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Alright everyone, welcome back to Physics 608, Laser Spectroscopy. 

Today, we embark on a crucial topic within the broader theme of spectral 

line shapes: Chapter 3, Section 2, focusing on Doppler Width. 

Understanding Doppler broadening is absolutely fundamental to 

interpreting spectroscopic data, especially in gaseous media, and it forms a 

cornerstone of many diagnostic techniques. 

As you can see, this material was prepared by Distinguished Professor 

Doctor M A Gondal for this course. Let's delve into why the widths of 

spectral lines, and particularly the Doppler contribution to these widths, are 

so important. 
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So, let's start with the basics of Spectral Lines – Why Widths Matter. 

The first point on this slide reminds us of an idealized scenario: "A 'spectral 

line' ideally marks a single, sharply-defined transition energy between two 

quantum states." Think about the Bohr model, or more sophisticated 

quantum mechanical descriptions of atoms and molecules. We have 

discrete energy levels, say 𝐸one and 𝐸two. A transition between these states 

corresponds to the absorption or emission of a photon with energy ℎ𝜈 

precisely equal to the energy difference, 𝛥𝐸 = 𝐸two − 𝐸one. In this perfect 

world, if you plotted the absorption or emission intensity as a function of 

frequency, you'd see an infinitely sharp spike, a delta function, right at the 

resonant frequency 𝜈zero =
𝛥𝐸

ℎ
. This would be a perfectly defined spectral 

line. 

However, as the second bullet point states: "In real experiments each line 

possesses a finite width, i.e. light is emitted/absorbed over a band of 

angular frequencies 𝜔." Nature, as it turns out, is a bit more nuanced. We 

never observe these infinitely sharp lines. Instead, we see a profile, a 

distribution of intensities centered around 𝜔zero (the angular frequency 



corresponding to 𝜈zero), but spread out over a range of frequencies. This 

spread is what we call the linewidth. So, instead of a single frequency, 

there's a whole band of frequencies involved in the interaction. 

Why is this important? The third bullet point gives us the crucial insight: 

"Width carries information about underlying physical processes (lifetimes, 

motion, collisions, external fields, ...)." This is where spectroscopy becomes 

truly powerful as a diagnostic tool. The shape and width of a spectral line 

are not just nuisance effects; they are fingerprints of the environment and 

the dynamics of the atoms or molecules we are studying. 

* Lifetimes: The finite lifetime of an excited state, due to spontaneous 

emission, leads to what's called natural broadening. This is a fundamental 

quantum mechanical effect, linked to the Heisenberg Uncertainty Principle. 

A shorter lifetime means a larger uncertainty in energy, and thus a broader 

line. * Motion: This is the main topic for today – Doppler broadening. If the 

atoms or molecules are moving, their apparent resonant frequency will be 

shifted relative to a stationary observer or a light source. Since we typically 

deal with an ensemble of particles moving with a distribution of velocities 

(like the Maxwell-Boltzmann distribution in a gas), this results in a 

distribution of observed frequencies, effectively broadening the spectral 

line. * Collisions: Atoms or molecules in a gas are constantly colliding. 

These collisions can interrupt the process of light emission or absorption, or 

perturb the energy levels. This leads to collisional broadening, also known 

as pressure broadening, because the collision rate typically increases with 

pressure. * External fields: The presence of electric fields (Stark effect) or 

magnetic fields (Zeeman effect) can split or shift energy levels, leading to 

more complex line structures that can also be interpreted as a form of 

broadening if the individual components are not resolved. 

So, by carefully analyzing the line shape and extracting the width, we can 

learn about these fundamental physical processes. 
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Following on from that, the Goal of this unit is clearly stated: "build a step-

by-step, quantitative understanding of the Doppler contribution to the 

linewidth and place it in context with other mechanisms." 

So, our journey today will be to first understand the physics of the Doppler 

effect as it applies to atoms and molecules interacting with light. Then, we 

will see how the thermal motion of these particles, characterized by a 

velocity distribution, translates into a specific line shape – the Gaussian 

profile. We'll derive expressions for the Doppler width, understand its 

dependence on parameters like temperature and mass, and finally, we'll 

discuss how this Doppler broadening combines with other broadening 

mechanisms, like the natural or collisional broadening we just mentioned, 

to give the overall observed line shape, often described by a Voigt profile. 

This quantitative understanding is essential for accurately interpreting 

spectra and extracting meaningful physical parameters. 
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Now, let's visualize what we're talking about with this slide titled "Chap. 3.2 

Doppler Width: Spectral Lines – Why Widths Matter," which shows a 

Schematic of an Ideal vs. Real Spectral Line Profiles. 

On the graph, the vertical axis is labeled 𝐼(𝜔) (capital I of omega), 

representing the intensity or strength of the spectral line as a function of 

angular frequency 𝜔 on the horizontal axis. The center of the line, 𝜔𝑧𝑒𝑟𝑜, is 

at the origin of this relative frequency axis, so omega here is really the 

detuning from the line center. 

The legend describes four different profiles: 

* First, we have the Ideal (𝛿-function), shown as a dashed black vertical 

line spiking up at 𝜔 = 0. This represents that idealized, infinitely sharp 

spectral line we discussed. It has all its intensity at a single frequency. Of 

course, this is a mathematical idealization, not physically observed. 



* Next, we see a Lorentzian profile, plotted as a solid blue line. Notice its 

characteristic shape: it's peaked at the center, but its "wings" – the parts of 

the line far from the center – fall off relatively slowly. As we'll recap shortly, 

this shape is typically associated with natural broadening (due to finite 

lifetimes) and collisional broadening. 

* Then, there's a Gaussian profile, shown as a solid orange line. This also 

peaks at the center, but its wings fall off much more rapidly than the 

Lorentzian. As we will spend much of today deriving, this Gaussian shape 

is characteristic of Doppler broadening in a thermal gas. 

* Finally, the Voigt Profile is shown as a solid green line. Observe that the 

Voigt profile often looks somewhat like a Gaussian near its center but can 

exhibit broader wings, more akin to a Lorentzian, further out. This is 

because the Voigt profile is, in fact, a convolution of a Gaussian profile and 

a Lorentzian profile. It represents the line shape when both inhomogeneous 

broadening (like Doppler) and homogeneous broadening (like natural or 

collisional) are simultaneously present and significant. 

This graph provides a great visual summary. Our ideal is the delta function, 

but reality gives us broadened profiles like Lorentzians, Gaussians, or, 

most generally, Voigts. Our focus today is to deeply understand the origin 

and characteristics of the Gaussian component arising from Doppler 

broadening. 
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Alright, before we dive deep into Doppler broadening, let's do a quick 

Natural (Lifetime) Broadening Recap. This is often referred to as 

homogeneous broadening because it affects all atoms or molecules in the 

ensemble in the same way. 

The first bullet point gets to the Origin: "finite excited-state lifetime 𝜏 (tau) 

gives an energy uncertainty 𝛥𝐸 (Delta E) approximately equal to 
ℏ

2𝜏
 (h-bar 

over two tau)." This is a direct consequence of the Heisenberg Uncertainty 



Principle, specifically the energy-time uncertainty relation, 𝛥𝐸 𝛥𝑡 ≥
ℏ

2
. If an 

excited state has an average lifetime 𝜏, then 𝛥𝑡 can be associated with 𝜏. 

The energy of that state, and therefore the energy of a photon emitted from 

it, will have an inherent uncertainty, or spread, 𝛥𝐸. The factor of 2 in 2𝜏 

arises from considering the full width of the energy distribution. This energy 

uncertainty 𝛥𝐸 directly translates into a frequency spread 𝛥𝜔 (Delta 

omega) because 𝐸 = ℏ𝜔, so 𝛥𝐸 = ℏ𝛥𝜔. Thus, 𝛥𝜔 is on the order of 
1

𝜏
. 

The second bullet tells us the consequence for the line shape: "Resulting 

Lorentzian profile for emitted intensity." When an ensemble of atoms 

undergoes spontaneous emission from an excited state with lifetime 𝜏, the 

spectral line shape is given by a Lorentzian function. The formula shown is: 

𝐼nat(𝜔) = 𝐼0 ⋅
(
𝛾
2
)
2

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2 

Let's break this down: * 𝐼nat(𝜔) (capital I sub nat of omega) is the intensity 

of natural emission as a function of angular frequency 𝜔. * 𝐼0 (capital I sub 

zero) is the peak intensity, occurring at 𝜔 = 𝜔0. * 𝜔0 (omega naught) is the 

central angular frequency of the transition, corresponding to the exact 

energy difference between the states without any uncertainty. * 𝛾 (gamma) 

is a crucial parameter here, representing the decay rate. * The term 

(𝜔 − 𝜔0) is the detuning from the line center. Notice it's squared in the 

denominator, making the profile symmetric around 𝜔0. * The term (
𝛾

2
)
2
 in 

the denominator is added to the squared detuning. This term determines 

the width of the Lorentzian. When the detuning (𝜔 − 𝜔0) equals ±
𝛾

2
, the 

denominator becomes 2 ⋅ (
𝛾

2
)
2
, so the intensity 𝐼nat(𝜔) drops to 

𝐼0

2
, which is 

half its peak value. 



The third bullet point defines this decay rate gamma: "𝛾 =
1

𝜏
 – radiative 

decay rate (units: 𝑠−1 (inverse seconds))." 

Finally, the slide mentions the "Full width at half maximum (FWHM):". We'll 

see the expression for this on the next page, but based on our discussion 

of the Lorentzian formula, you can probably already guess what it will be. 
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Continuing our recap of natural broadening, the first thing we see is the 

expression for the Full Width at Half Maximum, or FWHM, for this natural 

Lorentzian lineshape. It is given by: 

𝛿𝜔n = 𝛾 

This confirms what we deduced on the previous page. The FWHM, which is 

the difference between the two angular frequencies at which the intensity is 

half its maximum value, is exactly equal to 𝛾, the radiative decay rate, 

which is 
1

𝜏
. So, 𝛿𝜔n =

1

𝜏
. This makes intuitive sense: a shorter lifetime 𝜏 

leads to a larger decay rate 𝛾, and thus a larger linewidth 𝛿𝜔n. This natural 

linewidth is the minimum possible linewidth a transition can have, limited 

only by the quantum nature of spontaneous emission. 

Now, a Key point about the Lorentzian profile is highlighted: "Lorentzian 

wings decay slowly ∝
1

(𝜔−𝜔0)
2
." As you move away from the line center (𝜔0), 

so as the detuning (𝜔 − 𝜔0) becomes large, the intensity decreases as the 

inverse square of this detuning. Compared to other line shapes, like the 

Gaussian we'll soon study, this is indeed a slow decay. This means that 

even far from the line center, a Lorentzian line can still have a non-

negligible intensity. These are often called "heavy tails" or "far wings." 

The final bullet point provides a crucial piece of context for why we need to 

study other broadening mechanisms: "Unfortunately, in gases the 

Lorentzian is rarely seen directly because larger effects obscure it." 



While natural broadening is always present, in many practical situations, 

especially in gases at non-cryogenic temperatures, other broadening 

mechanisms are much more significant and effectively mask the underlying 

natural Lorentzian profile, particularly near the line center. The most 

prominent of these in low-pressure gases is often Doppler broadening, 

which we are about to discuss. In higher pressure gases, collisional 

broadening, which also results in a Lorentzian profile, can become 

dominant. But the purely natural Lorentzian is often much narrower than 

these other contributions. 

This sets the stage perfectly for introducing the Doppler effect. 
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Now we Enter Thermal Motion – The Doppler Problem. This is where we 

start to build our understanding of Doppler broadening, which is a type of 

inhomogeneous broadening, meaning it arises because different atoms in 

the ensemble experience slightly different conditions – in this case, 

different velocities. 

The first bullet point sets the scene: "Gas molecules at temperature 𝑇 move 

randomly; each molecule constitutes a moving source or absorber." In any 

gas sample above absolute zero, the constituent atoms or molecules are in 

constant, chaotic thermal motion. They are moving in all directions with a 

range of speeds, described by a statistical distribution like the Maxwell-

Boltzmann distribution. When an atom or molecule emits or absorbs light, if 

it's moving, it acts as a moving source (for emission) or a moving 

absorber/observer (for absorption). 

The second point is key: "Motion along observer's line of sight shifts the 

apparent frequency via the Doppler effect." You're all familiar with the 

Doppler effect from sound waves – the pitch of an ambulance siren 

changes as it moves towards you and then away from you. A similar effect 

occurs with light waves. If a light-emitting atom is moving towards an 

observer (say, a detector), the observed frequency of the light will be higher 



(blue-shifted) than the frequency emitted in the atom's own rest frame. If it's 

moving away, the observed frequency will be lower (red-shifted). Crucially, 

it's the component of the velocity along the line of sight between the atom 

and the observer that matters for this frequency shift. Motion perpendicular 

to the line of sight produces a much smaller, second-order effect (the 

transverse Doppler effect), which we usually neglect in this context. 

Finally, "Shift adds or subtracts from 𝜔0 (omega naught) depending on 

velocity component 𝑣z (v sub z)." Let's define 𝜔0 as the intrinsic, unshifted 

angular frequency of the transition (what you'd observe if the atom were at 

rest). If we define our z-axis as the line of sight, then 𝑣z is the component of 

the molecule's velocity along this axis. If 𝑣z is positive (moving towards the 

observer, if the observer is at positive 𝑧, or if light propagates along +𝑧 and 

the atom moves along −𝑧 for absorption), the frequency increases. If 𝑣z is 

negative, the frequency decreases. We'll quantify this shift shortly. 
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This leads us directly to the concept of Doppler broadening: "ensemble of 

many differently-moving molecules ⇒ distribution of shifted frequencies ⇒ 

overall line broadening." 

Let's unpack this. We're not looking at a single atom; we're observing a 

huge number of them, an ensemble. As we just discussed, each atom, due 

to its thermal motion, will have some velocity component 𝑣z along our line 

of sight. The Maxwell-Boltzmann distribution tells us that these 𝑣z values 

will be spread out – some atoms moving towards us slowly, some quickly, 

some away from us slowly, some quickly, and many with very small 𝑣z. 

Since each unique value of 𝑣z leads to a slightly different Doppler-shifted 

frequency, the collection of all these slightly different frequencies from all 

the atoms in the ensemble effectively "smears out" the spectral line. What 

would have been a single frequency 𝜔0 (if all atoms were at rest and 



ignoring natural broadening for a moment) now becomes a band of 

frequencies. 

This is the essence of Doppler broadening. It's an inhomogeneous 

broadening mechanism because each atom contributes to the line at a 

frequency determined by its individual velocity. The overall line shape we 

observe is the sum, or integral, of all these individual, shifted contributions, 

weighted by the probability of each velocity occurring. This results in an 

"overall line broadening." We will see that this typically leads to a Gaussian 

line shape. 
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This slide provides a wonderful visual illustration of the Doppler Effect: 

Molecular Motion and Frequency Shift. 

Let's look at the three scenarios depicted, all relative to a detector shown 

on the right. The dashed horizontal line in the middle two scenarios 

represents the line of sight, which we can call the 𝑧-axis. The wavy lines 

represent the light waves emitted by the molecule (the grey circle). 

* Top Scenario: Molecule moving away. The molecule has a velocity 

component −𝑣z (minus 𝑣z), meaning it's moving to the left, away from the 

detector. The emitted wave, shown in red, is stretched out. Its wavelength 

is longer, and therefore its frequency 𝜔 (omega) is less than 𝜔0 (omega 

naught, the rest-frame frequency). This is a Red Shift. The wave crests are 

emitted further apart in space from the perspective of the detector because 

the molecule recedes between emitting successive crests. 

* Middle Scenario: Molecule moving perpendicular. Here, the velocity 

component along the line of sight, 𝑣z, is 0. The molecule is moving 

upwards, perpendicular to the 𝑧-axis. The emitted wave, shown in green, 

has a frequency 𝜔 approximately equal to 𝜔0. There is No Shift (or, more 

precisely, only the very small transverse Doppler effect, which we are 



ignoring). The spacing of the wave crests along the 𝑧-axis is essentially 

unchanged from the rest frame emission. 

* Bottom Scenario: Molecule moving towards. The molecule has a 

velocity component +𝑣z (plus 𝑣z), moving to the right, towards the detector. 

The emitted wave, shown in blue, is compressed. Its wavelength is shorter, 

and its frequency 𝜔 is greater than 𝜔0. This is a Blue Shift. The wave 

crests are emitted closer together in space from the detector's viewpoint 

because the molecule advances between emitting successive crests. 

This diagram beautifully captures the core idea: the velocity component 

along the line of sight directly influences the observed wavelength and 

frequency. An ensemble of molecules will have a statistical distribution of 

these 𝑣z values, leading to a distribution of observed frequencies. 
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Now, let's formalize the Geometry & Notation for Doppler Shift. 

Establishing a clear coordinate system and consistent notation is crucial for 

the derivations that follow. 

First bullet: "Choose laboratory z-axis along propagation direction of light." 

This is a standard and convenient choice. So, light is traveling, say, in the 

positive z direction. If we are considering emission, the detector would be 

at some large positive z. If we are considering absorption of this light beam 

by molecules, the molecules will be interacting with this z-propagating light. 

Second bullet: "Wave vector 𝐤 = (0,0, 𝑘z)." The wave vector 𝐤 points in the 

direction of wave propagation and its magnitude is related to the 

wavelength and frequency. Since the light propagates along the z-axis, the 

x and y components of 𝐤 are zero. So, 𝐤 is a vector with components 

(0,0, 𝑘z), where 𝑘z is the magnitude of 𝐤 along the z-axis. 

Third bullet: "Magnitude 𝑘z =
2𝜋

𝜆
=

𝜔

𝑐
 (k sub zed equals two pi over lambda 

equals omega over c)." The magnitude of the wave vector, k (which is 𝑘z in 



our case since it's along z), is 
2𝜋

𝜆
 divided by the wavelength 𝜆. It's also 

equal to the angular frequency 𝜔 divided by the speed of light, 𝑐. These are 

standard relations for electromagnetic waves. 

Fourth bullet: "Molecular velocity 𝐯 = (𝑣x, 𝑣y, 𝑣z) (vector v equals v sub x, v 

sub y, v sub z)." Each molecule in our gas sample has a velocity vector 𝐯, 

which can have components in all three directions. 𝑣x and 𝑣y are the 

velocity components perpendicular to the light propagation, and 𝑣z is the 

component parallel (or anti-parallel) to the light propagation. 

Fifth bullet: "Component relevant for shift is 𝑣z because 𝐤 ⋅ 𝐯 = 𝑘z𝑣z (k dot v 

equals k sub zed times v sub zed)." As we mentioned, the Doppler shift 

depends on the component of the molecular velocity along the direction of 

the wave vector 𝐤. This is mathematically captured by the dot product 𝐤 ⋅ 𝐯. 

Since our 𝐤 is (0,0, 𝑘z) and 𝐯 is (𝑣x, 𝑣y, 𝑣z), their dot product is (0 ⋅ 𝑣x) +

(0 ⋅ 𝑣y) + (𝑘z ⋅ 𝑣z), which simplifies to 𝑘z𝑣z. This confirms that only the 𝑣z 

component of the molecular velocity, the one along the line of sight, 

contributes to the (first-order) Doppler shift. 
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Continuing with our setup, a very important approximation is stated here: 

"We treat speeds |𝑣z| ≪ 𝑐 (absolute value of 𝑣z is much, much less than 𝑐) 

→ use linear Doppler approximation (relativistic corrections deferred)." 

This is a crucial simplification that is valid for most atoms and molecules in 

typical laser spectroscopy experiments. The speeds of atoms or molecules 

due to thermal motion, even at thousands of Kelvin, are typically many 

orders of magnitude smaller than the speed of light, 𝑐 (which is 

approximately 3 × 108 meters per second). For example, for a nitrogen 

molecule at room temperature, the root-mean-square speed is about 500 

meters per second, which is about 1.7 × 10−6 𝑐. So, the ratio 
𝑣z

𝑐
 is very 

small. 



When 
𝑣

𝑐
 is small, the full relativistic Doppler formula can be accurately 

approximated by its first-order term, which is linear in 
𝑣z

𝑐
. This is what we 

call the linear Doppler approximation. We are deferring, or neglecting, the 

higher-order terms which include relativistic effects like time dilation (the 

transverse Doppler effect is one such relativistic effect, proportional to 

(
𝑣

𝑐
)
2
). These relativistic corrections are usually tiny and only become 

important in very high-precision measurements or for particles moving at 

near-relativistic speeds, neither of which is typically the case in standard 

gas-phase laser spectroscopy. So, for our purposes, the linear 

approximation is excellent. 
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Now let's apply this to a specific scenario: Doppler Shift for Spontaneous 

Emission. 

* First bullet: "Consider a molecule that has just decayed and emitted a 

photon." So, we have an excited molecule, it transitions to a lower energy 

state, and in doing so, releases a photon. 

* Second bullet: "In molecule's rest frame: photon angular frequency 𝜔0 

(omega naught)." If we were sitting on the molecule, moving with it, we 

would measure the emitted photon's angular frequency to be 𝜔0. This 𝜔0 is 

determined by the energy difference between the two quantum states 

involved in the transition, 

𝜔0 =
𝐸upper − 𝐸lower

ℏ
. 

This is the "true" or "unshifted" frequency. 

* Third bullet: "For a laboratory observer:" This is where the Doppler effect 

comes in. An observer in the lab frame, relative to whom the molecule is 

moving with velocity 𝐯 (and thus velocity component 𝑣z along the line of 

sight to the observer, assuming light travels along 𝑧), will measure a 



different frequency, 𝜔e (omega sub e, for emitted frequency). The formula 

for this observed frequency in the linear Doppler approximation is: 

𝜔e = 𝜔0 + 𝐤 ⋅ 𝐯 

And using our established geometry where 𝐤 is along the 𝑧-axis with 

magnitude 𝑘z, and only 𝑣z contributes, this becomes: 

𝜔e = 𝜔0 + 𝑘z𝑣z. 

Let's quickly see where this comes from. The shift 𝛥𝜔 = 𝜔e − 𝜔0 is given 

by 𝜔0
𝑣z

𝑐
 when the source moves towards the observer with speed 𝑣z. Since 

𝑘z =
𝜔

𝑐
≈

𝜔0

𝑐
 (because the shift is small), we can write 𝑘z𝑣z ≈

𝜔0

𝑐
 𝑣z. So, 

𝜔e = 𝜔0 (1 +
𝑣z

𝑐
) = 𝜔0 + 𝜔0 (

𝑣z

𝑐
), 

which is 𝜔0 + 𝑘z𝑣z. This formula shows that the observed frequency 𝜔e is 

the rest frequency 𝜔0 plus a shift term 𝑘z𝑣z. 

* Fourth bullet: "v_z > 0: molecule moves toward observer ⇒ ω_e > ω₀  

(blue shift)." If 𝑣z > 0 (meaning the molecule is moving towards the 

observer, or more generally, the velocity component is in the same 

direction as 𝐤 if 𝐤 points from source to observer), then 𝑘z𝑣z is a positive 

term, so 𝜔e will be greater than 𝜔0. This is a higher frequency, shorter 

wavelength, hence a "blue shift." 

* Fifth bullet: "v_z < 0: molecule recedes ⇒ ω_e < ω₀  (red shift)." 

Conversely, if 𝑣z < 0 (molecule moving away from the observer, or velocity 

component opposite to 𝐤), then 𝑘z𝑣z is negative, making 𝜔e less than 𝜔0. 

This is a lower frequency, longer wavelength, hence a "red shift." 

This clearly establishes the linear relationship between the velocity 

component 𝑣z and the observed frequency shift for spontaneously emitted 

light. 
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This slide concisely states a critical consequence of the relationship we just 

established: 

"Each value of 𝑣z (v sub zed) thus maps to a unique emission frequency." 

Given our formula from the previous page, 𝜔e = 𝜔0 + 𝑘z𝑣z, for a fixed rest 

frequency 𝜔0 and a fixed wave vector magnitude 𝑘z (which is essentially 
𝜔0

𝑐
), there is a direct, linear correspondence between the velocity 

component 𝑣z of the emitting molecule along the line of sight and the 

frequency 𝜔e observed in the laboratory. 

If you tell me the 𝑣z of a specific molecule, I can tell you the exact 

frequency at which the lab observer will detect its emitted photon. 

Conversely, if I measure a specific emission frequency 𝜔e, I can (in 

principle, if I know 𝜔0) infer the 𝑣z of the molecule that emitted it. 

This one-to-one mapping is the fundamental reason why a distribution of 

velocities (like the Maxwell-Boltzmann distribution for 𝑣z in a thermal gas) 

will directly translate into a distribution of observed emission frequencies, 

thereby creating the Doppler-broadened spectral line. We are essentially 

using the Doppler effect to perform a kind of velocity-to-frequency 

conversion. 
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Here we have a graph illustrating the Doppler Shift: Observed Frequency 

𝜔e vs. Velocity Component 𝑣z. This visually represents the linear mapping 

we just discussed. 

Let's examine the graph: 

• The vertical axis represents the observed angular frequency, 𝜔e. 

• The horizontal axis represents the velocity component of the molecule 

along the line of sight, 𝑣z. 



• The central point on the vertical axis is 𝜔0, the rest-frame frequency. 

This corresponds to 𝑣z = 0 on the horizontal axis, as indicated by the red 

dot at (0,𝜔0). If a molecule has no velocity component along the line of 

sight, its emitted frequency is unshifted. 

The relationship is plotted as a straight blue line passing through (0, 𝜔0) 

with a positive slope. The equation of this line is shown as: 

𝜔e = 𝜔0 + 𝑘z𝑣z 

where 𝑘z (which is 
𝜔0

𝑐
) is the slope of this line. 

The graph is divided into two regions: 

• To the left of the vertical axis (𝑣z < 0): This region is shaded light red 

and labeled "Red Shift (𝜔e < 𝜔0,  𝑣z < 0)". Here, molecules are moving 

away from the observer (or in the direction opposite to light propagation 

considered for 𝑘z), so their 𝑣z is negative. Consequently, the observed 

frequency 𝜔e is less than 𝜔0. The line extends down to some −𝑣𝑚𝑎𝑥 on the 

velocity axis, corresponding to the lowest observed frequencies. 

• To the right of the vertical axis (𝑣z > 0): This region is shaded light 

blue and labeled "Blue Shift (𝜔e > 𝜔0,  𝑣z > 0)". Here, molecules are 

moving towards the observer, their 𝑣z is positive, and the observed 

frequency 𝜔e is greater than 𝜔0. The line extends up to some +𝑣𝑚𝑎𝑥 on the 

velocity axis, corresponding to the highest observed frequencies. 

This graph powerfully illustrates that the range of velocities present in the 

gas (from −𝑣𝑚𝑎𝑥 to +𝑣𝑚𝑎𝑥, though in reality it's a continuous distribution) 

will directly map to a range of observed frequencies centered around 𝜔0. 

The wider the spread of 𝑣z values, the wider the spread of 𝜔e values, and 

thus the broader the spectral line. 
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Now let's switch gears slightly and consider the Doppler Shift for 

Absorption. The physics is very similar, but the perspective is a bit 

different. 

* First bullet: "Incident monochromatic plane wave in lab:" We imagine we 

are shining a laser beam, which we can approximate as a monochromatic 

(single-frequency) plane wave, through our gas sample. The electric field of 

this wave in the laboratory frame is given by: 

𝐄(𝐫, 𝑡) = 𝐄0exp(𝑖(𝜔𝑡 − 𝐤 ⋅ 𝐫)) 

* Second bullet: "In molecule's co-moving frame (velocity 𝐯): time and 

space transform so that the observed angular frequency becomes 𝜔′ =

𝜔 − 𝐤 ⋅ 𝐯." 

Now, consider a molecule moving with velocity 𝐯 relative to the lab. From 

the molecule's perspective (its co-moving frame), this incident lab-

frequency 𝜔 light will appear to have a different frequency, which we call 

𝜔′. This transformation is a result of the Doppler effect. The formula 𝜔′ =

𝜔 − 𝐤 ⋅ 𝐯 arises from how the phase of the wave (𝜔𝑡 − 𝐤 ⋅ 𝐫) transforms 

between the lab frame and the molecule's moving frame. Specifically, if 𝑡′ 

and 𝐫′ are time and position in the molecule's frame, and 𝑡, 𝐫 are in the lab 

frame, the phase must be invariant: 

𝜔𝑡 − 𝐤 ⋅ 𝐫 = 𝜔′𝑡′ − 𝐤′ ⋅ 𝐫′ 

Using Galilean transformations for non-relativistic speeds (𝐫 = 𝐫′ + 𝐯𝑡,  𝑡 =

𝑡′), one can derive this relationship for the frequency. Notice the sign 

difference compared to the emission case 𝜔e = 𝜔0 + 𝐤 ⋅ 𝐯. Here, 𝜔 is the 

lab frequency and 𝜔′ is the frequency seen by the molecule. 

* Third bullet: "Absorption occurs only when internal resonance condition 

met: 𝜔′ = 𝜔0." 

A molecule will only absorb the incident light if the frequency it perceives in 

its own rest frame, 𝜔′, matches its natural resonant absorption frequency, 



𝜔0. This 𝜔0 is the same intrinsic transition frequency we discussed for 

emission, determined by the molecule's internal energy level structure. 

So, for absorption to happen, the lab frequency 𝜔, the molecular velocity 𝐯, 

and the rest-frame resonance 𝜔0 must satisfy 

𝜔 − 𝐤 ⋅ 𝐯 = 𝜔0. 
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Continuing with the absorption case, we want to find the laboratory 

frequency 𝜔 that will be absorbed by a molecule moving with velocity 𝐯. 

- First bullet: "Solve for laboratory frequency 𝜔:" From the previous slide, 

the condition for absorption is 𝜔′ = 𝜔0, and 𝜔′ = 𝜔 − 𝐤 ⋅ 𝐯. Substituting 

𝜔′ = 𝜔0, we get 𝜔0 = 𝜔 − 𝐤 ⋅ 𝐯. Solving this for 𝜔, the lab frequency that 

gets absorbed (let's call it 𝜔a for absorbed frequency), gives: 

𝜔a = 𝜔0 + 𝐤 ⋅ 𝐯 

- Second bullet: "Same linear dependence as emission case." Compare 

this 𝜔a = 𝜔0 + 𝐤 ⋅ 𝐯 with the formula for the observed frequency in 

emission, which was 𝜔e = 𝜔0 + 𝐤 ⋅ 𝐯. They are mathematically identical! 

This is a very important result. The relationship between the lab frequency 

involved in the resonant interaction and the molecule's velocity is the same 

whether we are considering emission from a moving molecule or 

absorption by a moving molecule of lab-fixed radiation. 

- Third bullet: "Explicit for chosen geometry 𝐤 = (0,0, 𝑘z):" If we again 

assume our light propagates along the z-axis, so 𝐤 = (0,0, 𝑘z) and 𝐤 ⋅ 𝐯 =

𝑘z𝑣z, the equation becomes: 

𝜔a = 𝜔0 + 𝑘z𝑣z 

And if we further substitute 𝑘z = 𝜔/𝑐 (where 𝜔 is the lab frequency, so 𝜔a 

here) and make the common approximation that in the term 𝑘z𝑣z, we can 



approximate 𝜔a with 𝜔0 (since 𝑣z/𝑐 is small, the shift 𝑘z𝑣z is much smaller 

than 𝜔0), then 𝑘z ≈ 𝜔0/𝑐. 

So, 𝜔a ≈ 𝜔0 + (𝜔0/𝑐)𝑣z. 

This can be rewritten as: 

𝜔a = 𝜔0 (1 +
𝑣z

𝑐
) 

This is the lab frequency that a molecule moving with velocity component 

𝑣z along the light propagation direction will absorb, given its rest-frame 

absorption frequency is 𝜔0. A molecule moving towards an oncoming light 

beam (𝑣z < 0 if light is in +𝑧 direction, or more generally if 𝐯 is anti-parallel 

to 𝐤) will absorb a lab frequency 𝜔a that is lower than 𝜔0, because in its 

frame, this lower lab frequency gets blue-shifted up to 𝜔0. Conversely, a 

molecule moving away from the light source (𝑣z > 0, or 𝐯 parallel to 𝐤) will 

absorb a lab frequency 𝜔a that is higher than 𝜔0, because in its frame, this 

higher lab frequency gets red-shifted down to 𝜔0. 

This symmetry between emission and absorption is very convenient. 
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Now, let's briefly discuss the Validity & Higher-Order Doppler Effects. 

We've been relying on the linear Doppler approximation. How good is it, 

and what happens when it's not sufficient? 

* First bullet: "Linear approximation adequate until 
|𝑣z|

𝑐
≈ 10−5 (order of 

10−5)." As we mentioned, thermal speeds are typically 
𝑣

𝑐
 of 10−6 to 10−7. 

So, 10−5 is still well within the regime where the linear approximation is 

usually excellent. To reach 
𝑣

𝑐
≈ 10−5, you'd need either very light particles 

or very high temperatures, or you'd be looking at astrophysical objects with 

significant bulk velocities. For most lab-based atomic and molecular 

spectroscopy, (
𝑣

𝑐
)
2
 terms are negligible compared to 

𝑣

𝑐
 terms. 



* Second bullet: "Quadratic/relativistic Doppler adds terms ∝ (
𝑣

𝑐
)
2
 

(proportional to 
𝑣

𝑐
 over 𝑐2)." The next level of correction to the Doppler 

formula involves terms that go as the square of the velocity divided by the 

speed of light squared. These arise from special relativity, primarily from 

the time dilation effect. A moving clock (like the oscillating internal structure 

of an atom) runs slower as observed from the lab frame by a factor of 

𝛾rel =
1

√1 − (
𝑣
𝑐
)
2
. 

When 
𝑣

𝑐
 is small, this 𝛾rel can be expanded as 

1 +
1

2
(
𝑣

𝑐
)
2

+⋯ 

which introduces terms of order (
𝑣

𝑐
)
2
. This leads to what's called the 

transverse Doppler effect (if motion is purely perpendicular to observation) 

and also modifies the longitudinal Doppler effect. 

* Third bullet: "Important in precision metrology (atomic clocks, Mössbauer 

spectroscopy)." While often negligible, these (
𝑣

𝑐
)
2
 terms are not always 

negligible. In ultra-high precision measurements, such as those aiming to 

define frequency standards with atomic clocks, or in Mössbauer 

spectroscopy where nuclear transitions have incredibly narrow natural 

linewidths, these second-order Doppler shifts can become significant and 

must be accounted for. Atomic clocks often use ion traps to cool and 

confine ions, minimizing 𝑣 and thus these shifts. 

* Fourth bullet: "For the temperatures and masses addressed here 

(hundreds of kelvin, atomic masses), linear term dominates." This is a 

reassurance. For the typical conditions we encounter in this course – gases 

at temperatures from cryogenic up to a few thousand Kelvin, involving 



atoms and molecules with typical atomic masses – the linear Doppler effect 

(∝
𝑣

𝑐
) is by far the dominant source of frequency shift due to motion. The 

quadratic terms are usually orders of magnitude smaller. So, our focus on 

the linear Doppler effect is well justified for deriving the primary Doppler 

broadening line shape. 
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To quantify Doppler broadening, we need to know how molecular velocities 

are distributed. This brings us to the Maxwell-Boltzmann Velocity 

Distribution. 

* First bullet: "At equilibrium the probability density for the 𝑧-component of 

velocity is". 

In a gas in thermal equilibrium at a temperature 𝑇, the velocities of the 

molecules are not all the same; they follow a statistical distribution. Since 

the Doppler shift depends on 𝑣z (the velocity component along the line of 

sight, our chosen 𝑧-axis), we are particularly interested in the distribution of 

𝑣z. The Maxwell-Boltzmann distribution gives us this. The probability 

density function for 𝑣z, denoted 𝑓(𝑣z), is given by: 

𝑓(𝑣z) =
1

𝑣p√𝜋
exp [−(

𝑣z

𝑣p

)

2

] 

(f of v sub zed equals, in square brackets, one over the product of v sub p 

and the square root of pi, all times the exponential of, in square brackets, 

minus the square of the ratio v sub zed over v sub p). 

Let's understand the terms: * 𝑓(𝑣z) is a probability density function. This 

means that 𝑓(𝑣z) 𝑑𝑣z gives the probability that a molecule will have its 𝑧-

component of velocity between 𝑣z and 𝑣z + 𝑑𝑣z. * The term exp [− (
𝑣z

𝑣p

)
2

] is 

a Gaussian function. It shows that the distribution is symmetric around 𝑣z =

0 (most probable 𝑣z is zero) and falls off rapidly for larger positive or 



negative 𝑣z. * 𝑣p is a characteristic speed, called the most probable speed 

component magnitude, which sets the scale for the width of this Gaussian 

distribution. * The prefactor 
1

𝑣p√𝜋
 is a normalization constant, ensuring that if 

we integrate 𝑓(𝑣z) 𝑑𝑣z from 𝑣z = −∞ to +∞, the total probability is 1. 

* Second bullet defines 𝑣p: 

𝑣p = √
2 𝑘𝑇

𝑚
 

(v sub p equals the square root of 2 k T over m). 

Here: * 𝑘 is the Boltzmann constant. * 𝑇 is the absolute temperature in 

Kelvin. * 𝑚 is the mass of a single molecule in kilograms. So, 𝑣p increases 

with temperature (hotter gas, wider velocity distribution) and decreases with 

molecular mass (heavier molecules are more sluggish at a given 

temperature). 

* Third bullet gives the value of the Boltzmann constant: 

𝑘 = 1.380649 × 10−23 J K
−1

 

(Joules per Kelvin). 

This Maxwell-Boltzmann distribution for 𝑣z is the starting point for deriving 

the Doppler line shape. Since each 𝑣z maps to a specific frequency shift, 

this Gaussian distribution of velocities will directly lead to a Gaussian 

distribution of observed frequencies. 

Page 19: 

Continuing with the Maxwell-Boltzmann distribution context: 

First, a reminder: " 𝑚 – molecular mass (kg)." It's crucial to use consistent 

units in the formula for 𝑣p, so mass should be in kilograms if 𝑘 is in J/K and 

𝑇 in Kelvin, to get 𝑣p in m/s. 



Second bullet: "Number density of level 𝑖: 

𝑁i = ∫ 𝑛i

+∞

−∞

(𝑣z) 𝑑𝑣z 

(Capital 𝑁i equals the integral from minus infinity to plus infinity of 

𝑛i(𝑣z) 𝑑𝑣z). This equation defines 𝑁i, the total number of molecules per unit 

volume (number density) that are in a specific quantum state 'i' (e.g., the 

lower state of an absorbing transition). 

The term 𝑛i(𝑣z) 𝑑𝑣z represents the number density of molecules that are in 

state 𝑖 and have their z-component of velocity in the small range between 

𝑣z and 𝑣z + 𝑑𝑣z. 

So, 𝑛i(𝑣z) is the velocity distribution function for particles in state 𝑖. 

If the gas is in thermal equilibrium, we can relate 𝑛i(𝑣z) to the total number 

density 𝑁i and the normalized Maxwell-Boltzmann probability density 𝑓(𝑣z) 

we saw on the previous page: 

𝑛i(𝑣z) = 𝑁i  𝑓(𝑣z) 

where 

𝑓(𝑣z) =
1

𝑣p√𝜋
exp [−(

𝑣z

𝑣p

)

2

]. 

So, 𝑛i(𝑣z) 𝑑𝑣z is the number of molecules per unit volume in state 𝑖 that are 

"in the velocity bin" 𝑑𝑣z around 𝑣z. Summing (integrating) these over all 

possible 𝑣z gives the total number density 𝑁i of molecules in that state. 

This framework allows us to count how many molecules have the right 

velocity 𝑣z to interact with light of a particular frequency 𝜔. 
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This slide provides a graphical representation of the Maxwell-Boltzmann 

Velocity Distribution for the 𝑓(𝑣z) for the z-component of velocity, though 



the vertical axis isn't explicitly labeled 𝑓(𝑣z). Let's assume the horizontal 

axis is scaled by 𝑣p, so it represents 𝑥 =
𝑣z

𝑣p

. Then the function plotted is 

proportional to exp(−𝑥2), and if it's normalized as 𝑓(𝑥) =
1

√𝜋
exp(−𝑥2), the 

peak value (at 𝑥 = 0) is 
1

√𝜋
. 

Let's interpret the features of this bell-shaped curve: 

* The curve is perfectly symmetric and centered at 
𝑣z

𝑣p

= 0, which means the 

most probable z-component of velocity is zero. Equal numbers of 

molecules are moving in the +𝑧 and −𝑧 directions at any given speed. 

* The peak height is labeled as "
1

√𝜋
" (one over square root of pi). This 

corresponds to 𝑓(𝑣z = 0) × 𝑣p, or 𝑓(𝑥 = 0) if 𝑥 =
𝑣z

𝑣p

. Given that 𝑣p has units 

of speed, and 𝑓(𝑣z) has units of inverse speed, plotting 
1

√𝜋
 suggests the x-

axis is indeed the dimensionless 
𝑣z

𝑣p

. 

* The Full Width at Half Maximum (FWHM) is indicated. The intensity 

drops to half its peak value when 

exp (−(
𝑣z

𝑣p

)

2

) =
1

2
. 

This means 

−(
𝑣z

𝑣p

)

2

= ln (
1

2
) = −ln(2). 

So, (
𝑣z

𝑣p

)
2

= ln(2), which gives 
𝑣z

𝑣p

= ±√ln2 (plus or minus square root of 

natural log of 2). 

The FWHM is the difference between these two points: 



√ln2 − (−√ln2) = 2√ln2. 

The value of √ln2 is approximately √0.693 ≈ 0.832. So the FWHM is about 

1.665 in units of 
𝑣z

𝑣p

. The graph correctly labels the FWHM as "FWHM =

2√ln2". The half-max points on the x-axis are labeled −√ln2 and +√ln2. 

The height at these points is labeled "
1

2√𝜋
", which is half of the peak height 

1

√𝜋
. 

* Another point of interest is when 
𝑣z

𝑣p

= ±1. At these points, the value of the 

Gaussian is 
1

√𝜋
𝑒−1 (one over root pi, times 𝑒−1), as labeled. This 

corresponds to the 
1

𝑒
 width points of the distribution if we were looking at 

the exponential term alone. 

This graph reinforces the Gaussian nature of the 𝑣z distribution. It's this 

very shape that will be translated into the frequency domain to give the 

Doppler-broadened spectral line profile. 
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Now we come to a crucial step: Linking Velocity to Frequency. We need 

to formally connect the velocity distribution 𝑓(𝑣z) to a frequency distribution 

𝐼(𝜔). 

First bullet: "Relationship 𝑣z ↔ 𝜔 from absorption formula:" 

Recall from page 16, the lab frequency 𝜔a (which we'll just call 𝜔 now) that 

a molecule with rest frequency 𝜔0 and velocity component 𝑣z absorbs is 

given by 𝜔 ≈ 𝜔0 (1 +
𝑣z

𝑐
). We can rearrange this to solve for 𝑣z: 

𝜔

𝜔0
= 1 +

𝑣z

𝑐
 

𝑣z

𝑐
=

𝜔

𝜔0
− 1 =

𝜔−𝜔0

𝜔0
 So, 𝑣z = 𝑐 ⋅

𝜔−𝜔0

𝜔0
 This equation explicitly gives the z-

component of velocity, 𝑣z, of a molecule that is resonant with incident light 

of frequency 𝜔, given its rest-frame resonance is 𝜔0. This confirms our 

earlier statement of a direct mapping. 



Second bullet: "Infinitesimal transformation:" 

To transform a probability distribution from one variable (𝑣z) to another (𝜔), 

we need the relationship between their differentials, 𝑑𝑣z and 𝑑𝜔. We get 

this by differentiating the expression for 𝑣z with respect to 𝜔 (treating 𝑐 and 

𝜔0 as constants): 𝑑𝑣z =
𝑑

𝑑𝜔
[𝑐 ⋅

𝜔−𝜔0

𝜔0
] 𝑑𝜔 𝑑𝑣z = [

𝑐

𝜔0
⋅
𝑑

𝑑𝜔
(𝜔 − 𝜔0)] 𝑑𝜔 𝑑𝑣z =

[
𝑐

𝜔0
⋅ (1 − 0)] 𝑑𝜔 So, 𝑑𝑣z =

𝑐

𝜔0
𝑑𝜔 This tells us how a small interval of 

velocities, 𝑑𝑣z, corresponds to a small interval of frequencies, 𝑑𝜔. The term 
𝑐

𝜔0
 is the Jacobian of the transformation, or rather its inverse here (

𝑑𝜔

𝑑𝑣z

=
𝜔0

𝑐
). 

The absolute value of 
𝑑𝑣z

𝑑𝜔
 is 

𝑐

𝜔0
. 

These two equations are the tools we need to convert the Maxwell-

Boltzmann velocity distribution 𝑓(𝑣z) into a spectral line shape 𝐼(𝜔). 
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Let's continue with the implications of linking velocity to frequency. 

* The first bullet point here summarizes the next step in our derivation: 

"Substitute into velocity distribution to obtain frequency distribution 

of resonant molecules." 

The idea is as follows: The number of molecules 𝑑𝑁(𝑣z) having their z-

velocity component between 𝑣z and 𝑣z + 𝑑𝑣z is given by \(N_\text{total} 

f(v_\text{z}) dv_\text{z}\), where 𝑓(𝑣z) is the Maxwell-Boltzmann 

distribution. Since each 𝑣z corresponds to a unique resonant frequency 𝜔 

(via 𝑣z = 𝑐(𝜔 − 𝜔0)/𝜔0), the molecules in this velocity interval 𝑑𝑣z are 

precisely those molecules that are resonant with light in the corresponding 

frequency interval 𝑑𝜔 (where 𝑑𝜔 = (𝜔0/𝑐)𝑑𝑣z). So, the number of 

molecules 𝑑𝑁(𝜔) resonant in the frequency interval 𝑑𝜔 around 𝜔 will be 

proportional to \(N_\text{total} f(v_\text{z}(\omega)) * 



\left|\frac{dv_\text{z}}{d\omega}\right| d\omega\). We've found 𝑣z(𝜔) and 

|
𝑑𝑣z

𝑑𝜔
|, so we can perform this substitution. 

* The second bullet point re-emphasizes this connection: "Each 𝜔 interval 

collects molecules whose 𝑣z satisfy the above relation." 

When we probe the gas with light of a specific frequency 𝜔 (or a narrow 

band 𝑑𝜔 around 𝜔), we are selectively interacting only with that sub-

population of molecules whose 𝑣z values are such that they are Doppler-

shifted into resonance with 𝜔. Molecules with other 𝑣z values will be 

resonant at other frequencies and will not interact with our light at 

frequency 𝜔. Therefore, the intensity of absorption (or emission) at 

frequency 𝜔 will be directly proportional to the number of molecules that 

happen to have the "correct" 𝑣z to be resonant at 𝜔. This is the heart of 

how the velocity distribution shapes the spectral line. 
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Now we arrive at the Derivation of Gaussian Intensity Profile, which is 

the culmination of our discussion on Doppler broadening. 

* First bullet: "Count of resonant molecules within (𝜔, 𝜔 + 𝑑𝜔):" 

Let 𝑛i(𝜔)𝑑𝜔 be the number density of molecules in state 'i' that are 

resonant with light in the frequency interval from 𝜔 to 𝜔 + 𝑑𝜔. This is 

obtained by taking the Maxwell-Boltzmann distribution for 𝑣z, substituting 𝑣z 

in terms of 𝜔, and multiplying by the Jacobian of the transformation |
𝑑𝑣z

𝑑𝜔
|. 

Recall: 

𝑓(𝑣z) =
1

𝑣p√𝜋
exp [−(

𝑣z

𝑣p

)

2

] 

𝑣z = 𝑐 
𝜔 − 𝜔0
𝜔0

 



𝑑𝑣z =
𝑐

𝜔0
𝑑𝜔, so |

𝑑𝑣z

𝑑𝜔
| =

𝑐

𝜔0
. 

If 𝑁i is the total number density of molecules in state 𝑖, then the number 

density in 𝑑𝜔 is: 

𝑛i(𝜔)𝑑𝜔 = 𝑁i ⋅ 𝑓(𝑣z(𝜔)) ⋅ |
𝑑𝑣z

𝑑𝜔
|𝑑𝜔 

𝑛i(𝜔)𝑑𝜔 = 𝑁i ⋅
1

𝑣p√𝜋
⋅ exp

[
 
 
 

−(

𝑐(𝜔 − 𝜔0)
𝜔0
𝑣p

)

2

]
 
 
 

⋅
𝑐

𝜔0
𝑑𝜔 

Rearranging the terms in the prefactor, we get: 

𝑛i(𝜔)𝑑𝜔 = 𝑁i ⋅
𝑐

𝜔0𝑣p√𝜋
exp [−(

𝑐(𝜔 − 𝜔0)

𝜔0𝑣p

)

2

] 𝑑𝜔 

This is exactly the formula shown on the slide for 𝑛i(𝜔)𝑑𝜔, the number of 

resonant molecules. This expression gives us the distribution of resonant 

molecules as a function of frequency 𝜔. Notice the exponential term: it's a 

Gaussian function of 𝜔, centered at 𝜔0, and its width is determined by the 

term 
𝜔0𝑣p

𝑐
. 

* Second bullet: "Emitted/absorbed power 𝑃(𝜔) ∝ 𝑛i(𝜔) ⇒ same functional 

form for intensity:" 

The power emitted or absorbed by the gas at a frequency 𝜔 is directly 

proportional to the number of molecules 𝑛i(𝜔) that are resonant at that 

frequency (assuming non-saturated conditions). Therefore, the spectral 

intensity profile, 𝐼(𝜔), will have the same functional form as 𝑛i(𝜔). 

So, we can write the intensity 𝐼(𝜔) as: 

𝐼(𝜔) = 𝐼0exp [−(
𝑐(𝜔 − 𝜔0)

𝜔0𝑣p

)

2

] 



Here, 𝐼0 (capital 𝐼 sub zero) is the peak intensity, which occurs at 𝜔 = 𝜔0 

(when the exponential term is 1). 𝐼0 incorporates the pre-exponential factor 

from 𝑛i(𝜔) and other proportionality constants related to the strength of the 

transition. 

This equation explicitly shows that the Doppler-broadened line shape is a 

Gaussian function of frequency. 
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This slide simply states the conclusion from our derivation: "We have 

derived a Gaussian line shape (also called "normal" distribution)." 

Indeed, the expression 𝐼(𝜔) = 𝐼0 ⋅ exp [− (
𝑐(𝜔−𝜔0)

𝜔0  𝑣p

)
2

] is the mathematical 

form of a Gaussian function, centered at 𝜔0, with a characteristic width 

determined by the quantity 
𝜔0  𝑣p

𝑐
. 

The term "normal distribution" is familiar from statistics, where it describes 

the distribution of many random variables. The reason it appears here is 

that the z-components of molecular velocities in a thermal gas (𝑣z) are 

themselves normally distributed, due to the random nature of molecular 

collisions and energy exchange. 

Since there's a linear mapping between 𝑣z and the frequency shift (𝜔 −

𝜔0), this Gaussian distribution in velocity space directly translates into a 

Gaussian distribution in frequency space. 

This Gaussian line shape is the hallmark of Doppler broadening in thermal 

ensembles. 
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Here we have a visual representation: Gaussian Line Shape from 

Doppler Broadening. This graph beautifully connects the velocity 

distribution to the resulting spectral line shape. 



Let's examine the graph: 

* The vertical axis is labeled "Relative Population / Intensity," which is 

normalized to a peak value of 1.0 at the center of the line. 

* There are two horizontal axes. 

* The bottom horizontal axis is labeled "v_s" (which is our 𝑣z, the velocity 

component along the line of sight). It's marked with points −2 𝑣p, −𝑣p, 0, 𝑣p, 

2 𝑣p, where 𝑣p is the most probable speed component (√
2 𝑘𝑇

𝑚
). This axis 

represents the Maxwell-Boltzmann distribution of velocities. 

* The top horizontal axis represents the angular frequency, 𝜔. It's marked 

with points 𝜔0 − 2𝛥𝜔, 𝜔0 − 𝛥𝜔, 𝜔0, 𝜔0 + 𝛥𝜔, 𝜔0 + 2𝛥𝜔. This axis 

represents the resulting spectral line. 

* The blue curve is the Gaussian profile. It shows that the peak intensity 

occurs at 𝜔 = 𝜔0, which corresponds to 𝑣z = 0 (molecules with no velocity 

component along the line of sight). 

* The crucial link is stated: "Linking 𝑣s and 𝜔 via: 𝑣s = 𝑐
𝜔−𝜔0

𝜔0
". This is the 

linear transformation we've been using. 

* An important annotation is "(𝛥𝜔 =
𝜔0  𝑣p

𝑐
)". This 𝛥𝜔 is not the FWHM yet; 

it's a characteristic frequency scale, representing the Doppler shift 

produced by a molecule moving with speed 𝑣p along the line of sight. The 

argument of the exponential in our Gaussian intensity profile was (
𝜔−𝜔0
𝜔0 𝑣p

𝑐

)

2

, 

which can be written as (
𝜔−𝜔0

𝛥𝜔char

)
2
 if we define 𝛥𝜔char =

𝜔0  𝑣p

𝑐
. So, 𝛥𝜔 on this 

graph's top axis is this characteristic 𝛥𝜔char. 

* Another annotation gives an "Illustrative ratio: 
𝑣p

𝑐
= 0.2". This is a very 

large ratio, chosen for illustration to make the shifts clearly visible. In reality, 



as we've discussed, 
𝑣p

𝑐
 is typically much smaller, like 10−6. If 

𝑣p

𝑐
 were that 

small, the 𝛥𝜔 shifts would be tiny compared to 𝜔0, and the line would look 

extremely narrow on an absolute frequency scale, but it would still be 

Gaussian when zoomed in. 

This graph nicely summarizes how the Gaussian distribution of 𝑣z (bottom 

axis) maps directly, point by point, to a Gaussian intensity profile 𝐼(𝜔) (top 

axis) due to the linear Doppler shift. 
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Now that we have the Gaussian line shape, we need to quantify its width. 

This slide is about Extracting the Doppler Width. 

* First bullet: "Define Doppler FWHM 𝛿𝜔D (delta omega sub D) as 

frequency interval where intensity drops to 
1

2
 of peak." This is the standard 

definition of Full Width at Half Maximum (FWHM). We need to find the two 

frequencies, 𝜔upper and 𝜔lower, where 𝐼(𝜔) =
𝐼0

2
, and then 𝛿𝜔D = 𝜔upper −

𝜔lower. Due to the symmetry of the Gaussian, if 𝜔0 is the center, then 

𝜔upper = 𝜔0 + 𝛥𝜔HWHM and 𝜔lower = 𝜔0 − 𝛥𝜔HWHM, where 𝛥𝜔HWHM is the 

Half Width at Half Maximum. So, 𝛿𝜔D = 2𝛥𝜔HWHM. 

* Second bullet: "Solve:" We set the intensity 𝐼(𝜔) from our Gaussian 

profile equal to 
𝐼0

2
: 

𝐼0exp [− (
𝑐(𝜔 − 𝜔0)

𝜔0𝑣p

)

2

] =
𝐼0
2

 

Dividing by 𝐼0, we get: 

exp [− (
𝑐(𝜔 − 𝜔0)

𝜔0𝑣p

)

2

] =
1

2
 



Let 𝛥𝜔 = |𝜔 − 𝜔0| be the displacement from the line center where the 

intensity is half. So, 𝛥𝜔 is the HWHM. The equation becomes: 

exp [−(
𝑐𝛥𝜔

𝜔0𝑣p

)

2

] =
1

2
 

This is the equation presented on the slide. 

* Third bullet: "Rearranging yields:" To solve for 𝛥𝜔, we take the natural 

logarithm of both sides: 

−(
𝑐𝛥𝜔

𝜔0𝑣p

)

2

= ln (
1

2
) = −ln(2) 

So, 

(
𝑐𝛥𝜔

𝜔0𝑣p

)

2

= ln(2) 

Taking the square root of both sides: 

𝑐𝛥𝜔

𝜔0𝑣p

= √ln(2) 

Now, solving for 𝛥𝜔 (which is our 𝛥𝜔HWHM): 

𝛥𝜔 =
𝜔0𝑣p

𝑐
√ln(2) 

The Full Width at Half Maximum, 𝛿𝜔D, is twice this value: 

𝛿𝜔D = 2𝛥𝜔 = 2 (
𝜔0𝑣p

𝑐
)√ln(2) 

Or, as written on the slide: 

𝛿𝜔D = 2√ln(2)  
𝜔0𝑣p

𝑐
 



This is the expression for the Doppler FWHM in terms of 𝜔0, 𝑣p, 𝑐, and the 

constant factor 2√ln(2). The term √ln(2) is approximately 0.8325, so 

2√ln(2) is approximately 1.665. 
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We can make the expression for the Doppler width, 𝛿𝜔D, more explicit by 

substituting the definition of 𝑣p. 

* The first bullet reminds us to "Substitute 𝑣p = √
2 𝑘𝑇

𝑚
": 

Our formula for Doppler FWHM is 𝛿𝜔D = 2√ln(2) ⋅
𝜔0𝑣p

𝑐
. 

Substituting 𝑣p = √
2 𝑘𝑇

𝑚
 into this, we get: 

𝛿𝜔D = 2√ln(2) ⋅
𝜔0

𝑐
⋅ √

2 𝑘𝑇

𝑚
. 

We can combine the terms under the square root: 

2√ln(2) ⋅ √
2 𝑘𝑇

𝑚
= √4ln(2) ⋅

2 𝑘𝑇

𝑚
= √

8 𝑘𝑇ln(2)

𝑚
 

So, the expression for the Doppler width becomes: 

𝛿𝜔D =
𝜔0
𝑐
√
8 𝑘𝑇ln(2)

𝑚
 

This is a very important and widely used formula. It clearly shows how the 

Doppler FWHM depends on: 

* 𝜔0: the resonant frequency of the transition (linearly proportional). Higher 

frequency transitions have larger Doppler widths. * 𝑐: the speed of light 

(inversely proportional). * 𝑇: the absolute temperature (proportional to √𝑇). 



Higher temperatures mean wider Doppler widths. * 𝑚: the mass of the 

molecule (inversely proportional to √𝑚). Lighter molecules have wider 

Doppler widths. * 𝑘: Boltzmann's constant. * ln(2): the natural logarithm of 

2. 

This formula is the cornerstone for calculating and understanding Doppler 

broadening in most spectroscopic applications involving gases. 
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This slide summarizes the Mass & Temperature Dependence of the 

Doppler width, 𝛿𝜔D, based on the formula we just derived: 

𝛿𝜔D =
𝜔0
𝑐
√
8 𝑘𝑇ln(2)

𝑚
 

* First bullet: "Linear in resonance frequency 𝜔0. Higher-energy 

transitions broaden more." Since 𝐸 = ℏ𝜔0, a higher energy transition 

means a larger 𝜔0. The formula shows 𝛿𝜔D is directly proportional to 𝜔0. 

So, for example, a UV transition will have a much larger Doppler width in 

frequency units than an infrared transition for the same species at the same 

temperature. This is because the fractional shift 𝛥𝜔/𝜔0 =
𝑣z

𝑐
 is roughly the 

same, so if 𝜔0 is larger, 𝛥𝜔 will also be proportionally larger. 

* Second bullet: "Scales as √𝑇 (square root of 𝑇). Heating a gas increases 

Doppler width." The formula contains √𝑇. This makes intuitive sense: 

higher temperature means the molecules have more kinetic energy, so 

their average speeds (and the width of their velocity distribution, 𝑣p) are 

greater. A wider velocity distribution directly translates to a wider 

distribution of Doppler shifts, and thus a larger Doppler width. 

* Third bullet: "Inversely ∝ √𝑚 (inversely proportional to square root of 𝑚). 

Light atoms (H, He) show largest widths." The formula contains 
1

√𝑚
. This 

also makes sense: at a given temperature, lighter particles move faster on 



average than heavier particles (since kinetic energy 
1

2
𝑚𝑣2 is related to 𝑇). 

Faster speeds mean larger Doppler shifts. Therefore, for a given transition 

frequency and temperature, hydrogen (H) or helium (He) will exhibit 

significantly larger Doppler widths compared to, say, a heavy molecule like 

SF₆  (sulfur hexafluoride). 

* Fourth bullet: "Expressed with molar quantities for convenience:" 

Often, it's more convenient to work with molar mass 𝑀 (in kg/mol) rather 

than the mass of a single molecule 𝑚 (in kg), and the ideal gas constant 𝑅 

instead of Boltzmann's constant 𝑘. We know that 

𝑅 = 𝑁A𝑘 

(where 𝑁A is Avogadro's number) and 

𝑀 = 𝑁A𝑚. 

So, 

𝑘

𝑚
=
𝑅/𝑁A

𝑀/𝑁A

=
𝑅

𝑀
. 

Substituting 
𝑘

𝑚
=

𝑅

𝑀
 into our Doppler width formula: 

𝛿𝜔D =
𝜔0
𝑐
√
8 𝑅𝑇ln(2)

𝑀
 

The slide presents this slightly rearranged as: 

𝛿𝜔D =
2𝜔0
𝑐
√
2 𝑅𝑇ln(2)

𝑀
 

Let's check if these are equivalent: 

2𝜔0
𝑐
√
2 𝑅𝑇ln(2)

𝑀
=
𝜔0
𝑐
√
4 × 2 𝑅𝑇ln(2)

𝑀
=
𝜔0
𝑐
√
8 𝑅𝑇ln(2)

𝑀
. 



Yes, they are identical. This form using molar mass 𝑀 (in kg/mol) and the 

gas constant 𝑅 is often very practical for calculations. 
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Continuing with practical forms of the Doppler width formula: 

• First bullet: 𝑅 = 8.314 462 618 J mol
−1 K−1 (Joules per mole per Kelvin) 

– gas constant. This is the standard value of the molar gas constant. 

• Second bullet: 𝑀 – molar mass (kg mol
−1

 (kilograms per mole)). It's very 

important to be consistent with units. If 𝑅 is in SI units (J mol
−1 K−1), and 𝑇 

is in Kelvin, then 𝑀 must be in kilograms per mole for the formula 

𝛿𝜔D =
𝜔0
𝑐
√
8 𝑅𝑇ln(2)

𝑀
 

to yield 𝛿𝜔D in radians per second (if 𝜔0 is in rad/s and 𝑐 in m/s). Often, 

molar masses are tabulated in grams per mole (g/mol). If you use 𝑀 in 

g/mol, you must include a conversion factor of 1000 (since 1 kg/mol = 1000 

g/mol). 

• Third bullet: Numeric form (convert to frequency 𝜈 (nu)): 

Spectroscopists often work with linear frequency 𝜈 (in Hertz, Hz) rather 

than angular frequency 𝜔 (in rad/s), where 

𝜔 = 2𝜋𝜈. 

So, 

𝛿𝜈D =
𝛿𝜔D

2𝜋
. 

Substituting 𝛿𝜔D: 

𝛿𝜈D = (
𝜔0
2𝜋𝑐

√
8 𝑅𝑇ln(2)

𝑀
) =

𝜈0
𝑐
√
8 𝑅𝑇ln(2)

𝑀
. 



The slide provides a convenient numeric formula: 

𝛿𝜈D = 7.16 × 10−7 𝜈0√
𝑇

𝑀
 [Hz]. 

Let's analyze this. This formula implies that the constant 7.16 × 10−7 must 

incorporate 
1

𝑐
√8 𝑅ln(2) and potentially a unit conversion factor if 𝑀 is not in 

kg/mol. 

Let's calculate 

1

𝑐
√8 𝑅ln(2): 

𝑐 ≈ 2.99792458 × 108 m/s 𝑅 ≈ 8.31446 J mol−1 K−1 ln(2) ≈ 0.693147 So, 

1

𝑐
√8 𝑅ln(2) =

1

2.99792458 × 108
× √8 × 8.31446 × 0.693147 

=
1

2.99792458 × 108
× √46.097 

=
1

2.99792458 × 108
× 6.7895 

≈ 2.2647 × 10−8 (with 𝑀 in kg/mol). 

The constant in the slide is 7.16 × 10−7. Let's see the ratio: 

7.16 × 10−7

2.2647 × 10−8
≈ 31.61. 

This value, 31.61, is very close to √1000 (which is ≈ 31.62). This means 

that the numeric formula 

𝛿𝜈D = 7.16 × 10−7 𝜈0√
𝑇

𝑀
 



assumes that the molar mass 𝑀 is given in grams per mole (g/mol), not 

kg/mol. If 𝑀 is in g/mol, then 

𝑀kg =
𝑀g/mol

1000
. 

So, 

√
1

𝑀kg

= √
1000

𝑀g/mol

= √1000√
1

𝑀g/mol

. 

Thus, the numeric constant 

7.16 × 10−7 =
1

𝑐
√8 𝑅ln(2) × 1000 

if 𝑀 is in g/mol in the √
𝑇

𝑀
 term. Or, more simply, 

7.16 × 10−7 = (
1

𝑐
√8 𝑅ln(2)) √1000. 

(2.2647 × 10−8) × √1000 ≈ (2.2647 × 10−8) × 31.62277 ≈ 7.158 × 10−7. 

This matches! 

Crucial clarification for students: When using the numeric formula 

𝛿𝜈D = 7.16 × 10−7 𝜈0√
𝑇

𝑀
 [Hz], 

𝜈0 must be in Hz, 𝑇 in Kelvin, and 𝑀 must be the molar mass in grams per 

mole (g/mol). This is a common convention for such practical formulas but 

always double-check the units assumed for 𝑀. 
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Let's apply this with a Worked Example 1 – Lyman-α (Vacuum-UV). The 

Lyman-alpha transition in atomic hydrogen is a fundamental spectral line. 



* Transition: 1 𝑠 → 2 𝑝 in atomic H. This is the lowest energy transition in 

the Lyman series of hydrogen, from the 𝑛 = 1 ground state to the 𝑛 = 2 

excited state. 

* 𝜆 = 121.6 nm ⇒ 𝜈0 = 2.47 × 1015 s−1 (or Hz). The wavelength 𝜆 (lambda) 

of Lyman-alpha is approximately 121.6 nm. This is in the vacuum ultraviolet 

(VUV) region of the spectrum because air absorbs strongly at these 

wavelengths. The corresponding rest frequency 𝜈0 (nu naught) is 
𝑐

𝜆
. 

𝜈0 =
2.99792458 × 108 m/s

121.6 × 10−9 m
≈ 2.4654 × 1015 Hz. 

The slide uses 𝜈0 = 2.47 × 10
15 s−1, which is a good rounded value. 

* Parameters: 𝑇 = 1000 K, 𝑀 = 1 g/mol. We consider atomic hydrogen (𝐻, 

not 𝐻2) at a temperature of 1000 K. This is a high temperature, typical of 

some plasmas or astrophysical environments. The molar mass 𝑀 for 

atomic hydrogen is approximately 1 g/mol. (More precisely, about 

1.008 g/mol.) 

* Compute: We use the numeric formula from the previous page: 

𝛿𝜈D = 7.16 × 10−7 𝜈0√
𝑇

𝑀
 [Hz], 

remembering 𝑀 is in g/mol. 

𝛿𝜈D = (7.16 × 10−7) ⋅ (2.47 × 1015 Hz) ⋅ √
1000 K

1 g/mol
 

𝛿𝜈D = (7.16 × 10−7) ⋅ (2.47 × 1015) ⋅ √1000 

Since √1000 ≈ 31.62277, 

𝛿𝜈D ≈ (7.16 × 10
−7) ⋅ (2.47 × 1015) ⋅ 31.62277 



𝛿𝜈D ≈ (1.76852 × 10
9) ⋅ 31.62277 

𝛿𝜈D ≈ 5.590 × 10
10 Hz. 

The slide gives the result as 5.6 × 10¹⁰ Hz. This matches our calculation 

very well. So, the Doppler FWHM for Lyman-alpha at 1000 K is about 56 

Gigahertz. This is a substantial broadening. 

* Convert to wavelength width: We'll see this calculation on the next 

slide. Spectroscopists often want the width in wavelength units (e.g., 

nanometers or picometers) if they are using a grating spectrometer that 

disperses by wavelength. 
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Continuing with the Lyman-alpha example, we now convert the Doppler 

width from frequency units (𝛿𝜈D) to wavelength units (𝛿𝜆D). 

The relationship between frequency 𝜈 and wavelength 𝜆 is 𝜈 =
𝑐

𝜆
. 

To find the relationship between small changes 𝛿𝜈 and 𝛿𝜆, we can 

differentiate: 

|𝑑𝜈| = | −
𝑐

𝜆2
 𝑑𝜆| =

𝑐

𝜆2
|𝑑𝜆|. 

So, 𝛿𝜈 =
𝑐

𝜆2
𝛿𝜆. 

Rearranging for 𝛿𝜆, we get 𝛿𝜆 =
𝜆2

𝑐
𝛿𝜈. 

Or, more simply, for small widths, we can use the fractional relationship: 

𝛿𝜆

𝜆0
≈
𝛿𝜈

𝜈0
. 

So, 𝛿𝜆D ≈ 𝜆0 (
𝛿𝜈D

𝜈0
). 

Using the formula on the slide: 



𝛿𝜆D =
𝜆0
2

𝑐
 𝛿𝜈D. 

Given: 

- 𝜆0 = 121.6 nm = 121.6 × 10−9 m - 𝑐 ≈ 2.99792458 × 108 m/s - 𝛿𝜈D = 5.6 ×

1010 Hz (from the previous slide) 

𝛿𝜆D = [
(121.6 × 10−9 m)2

2.99792458 × 108 m/s
] × (5.6 × 1010 s−1) 

𝛿𝜆D = [
1.478656 × 10−14 m2

2.99792458 × 108 m/s
] × (5.6 × 1010 s−1) 

𝛿𝜆D = [4.93226 × 10
−23 m ⋅ s] × (5.6 × 1010 s−1) 

𝛿𝜆D ≈ 2.762 × 10−12 m. 

Converting this to nanometers: 

1 nm = 10−9 m, so 1 m = 109 nm. 

𝛿𝜆D ≈ 2.762 × 10
−12 m × (

109 nm

1 m
) = 2.762 × 10−3 nm. 

The slide gives the result as 𝛿𝜆D = 2.8 × 10−3 nm. 

Our calculated value of 2.762 × 10−3 nm rounds nicely to 2.8 × 10−3 nm. 

This is 0.0028 nanometers, or 2.8 picometers. 

Even though 56 GHz sounds like a large frequency width, the 

corresponding wavelength width for this VUV transition is quite small in 

absolute terms, but it can be very significant compared to other broadening 

mechanisms or the resolving power of instruments. 
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Let's look at a Worked Example 2 – Sodium D Line (Visible). The sodium 

D lines are very famous yellow lines in the visible spectrum. 



* First bullet: "Transition: 3 𝑠 → 3 𝑝 in Na." These are transitions from the 

3 𝑠 ground state configuration to the 3 𝑝 excited state configuration in 

atomic sodium. There are actually two closely spaced lines (a doublet, D1 

and D2) due to spin–orbit coupling, but for calculating Doppler width, we 

can use an average wavelength. 

* Second bullet: "𝜆 = 589.1 nm,  𝜈0 = 5.10 × 1014 s−1." The average 

wavelength is around 589.1 nm (often quoted as 589.0 nm for D2 and 

589.6 nm for D1; 589.3 nm is a good average, the slide uses 589.1 nm). 

This is in the yellow part of the visible spectrum. The corresponding rest 

frequency 𝜈0 =
𝑐

𝜆
. 

𝜈0 =
2.99792458 × 108 m/s

589.1 × 10−9 m
≈ 5.0889 × 1014 Hz 

The slide uses 𝜈0 = 5.10 × 10
14 s−1, which is a good rounded value. 

* Third bullet: "Cell at 𝑇 = 500 K. Molar mass 𝑀 = 23 g/mol." We consider 

sodium vapor in a cell at a temperature of 500 K (which is 227 °C). This 

temperature is needed to get a reasonable vapor pressure of sodium. The 

molar mass 𝑀 for sodium (Na) is approximately 23 g/mol (more precisely, 

22.99 g/mol). 

* Fourth bullet: "Calculation:" We use the numeric formula 

𝛿𝜈D = 7.16 × 10−7 𝜈0√
𝑇

𝑀
 Hz 

with 𝑀 in g/mol. 

𝛿𝜈D = (7.16 × 10−7) × (5.10 × 1014 Hz) × √
500 K

23 g/mol
 

𝛿𝜈D = (7.16 × 10−7) × (5.10 × 1014) × √21.73913 



Since √21.73913 ≈ 4.66252, 

𝛿𝜈D ≈ (7.16 × 10
−7) × (5.10 × 1014) × 4.66252 

𝛿𝜈D ≈ (3.6516 × 10
8) × 4.66252 

𝛿𝜈D ≈ 1.7025 × 10
9  Hz 

The slide gives the result as 𝛿𝜈D = 1.7 × 109 Hz. This matches our 

calculation perfectly. So, the Doppler FWHM for the sodium D line at 500 K 

is about 1.7 Gigahertz. 

Now for the wavelength width, 𝛿𝜆D. Using 

𝛿𝜆D ≈ 𝜆0 (
𝛿𝜈D

𝜈0
): 

𝛿𝜆D ≈ (589.1 × 10
−9 m) ×

1.7 × 109 Hz

5.10 × 1014 Hz
 

𝛿𝜆D ≈ (589.1 × 10
−9 m) × (3.3333 × 10−6) 

𝛿𝜆D ≈ 1.9636 × 10
−12 m = 1.9636 × 10−3 nm 

The slide directly states 𝛿𝜆D = 1.0 × 10−3 nm. There appears to be a 

discrepancy here. My calculation, consistent with the 𝛿𝜈D and 𝜈0 values 

provided, gives approximately 1.96 × 10−3 nm. The slide's value of 1.0 ×

10−3 nm is about half of that. Let me re-check my calculation using 

𝛿𝜆D =
𝜆0
2

𝑐
𝛿𝜈D: 

𝛿𝜆D =
(589.1 × 10−9 m)2

2.9979 × 108 m/s
× (1.7 × 109 Hz) 

𝛿𝜆D =
3.4703881 × 10−13 m2

2.9979 × 108 m/s
× (1.7 × 109  s−1) 

𝛿𝜆D = (1.157596 × 10
−21 m ⋅ s) × (1.7 × 109 s−1) 



𝛿𝜆D = 1.9679 × 10−12 m = 1.968 × 10−3 nm 

My calculation is consistent. It's possible the slide's value for 𝛿𝜆D for 

sodium is a typo or uses a different convention not stated (e.g., HWHM in 

wavelength, though that would be unusual in this context without 

specification). For consistency with the derived formulas, the value should 

be closer to 1.97 × 10−3 nm. In a lecture, I would point this out and proceed 

with the consistently calculated value, or note that the slide's value might 

stem from a specific rounding or approximation not detailed. We will use 

the value derived from the 𝛿𝜈D: approximately 1.97 × 10−3 nm. 
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Our final example: Worked Example 3 – CO₂  Infrared Vibration. This 

takes us to molecular spectroscopy in the infrared region. 

* First bullet: "Transition within rovibrational manifold of CO₂ ." Carbon 

dioxide (C O two) is a linear molecule and has characteristic vibrational 

modes. When these vibrations are excited, there are also associated 

rotational transitions, leading to a "rovibrational" spectrum. We are 

considering one such transition. 

* Second bullet: "𝜆 = 10 𝜇m ⇒ 𝜈0 = 3.0 × 1013 s−1." A wavelength of 10 𝜇m, 

or 10 × 10−6 m, is firmly in the mid-infrared region. This is a typical 

wavelength for CO₂  vibrational transitions, often used in CO₂  lasers and 

atmospheric sensing. The corresponding rest frequency 𝜈0 =
𝑐

𝜆
. 

𝜈0 =
2.99792458 × 108 m/s

10 × 10−6 m
≈ 2.9979 × 1013 Hz. 

The slide uses 𝜈0 = 3.0 × 10
13 s−1, an excellent rounded value. 

* Third bullet: "Room temperature 𝑇 = 300 K; 𝑀 = 44 g mol
−1

." We 

consider CO₂  gas at room temperature, approximately 300 K (27 °C). The 

molar mass 𝑀 for CO₂  is: Carbon (≈12 g/mol) + 2 × Oxygen (≈16 g/mol 

each) = 12 + 32 = 44 grams per mole. 



* Fourth bullet: "Evaluate width:" Again, using 𝛿𝜈D = 7.16 × 10−7 𝜈0 √
𝑇

𝑀
 

[Hz], with 𝑀 in g/mol. 𝛿𝜈D = (7.16 × 10−7) × (3.0 × 1013 Hz) × √
300 K

44 g mol
−1 

𝛿𝜈D = (7.16 × 10−7) × (3.0 × 1013) × √6.81818 

Since √6.81818 ≈ 2.61116, 𝛿𝜈D ≈ (7.16 × 10
−7) × (3.0 × 1013) × 2.61116 

𝛿𝜈D ≈ (2.148 × 10
7) × 2.61116 𝛿𝜈D ≈ 5.608 × 10

7 Hz. 

The slide gives the result as 𝛿𝜈D = 5.6 × 107 Hz. This is an excellent match. 

So, the Doppler FWHM for this CO₂  IR transition at 300 K is about 56 

Megahertz (MHz). 

Now for the wavelength width, 𝛿𝜆D. Using 𝛿𝜆D ≈ 𝜆0 (
𝛿𝜈D

𝜈0
): 𝛿𝜆D ≈

(10×10−6  m)×(5.6×107  Hz)

3.0×1013  Hz
 𝛿𝜆D ≈ (10 × 10

−6 m) × (1.8666 × 10−6) 𝛿𝜆D ≈

1.8666 × 10−11 m. 

Converting to nanometers (1 m = 109 nm): 𝛿𝜆D ≈ 1.8666 × 10
−11 m ×

109  
nm

m
= 1.8666 × 10−2 nm. 

The slide gives 𝛿𝜆D = 1.9 × 10−2 nm. This matches our calculation very well 

(0.019 nm vs 0.0187 nm). This is 0.019 nanometers, or 19 picometers. 
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Following the CO₂  example, this slide points out a very important trend: 

"Note dramatic decrease in 𝛿𝜈D (delta nu sub D) as wavelength increases 

and mass becomes larger." 

Let's re-examine our formula for 𝛿𝜈D: 

𝛿𝜈D =
𝜈0
𝑐
√
8𝑅𝑇ln(2)

𝑀
 



which is also (7.16 × 10−7) 𝜈0√
𝑇

𝑀
. 

And since 𝜈0 =
𝑐

𝜆0
, we can also write it as: 

𝛿𝜈D =
1

𝜆0
√
8𝑅𝑇ln(2)

𝑀
 (some constants if not using SI for 𝑀) 

Or, more directly from the numeric form: 𝛿𝜈D is proportional to 
𝜈0

√𝑀
. 

Let's compare the three examples: 

1. H Lyman-α: * 𝜆0 = 121.6 nm (short, VUV) ⇒ 𝜈0 is very high (2.47 ×

1015 Hz) * 𝑀 = 1 g/mol (very light) * 𝛿𝜈D = 5.6 × 1010 Hz = 56 GHz. (Largest 

frequency width) 

2. Na D-line: * 𝜆0 = 589.1 nm (medium, visible) ⇒ 𝜈0 is medium (5.1 ×

1014 Hz) * 𝑀 = 23 g/mol (medium mass) * 𝛿𝜈D = 1.7 × 10
9 Hz = 1.7 GHz. 

(Intermediate frequency width) 

3. CO₂  IR vibration: * 𝜆0 = 10 𝜇m = 10,000 nm (long, infrared) ⇒ 𝜈0 is 

relatively low (3.0 × 1013 Hz) * 𝑀 = 44 g/mol (heavier) * 𝛿𝜈D = 5.6 ×

107 Hz = 56 MHz. (Smallest frequency width) 

The trend is clear: 

* As wavelength 𝜆0 increases, the rest frequency 𝜈0 decreases. Since 𝛿𝜈D 

is proportional to 𝜈0, the Doppler width in frequency units decreases. 

* As mass 𝑀 increases, 1/√𝑀 decreases. Since 𝛿𝜈D is proportional to 

1/√𝑀 (or √
1

𝑀
), the Doppler width in frequency units also decreases. 

So, for long-wavelength transitions (e.g., microwave, far-IR) and/or heavy 

molecules, the Doppler broadening 𝛿𝜈D will be significantly smaller than for 

short-wavelength transitions (e.g., UV, X-ray) and/or light atoms/molecules, 



assuming the same temperature. This is a key consideration when 

designing high-resolution spectroscopy experiments or interpreting 

astronomical data. For instance, to resolve fine features in heavy molecules 

in the microwave, Doppler broadening might be small enough not to 

obscure them, whereas for light molecules in the UV, it can be a dominant 

effect. 
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Now let's make a Gaussian vs. Lorentzian – Qualitative Contrast. We've 

established that Doppler broadening leads to a Gaussian profile, while 

natural broadening (and also collisional broadening, which we'll discuss 

more later) leads to a Lorentzian profile. How do they differ qualitatively? 

* First point: "Gaussian (Doppler): rapid wing decay ∝ exp[−(𝛥𝜔)2] 

(proportional to exponential of minus delta omega squared)." The key term 

here is "rapid wing decay." The Gaussian function falls off extremely 

quickly as you move away from the line center (i.e., as the detuning 𝛥𝜔 =

|𝜔 − 𝜔0| increases). The presence of (𝛥𝜔)2 in the exponent of a negative 

exponential means that once 𝛥𝜔 exceeds the characteristic width, the 

function plummets towards zero very fast. 

* Second point: "Lorentzian (natural/collisional): slow wing decay ∝
1

(𝛥𝜔)2
 (proportional to one over delta omega squared)." In contrast, the 

Lorentzian function has a "slow wing decay." It decreases as the inverse 

square of the detuning. While 
1

(𝛥𝜔)2
 certainly goes to zero as 𝛥𝜔 → ∞, it 

does so much more slowly than the Gaussian's exponential decay. These 

are the "heavy tails" or "far wings" we mentioned earlier. 

* Third point: This is a very practical and important consequence: "Even 

when Doppler width overwhelms natural width near line center, far-

wing measurements can reveal Lorentzian contribution." In many gas-

phase experiments, the Doppler width (Gaussian) is significantly larger 

than the natural width (Lorentzian). This means that near the line center 



(small 𝛥𝜔), the observed line shape will look predominantly Gaussian. The 

much narrower Lorentzian is essentially "hidden" or "smeared out" by the 

broader Gaussian. However, because the Gaussian wings fall off so 

rapidly, if you make very sensitive measurements far out in the wings of the 

spectral line (large 𝛥𝜔), you might reach a point where the Gaussian 

contribution has become negligible, but the more slowly decaying 

Lorentzian wings are still detectable. This allows experimentalists, in some 

cases, to "see" the underlying Lorentzian component by carefully analyzing 

the far wings of a line, even when the core of the line is Doppler-dominated. 

This can be crucial for determining natural lifetimes or collision rates. 
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This slide provides a visual for the Gaussian vs. Lorentzian – Qualitative 

Contrast, reinforcing the points from the previous page. 

We are looking at a graph comparing a Gaussian profile (labeled 

"Gaussian (Doppler)", typically shown in blue) and a Lorentzian profile 

(labeled "Lorentzian (Natural/Coll.)", typically shown in orange or red). Both 

are plotted as intensity versus frequency detuning (𝛥𝜔), and both are 

normalized to have the same peak intensity (1.0) at 𝛥𝜔 = 0. The FWHM 

(Full Width at Half Maximum) is also indicated, and in this illustrative plot, 

they appear to have roughly similar FWHMs to facilitate comparison of their 

shapes, especially in the wings. 

Key observations from the graph: 

• Near the center (small 𝛥𝜔): Both profiles are peaked. The Gaussian 

might appear slightly more "pointed" or "sharper" at the very peak 

compared to the Lorentzian if they have the same FWHM, because the 

Lorentzian is flatter near its maximum. 

• In the wings (larger 𝛥𝜔): This is where the dramatic difference lies.   

• The Gaussian (blue) line drops off very steeply. An arrow points to its 

wing, labeled "Rapid wing decay ∝ exp[−(𝛥𝜔)2]".   • The Lorentzian 



(orange/red) line has much more extended wings. It falls off noticeably 

slower. An arrow points to its wing, labeled "Slow wing decay ∝
1

(𝛥𝜔)2
".   

You can clearly see that at, say, 𝛥𝜔 = 2 or 3 times the FWHM, the 

Gaussian intensity is practically zero, while the Lorentzian still has a 

measurable intensity. 

The text at the top reiterates the decay laws: Gaussian (Doppler): rapid 

wing decay ∝ exp[−(𝛥𝜔)2]. Lorentzian (natural/collisional): slow wing 

decay ∝
1

(𝛥𝜔)2
. And the crucial implication: "Even when Doppler width 

overwhelms natural width near line center, far-wing measurements can 

reveal Lorentzian contribution." This graph perfectly illustrates why: far 

enough out, the Gaussian vanishes, leaving only the Lorentzian if it's 

present. 

This visual comparison is essential for developing an intuition about these 

fundamental line shapes. 
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So far, we've treated Doppler broadening as if it produces a pure Gaussian 

line shape. However, this slide asks, and answers, Why Pure Gaussian Is 

Not Exact. 

Real molecule with given 𝑣z still possesses finite lifetime ⇒ intrinsic 

Lorentzian response around its Doppler-shifted center. 

This is the crucial physical insight. Consider a single molecule, or more 

precisely, a group of molecules all having the same velocity component 𝑣z 

along the line of sight. Due to their velocity 𝑣z, their resonance frequency 

will be Doppler-shifted from 𝜔0 to some 𝜔′ = 𝜔0 (1 +
𝑣z

𝑐
). However, these 

molecules also have a finite excited-state lifetime 𝜏 (and may also be 

undergoing collisions). This finite lifetime (or collisional interruption) means 

that even for this specific velocity group, their interaction with light is not 

infinitely sharp at 𝜔′. Instead, this single velocity group will have its own 



intrinsic, homogeneous lineshape, which is a Lorentzian profile of width 𝛾 

(gamma, related to 
1

𝜏
 and collision rates), centered at its Doppler-shifted 

frequency 𝜔′. So, what we really have is not a collection of infinitely sharp 

lines at different Doppler-shifted frequencies, but a collection of Lorentzian 

lines, each centered at a different Doppler-shifted frequency 𝜔′ 

corresponding to a particular 𝑣z. 

Ensemble profile = convolution 

To get the total observed line shape from the entire ensemble of molecules 

(with their Maxwell-Boltzmann distribution of velocities), we need to sum up 

all these individual Lorentzian profiles, each centered at its appropriate 𝜔′ 

and weighted by the probability of that 𝜔′ (or 𝑣z) occurring. This 

mathematical operation of summing a shape function shifted by a 

distribution function is precisely a convolution. Specifically, the observed 

line shape is the convolution of: Gaussian (motion) Lorentzian (lifetime). 

The Gaussian function here represents the distribution of the Doppler-

shifted center frequencies 𝜔′ (which is equivalent to the Maxwell-

Boltzmann distribution of 𝑣z values). The Lorentzian function represents the 

intrinsic homogeneous lineshape associated with each velocity group. The 

asterisk (\(\)) denotes the convolution operation. 

Result called the Voigt profile. 

This convolution of a Gaussian and a Lorentzian function is known as the 

Voigt profile. It is the most general lineshape for an optically thin, 

thermalized gas where both Doppler (inhomogeneous) and 

lifetime/collisional (homogeneous) broadening are present. 

Need Voigt to analyse high-resolution spectra (stellar atmospheres, 

laser diagnostics, pressure broadening studies). 

In many real-world applications where high precision is required, assuming 

a pure Gaussian (for Doppler) or a pure Lorentzian (if homogeneous 



broadening dominates) is insufficient. One must use the Voigt profile to 

accurately model the observed spectral lines. This is essential for: 

   

Stellar atmospheres: Analyzing the light from stars to determine 

temperatures, pressures, and chemical compositions. The line shapes are 

classic Voigt profiles. 

   

Laser diagnostics: For example, in combustion research, measuring 

species concentrations and temperatures in flames often involves fitting 

Voigt profiles to absorption or fluorescence spectra. 

   

Pressure broadening studies: By fitting Voigt profiles, one can 

disentangle the Gaussian (temperature-dependent Doppler) width from the 

Lorentzian (pressure-dependent collisional) width, thereby studying 

collision dynamics. 

So, while the Gaussian is an excellent first approximation for Doppler 

broadening, the Voigt profile is the more complete and accurate description 

when homogeneous broadening is also significant. 
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Let's elaborate on the Lorentzian Line Shape for a Single Velocity 

Class, which is a key component of the Voigt profile. 

First bullet: "Lifetime-limited response centred at 𝜔′ = 𝜔0 (1 +
𝑣z

𝑐
):" 

As we discussed, consider a sub-group of molecules all having the same 

velocity component 𝑣z along the line of sight. Their natural resonance 

frequency 𝜔0 is Doppler-shifted to 𝜔′ (omega prime) in the lab frame, 



where 𝜔′ = 𝜔0 (1 +
𝑣z

𝑐
). This 𝜔′ is the center of the spectral response for 

this specific velocity group. 

The line shape function for this single velocity class, due to its finite lifetime 

(and any other homogeneous broadening like collisions), is a Lorentzian. 

The slide gives a normalized Lorentzian function 𝐿(𝜔 − 𝜔′) (capital L of 

omega minus omega prime) as: 

𝐿(𝜔 − 𝜔′) =
𝛾/2𝜋

(𝜔 − 𝜔′)2 + (𝛾/2)2
 

Let's break this down: 

   

𝐿(𝜔 − 𝜔′) is the line shape function, describing the response as a function 

of the lab frequency 𝜔, centered at 𝜔′. 

   

𝛾 (gamma) is the total homogeneous damping constant, which is the 

FWHM of this Lorentzian component. It includes contributions from natural 

broadening (𝛾natural =
1

𝜏
) and collisional broadening (𝛾collisional, which is 

proportional to pressure). So, 𝛾 = 𝛾natural + 𝛾collisional. 

   

The denominator (𝜔 − 𝜔′)2 + (𝛾/2)2 is the standard Lorentzian form. 

   

The numerator (𝛾/2𝜋) is a normalization factor. If you integrate 𝐿(𝜔 − 𝜔′) 

with respect to 𝜔 from −∞ to +∞, the result is 1. This means 𝐿 is a 

probability density function in frequency space for that given 𝜔′. 

Second bullet clarifies 𝛾: "𝛾 – total homogeneous damping constant 

(includes natural + collisional)." 



Third bullet: "Area under 𝐿 equals 1; ensures energy conservation across 

broadened line." 

So, for every 𝑣z, there's a corresponding 𝜔′, and around that 𝜔′, there's a 

little Lorentzian packet of width 𝛾. The Voigt profile sums these up. 
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This slide, titled "Lorentzian Line Shapes for Different Velocity 

Classes," provides a crucial visual for understanding how the Voigt profile 

is constructed. 

The graph plots Line Shape 𝐿(𝜔 − 𝜔′) on the vertical axis against 

Frequency 𝜔 on the horizontal axis. 

We see two distinct Lorentzian profiles: 

• One, shown in blue, is peaked at a frequency 𝜔′1 (omega prime one). 

This Lorentzian corresponds to a group of molecules with a specific velocity 

component, say 𝑣𝑧1, which results in the Doppler-shifted center 𝜔′1. The 

label "𝑣s < 0" (using 𝑣s for 𝑣z) suggests this might be for molecules moving 

away from the observer, leading to a red-shifted center 𝜔′1 < 𝜔0 if 𝜔0 is to 

the right. 

• The other, shown in red, is peaked at a different frequency 𝜔′2 (omega 

prime two). This corresponds to another group of molecules with a different 

velocity component, say 𝑣𝑧2, resulting in a different Doppler-shifted center 

𝜔′2. The label "𝑣s > 0" suggests this might be for molecules moving 

towards the observer, leading to a blue-shifted center 𝜔′2 > 𝜔0 if 𝜔0 is to 

the left of 𝜔′2. 

The key takeaway from this image is that the overall observed spectral line 

is formed by an infinite number of such Lorentzians, one for each possible 

value of 𝑣z (and thus each 𝜔′). Each of these Lorentzians has the same 

intrinsic shape and width 𝛾, but their center frequencies 𝜔′ are distributed 



according to the Maxwell-Boltzmann distribution of velocities (which leads 

to a Gaussian distribution of 𝜔′ values). 

The equation at the top right, 𝜔′ = 𝜔0  (1 +
𝑣

𝑐
) (using 𝑣 for 𝑣z), reminds us 

how the center of each Lorentzian is determined. 

The overall Voigt profile is the "envelope" or sum of all these infinitesimally 

weighted Lorentzians. If the Doppler effect is very strong (large spread in 

𝑣z), the centers 𝜔′ will be widely spread, and the sum will look Gaussian. If 

the Doppler effect is weak but the homogeneous width 𝛾 is large, the sum 

will look more Lorentzian. In between, you get the characteristic Voigt 

shape. 
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Now we explicitly address Building the Voigt Profile – Convolution 

Integral. 

• First bullet: "Let 𝐺(𝜔′) = Gaussian distribution from Doppler."  Here, 

𝐺(𝜔′) represents the probability density function for the centers of the 

Lorentzian profiles. Because   𝜔′ = 𝜔0 (1 +
𝑣z

𝑐
)  and 𝑣z follows a 

Maxwell-Boltzmann (Gaussian) distribution, the distribution of these 

Doppler-shifted center frequencies 𝜔′ will also be Gaussian, centered at 

𝜔0.  Specifically,    

𝐺(𝜔′) =
1

𝛥𝜔𝐷,gauss√𝜋
exp [−(

𝜔′ − 𝜔0
𝛥𝜔𝐷,gauss

)

2

] 

 where 𝛥𝜔𝐷,gauss is related to our previously defined Doppler width 

parameters; for example, if   𝛥𝜔𝐷,gauss =
𝜔0𝑣p

𝑐
,  then the prefactor is   

𝑐

𝜔0𝑣p√𝜋
. This 𝐺(𝜔′) tells us the relative number of molecular velocity classes 

whose resonant frequency is Doppler-shifted to 𝜔′. This 𝐺(𝜔′) needs to be 

normalized to integrate to 1 over all 𝜔′. 



• Second bullet: "Observed intensity from all molecules:"  The total 

observed intensity 𝐼(𝜔) at a laboratory frequency 𝜔 is obtained by 

summing (integrating) the contributions from all possible Lorentzian 

packets. Each packet is centered at some 𝜔′, has a shape 𝐿(𝜔 − 𝜔′), and 

its contribution is weighted by 𝐺(𝜔′), the probability of that 𝜔′ occurring. 

This is precisely the definition of a convolution integral:    

𝐼(𝜔) = 𝐼0∫ 𝐺
+∞

−∞

(𝜔′) 𝐿(𝜔 − 𝜔′) 𝑑𝜔′ 

 (Capital I of omega equals Capital I sub zero times the integral from 

minus infinity to plus infinity of Capital G of omega prime, times Capital L of 

omega minus omega prime, d omega prime).  Here:   • 𝐼0 is a 

constant representing the total line strength or peak intensity.   • 𝜔′ is 

the integration variable; it represents the center frequency of a Lorentzian 

component from a specific velocity class. We integrate over all possible 

center frequencies 𝜔′.   • 𝐺(𝜔′) is the Gaussian distribution function of 

these center frequencies (due to the Doppler effect).   • 𝐿(𝜔 − 𝜔′) is 

the normalized Lorentzian line shape function (due to homogeneous 

broadening like lifetime or collisions), centered at 𝜔′. It describes how a 

specific velocity class (with center 𝜔′) contributes to the intensity at the 

observation frequency 𝜔. 

 This convolution integral mathematically describes the Voigt profile. It 

combines the Gaussian broadening from the distribution of molecular 

velocities with the Lorentzian broadening intrinsic to each molecule. 

• Third bullet: "Insert explicit forms:"  The next step would be to plug in 

the actual mathematical expressions for 𝐺(𝜔′) and 𝐿(𝜔 − 𝜔′) into this 

integral. This leads to a rather complex integral that, unfortunately, does 

not have a simple analytical solution in terms of elementary functions. 
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This slide attempts to show the explicit form of the Voigt integral after 

inserting 𝐺(𝜔′) and 𝐿(𝜔 − 𝜔′), but the OCR has unfortunately garbled the 

equation significantly. Let me reconstruct the conceptual form based on our 

definitions. 

If we take: 𝐺(𝜔′) = (𝐴G) ⋅ exp [− (
𝜔′−𝜔0

𝑊G

)
2
] (where 𝐴G is a normalization 

constant and 𝑊G is related to the Gaussian width, e.g., 𝑊G =
𝜔0𝑣p

𝑐
) and 

𝐿(𝜔 − 𝜔′) =
𝐴L

(𝜔−𝜔′)2+(
𝛾

2
)
2 (where 𝐴L =

𝛾

2𝜋
 for normalization) 

Then the Voigt profile integral 𝐼(𝜔) would be proportional to: 

∫ exp
+∞

−∞

[− (
𝜔′ − 𝜔0
𝑊G

)

2

]
1

(𝜔 − 𝜔′)2 + (
𝛾
2
)
2  𝑑𝜔′ 

multiplied by various constants. 

The specific prefactor shown in the OCR, 𝒩
𝛾𝑁i𝑐

2𝑣p𝜋
3/2𝜔0

2, seems to be an 

attempt to gather all constants if one started from 𝑛i(𝑣z) and did the full 

transformation and normalization. The key is the integral part, which is the 

convolution of the exponential of a quadratic (Gaussian) with the inverse of 

a quadratic (Lorentzian). 

Due to the complexity of this integral, it's usually not evaluated analytically 

in closed form for general use. This leads to the next point: 

* "Numerical evaluation often uses Faddeeva function 𝑤(𝑧)." 

The Voigt profile, or the convolution integral, can be expressed in terms of 

a special function known as the Faddeeva function, often denoted 𝑤(𝑧) or 

𝑊(𝑧). The Faddeeva function is the complex-valued error function of a 

complex argument, scaled by an exponential factor. Specifically, 𝑤(𝑧) =

exp(−𝑧2) erfc(−𝑖𝑧), where erfc is the complementary error function. 



The Voigt profile 𝑉(𝜔;𝑊G, 𝛾) is proportional to the real part of the Faddeeva 

function, ℜ[𝑤(𝑧)], where the complex argument 𝑧 is a combination of the 

frequency detuning (𝜔 − 𝜔0), the Gaussian width parameter 𝑊G, and the 

Lorentzian width 𝛾. Specifically, 

𝑧 =
(𝜔 − 𝜔0) + 𝑖(𝛾/2)

𝑊G√2
 

(if 𝑊G is the standard deviation of the Gaussian in frequency) 

Or, using parameters like the Doppler HWHM 𝛥𝜔𝐷,HWHM = 𝑊G√ln2 and 

Lorentzian HWHM 𝛾/2: 

𝑧 =
(𝜔 − 𝜔0)

𝛥𝜔𝐷,HWHM

√ln2 + 𝑖
(𝛾/2)

𝛥𝜔𝐷,HWHM

√ln2 

There are well-established algorithms and software libraries to compute the 

Faddeeva function accurately, which then allows for precise calculation and 

fitting of Voigt profiles in experimental data analysis. 

So, while the integral looks daunting, computational tools based on 

functions like the Faddeeva function make working with Voigt profiles quite 

manageable in practice. 
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Now let's discuss some Practical Uses of the Voigt Profile. Why is it so 

important to understand and be able to model this line shape? 

- First bullet: "Separate temperature (Gaussian width) from pressure or 

lifetime effects (Lorentzian width)." 

This is perhaps the most powerful application. The Voigt profile has two 

characteristic width parameters: one associated with the Gaussian 

component (let's call it 𝛥𝜔G, the Doppler width) and one with the Lorentzian 

component (𝛥𝜔L = 𝛾, the homogeneous width). 

We know that 𝛥𝜔G depends on temperature (𝑇) and molecular mass (𝑚). 



And 𝛥𝜔L depends on natural lifetime (𝜏nat) and collisional processes (which 

are often pressure-dependent). 

By carefully fitting an observed spectral line to a Voigt profile, one can 

extract both 𝛥𝜔G and 𝛥𝜔L. From 𝛥𝜔G, one can determine the temperature 

of the gas (if 𝑚 is known). From 𝛥𝜔L, one can gain information about 

lifetimes or collision rates (and thus pressure if the collisional broadening 

coefficient is known). This ability to disentangle different physical 

contributions from a single line shape is incredibly valuable. 

- Second bullet: "Essential in:" 

The Voigt profile is indispensable in a variety of fields: 

- Third bullet: "Stellar atmosphere diagnostics (extract 𝑇 & 𝑝 layers)." 

When we observe the light from a star, the absorption lines in its spectrum 

(Fraunhofer lines, for example) are formed in the star's atmosphere. These 

lines are broadened by the thermal motion of atoms/ions (Doppler 

broadening, giving Gaussian component) and by collisions and natural 

lifetimes (giving Lorentzian component). By fitting Voigt profiles to these 

stellar lines, astronomers can deduce the temperature, pressure, and even 

elemental abundances at different layers of the star's atmosphere. 

- Fourth bullet: "Gas lasers & combustion monitoring (in-situ 𝑇, species 

concentration)." 

In engineering and research, for example, in characterizing gas lasers or 

studying combustion processes, laser absorption spectroscopy is a key 

diagnostic. The absorption lines of various species (e.g., fuel, oxidizer, 

combustion products like H₂ O, CO₂ ) are Voigt profiles. Fitting these 

allows for non-intrusive (in-situ) measurement of local gas temperature 

(from the Gaussian width) and species concentration (from the integrated 

line area, once 𝑇 and 𝑝 are known to get line strength). This is crucial for 

understanding and optimizing combustion, or for characterizing laser gain 

media. 



- Fifth bullet: "Calibration of high-precision frequency references." 

For metrology and frequency standards, understanding the precise line 

shape of atomic or molecular transitions is critical. Even small asymmetries 

or deviations from simpler models can lead to errors in defining a 

frequency. Voigt profile analysis helps to accurately determine the line 

center and quantify various broadening contributions, leading to more 

robust and accurate frequency references. 
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Continuing with the practical uses of the Voigt profile: 

- The bullet point here states: "Accurate line-shape modelling improves 

trace-gas detection limits and climate remote-sensing retrievals." This 

highlights two more important application areas. 

- Trace-gas detection: When trying to detect very small amounts of a 

specific gas (e.g., pollutants in the atmosphere, impurities in a process 

gas), spectroscopists often look for its characteristic absorption lines. The 

ability to accurately model the shape of these lines (using Voigt profiles) 

allows for more sensitive detection. If you know the exact shape, you can 

use sophisticated fitting algorithms (like matched filtering) to pull a very 

weak signal out of noise, or to deconvolve it from overlapping lines of other 

species. If you use an incorrect line shape model, your estimate of the gas 

concentration could be significantly in error, or you might miss the gas 

entirely if its signal is weak. 

- Climate remote-sensing retrievals: Satellites and ground-based 

instruments constantly monitor the Earth's atmosphere by looking at the 

absorption or emission of sunlight or infrared radiation by atmospheric 

gases like CO2, methane, water vapor, ozone, etc. To retrieve accurate 

concentrations of these gases (which are crucial for climate models), 

scientists must very precisely model how these gases absorb and emit 

radiation at different altitudes (and thus different pressures and 



temperatures). This involves using extensive databases of spectroscopic 

parameters (like HITRAN) where line positions, strengths, and broadening 

coefficients (for Voigt profiles) are cataloged. An accurate Voigt line shape 

model is absolutely fundamental to these retrieval algorithms. Even small 

errors in the line shape can lead to significant biases in the retrieved 

atmospheric composition. 

So, from fundamental physics to applied engineering and global monitoring, 

the Voigt profile plays a vital role. 
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This slide, also titled "Slide 20: Practical Uses of the Voigt Profile," provides 

a beautiful graphical example: "Stellar Fe I Line: Voigt Profile Fit and 

Component Analysis." This shows exactly what we've been discussing. 

We are looking at a plot of "Normalized Flux" on the vertical axis versus 

"Wavelength Offset (𝛥𝜆)" on the horizontal axis. The flux is normalized so 

that the continuum (the light level away from the absorption line) is at 1.0. 

The wavelength offset is relative to the line center. 

Let's look at the components: 

* Measured Data (Fe I line): These are shown as grey circular markers. 

They represent the actual observed flux from a star at different 

wavelengths across an iron (Fe I means neutral iron) absorption line. You 

can clearly see an absorption dip. 

* Voigt Profile Fit: This is shown as a blue dashed line. It's the result of 

fitting a Voigt profile model to the measured data points. Notice how well 

the Voigt fit (labeled "FWHMV ≈ 2.11" in arbitrary wavelength units for this 

plot) goes through the data, capturing the overall shape of the absorption 

line. 

* Gaussian Comp. (Component): This is shown as a green dotted line. 

This is the Gaussian part of the Voigt profile that was determined from the 



fit. It's labeled "FWHM = 1.50, Temperature related". This width is primarily 

due to the Doppler broadening from the thermal motion of iron atoms in the 

star's atmosphere. 

* Lorentzian Comp. (Component): This is shown as a red dash-dotted 

line. This is the Lorentzian part of the Voigt profile from the fit. It's labeled 

"FWHM = 1.00, Pressure related". This width is due to homogeneous 

broadening effects like collisions (pressure broadening) and the natural 

lifetime of the transition. 

This plot is extremely instructive. It visually demonstrates how the observed 

stellar absorption line (the grey dots) is not purely Gaussian or purely 

Lorentzian, but a Voigt profile (blue line). And, critically, the fitting process 

allows us to decompose this Voigt profile into its underlying Gaussian 

(green) and Lorentzian (red) contributions. 

From the widths of these components, astrophysicists can then infer the 

temperature and pressure conditions in the region of the star's atmosphere 

where this iron line is formed. This is a cornerstone of quantitative stellar 

spectroscopy. 
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Now, let's summarize the Key Takeaways from our discussion on Doppler 

broadening. 

* First bullet: "Doppler broadening arises from Maxwellian velocity 

spread; yields Gaussian FWHM" 

This is the fundamental origin: atoms or molecules in a gas are moving with 

a distribution of velocities (Maxwell-Boltzmann). Each velocity component 

along the line of sight causes a Doppler shift in the resonant frequency. 

The ensemble of these shifted frequencies results in a broadened spectral 

line that has a Gaussian shape. 



The Full Width at Half Maximum (FWHM) of this Gaussian profile, which we 

denoted 𝛿𝜔D (delta omega sub D), is given by the formula: 

𝛿𝜔D =
𝜔0
𝑐
√
8𝑘𝑇ln2

𝑚
 

(delta omega sub D equals omega naught over c, times the square root of 

8 k T natural log of 2, all over m). This formula encapsulates the 

dependence on the rest frequency 𝜔0, temperature 𝑇, and molecular mass 

𝑚. Remember 𝑘 is Boltzmann's constant, and 𝑐 is the speed of light. 

* Second bullet: "Width grows with √𝑇 (square root of T) and shrinks with 

√𝑚 (square root of m)." 

These are the key dependencies extracted directly from the formula: * 

Higher temperature (𝑇) leads to faster average molecular speeds, a wider 

velocity distribution, and thus a proportionally larger Doppler width (scales 

as √𝑇). * Heavier mass (𝑚) leads to slower average molecular speeds at a 

given temperature, a narrower velocity distribution, and thus a 

proportionally smaller Doppler width (scales as 
1

√𝑚
 or inversely with √𝑚). 

These dependencies are intuitive and crucial for predicting and interpreting 

Doppler widths in various systems. 
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Continuing with our Key Takeaways: 

* First bullet: "Observed profile often a Voigt convolution of Gaussian 

(motion) and Lorentzian (homogeneous) components." While Doppler 

broadening itself gives a Gaussian profile, we must remember that other 

broadening mechanisms are usually present simultaneously. 

Homogeneous broadening mechanisms, such as natural lifetime 

broadening and collisional (pressure) broadening, lead to a Lorentzian 

profile. When both types of broadening are significant, the actual observed 



spectral line shape is a Voigt profile. The Voigt profile is mathematically 

the convolution of the Gaussian profile (arising from the distribution of 

Doppler shifts due to molecular motion) and the Lorentzian profile (arising 

from homogeneous effects that are the same for all molecules, regardless 

of their velocity, but specific to their own Doppler-shifted frame). 

* Second bullet: "Accurate determination of physical conditions 

demands disentangling these mechanisms via line-shape analysis." 

This underscores the practical importance of understanding these line 

shapes. If we want to use spectroscopy to accurately measure physical 

parameters of a system – such as temperature, pressure, species 

concentrations, or even gas flow velocities (from bulk Doppler shifts) – we 

often need to perform a careful line-shape analysis. This involves fitting the 

observed spectral data to an appropriate model, typically a Voigt profile. By 

doing so, we can "disentangle" the contributions from different broadening 

mechanisms. For instance, we can separate the Gaussian width (which 

tells us about temperature) from the Lorentzian width (which can tell us 

about pressure or lifetimes). Without this detailed line-shape analysis, our 

interpretation of spectroscopic data could be flawed, leading to inaccurate 

conclusions about the physical conditions of the system under study. 

This concludes our detailed look into Doppler broadening and its context 

within overall spectral line shapes. It's a fundamental concept with far-

reaching implications in many areas of physics, chemistry, engineering, 

and astronomy. Thank you. 

  


