yields 

a "Standard result" for the phase shift: 

𝛥𝜙(𝑅0) = 𝛼n  
𝐶i − 𝐶k

𝑣 𝑅0
 𝑛−1. 

(capital Delta lowercase phi of capital R subscript zero equals lowercase 

alpha subscript n, times, open parenthesis capital C subscript i minus 

capital C subscript k close parenthesis, divided by, open parenthesis 

lowercase v times capital R subscript zero to the power of open 

parenthesis n minus 1 close parenthesis close parenthesis). 

The 𝐶i − 𝐶k here is the same coefficient from 



ℏ 𝛥𝜔(𝑅) =
𝐶i − 𝐶k

𝑅𝑛
. 

So if we denote 

𝐶diff = (𝐶i − 𝐶k), 

then 

𝛥𝜙(𝑅0) =
𝛼n 𝐶diff

ℏ 𝑣 𝑅0
 𝑛−1, 

because 𝛥𝜔 was 
𝐶diff

ℏ 𝑅𝑛
. The ℏ should be in the denominator of the phase 

shift if 𝐶diff is an energy coefficient. The slide's expression for 𝛥𝜙(𝑅0) 

seems to absorb ℏ into 𝐶i and 𝐶k or 𝛼n if 𝐶i,  𝐶k are energy coefficients. Let's 

assume 𝐶i and 𝐶k now implicitly contain the 1/ℏ factor for simplicity, or that 

𝛼n does. So 

𝛥𝜙(𝑅0) =
𝛼n 𝛥𝐶effective

𝑣 𝑅0
 𝑛−1 . 

Let's break down this result: 

"alpha sub n" (lowercase Greek letter alpha subscript n) is a "numerical 

factor that depends only on the exponent n" of the power-law potential. It 

arises from the specific mathematical form of the integral over time. For 

example, as the slide notes, for 𝑛 = 6 (which corresponds to the van der 

Waals interaction), 

𝛼6 =
𝜋

8
 

(lowercase alpha subscript 6 equals lowercase pi divided by 8). Each value 

of "n" will have a different, calculable 𝛼n. For 𝑛 = 3, 𝛼3 =
𝜋

2
; for 𝑛 = 4, 𝛼4 =

𝜋

2
. 



𝐶i − 𝐶k is the effective difference in the potential strength coefficients. 𝑣 is 

the relative speed of the collision. 𝑅0 is the impact parameter. So, for a 

given type of interaction (fixed 𝑛), the phase shift is proportional to the 

strength of the difference potential, inversely proportional to the velocity (𝑣) 

– slower collisions produce larger phase shifts because the interaction lasts 

longer – and inversely proportional to 𝑅0 raised to the power of (𝑛 − 1) – 

closer collisions produce much larger phase shifts. This dependence on 

𝑅0
 𝑛−1 is very strong. 

This expression for 𝛥𝜙(𝑅0) is fundamental in the impact theory of line 

broadening, as the broadening and shifting cross sections are derived by 

averaging effects related to this phase shift over all impact parameters. 

Page 41: 

This slide provides the promised 'Collision Trajectory Diagram (Straight 

Path Approximation)' to help visualize the geometry we've been discussing. 

Let's examine the diagram carefully. We see two particles. 'Stationary 

Particle A' is depicted as a blue circle at the origin of our coordinate 

system. This is our radiating atom. 'Moving Particle B' is depicted as a red 

circle. This is the perturber. It moves with a constant velocity 𝑣 (lowercase 

𝑣), indicated by a green arrow, along a straight line. The 'Path of Particle B' 

is shown as a horizontal dashed line. The 'Impact parameter 𝑅0' is clearly 

marked. It's the perpendicular distance from Particle A to the straight-line 

path of Particle B. It's shown as a vertical purple line segment from A to the 

path of B. 

The point on the trajectory directly above A, where the separation is 𝑅0, is 

marked as 𝑡 = 0 (t equals zero), representing the time of closest approach. 

At some arbitrary time 𝑡, Particle B has moved a horizontal distance 𝑣𝑡 

(lowercase 𝑣 times lowercase 𝑡) from the 𝑡 = 0 position. This distance is 

labeled. The instantaneous separation between A and B at this time 𝑡 is 



𝑅(𝑡) (capital 𝑅 of 𝑡), shown as a magenta line segment connecting A and 

B. 

From the diagram, we can see a right-angled triangle formed by 𝑅0, 𝑣𝑡, and 

𝑅(𝑡) (with 𝑅(𝑡) as the hypotenuse). This visually confirms the relationship 

we used on the previous slide: 

𝑅(𝑡)2 = 𝑅0
2 + (𝑣𝑡)2 or 𝑅(𝑡) = √𝑅0

2 + 𝑣2𝑡2 

This diagram is a simple but powerful illustration of the idealized collision 

geometry assumed in the straight-path approximation. It allows us to 

calculate the time-dependent separation 𝑅(𝑡) and, from that, the phase 

shift accumulated during the collision as a function of the impact parameter 

𝑅0 and relative velocity 𝑣. 

Page 42: 

Now that we have an expression for the phase shift 𝛥𝜙(𝑅0) for a single 

collision, this slide, titled "Connecting Phase Shifts to Cross Sections," 

shows how these phase shifts are used to calculate the macroscopic cross 

sections for line shifting (𝜎s) and broadening (𝜎b). These are the cross 

sections that appeared in our Lorentzian line shape formula when 

discussing elastic phase-perturbing collisions. 

The slide presents two integrals. 

First, the "Line-shift cross section", 𝜎s (lowercase sigma subscript s): 

𝜎s = 2𝜋∫ [1 − cos(𝛥𝜙(𝑅0))]
∞

0

𝑅0 𝑑𝑅0. 

𝜎s = 2𝜋∫ [1 − cos(𝛥𝜙(𝑅0))]
∞

0

𝑅0 𝑑𝑅0. 

This form is one standard definition for a broadening cross section, often 

denoted 𝜎′ in texts like Griem or Sobelman, or sometimes as the 



"Weisskopf cross section" if the integral is cut off when 𝛥𝜙 reaches 1 

radian. It's unusual to see 1 − cos(𝛥𝜙) associated with the shift cross 

section, which typically involves sin(𝛥𝜙). 

Second, the "Broadening (phase-diffusion) cross section", 𝜎b (lowercase 

sigma subscript b): 

𝜎b = 2𝜋∫ [1 −
cos(𝛥𝜙(𝑅0))

2
]

∞

0

𝑅0 𝑑𝑅0. 

𝜎b = 2𝜋∫ [1 −
cos(𝛥𝜙(𝑅0))

2
]

∞

0

𝑅0 𝑑𝑅0. 

This expression simplifies to 

𝜎b = 𝜋∫ [1 − cos(𝛥𝜙(𝑅0))]
∞

0

𝑅0 𝑑𝑅0. 

Thus, according to the explicit formulae on this slide, 𝜎b equals one half of 

𝜎s. 

This fixed ratio of 2:1 between the shift cross section and the broadening 

cross section, if these definitions are taken literally, is specific and not 

generally true for all potentials. More commonly, as mentioned, 𝜎s involves 

an integral of sin(𝛥𝜙) and 𝜎b involves an integral of 1 − cos(𝛥𝜙) or 

sin2 (
𝛥𝜙

2
). These lead to different functional dependencies on the potential 

parameters and thus different values for 𝜎s and 𝜎b. 

However, adhering strictly to what is presented, the impact parameter 𝑅0 is 

integrated from 0 (head-on collision) to infinity (very distant collision). The 

term 𝑅0 𝑑𝑅0 is an element of area (𝑑(𝜋𝑅0
2) = 2𝜋𝑅0 𝑑𝑅0). The term involving 

the cosine of the phase shift acts as a weighting factor, determining how 

much collisions at a given 𝑅0 contribute. For example, in the expression for 

𝜎s, if 𝛥𝜙(𝑅0) is a multiple of 2𝜋, cos(𝛥𝜙) is 1, and that 𝑅0 contributes 



nothing to the integral. If 𝛥𝜙(𝑅0) is an odd multiple of 𝜋, cos(𝛥𝜙) is -1, and 

the term (1 − cos(𝛥𝜙)) becomes 2, contributing maximally. 

Once these cross sections are calculated by performing the integration 

(often numerically, or analytically for simple power laws and certain 

approximations), they can be used in the expressions: 

𝛥𝜔 = 𝑁B  𝑣‾ 𝜎s 

𝛾collisional = 𝑁B  𝑣‾ 𝜎b. 

Page 43: 

This slide provides an important insight into the behavior of these cross 

sections, particularly for distant collisions. 

It states: "For small capital 𝛥𝜙" (small phase shifts), which typically occur in 

"far-off collisions" (collisions with large impact parameters 𝑅0), the following 

approximations can be made: 

The term 1 − cos(𝛥𝜙) becomes approximately 
(𝛥𝜙)2

2
 for small 𝛥𝜙. 

So, based on the definitions from the previous slide: 

The integrand for 𝜎s, [1 − cos(𝛥𝜙)]𝑅0, behaves like 
(𝛥𝜙)2𝑅0

2
. 

The integrand for 𝜎b, 
[1−cos(𝛥𝜙)]𝑅0

2
, behaves like 

(𝛥𝜙)2𝑅0

4
. 

Since 𝛥𝜙 of 𝑅0 falls off as 
1

𝑅0
 𝑛−1, then (𝛥𝜙)2 falls off as 

1

𝑅0
 2(𝑛−1). 

So, the integrand for both 𝜎s and 𝜎b effectively behaves as 𝑅0 times 
1

𝑅0
 2(𝑛−1), 

which is 
1

𝑅0
 2 𝑛−3. 

For this integral (from some 𝑅min to infinity) to converge, the exponent 

2 𝑛 − 3 must be greater than 1, meaning 2 𝑛 > 4, or 𝑛 > 2. 



For 𝑛 = 3 (resonant dipole-dipole), the exponent is 2 × 3 − 3 = 3, so the 

integral of 
1

𝑅0
3 converges. 

For 𝑛 = 6 (van der Waals), the exponent is 2 × 6 − 3 = 9, so the integral of 
1

𝑅0
9 converges very rapidly. 

The slide says that "𝜎s remains finite". This is true if 𝑛 > 2. 

It then states that "whereas 𝜎b converges faster". Given the formulae on the 

previous page, 𝜎b is simply 
𝜎s

2
, so they converge in exactly the same way. 

This statement "converges faster" strongly suggests that the intended 

underlying formulae for 𝜎s and 𝜎b are the more standard ones where 𝜎s 

involves sin(𝛥𝜙) ∼ 𝛥𝜙 and 𝜎b involves 1 − cos(𝛥𝜙) ∼
𝛥𝜙2

2
. 

If we use those standard forms: 

𝜎s ∼ ∫ (𝛥𝜙 𝑅0) 𝑑𝑅0 ∼ ∫
1

𝑅0
 𝑛−2  𝑑𝑅0. Converges if 𝑛 − 2 > 1, i.e., 𝑛 > 3. 

𝜎b ∼ ∫ (𝛥𝜙)
2𝑅0 𝑑𝑅0 ∼ ∫

1

𝑅0
 2 𝑛−3  𝑑𝑅0. Converges if 2 𝑛 − 3 > 1, i.e., 𝑛 > 2. 

In this standard case, for 𝑛 = 3, the 𝜎s integral is ∼
1

𝑅0
 (diverges or needs 

cutoff), and the 𝜎b integral is ∼
1

𝑅0
3 (converges). For 𝑛 = 6, the 𝜎s integral is 

∼
1

𝑅0
4 (converges), and the 𝜎b integral is ∼

1

𝑅0
9 (converges much faster). 

The concluding remark on the slide is: "demonstrates why distant collisions 

shift but scarcely broaden" the line. 

Page 44: 

This slide takes us back to the fascinating topic of 'Satellites and Non-

Monotonic Potentials', which we touched upon earlier when discussing 

real-world line shapes. 



The first point explains the origin of satellite peaks: "If the difference 

potential, 𝛥𝐸(𝑅), has an extremum (a local maximum or minimum) at some 

internuclear separation 𝑅 = 𝑅s" (capital 𝑅s), then "many collisions 

accumulate the same 𝜔 (angular frequency), leading to a satellite peak at 

𝜔s" (lowercase 𝜔s). 

The frequency of this satellite peak is given by: 

𝜔s =
𝛥𝐸(𝑅s)

ℏ
 

(lowercase 𝜔s equals 𝛥𝐸(𝑅s) divided by ℏ). At an extremum of 𝛥𝐸(𝑅), the 

derivative 
𝑑𝛥𝐸(𝑅)

𝑑𝑅
 is zero. Since 𝜔(𝑅) is proportional to 𝛥𝐸(𝑅), this means 

𝑑𝜔

𝑑𝑅
 

is also zero at 𝑅 = 𝑅s. In the quasi-static theory of line broadening, the 

intensity 𝐼(𝜔) of 𝜔 is inversely proportional to the absolute value of 
𝑑𝜔

𝑑𝑅
. So, 

when 
𝑑𝜔

𝑑𝑅
 approaches zero, the intensity 𝐼(𝜔) of 𝜔 tends to infinity, creating 

a "classical satellite" peak. Quantum mechanically, this singularity is 

smoothed out, but a distinct peak or shoulder in the line wing often remains 

at 𝜔s. The idea is that a range of 𝑅 values around 𝑅s all contribute to 

frequencies very close to 𝜔s, causing an enhancement of intensity there. 

The second point notes that the "Satellite intensity is sensitive to the slope 

𝑑2𝛥𝐸(𝑅)

𝑑𝑅2
 at 𝑅s" (the second derivative of the difference potential with respect 

to 𝑅, evaluated at 𝑅s). This second derivative determines how quickly 

𝛥𝐸(𝑅) curves away from its extremum value. A smaller second derivative 

(a flatter extremum) means more 𝑅 values contribute to the satellite 

frequency, leading to a more intense satellite. 

Therefore, as the third point concludes, "Observing satellites in a spectral 

line profile therefore pinpoints potential minima or maxima" in the difference 

potential curve, 𝛥𝐸(𝑅). This makes satellite spectroscopy an incredibly 

powerful tool for probing the details of intermolecular interaction potentials, 

especially the shape of 𝑉k(𝑅) − 𝑉i(𝑅), at specific internuclear separations. 
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This slide provides a concrete "Example" of where such satellite features 

are observed. It states: "Cesium-Xenon (Cs-Xe) collisions show satellites in 

the far red wing of the Cesium 6 𝑠 to 9 𝑝3/2 transition." 

Let's break this down: 

The radiating atom is Cesium (Cs). The perturber atom is Xenon (Xe), a 

heavy noble gas. The specific spectroscopic transition in Cesium being 

observed is from the 6 𝑠 ground state (or an initial state related to it) to the 

highly excited 9 𝑝3/2 state. (That's 6 𝑆 → 9 𝑃3/2.) 

When Cesium atoms are in a Xenon gas environment, collisions between 

Cs and Xe perturb the Cesium energy levels. The difference potential, 

𝛥𝐸(𝑅), between the (Cs in 9 𝑝 state + Xe) system and the (Cs in 6 𝑠 state + 

Xe) system must have an extremum at some Cs-Xe separation 𝑅s. 

This extremum leads to the appearance of satellite peaks. In this specific 

case, the satellites are observed in the "far red wing" of the main spectral 

line. A red wing means frequencies lower than the unperturbed transition 

frequency. This implies that at the separation 𝑅s which causes the satellite, 

the energy difference 𝛥𝐸(𝑅s) (9 𝑝 − 6 𝑠) is smaller than the unperturbed 

energy difference. 

Such observations are invaluable for testing and refining theoretical models 

of the Cs-Xe interaction potentials for both the ground and, especially, the 

highly excited states. 
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This slide presents a graph illustrating the 'Wing of Cs-Xe Line Profile with 

Annotated Satellite' that was mentioned as an example on the previous 

slide. It's described as an 'Illustrative example based on Cs-Xe 6s to 9p 

three-halves transition'. 

Let's look at the graph: 



The vertical axis is 'Intensity (arb. units)', ranging from 0 to 110. The 

horizontal axis is '𝛥𝜔 (Frequency Detuning from 𝜔0)', also in arbitrary units. 

𝜔0, the unperturbed line center, is marked at 𝛥𝜔 = 0. The detuning ranges 

from minus 100 (red wing) to about plus 15 (blue wing). Since it's the "wing" 

of the line, the main peak at 𝜔0 is not fully shown, or this plot focuses only 

on the red wing features. 

The blue curve shows the spectral line profile. We are looking at the red 

wing (negative 𝛥𝜔). 

There is a prominent feature, a distinct peak, in this wing. An arrow points 

directly to this peak, which is labeled 'Satellite Peak'. This peak occurs at a 

specific detuning, labeled 𝜔s (lowercase omega subscript s) on the 

horizontal axis, which is at a negative value of 𝛥𝜔 (e.g., around -30 to -40 

in these arbitrary units, judging by the arrow position). 

This visually confirms what we discussed: an extremum in the difference 

potential 𝛥𝐸 of R for the Cs(9p)-Xe and Cs(6s)-Xe interaction leads to a 

pile-up of intensity at the corresponding satellite frequency 𝜔s in the red 

wing of the line. 

The shape is non-Lorentzian; it shows a clear bump or separate peak away 

from the main line center. Such data is precisely what experimentalists use 

to map out features of the interaction potentials. 
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We now shift our focus to a specific environment where collisional 

broadening is extremely important: 'Broadening & Shift in Plasmas'. The 

dominant mechanism here is often the 'Stark Effect'. The first point notes 

that in plasmas, we have 'Charged perturbers' – primarily ions and 

electrons. These charged particles interact with the radiating atom or ion 

via the 'Coulomb potential', which, as we saw earlier, has a 𝑉 ∝
1

𝑅
 

dependence (𝑉 ∝
1

𝑅
). This corresponds to a power-law potential with 𝑛 = 1 



governing the potential energy between charges. This long-range 

interaction is very effective at perturbing atomic energy levels via the 

electric fields these charges create. 

The perturbation of energy levels by the electric fields produced by these 

charged perturbers is known as the Stark effect. 

The slide distinguishes between two types: First, the 'Linear Stark effect'. 

This effect, as the asterisk notes, "Splits the 𝑚-sublevels symmetrically" 

around the unperturbed energy. (𝑚 refers to the magnetic quantum 

number, or projection of angular momentum). Degenerate states (like those 

in Hydrogen or highly excited Rydberg states) are particularly susceptible 

to the linear Stark effect. Because it causes a symmetric splitting of levels, 

it "contributes mainly to broadening" of the spectral line, rather than a net 

shift of the center of gravity of the multiplet, although individual components 

are shifted. The energy shift for a given 𝑚-sublevel is proportional to the 

electric field strength, 𝐸. 

Second, the 'Quadratic Stark effect'. This effect is generally more common 

for non-hydrogenic atoms or for states that are not nearly degenerate. The 

energy shift in the quadratic Stark effect is proportional to the square of the 

electric field strength, 𝐸2. As the asterisk notes, it "Shifts the center of 

gravity of the multiplet – adds line shift." So, the quadratic Stark effect 

causes an overall shift of the spectral line, and can also contribute to 

broadening if the shifts are different for different sublevels or if there's a 

distribution of field strengths. 

In plasmas, radiating atoms experience a fluctuating microfield due to the 

constantly moving ions and electrons. The Stark effect caused by this 

microfield is the primary cause of line broadening and shifting for many 

spectral lines emitted from plasmas. The 𝑛 = 1 in the first bullet refers to 

the underlying 
1

𝑅
 nature of the Coulomb potential creating the fields. 

Page 48: 



Continuing our discussion of broadening and shift in plasmas (Stark effect), 

this slide highlights its 'Diagnostic use' and impact on certain types of 

lasers. 

The first point emphasizes the diagnostic power: 

From the analysis of Stark-broadened line profiles, one can make 

'Inference of 𝑛e (electron density) and 𝑇e (electron temperature)'. (𝑛e for 

electron density, and capital 𝑇e for electron temperature). The extent of 

Stark broadening, particularly the width of the line, is often strongly 

dependent on the electron density (𝑛e) because electrons are typically fast-

moving and cause rapid fluctuations in the microfield (impact broadening by 

electrons), while ions, being slower, contribute more to the quasi-static 

wings. The shape of the line, including asymmetries and shifts, can also 

provide information about the ion temperature or the nature of plasma 

turbulence. Thus, careful measurement and modeling of Stark profiles are 

standard and powerful techniques for diagnosing plasma conditions in 

astrophysics, fusion research, industrial plasma processing, and more. 

The second point notes the relevance to specific lasers: 

'Gas-discharge lasers', such as Helium-Neon (HeNe, H-E-N-E) lasers or 

Argon ion (Ar+) lasers, are 'strongly influenced' by Stark broadening. The 

gain medium in these lasers is a plasma (a gas discharge). Collisions with 

electrons and ions in the discharge can significantly broaden the atomic 

transitions responsible for laser action. The slide mentions that this 

'broadening can reach GHz-level' (Gigahertz-level). A Gigahertz is 109 

Hertz. This is a very substantial amount of broadening, often much larger 

than the natural linewidth and, in some cases, comparable to or even larger 

than Doppler broadening, especially at higher pressures or electron 

densities. This broadening affects the gain bandwidth, the number of 

longitudinal modes that can oscillate, and the overall efficiency of the laser. 

Understanding and accounting for Stark broadening is therefore crucial in 



the design and optimization of such lasers. The triple dash indicates the 

end of this point. 
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This slide, titled 'Numerical Examples (Based on Demtröder Ex. 3.4),' 

provides some concrete values for collisional broadening parameters for a 

few common systems. These numbers help to give a quantitative feel for 

the magnitude of these effects. 

The first example is the 'Sodium D-line broadening by Argon'. The Sodium 

D-lines (around 𝜆 = 589 nm, lowercase 𝜆 = 589 nm) are very well-studied. 

When Sodium atoms are in an Argon buffer gas, collisions with Argon 

atoms cause broadening and shifting. 

The slide gives a pressure broadening coefficient: 

𝑑𝛥𝜈

𝑑𝑝
= 0.228 MHz Pa

−1
 

Here, 𝛥𝜈 (lowercase delta nu) is the frequency width (likely FWHM in 

Hertz), and 𝑝 is the pressure of Argon in Pascals. This coefficient tells us 

how much the linewidth increases for each Pascal of Argon pressure 

added. For example, at 1000 Pa (which is 0.01 bar, or about 7.5 torr), the 

broadening would be 228 MHz. 

Next, it gives an example of 'Self-broadening (Na-Na)' for the Sodium D-

line. This is when Sodium atoms are broadened by collisions with other 

Sodium atoms (e.g., in a pure Sodium vapor). The broadening is given as 

approximately 150 MHz torr
−1

. Torr is a unit of pressure, where 1 

atmosphere is 760 torr, and 1 torr is about 133.322 Pa. 

Let's compare these. For Argon broadening: 

0.228 MHz/Pa × 133.322 Pa/torr ≈ 30.4 MHz/torr 



So, self-broadening by Na (150 MHz/torr) is significantly more efficient (by 

about a factor of 5) than broadening by Argon (30.4 MHz/torr) for the 

Sodium D-line. This is often because resonant interactions (like dipole-

dipole for Na*-Na, with an 𝑅−3 potential) can occur in self-broadening, 

leading to much larger cross sections than the van der Waals (𝑅−6) 

interactions typical for unlike neutral atoms. 

The second general case is for 'Mid-IR vibration-rotation lines', with a 

typical wavelength of 𝜆 ≈ 5 𝜇m (lowercase lambda approximately 5 𝜇m, mu 

m). These are molecular transitions. 

Page 50: 

This slide continues with numerical examples of collisional broadening. 

Following up on the 'Mid-IR vibration-rotation lines (𝜆 ≈ 5 𝜇m)', the slide 

provides a typical pressure broadening coefficient for these molecular 

transitions: 
𝑑(𝛿𝜈)

𝑑𝑝
 is approximately 2 to 5 MHz torr

−1
 (approximately 2 to 

5 MHz torr
−1

). 

This is the rate at which the linewidth (𝛿𝜈, likely FWHM in frequency units) 

increases with pressure (𝑝 in torr). 

This range (2–5 MHz torr
−1

) is common for many small molecules 

broadened by air (Nitrogen or Oxygen) or by themselves. 

An important consequence is then stated: "At 1 atmosphere pressure, the 

pressure width is approximately 1 GHz, which is typically greater than the 

Doppler width" for these molecules at room temperature. 

Let's check this: 1 atmosphere is 760 torr. If the broadening coefficient is, 

say, an average of 3.5 MHz torr
−1

, then at 760 torr, the pressure broadening 

would be 3.5 MHz torr
−1 × 760 torr, which equals 2660 MHz, or 2.66 GHz. 

So, indeed, the pressure-broadened width is on the order of a Gigahertz or 

more. 



The Doppler width for a molecule with mass around 30 atomic mass units 

at 5 𝜇m (which is 60 THz frequency) and room temperature (say 300 K) is 

typically a few hundred Megahertz. 

For example, for CO2 (mass 44 amu) at 4.3 𝜇m, the Doppler width is about 

60 MHz. 

For H2O (mass 18 amu) at 5 𝜇m, it would be larger, perhaps around 150–

200 MHz. 

Thus, at atmospheric pressure, pressure broadening often dominates over 

Doppler broadening for these mid-IR transitions. 

This is crucial for atmospheric spectroscopy and for the design of mid-IR 

gas lasers. 

The third example is the "Helium-Neon (HeNe) laser red line (𝜆 = 633 nm) 

in discharge". 

Here, two values are given, possibly representing different contributions or 

different ways of expressing the broadening: 

𝛿𝜈 = 150 MHz torr
−1

. 

𝛥𝜈 = 20 MHz torr
−1

. 

The 150 MHz torr
−1

 is a substantial broadening coefficient. In a typical 

HeNe laser tube operating with a few torr of total gas pressure, this 

collisional broadening would contribute significantly to the overall gain 

profile width, which is typically around 1.5 GHz (largely Doppler broadened 

for Neon at 633 nm). 

Finally, for an "Argon-ion laser plasma": 

𝛿𝜈 ≈ 1.5 GHz torr
−1

. 



This is a very large broadening coefficient, reflecting the harsh plasma 

environment with high electron and ion densities and temperatures within 

the Argon-ion laser discharge. 

Since Argon-ion lasers operate at pressures of a fraction of a torr to a few 

torr, the total collisional broadening due to Stark effects and other plasma 

interactions can be many Gigahertz. 

This wide gain profile is what allows Argon-ion lasers to lase on multiple 

longitudinal modes simultaneously or to be mode-locked for short pulse 

generation. 

The triple dash signifies the end of these examples. 
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We now encounter a fascinating and somewhat counter-intuitive 

phenomenon: "Collisional (Dicke) Narrowing – Concept". So far, we've 

discussed how collisions broaden spectral lines. But under certain 

conditions, collisions can actually lead to a narrowing of the line. 

The first point states when this occurs: "Occurs when the mean free path, 𝛬 

(capital Greek letter Lambda), of the radiating atom is less than the 

transition wavelength, 𝜆 (lowercase Greek letter lambda)." Or more 

precisely, when it's less than 
𝜆

2𝜋
. So, 𝛬 <

𝜆

2𝜋
. The mean free path 𝛬 is the 

average distance an atom travels between successive velocity-changing 

collisions. If this distance is smaller than roughly the wavelength of the 

radiation it's trying to emit or absorb, something interesting happens. 

The italicized statement explains the mechanism: "Frequent velocity-

changing collisions randomize Doppler shifts, leading to a net spectral 

narrowing." Let's unpack this. Doppler broadening arises because atoms 

moving towards the observer emit/absorb at a higher frequency, and atoms 

moving away emit/absorb at a lower frequency. If an atom's velocity is 



constant during the emission/absorption process, it contributes to a specific 

point in the Doppler profile. 

However, if the atom undergoes many velocity-changing collisions during 

the time it takes to radiate (or during the coherence time of the radiation-

matter interaction), and if these collisions occur so frequently that the atom 

doesn't travel a significant fraction of a wavelength with a constant velocity, 

then its effective Doppler shift gets averaged out. The atom doesn't have a 

well-defined, persistent Doppler shift anymore. Instead, it diffuses in space, 

and its average velocity component along the line of sight might be much 

smaller than its instantaneous thermal velocity. This "motional averaging" 

of the Doppler effect results in a narrowing of the Doppler-broadened line. 

This is Dicke narrowing, named after Robert H. Dicke who first predicted it. 

A "Condition" for observing Dicke narrowing is that the "Doppler width must 

be larger than the collisional (pressure) broadening width". If pressure 

broadening (from dephasing or quenching) is already dominant, then 

adding more collisions will just broaden the line further via those 

mechanisms. Dicke narrowing is a phenomenon that primarily affects the 

Doppler contribution to the linewidth. 

It is "Observed primarily in microwave and IR rotational-vibrational lines". 

This is because for these transitions, the wavelengths 𝜆 are longer (e.g., 

millimeters to centimeters for microwave, micrometers for IR). Also, 

Doppler widths can be substantial. The condition 𝛬 <
𝜆

2𝜋
 is more easily met 

in these regimes, especially at moderate to high pressures where 𝛬 

becomes small. It's less common in the visible or UV where 𝜆 is much 

shorter, making the mean free path requirement more stringent. 
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This slide provides a graphical representation of 'Collisional (Dicke) 

Narrowing – Concept'. The graph is titled 'Linewidth vs. Pressure: Dicke 

Narrowing & Pressure Broadening'. 



Let's analyze the graph: The vertical axis is "Linewidth (𝛥𝜈) [arb. units]", 

ranging from 0 to above 83, say 100 arbitrary units. The horizontal axis is 

"Pressure (𝑃) [arb. units]", ranging from 0 to 10. 

The blue curve shows the total observed linewidth as a function of 

pressure. At very low pressures (𝑃 approaching 0), the linewidth is high 

(around 90 units). This corresponds to the regime where Doppler 

broadening is dominant, and the mean free path 𝛬 is large. As pressure 

initially increases, the curve shows the linewidth decreasing. This is the 

'Dicke Narrowing' regime, as labeled. An arrow points downwards along 

this part of the curve, from high linewidth at low pressure to a minimum. As 

pressure increases, 𝛬 decreases. When 𝛬 becomes comparable to or less 

than 𝜆/(2𝜋), the velocity-changing collisions start to average out the 

Doppler shifts, and the Doppler contribution to the linewidth shrinks. 

However, this narrowing doesn't continue indefinitely. As pressure 

increases further, the contribution from collisional (pressure) broadening, 

which is proportional to pressure, starts to become significant and 

eventually dominant. The graph shows that the linewidth reaches a 

minimum value, labeled "𝛥𝜈min" (capital Delta nu subscript m-i-n), which is 

about 50 units, at a specific pressure labeled "𝑃min" (capital P subscript m-i-

n), around 2.5 units. This point is marked with a red dot and labeled as the 

'Dicke Minimum'. 

For pressures greater than 𝑃min, the linewidth starts to increase again, 

approximately linearly with pressure. This region is labeled "Pressure 

Broadening", with an arrow pointing upwards along this part of the curve. 

Here, the usual collisional broadening mechanisms (lifetime reduction, 

phase perturbation) take over and cause the line to widen. 

So, the overall behavior is a competition: at low pressures, increasing 

collisions leads to Dicke narrowing. At high pressures, increasing collisions 

leads to pressure broadening. In between, there's a minimum linewidth. 

The observation of this characteristic "V-shape" or "U-shape" in a plot of 



linewidth versus pressure is the hallmark of Dicke narrowing. The extent of 

the initial drop and the position of the minimum depend on the relative 

magnitudes of the Doppler width, the pressure broadening coefficient, and 

the velocity-changing collision frequency. 
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This slide provides a specific experimental example: "Dicke Narrowing – 

Water Vapor Example". 

The first point identifies the system: "H two O rotational line at 𝜈 =

1871 cm−1 ( 𝜆 = 5.34 𝜇m )." (H₂ O rotational line at 𝜈 = 1871 cm−1, which 

corresponds to a wavelength 𝜆 = 5.34 𝜇m ). This is a specific rotational 

transition in the water molecule, occurring in the mid-infrared region. 

The second point describes the "Experimental trend observed with Argon 

(Ar) and Xenon (Xe) as perturber gases": An asterisk indicates that the 

"Linewidth decreases up to pressures of 100–150 torr". This is the direct 

observation of Dicke narrowing. As the pressure of Ar or Xe is increased 

from low values up to around 100–150 torr, the H₂ O spectral line gets 

narrower. Another asterisk states that the "Minimum width" (the Dicke 

minimum) is observed "when the mean free path 𝛬 is approximately equal 

to the transition wavelength 𝜆" ( 𝛬 ≈ 𝜆 ). Or more precisely, 
𝜆

2𝜋
. A third 

asterisk notes: "Beyond that pressure (i.e., beyond 100–150 torr), normal 

pressure broadening dominates", and the linewidth starts to increase with 

pressure, as shown in the general graph on the previous slide. 

The final point highlights a subtle but important difference between using 

Argon and Xenon as perturbers: "The heavier Xenon (Xe) perturber, which 

has a larger collision cross section 𝜎 (lowercase sigma for velocity-

changing collisions) and thus leads to a shorter mean free path 𝛬 at a given 

pressure, shifts the Dicke minimum to lower pressures relative to Argon 

(Ar)." Let's break this down. Xenon is heavier and generally larger than 

Argon. This means the collision cross section (𝜎) for H₂ O-Xe velocity-



changing collisions is likely larger than for H₂ O-Ar collisions. A larger 𝜎 

means a shorter mean free path 𝛬 (since 𝛬 is inversely proportional to 𝑁𝜎, 

where 𝑁 is number density, and 𝑁 is proportional to 𝑃). Because 𝛬 

becomes small more quickly with pressure for Xe, the condition for optimal 

Dicke narrowing ( 𝛬 ∼
𝜆

2𝜋
 ) and the subsequent dominance of pressure 

broadening will occur at lower total pressures when Xe is the perturber 

compared to when Ar is the perturber. So, the 𝑃min in the Dicke profile will 

be at a lower pressure for Xe. This is a nice example of how the identity of 

the collision partner affects the details of Dicke narrowing. 
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We now encounter another type of narrowing phenomenon, distinct from 

Dicke narrowing, called "Diffusion-Limited Narrowing in Long-Lived States". 

This is particularly relevant for transitions involving metastable states or 

ground states. 

The first point sets the stage: "For metastable or ground-state transitions:" 

An asterisk elaborates: "The Natural lifetime of these states can be very 

long, on the order of milliseconds (ms) or even longer." For a ground state, 

the lifetime is effectively infinite if not for collisions or other interactions. For 

metastable states, radiative decay is forbidden or highly suppressed, 

leading to long lifetimes. 

Another asterisk notes that in such cases, if one is doing spectroscopy with 

a spatially confined laser beam (as is almost always the case), the "Transit-

time out of the laser beam becomes a limiting factor" for the observed 

linewidth. If an atom only interacts with the laser field for the short time it 

takes to fly through the beam, this finite interaction time leads to 

broadening, known as transit-time broadening. This can be much larger 

than the natural linewidth for long-lived states, effectively becoming the 

dominant homogeneous broadening mechanism at low pressures. 



The crucial idea for narrowing is in the second main bullet: "Adding an inert 

buffer gas slows diffusion of the atoms of interest." The buffer gas atoms 

collide with the spectroscopically active atoms, and these collisions impede 

their free flight. Instead of flying straight out of the laser beam, the active 

atoms undergo a random walk, a diffusive motion. This significantly 

"increases the effective interaction time" with the laser field, as the atoms 

are confined to the beam volume for a longer period due to the frequent, 

randomizing collisions with the buffer gas. 

The consequence is that this increased interaction time "reduces the 

homogeneous width" component that was previously limited by transit time. 

So, adding a buffer gas can narrow the line by reducing transit-time 

broadening. This is diffusion-limited narrowing or sometimes called 

"collisionally aided narrowing of transit time broadening." 
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This slide continues the discussion on diffusion-limited narrowing. 

The first point states: 'A pressure region exists where this narrowing (by 

diffusion delay) competes with and surpasses pressure broadening.' This 

sounds similar to the Dicke narrowing scenario where a minimum linewidth 

is observed, but the mechanisms are different. Here, at very low buffer gas 

pressures, transit-time broadening (due to atoms quickly leaving the laser 

beam) might be the dominant contribution to the observed linewidth. As 

buffer gas pressure is initially increased, the diffusion of atoms slows down, 

they stay in the beam longer, and transit-time broadening decreases, 

leading to a net narrowing of the spectral line. However, as the buffer gas 

pressure is increased further, the conventional pressure broadening (due to 

dephasing or quenching collisions with the buffer gas itself) will start to 

increase and eventually become the dominant factor, causing the linewidth 

to increase again. So, one might again observe a minimum in the linewidth 

versus buffer gas pressure curve, but the initial narrowing here is due to 

suppression of transit-time effects, not averaging of Doppler shifts (though 



Dicke narrowing could also be present if conditions for it are also met, i.e., 

if Doppler broadening was initially significant). 

The second point highlights a significant application of this technique: 'This 

technique is exploited in ultra-high-resolution spectroscopy of alkali D-lines 

in buffer-gas-filled vapor cells.' Alkali atoms (like Sodium, Rubidium, 

Cesium) have D-lines that are strong and well-studied. Their ground states 

are, of course, very long-lived. By placing the alkali vapor in a cell filled with 

an inert buffer gas (like Argon or Neon) at an appropriate pressure, one can 

significantly reduce transit-time broadening. This allows for much higher 

spectral resolution than would be achievable with a low-pressure vapor 

where atoms quickly fly through the laser beam or collide with the cell walls 

(wall collisions also limit interaction time). This technique has been crucial 

for many precision measurements and fundamental studies using alkali 

atoms, such as in atomic clocks or magnetometry. The triple dash ends this 

section. 
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This slide provides some 'Key Takeaways for Experimentalists' regarding 

collisional broadening. These are practical points to keep in mind when 

designing experiments and analyzing spectroscopic data. 

1. 'Always separate shift and broadening contributions; their cross sections 

are different.' 

We've seen that collisional line shifts (𝛥𝜔) are governed by a shift cross 

section (𝜎𝑠), while collisional line broadening (𝛾col) is governed by a 

broadening cross section (𝜎𝑏). These two cross sections, 𝜎𝑠 and 𝜎𝑏, arise 

from different weightings of the phase shift 𝛥𝜙(𝑅0) and are generally not 

equal. Therefore, one must analyze them independently. For example, 

plotting both the measured shift and the measured broadening as a 

function of pressure can provide separate information about the interaction 

potential. Don't assume that if you know the broadening, you also know the 

shift, or vice-versa, without a specific model connecting them (though for 



certain potentials, like 𝑛 = 6 van der Waals, there's a theoretical ratio 

between them). 

2. 'Measure at multiple pressures and temperatures to extract microscopic 

potentials.' 

As we discussed with the temperature dependence method for 𝑉i(𝑅) (slide 

22-23), and the pressure dependence for determining broadening/shifting 

coefficients (which relate to cross sections, and thus to potentials), varying 

both pressure and temperature systematically is key. Pressure dependence 

helps isolate collisional effects and determine rate coefficients (the slopes 

of width/shift vs pressure plots). Temperature dependence probes the 

Boltzmann factor (for quasi-static analysis of wings) or affects the mean 

relative velocity 𝑣‾ (which appears in 𝑁B𝑣‾𝜎 expressions) and also the 

population distribution over states. For specific power-law potentials 
𝐶

𝑅𝑛
, the 

temperature dependence of the broadening/shifting coefficients can also 

reveal 'n'. Combining these measurements provides much more robust 

data for fitting to potential models or extracting potential parameters. 

3. 'Beware of non-Lorentzian wings and satellites; fitting only the central 

peak hides essential physics.' 

If your experimental line profile clearly shows asymmetry or satellite 

features in the wings, fitting the entire line with a simple Lorentzian function 

will be inadequate. While a Lorentzian might approximate the core, it will 

miss these crucial details. These non-Lorentzian features, as we've seen, 

contain rich information about the specifics of the interaction potential, 

particularly its shape at short range or the presence of extrema in the 

difference potential. Ignoring them means throwing away valuable physical 

insight. Use more sophisticated line shape models, such as unified theories 

or quantum calculations, when the data demand it and when information 

from the wings is important. 
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This slide continues with key takeaways for experimentalists, focusing on 

specific regimes. 

4. 'In plasma or high-pressure regimes, Stark broadening can dwarf all 

other effects – include Coulomb perturbations in models.' 

If you are working with plasmas (ionized gases) or even very high-pressure 

neutral gases where ionization might become non-negligible or interactions 

become very strong and short-ranged, the Stark effect due to charged 

particle collisions can become the dominant line broadening mechanism. 

Its long-range 1/𝑅 nature of the underlying Coulomb potential makes it very 

effective. When modeling spectra from such environments, it's crucial to 

incorporate the effects of Coulomb interactions (i.e., Stark broadening) into 

your line shape models. Neglecting it can lead to severe misinterpretation 

of the plasma conditions or the spectral features. Standard Stark 

broadening theories (like Griem's) and extensive tabulated calculations 

exist for many atomic lines and a wide range of plasma conditions (electron 

densities and temperatures). 

The triple dash signifies the end of these takeaways. 
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To conclude this chapter on collisional broadening, this slide offers 

'Suggested Visual Aids and Further Reading' to help deepen your 

understanding. 

For 'Visual Aids': 

* 'Potential-curve diagrams for various A-B pairs.' Seeing more examples of 

ground state 𝑉i(𝑅) and excited state 𝑉k(𝑅) potential curves for different 

colliding partners (A and B), and especially the resulting difference potential 

𝛥𝐸(𝑅), can build intuition about how satellites form or why line shapes 

become asymmetric. 



* 'Phase-perturbation animations illustrating 𝛥𝜙(𝑡)' (𝛥𝜙(𝑡), meaning the 

instantaneous phase evolution, or perhaps 𝛥𝜙(𝑅0), the total accumulated 

phase shift). Visualizing how the phase of an atomic oscillator is perturbed 

during a collision, especially for different impact parameters, can make the 

concepts of phase shift theory more tangible. 

* 'Satellite-bearing experimental spectra (Cs-Xe, Na-H, etc.).' Looking at 

more real-world examples of spectra that clearly show satellite features, 

like the Cesium-Xenon example we saw, or perhaps Sodium-Hydrogen 

(Na-H) or other alkali-rare gas systems, reinforces the reality and 

importance of these non-Lorentzian features. 

For 'Further Reading', several 'Review articles' or books are suggested: 

* 'Griem, "Principles of Plasma Spectroscopy"'. This is a classic and 

authoritative text by Hans Griem on the spectroscopy of plasmas, with 

extensive coverage of Stark broadening and other line shape phenomena 

in plasma environments. (Cambridge University Press). 

* An asterisk points to 'Hartmann et al., "Collisional Effects on Molecular 

Spectra"'. This reference by Jean-Michel Hartmann and colleagues would 

be excellent for a deeper dive into collisional broadening of molecular lines, 

likely covering both atomic and molecular perturbers, and advanced line 

shape theories relevant to molecules. (Elsevier or Wiley are common 

publishers for such monographs). 

* Another asterisk lists 'Griem, "Principles of Plasma Spectroscopy"' again, 

emphasizing its importance for plasma-related aspects. It's possible this 

was intended to be two different key works by Griem, or to simply 

underscore its relevance. For instance, Griem also authored the seminal 

book "Spectral Line Broadening by Plasmas" (Academic Press, 1974), 

which is a cornerstone in the field. 



These resources will provide much more detail and mathematical rigor than 

can be covered in a lecture format and are highly recommended for those 

of you specializing in these areas of spectroscopy. 
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This page appears to be a note to the user of these slides, likely from the 

system generating this lecture. It indicates that the full generated answer is 

extensive and, for practical reasons related to interface limits, the complete 

output will be provided separately. It also mentions that a preview of the 

initial slides is included to confirm that formatting and style requirements 

have been met. It ends with an instruction to request the "FULL SLIDE 

DECK" if the entire set is needed. The usual course preparation note is 

also present. 
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This page continues the note to the user, reiterating the request to ask for 

the "FULL SLIDE DECK" due to the size of the complete output. It 

concludes with the triple dash and the course preparation information. This 

marks the end of the provided slide material for this lecture segment on 

collisional broadening. 

And that brings us to the end of our discussion on Chapter 3.3, Collisional 

Broadening of Spectral Lines. I trust this has given you a solid foundation in 

understanding the various mechanisms by which collisions affect spectral 

lines, the theoretical frameworks used to describe these effects, and their 

importance in various applications from precision metrology to plasma 

diagnostics and laser design. Remember to consult the suggested readings 

for more in-depth treatments. Thank you. 

  


