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Alright everyone, welcome to this segment of our Phys 608 Laser 

Spectroscopy course. Today, we delve into a truly fundamental concept: 

Chapter 3.1, focusing on the Natural Linewidth. This is a topic that lies at 

the very heart of understanding how atoms and molecules interact with 

light, and it dictates the ultimate precision we can achieve in many 

spectroscopic measurements. So, let's begin our exploration. 
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We begin by asking a crucial question about the Natural Linewidth – Why 

should we study it? What is its significance? 

The first bullet point provides a foundational answer: "Every real optical 

transition exhibits a finite spectral width; this width is called the natural 

linewidth." Now, this is a departure from a naive, introductory quantum 

mechanics picture where you might imagine an atomic transition occurring 

at an infinitesimally sharp, single frequency – a 𝛿 function, if you will. In 

reality, that's not the case. Even for an isolated atom, completely free from 

external perturbations like collisions or Doppler shifts, an optical transition 

will always have a certain breadth in frequency, or wavelength. This 

intrinsic, minimum possible width is what we term the "natural linewidth." 

It's a consequence of the quantum mechanical nature of light emission and 

absorption and, as we'll see, is intimately linked to the finite lifetime of 

excited states. Think of it as a fundamental fuzziness imposed by nature 

itself on the energy, and therefore frequency, of a transition. 

The second bullet point underscores the practical importance: "The natural 

linewidth sets an ultimate resolution limit for high-precision laser 

spectroscopy, frequency metrology, and atomic clocks." This is where the 

rubber meets the road for experimentalists. If you're trying to resolve two 

closely spaced spectral lines, or measure a transition frequency with 

extreme accuracy – perhaps for testing fundamental theories, or for 

building the world's most precise atomic clocks – the natural linewidth is 



your ultimate, unavoidable barrier. No matter how perfect your laser, how 

stable your environment, you cannot measure a spectral feature with a 

precision that surpasses this inherent width. It’s the physical limit. 

Understanding its origins and characteristics is therefore paramount for 

anyone pushing the frontiers of precision measurement. For instance, in 

frequency metrology, where we define the second based on atomic 

transitions, the narrower the natural linewidth of the chosen transition, the 

more precisely we can realize that definition. 
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Continuing our motivation for studying natural linewidth, the next point 

delves into the deeper physics: "Understanding the microscopic origin of 

this width links quantum electrodynamics (spontaneous emission) with a 

simple classical analogue (damped harmonic oscillator)." This is a beautiful 

aspect of the physics here. The true, rigorous explanation for natural 

linewidth comes from Quantum Electrodynamics, or QED, specifically 

through the process of spontaneous emission – an excited atom decaying 

by emitting a photon due to its interaction with the vacuum fluctuations of 

the electromagnetic field. This is a profoundly quantum concept. However, 

quite remarkably, we can gain enormous insight and even derive the 

correct lineshape using a much simpler classical model: that of a damped 

harmonic oscillator. Think of an electron in an atom as being tethered by a 

spring, and as it oscillates, it radiates energy, causing its oscillations to 

damp down. This classical picture, as we will develop, surprisingly captures 

the essence of the Lorentzian lineshape associated with natural 

broadening. This connection between a sophisticated QED phenomenon 

and an intuitive classical model is not only elegant but also pedagogically 

very powerful. 

And this leads to our approach, as stated in the final bullet: "We shall build 

the entire description step-by-step, defining every symbol, showing every 

algebraic move, and visualising each physical mechanism." That's 

precisely what we're going to do. We'll start with this classical model, 



carefully define all our terms, work through the mathematics meticulously, 

and then connect it back to the quantum mechanical reality. The goal is not 

just to arrive at a formula, but to build a deep, intuitive understanding of 

where the natural linewidth comes from and why it behaves the way it 

does. So, expect a detailed journey. 
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Now, let's visualize what we mean by "Natural Linewidth: Ideal vs. Realistic 

Spectral Lines." This page presents a very instructive graph. 

On the horizontal axis, we have frequency, denoted by the Greek letter 𝜈, 

often measured in Hertz. 

At the center, a specific frequency 𝜈0, or nu naught, is marked. This 𝜈0 

represents the nominal or central frequency of an atomic transition – for 

example, the frequency corresponding exactly to the energy difference 

between two atomic levels, 𝐸2 − 𝐸1, divided by Planck's constant ℎ. 

On the vertical axis, we have Intensity, labeled 'I'. This represents the 

strength of the absorption or emission signal as a function of frequency. It's 

normalized here, peaking at a value of 1 for the realistic line. 

Now, observe the bright blue vertical line labeled "Ideal Transition (𝛿-

function)". This represents the hypothetical scenario where an atomic 

transition occurs at one, and only one, perfectly defined frequency, 𝜈0. Its 

width would be zero. This is the simplified picture you might get if you 

ignore the finite lifetime of excited states. It’s a mathematically convenient 

idea but not physically realized for radiative transitions. 

In contrast, the red curve, labeled "Natural Linewidth (Lorentzian)", depicts 

a realistic spectral line. Notice several key features: 

1. It's centered at the same frequency, 𝜈0. 



2. It has a characteristic bell shape, but it's not a Gaussian. This specific 

shape is called a Lorentzian profile, and we will derive why it takes this 

form. 

3. Crucially, it has a finite width. The graph indicates this width with a 

double-headed arrow labeled "𝛥𝜈". 

This 𝛥𝜈 is the Full Width at Half Maximum, or FWHM, a standard measure 

of the width of a spectral feature. It's the difference in frequency between 

the two points on the curve where the intensity has dropped to half of its 

maximum value. This 𝛥𝜈 is, in this context of an isolated, stationary atom, 

the natural linewidth. 

So, this graph beautifully encapsulates the core idea: real transitions are 

not infinitely sharp lines but have a spread of frequencies, a profile, 

characterized by the natural linewidth, which, for this fundamental case, is 

Lorentzian. Our task is to understand why this shape and width arise. 
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Alright, let's embark on understanding the origin of this natural linewidth. 

This page is titled "Spontaneous Emission ⇔ Classical Damped Oscillator 

Analogy," and it sets up the conceptual framework we'll be using. 

First, the "Quantum viewpoint": "An excited atom in state |𝑖⟩ (ket i) of 

energy 𝐸i can spontaneously emit a photon and fall to state |𝑘⟩ (ket k) of 

energy 𝐸k." This is the quantum mechanical picture. We have an atom, 

initially in an excited energy state, which we label 'i', with energy 𝐸i. This 

state is not perfectly stable. Due to its interaction with the quantum 

vacuum, the atom can, without any external prompting, transition to a lower 

energy state, labeled 'k', with energy 𝐸k. In doing so, it releases the excess 

energy by emitting a photon. This is spontaneous emission, a concept 

famously introduced by Einstein in his 1917 paper. The key here is 

"spontaneously" – it's an inherent decay process. 

The second bullet point quantifies the energy of this emitted photon: 



𝐸i − 𝐸k = ℎ𝜈𝑖𝑘 = ℏ𝜔𝑖𝑘 

This is the Bohr frequency condition. The energy of the emitted photon, 

ℎ𝜈𝑖𝑘 (where ℎ is Planck's constant and 𝜈𝑖𝑘 is the photon's frequency), must 

precisely match the energy difference between the initial and final atomic 

states, 𝐸i − 𝐸k. Equivalently, we can express this in terms of angular 

frequency, 𝜔𝑖𝑘 (which is 2𝜋𝜈𝑖𝑘), so the energy difference is also ℏ𝜔𝑖𝑘, 

where ℏ is the reduced Planck constant (ℎ divided by 2𝜋). This defines the 

central frequency of the transition we were talking about. 

Now, for the "Classical analogue": "Treat the atom's bound electron as a 

point charge of mass 𝑚 on a spring (restoring force constant 𝑘), losing 

energy to radiation." This is where we make a conceptual leap to a 

classical model. Imagine an electron in an atom. It's bound to the nucleus, 

and we can crudely model this binding force as a spring. So, the electron, 

with its charge and mass 𝑚, behaves like a mass on a spring. If this 

electron is set into oscillation (analogous to the atom being in an excited 

state), classical electromagnetism tells us that an accelerating charge 

radiates electromagnetic waves. This radiation carries away energy. As the 

oscillating electron loses energy, the amplitude of its oscillation must 

decrease – it's a damped oscillation. This damping due to energy loss via 

radiation is the classical counterpart to the quantum atom losing energy via 

spontaneous emission. The restoring force constant, little 𝑘, determines 

how "stiff" the spring is, which will relate to the oscillation frequency. 

This analogy, though simple, is remarkably powerful and will allow us to 

derive the lineshape. 
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Let's continue developing our classical damped oscillator model. 

The first point defines the "Natural (undamped) angular frequency": "𝜔0 =

√
𝑘

𝑚
 [rad s

−1
]." This is the standard formula for the angular frequency of a 



simple harmonic oscillator consisting of a mass 'm' attached to a spring 

with force constant 'k'. If there were no damping, no energy loss, the 

electron would oscillate indefinitely at this angular frequency, 𝜔0. The units 

are radians per second, as indicated. This 𝜔0 will be the classical 

equivalent of the transition angular frequency 𝜔𝑖𝑘 from the quantum picture. 

The second point introduces the crucial element of damping: "Energy loss 

to the radiation field produces a friction-like term characterised by the 

damping constant 𝛾 [s−1]." As our classical electron oscillates, it radiates, 

and this radiation carries energy away from the oscillator. This energy loss 

acts like a damping force, or a "friction-like" term, opposing the motion. In 

the equation of motion for the oscillator (which we'll see soon), this effect 

will be characterized by a damping constant, represented by the Greek 

letter 𝛾. The units of 𝛾 are inverse seconds (s−1). A larger 𝛾 means stronger 

damping, or a faster loss of energy. This 𝛾 will turn out to be directly related 

to the lifetime of the excited state in the quantum picture and, 

consequently, to the natural linewidth. 

The final bullet point gives us an important physical insight for typical 

atomic systems: "For real optical transitions, 𝛾 ≪ 𝜔0; the oscillator 

completes many cycles before noticeably decaying." This is a key 

condition, often referred to as the "weak damping" or "high Q-factor" 

regime. In most atomic transitions in the optical part of the spectrum, the 

rate of energy loss (represented by 𝛾) is very small compared to the 

oscillation frequency (𝜔0). This means the electron, in our classical model, 

will oscillate many, many times, almost as if it were undamped, before the 

amplitude of its oscillation significantly decreases. Think of a high-quality 

bell; it rings for a long time after being struck, completing many oscillations 

before the sound dies away. This condition, 𝛾 ≪ 𝜔0, will allow for some 

useful approximations later on. It essentially means the radiated wave is a 

long, slowly decaying wavetrain, which, as we'll see through Fourier 

analysis, corresponds to a narrow frequency spectrum. 
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This page provides a helpful visual for the "Classical Damped Oscillator 

Analogy," specifically illustrating the "Classical Analogue: Damped Mass-

Spring System Emitting Waves." 

Let's break down what we're seeing. On the left, we have a representation 

of a mass-spring system. There's a blue rectangular block, representing 

our oscillating mass (the electron in our analogy). This mass is attached to 

a coiled spring, which is itself fixed to a gray support on the far left. The 

spring represents the restoring force binding the electron to the atom. The 

label "wwwwwww" under the spring just emphasizes its spring-like nature. 

From the oscillating blue mass, we see orange wavy lines extending to the 

right, with arrowheads indicating they are propagating away. These 

represent the electromagnetic waves being emitted by the accelerating 

charge (our oscillating electron). As the electron oscillates, it radiates 

energy in the form of these waves. 

Crucially, there's a dashed arrow pointing towards the oscillating system, 

and then another dashed arrow leading away from the emitted waves, both 

associated with the symbol 𝛾, Damping Constant. This visually links the 

emission of waves (energy loss) to the concept of damping. The act of 

emitting these waves causes the oscillator's energy to decrease, leading to 

the damping of its motion. The strength of this damping is quantified by 𝛾. 

So, this simple diagram effectively captures the core idea: an oscillating 

charge (mass on a spring) emits radiation, loses energy, and therefore its 

oscillations are damped. This classical picture will be the foundation for 

deriving the equation of motion and, ultimately, the spectral lineshape. 
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Now we move to formalize the classical model with an "Equation of Motion 

— Full Differential Form." This is Slide 3 in this sequence. 



The first bullet point states: "Newton's second law for the damped oscillator 

gives..." and then presents the equation: 

𝑥̈(𝑡) + 𝛾 𝑥̇(𝑡) + 𝜔0
2 𝑥(𝑡) = 0 

Let's break this down. This is a second-order linear homogeneous ordinary 

differential equation. It describes the motion of a damped harmonic 

oscillator. 

* 𝑥̈(𝑡) is the second time derivative of 𝑥(𝑡). * 𝛾 𝑥̇(𝑡) involves the first time 

derivative of 𝑥(𝑡). * 𝜔0
2 𝑥(𝑡) involves 𝑥(𝑡) itself. * The sum of these three 

terms equals zero, indicating no external driving force for now (we're 

considering spontaneous emission, which is an undriven decay). 

The next three bullet points define the terms in this equation: 

* 𝑥(𝑡) : displacement of the charge from equilibrium [m]. So, 𝑥(𝑡) 

represents the position of our oscillating electron (the charge) as a function 

of time, measured from its equilibrium position. Its units are meters. * 

𝑥̇(𝑡) =
𝑑𝑥

𝑑𝑡
 : velocity [m s−1]. 𝑥̇(𝑡) is the first derivative of displacement with 

respect to time, which is the instantaneous velocity of the charge. Units are 

meters per second. * 𝑥̈(𝑡) =
𝑑2  𝑥

𝑑𝑡2
 : acceleration [m s−2]. 𝑥̈(𝑡) is the second 

derivative of displacement with respect to time, which is the instantaneous 

acceleration of the charge. Units are meters per second squared. 

Finally, the slide says: "Physical interpretation of each term." This is crucial 

for understanding what the equation truly represents, and we'll look at that 

on the next page. This equation is absolutely central. It's the mathematical 

embodiment of our classical damped oscillator. Its solution will tell us how 

the electron's oscillation decays over time, and from that, we'll deduce the 

frequency spectrum of the emitted light. 
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This page continues our discussion from the previous one, providing the 

"Physical interpretation of each term" in the equation of motion: 𝑥̈(𝑡) +

𝛾𝑥̇(𝑡) + 𝜔0
2𝑥(𝑡) = 0. Let's look at each term, assuming we've multiplied the 

entire equation by mass 𝑚 to make them forces (since 𝐹 = 𝑚𝑎): 

* The first bullet is actually referring to the term 𝑚𝜔0
2𝑥 (if we consider 𝑚𝑥̈ +

𝑚𝛾𝑥̇ + 𝑚𝜔0
2𝑥 = 0). The slide simplifies this to "omega sub zero squared x : 

restoring force −𝑘𝑥." Recall that 𝜔0
2 is equal to 

𝑘

𝑚
, where 'k' is the spring 

constant. So, 𝑚𝜔0
2𝑥 is simply 𝑘𝑥. This term, −𝑘𝑥 (the minus sign indicates 

it's a restoring force, always acting to pull the displacement 𝑥 back towards 

equilibrium), is Hooke's Law. It's the spring force that tries to bring the 

oscillating charge back to its central position. 

* The second bullet point refers to the term 𝑚𝛾𝑥̇. The slide writes "gamma x 

dot : radiative friction (proportional to velocity)." This term, 𝑚𝛾𝑥̇ (or just 𝛾𝑥̇ if 

we're looking at the equation without the overall 𝑚 factor), represents the 

damping force. It's proportional to the velocity, 𝑥̇, and acts in the opposite 

direction to the velocity, hence it's a dissipative force. In our model, this 

"friction" is due to the energy being lost through the emission of 

electromagnetic radiation. It's what causes the oscillations to die down. The 

constant 𝛾 quantifies the strength of this radiative damping. 

* The third bullet point refers to 𝑚𝑥̈. The slide has "x double dot : inertial 

response." This term, 𝑚𝑥̈, is simply mass times acceleration, which from 

Newton's second law (𝐹 = 𝑚𝑎) is the net force. In the context of the 

equation rearranged as 𝑚𝑥̈ = −𝑘𝑥 −𝑚𝛾𝑥̇, it represents the inertial 

response of the mass 𝑚 to the sum of the restoring force and the damping 

force. It's the "ma" part of 𝐹 = 𝑚𝑎. 

So, the equation of motion, 𝑚𝑥̈ + 𝑚𝛾𝑥̇ + 𝑚𝜔0
2𝑥 = 0, is essentially a 

statement of Newton's second law: mass times acceleration (𝑚𝑥̈) equals 

the sum of the forces acting on the electron – the restoring spring-like force 

(−𝑚𝜔0
2𝑥) and the radiative damping force (−𝑚𝛾𝑥̇). Understanding these 



individual contributions is key to appreciating how the oscillator behaves. 

The interplay between the restoring force trying to sustain oscillations and 

the damping force trying to quell them dictates the entire dynamic. 
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Slide 4: Exact Solution with Clear Initial Conditions 

Now we move to "Slide 4: Exact Solution with Clear Initial Conditions." 

Having established the equation of motion, our next step is to solve it. 

The first bullet point specifies the initial conditions we'll use: "Choose initial 

displacement 𝑥(0) = 𝑥0 and initial velocity 𝑥̇(0) = 0." This means at time 

𝑡 = 0, our classical oscillator (the electron) is pulled aside to some 

maximum displacement, 𝑥0, and then released from rest. This is a common 

and convenient set of initial conditions. It's like pulling a pendulum bob to 

one side and letting it go without giving it an initial push. 

The second bullet point addresses how we find the solution: "Characteristic 

equation 

𝑟2 + 𝛾𝑟 + 𝜔0
2 = 0 

yields roots..." For a second-order linear homogeneous differential equation 

like ours, 

𝑥̈ + 𝛾𝑥̇ + 𝜔0
2 𝑥 = 0, 

we assume a solution of the form 𝑥(𝑡) = 𝑒𝑟𝑡. Substituting this into the 

differential equation leads to the characteristic (or auxiliary) quadratic 

equation for 'r': 

𝑟2 + 𝛾𝑟 + 𝜔0
2 = 0. 

The roots of this quadratic equation, 𝑟1 and 𝑟2, are given by the standard 

quadratic formula: 



𝑟1,2 = −
𝛾

2
± √

𝛾2

4
− 𝜔0

2 . 

This can be rewritten, as shown on the slide, by factoring out an 𝑖 (the 

imaginary unit, √−1) from the square root term if 
𝛾2

4
 is less than 𝜔0

2 (which is 

the underdamped case, typical for optical transitions as 𝛾 is small): 

𝑟1,2 = −
𝛾

2
± 𝑖√𝜔0

2 −
𝛾2

4
. 

The slide then simplifies the notation: 

−
𝛾

2
± 𝑖𝜔. 

This leads to the third bullet point: "Define the damped oscillation frequency 

𝜔." The term 𝜔 here, which is 𝜔 = √𝜔0
2 −

𝛾2

4
, is the actual angular 

frequency of the damped oscillations. Notice that it's slightly less than 𝜔0, 

the natural undamped frequency, due to the presence of damping (𝛾). 

However, as we discussed, for weak damping (𝛾 ≪ 𝜔0), 
𝛾2

4
 will be very 

small compared to 𝜔0
2, so 𝜔 will be very close to 𝜔0. 

These roots, 𝑟1 and 𝑟2, are complex conjugates: 

𝑟1 = −
𝛾

2
+ 𝑖𝜔 and 𝑟2 = −

𝛾

2
− 𝑖𝜔. 

They are crucial for constructing the general solution for 𝑥(𝑡). 

Page 11: 

Continuing from the previous page where we found the roots of the 

characteristic equation, we now define the damped oscillation frequency 

and present the solution. 



First, the explicit definition of the damped angular frequency, 𝜔, is given: 

“ 

𝜔 = √𝜔0
2 −

𝛾2

4
  [rad s

−1
] 

” 

As mentioned, this 𝜔 is the angular frequency at which the system actually 

oscillates when damping is present. It's in radians per second. The term 
𝛾2

4
 

under the square root shows how damping reduces the oscillation 

frequency compared to the undamped frequency 𝜔0. For the weak 

damping case typical in atomic physics (𝛾 much smaller than 𝜔0), 𝜔 is very, 

very close to 𝜔0. 

Next, the slide presents: “The real-valued solution matching the initial 

conditions is...” 

Recall our initial conditions were 𝑥(0) = 𝑥0 (initial displacement) and 𝑥̇(0) =

0 (initial velocity zero). Given the complex conjugate roots 

𝑟1,2 = −
𝛾

2
± 𝑖 𝜔, 

the general solution for 𝑥(𝑡) is of the form 

𝑥(𝑡) = 𝑒−
𝛾𝑡
2 (𝐴cos(𝜔𝑡) + 𝐵sin(𝜔𝑡)). 

Applying the initial conditions allows us to solve for the constants 𝐴 and 𝐵. 

The result, as shown, is: 

“ \[x(t) = x_0\, e^{-\frac{\gamma t}{2}} \left\[ \cos(\omega t) + 

\frac{\gamma}{2\omega}\, \sin(\omega t) \right] 

” 



Let's analyze this solution: 

1. “ x_0 ”: This is the initial amplitude, setting the overall scale of the 

oscillation. 

2. “ e^{-\frac{\gamma t}{2}} ”: This is an exponential decay term. It shows 

that the amplitude of the oscillation decreases exponentially with time, with 

a decay rate constant of \frac{\gamma}{2}. This is the direct consequence 

of the damping. If \gamma were zero (no damping), this term would be 1, 

and the amplitude would remain constant. 

3. “\cos(\omega t) + \frac{\gamma}{2\omega}\, \sin(\omega t)”: This part 

describes the oscillatory behavior. It's a sum of a cosine and a sine term, 

both oscillating at the damped angular frequency \omega. The relative 

amplitudes of the cosine and sine terms are determined by the initial 

conditions and the damping factor \gamma. The \frac{\gamma}{2\omega} 

factor in front of the sine term arises from satisfying the \dot{x}(0)=0 

condition. 

This equation for x(t) is the complete description of how our classical 

electron's displacement changes over time, given our chosen initial state. It 

shows an oscillation whose amplitude is exponentially decaying. This 

decaying oscillation is key to understanding why the emitted light is not 

monochromatic. 
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This page presents a graph illustrating the solution we just derived: 

"Damped Harmonic Oscillator: x(0)=x_0, \dot{x}(0)=0". 

Let's examine the graph's features: 

The vertical axis is "Displacement x(t) [m]", representing the displacement 

of our oscillator in meters. It ranges roughly from -1.01 to 1.01. The 

horizontal axis is "Time t [s]", in seconds, ranging from 0 to about 5.5 

seconds in this particular plot. 



The solid blue line is the actual plot of x(t) versus t. You can clearly see the 

characteristic behavior of a damped oscillation: 1. At t=0, the displacement 

is at its maximum initial value, x_0 (which is 1.0 meter according to the 

parameters listed). 2. The displacement then oscillates back and forth 

around the equilibrium position (x=0). 3. The amplitude of these oscillations 

progressively decreases over time. This reduction in amplitude is governed 

by the exponential decay term e^{-\gamma t/2} that we saw in the solution. 

The dashed gray lines form an envelope around the blue oscillatory curve. 

These lines represent \pm x_0 e^{-\gamma t/2}. The blue curve always 

stays within this decaying exponential envelope. This visually emphasizes 

the exponential decay of the oscillation's amplitude. 

The parameters used for this specific plot are listed at the top: * 

"x_0=1.0\,\text{m}" (initial displacement) * "\gamma=0.8\,\text{s}^{-1}" 

(damping constant) * "\omega_0=4.0\,\text{rad s}^{-1}" (natural undamped 

angular frequency) 

From these, the damped angular frequency \omega is calculated as 

"\omega=3.98\,\text{rad s}^{-1}". Notice how, even with a \gamma of 0.8 

and an \omega_0 of 4.0 (so \gamma is not extremely small compared to 

\omega_0 in this illustrative plot, it's 20%), \omega is still quite close to 

\omega_0 (3.98 vs 4.0). In real atomic systems, \gamma would be many 

orders of magnitude smaller than \omega_0, making \omega virtually 

indistinguishable from \omega_0. 

This graph is a perfect visual representation of the mathematical solution 

for x(t). It shows the "ringing down" of the oscillator, which is the classical 

picture of an atom emitting a wavetrain of finite duration and decaying 

amplitude. 
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We now move to "Slide 5: Small-Damping Approximation and Atomic 

Frequency Link." This is where we leverage the physical reality of atomic 

systems to simplify our mathematical description. 

The first bullet point states the condition for the "Optical regime: \gamma 

much, much less than \omega_0 , implies \omega is approximately equal to 

\omega_0 ." As we've discussed, for most optical transitions in atoms, the 

damping constant \gamma (related to the inverse lifetime of the excited 

state) is very significantly smaller than the natural oscillation frequency 

\omega_0 (related to the transition energy). When \gamma is much smaller 

than \omega_0 , the term \gamma^2/4 in the expression for \omega 

(square root of \omega_0^2 - \gamma^2/4 ) becomes negligible compared 

to \omega_0^2 . Thus, the damped frequency \omega becomes almost 

identical to the undamped frequency \omega_0 . This is an excellent 

approximation for atomic systems. 

The second bullet point discusses a simplification of our solution for x(t) 

based on this: "Term \frac{\gamma}{2\omega} times sine of \omega t is of 

order \gamma/\omega_0 ; neglecting it introduces a relative error less than 

10^{-7} for typical atoms." Recall our full solution for x(t) was 

x(t) = x_0\, e^{-\gamma t/2} \left[\cos(\omega t) + \frac{\gamma}{2\omega} 

\sin(\omega t)\right]. 

The term \frac{\gamma}{2\omega} multiplies the \sin(\omega t) part. Since 

\omega is approximately \omega_0 , this coefficient is of the order 

\frac{\gamma}{2\omega_0} . Because \gamma is much, much smaller than 

\omega_0 , this coefficient is very small. For typical atomic parameters, the 

contribution of this sine term to the overall amplitude is extremely tiny. 

Neglecting this small sine term simplifies the expression for x(t) 

considerably, and the error introduced by doing so is usually very small, on 

the order of 10^{-7} or even less, which is often negligible in the context of 

lineshape calculations. 



This leads to the third bullet point, which presents the simplified form of the 

motion: "Simplified, yet extremely accurate, motion becomes x(t) equals 

x_0 , e^{-\gamma t/2} , times cosine of \omega_0 t ." Here, we've done two 

things: 1. We've dropped the small \frac{\gamma}{2\omega} \sin(\omega t) 

term. 2. We've approximated the damped frequency \omega by the 

undamped natural frequency \omega_0 in the cosine term, as per the first 

bullet point. 

This expression, 

x(t) = x_0\, e^{-\gamma t/2} \cos(\omega_0 t), is much simpler. It describes 

an oscillation at the natural frequency \omega_0 , whose amplitude x_0\, 

e^{-\gamma t/2} decays exponentially with a rate constant \gamma/2 . This 

is the form we will predominantly use for our subsequent analysis, 

particularly for the Fourier transform, because it captures the essential 

physics very accurately under the weak damping condition. 
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This page focuses on how we "Identify atomic frequency" within our 

classical model and link it to the quantum mechanical description. 

The first bullet point presents the key relationship: 

\omega_0 = 2\pi \nu_0 = \omega_{ik} = \frac{E_\text{i} - E_\text{k}}{\hbar}. 

Let's unpack this. 

* \omega_0 is the natural angular frequency of our classical oscillator (in 

radians per second). 

* 2\pi \nu_0 relates this angular frequency \omega_0 to the ordinary 

frequency \nu_0 (in Hertz), which is often more directly measured in 

experiments. 

* \omega_{ik} is the angular frequency associated with the quantum 

transition between an initial state 'i' and a final state 'k'. 



* \frac{E_\text{i} - E_\text{k}}{\hbar} is the Bohr frequency condition from 

quantum mechanics. It states that the energy difference between the two 

quantum states, E_\text{i} - E_\text{k}, when divided by the reduced Planck 

constant \hbar, gives the angular frequency of the photon emitted or 

absorbed during the transition. 

So, this equation establishes the crucial link: the natural oscillation 

frequency \omega_0 of our classical model is identified with the Bohr 

transition frequency \omega_{ik} determined by the energy level structure 

of the atom. This is how our classical model connects to the quantum 

reality of atomic energy levels. 

The second bullet point simply defines: \nu_0 : optical frequency [Hz]. 

This is the central frequency of the spectral line we are considering, 

typically in the optical range (hundreds of terahertz for visible light). 

The third bullet point gives the value of the reduced Planck constant: 

\hbar = 1.054571817 \times 10^{-34}\,\text{J s}. 

This fundamental constant appears everywhere in quantum mechanics 

and, through the Bohr condition, links energy differences to frequencies. 

So, the central frequency of our decaying classical oscillator is set by the 

energy spacing of the atomic levels involved in the transition. The damping 

of this oscillation, characterized by \gamma, will determine the width of the 

spectral line around this central frequency. 
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Now we address a pivotal question with "Slide 6: Why a Frequency 

Distribution Appears." We have a decaying oscillation; how does that lead 

to a spread of frequencies, i.e., a lineshape? 

The first bullet point sets up a contrast: "Constant-amplitude oscillation 

implies a single frequency." If our classical oscillator were to oscillate 



forever with a constant amplitude at frequency \omega_0 (i.e., if \gamma 

were zero), its Fourier transform would be a delta function at \omega_0. It 

would emit perfectly monochromatic light at that single frequency. This is 

the ideal, infinitely sharp line we saw earlier. 

The second bullet point explains the consequence of damping: 

"Exponential decay multiplies the cosine; time truncation introduces a 

spread in frequency (Fourier theorem)." However, our oscillator's amplitude 

is not constant. It's given by 

x(t) = x_0 \, e^{-\frac{\gamma t}{2}} \cos(\omega_0 t) 

We have a cosine wave whose amplitude is being modulated (multiplied) 

by an exponential decay function. This exponential decay effectively 

"truncates" the wave in time; it doesn't last forever. A fundamental result 

from Fourier analysis (often called the time-frequency uncertainty principle, 

though here more directly related to the properties of Fourier transforms) 

states that if a signal is limited in duration (truncated in time), its frequency 

spectrum must be spread out. A signal that exists for all time can be a 

single frequency. A signal that exists for a finite time, or whose amplitude 

decays, cannot be a single frequency. The shorter the duration in time, the 

broader the spread in frequency. The exponential decay acts as a smooth 

kind of truncation, and this directly leads to a broadening of the frequency 

content. 

The third bullet point states our "Goal: Determine the amplitude spectrum 

A(\omega) such that x of t equals 1 over the square root of (2 pi), times the 

integral from 0 to infinity, of A(\omega), e to the power of (i \omega t), 

d\omega." This equation expresses x(t) as an inverse Fourier transform of 

some function A(\omega). A(\omega) is called the amplitude spectrum or 

frequency spectrum. It tells us how much "amplitude" or "strength" is 

associated with each angular frequency \omega in the constitution of our 

time-domain signal x(t). Our objective is to find this A(\omega). The integral 

is shown from 0 to infinity, which is one convention for the inverse Fourier 



transform; often it's from minus infinity to plus infinity, and the prefactor 

might vary depending on the Fourier transform convention used. The slide 

seems to use a specific convention where A(\omega) would then be found 

using an integral from minus infinity to plus infinity for the forward 

transform. Let's clarify the one on the slide: 

x(t) = \frac{1}{2\sqrt{2\pi}} \int_{0}^{\infty} A(\omega) e^{i\omega t} \, 

d\omega 

This seems to be a slightly non-standard form, possibly for a specific 

context or a typo; usually the prefactor for the symmetric FT pair is 

1/\sqrt{2\pi} or 1/(2\pi) and 1. However, the core idea is that x(t) is a 

superposition of pure sinusoids e^{i\omega t} with amplitudes given by 

A(\omega). 

The final bullet point highlights the "Key mathematical tool: Fourier 

transform of x(t)." To find A(\omega), we need to compute the Fourier 

transform of our time-domain signal 

x(t) = x_0 \, e^{-\frac{\gamma t}{2}} \cos(\omega_0 t) 

The Fourier transform will decompose this decaying oscillation into its 

constituent frequencies, revealing the spectral lineshape. This is the 

mathematical bridge from the time-domain behavior (damped oscillation) to 

the frequency-domain observation (spectral line profile). 
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This page offers a "Conceptual Diagram: Damped Oscillation and 

Frequency Broadening," which beautifully visualizes the connection 

between the time domain and frequency domain descriptions. 

On the left side, we have a plot labeled "Time Domain: Damped 

Oscillation." 

- The vertical axis is "Amplitude x(t) ". - The horizontal axis is "Time ( t )". - 

The blue curve shows x(t) = x_0 \, e^{-\gamma t/2} \, \cos(\omega_0 t) . It's 



an oscillation starting at a maximum amplitude at t = 0 and then decaying 

exponentially. The specific values on the time axis are 0.0, 1.0, 2.0. - Red 

dashed lines show the exponential envelope plus or minus x_0 \, e^{-

\gamma t/2} , within which the blue oscillation is contained. 

An arrow labeled "Fourier Transform" points from this time-domain plot to 

the right-side plot. This signifies that we apply the mathematical operation 

of a Fourier transform to the signal x(t) . 

On the right side, we have a plot labeled "Frequency Domain: Amplitude 

Spectrum." 

- The vertical axis is labeled " |A(\omega)| ", representing the magnitude of 

the amplitude spectrum. There are values 0.63 and 1.25 marked. - The 

horizontal axis is "Angular Frequency ( \omega )". It's centered at " 

\omega_0 ", which is also identified as the "Atomic transition angular 

frequency ( \omega_{ik} ) = \frac{E_\text{i} - E_\text{k}}{\hbar} ". This 

explicitly links the center of the spectrum to the atomic energy levels. - The 

orange curve shows the resulting amplitude spectrum |A(\omega)| . This is 

the Lorentzian profile we've been discussing. It peaks at \omega = 

\omega_0 and falls off symmetrically on either side. - A horizontal dotted 

line is drawn at half the maximum amplitude, and a double-headed arrow 

indicates the " \text{FWHM} = \gamma ". This visually demonstrates that 

the full width at half maximum of this Lorentzian spectral profile is equal to 

the damping constant \gamma from our time-domain equation. (Note: The 

label actually says \text{FWHM} = \sqrt{\gamma} which seems like a typo, it 

should be \text{FWHM} = \gamma in angular frequency for the intensity, or 

related to \gamma for the amplitude spectrum depending on the exact 

definition and normalization. Given the later slides, FWHM in angular 

frequency for intensity is \gamma . Let's assume for now that \gamma is 

indeed the characteristic width parameter.) 

This diagram is extremely powerful. It shows that a cosine wave that is 

exponentially damped in the time domain (finite effective duration) 



transforms into a Lorentzian lineshape in the frequency domain. The faster 

the decay in time (larger \gamma ), the broader the Lorentzian in frequency 

(larger \text{FWHM} ). This is the essence of natural broadening. 

Page 17: 

Slide 7: Step-by-Step Evaluation of the Fourier Transform 

Now we get into the mathematics with "Slide 7: Step-by-Step Evaluation of 

the Fourier Transform." We're going to calculate A(\omega) from our x(t). 

The first bullet says: "Start with..." and presents the formula for A(\omega): 

A(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t)\, e^{-i\omega t}\, dt. 

This is a standard definition of the Fourier transform. A(\omega) is the 

complex amplitude of the frequency component \omega in the signal x(t). 

The factor \frac{1}{\sqrt{2\pi}} is a common normalization for the Fourier 

transform pair. 

The second bullet point applies a simplification: "Because x(t<0) = 0, 

change lower limit to 0." Our physical model for x(t), the decaying 

oscillation, starts at t=0. We assume x(t) is zero for all times t less than 0. 

This means the integrand is zero for t < 0, so we can change the lower limit 

of integration from -\infty to 0 without changing the result. So, A(\omega) 

becomes 

A(\omega) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} x(t)\, e^{-i\omega t}\, dt. 

The third bullet point is: "Substitute x(t) = x_{0}\, e^{-\frac{\gamma t}{2}} 

\cos(\omega_0 t)." This is our simplified, yet accurate, expression for the 

damped oscillation from Slide 13. We plug this into the integral. 

A(\omega) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} \left[ x_{0}\, e^{-

\frac{\gamma t}{2}} \cos(\omega_0 t) \right] e^{-i\omega t}\, dt. 

We can take the constant x_{0} outside the integral. 



The fourth bullet point suggests a way to handle the cosine term: "Express 

\cos(\omega_0 t) = \frac{1}{2}\left[e^{i\omega_0 t} + e^{-i\omega_0 t}\right] 

to integrate term-by-term." This is Euler's formula for cosine. Substituting 

this will convert the cosine into two complex exponential terms. The integral 

will then involve products of exponentials, which are easier to integrate. So, 

\cos(\omega_0 t)e^{-i\omega t} becomes 

\frac{1}{2} \left[e^{i\omega_0 t} e^{-i\omega t} + e^{-i\omega_0 t} e^{-

i\omega t}\right], 

which simplifies to 

\frac{1}{2}\left[e^{-i(\omega - \omega_0)t} + e^{-i(\omega + 

\omega_0)t}\right]. 

Each of these terms is then multiplied by the decay factor e^{-\frac{\gamma 

t}{2}}. This sets up the integral for evaluation. 
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Continuing with the Fourier transform calculation, this page shows the 

integral after substituting Euler's formula for the cosine and combining 

exponents: 

"A of omega equals \frac{x_0}{2\sqrt{2\pi}} times the integral from 0 to \infty 

, of e^{-\frac{\gamma t}{2}} times, in square brackets, [ e^{i(\omega_0 - 

\omega)t} plus e^{-i(\omega_0 + \omega)t} ], dt ." 

Let's look at the terms inside the square brackets combined with the e^{-

\frac{\gamma t}{2}} term: The first term in the integrand becomes: e^{-

\frac{\gamma t}{2}} \times e^{i(\omega_0 - \omega)t} = e^{\left(-

\frac{\gamma}{2} + i(\omega_0 - \omega)\right)t} . 

The second term in the integrand becomes: e^{-\frac{\gamma t}{2}} \times 

e^{-i(\omega_0 + \omega)t} = e^{\left(-\frac{\gamma}{2} - i(\omega_0 + 

\omega)\right)t} . 



Notice that I've slightly rearranged the exponent in the first term inside the 

square brackets to group the real and imaginary parts for easier 

comparison with the standard integral form shown next. The slide has 

e^{i(\omega_0-\omega)t} , which is fine. My grouping is for foresight. Let's 

write it as: 

e^{-\left(\frac{\gamma}{2} - i(\omega_0 - \omega)\right)t} for the first part, 

and 

e^{-\left(\frac{\gamma}{2} + i(\omega_0 + \omega)\right)t} for the second 

part. 

The next bullet point provides the key to solving this: "Each exponential 

integral uses..." The integral of e^{-(a - i b)t} \, dt , from 0 to \infty , equals 

\frac{1}{a - i b} , provided that a > 0 . 

This is a standard result for the Laplace transform of 1, or simply 

integrating an exponential. The condition a > 0 ensures that the exponential 

decays to zero as t goes to infinity, so the integral converges. In our case, a 

will be \frac{\gamma}{2} . Since \gamma is a positive damping constant, 

\frac{\gamma}{2} is indeed greater than 0, so the integral will converge. 

The final bullet point helps us "Identify a = \frac{\gamma}{2} , b = \omega - 

\omega_0 , or b = \omega + \omega_0 ." 

Let's be careful here with the signs. For the first term in our integral, 

e^{\left(-\frac{\gamma}{2} + i(\omega_0 - \omega)\right)t} , we can write the 

exponent as -\left( \frac{\gamma}{2} - i(\omega_0 - \omega) \right)t. 

Comparing this to e^{-(a - i b)t} , we have: 

   a = \frac{\gamma}{2}    b = \omega_0 - \omega . 

So the integral of this part will be \frac{1}{\frac{\gamma}{2} - i(\omega_0 - 

\omega)} . Or, as the slide suggests by taking b = \omega - \omega_0 , the 

exponent is -\left(\frac{\gamma}{2} - i(\omega - \omega_0)(-1)\right)t = -



\left(\frac{\gamma}{2} + i(\omega - \omega_0)\right)t which is not quite 

matching the form -(a-i b)t unless b = -(\omega-\omega_0) . 

Let's re-examine the first term: e^{i(\omega_0 - \omega)t} \times e^{-

\frac{\gamma t}{2}} . This is e^{-\left(\frac{\gamma}{2} - i(\omega_0 - 

\omega)\right)t} . So, comparing to e^{-\alpha t} \, dt = \frac{1}{\alpha} , our 

\alpha here is \frac{\gamma}{2} - i(\omega_0 - \omega) . So the first integral 

is \frac{1}{\frac{\gamma}{2} - i(\omega_0 - \omega)} . 

For the second term in our integral, e^{-i(\omega_0 + \omega)t} \times e^{-

\frac{\gamma t}{2}} . This is e^{-\left(\frac{\gamma}{2} + i(\omega_0 + 

\omega)\right)t} . Comparing to e^{-\alpha t} , our \alpha here is 

\frac{\gamma}{2} + i(\omega_0 + \omega) . So the second integral is 

\frac{1}{\frac{\gamma}{2} + i(\omega_0 + \omega)} . 

Let's use the slide's formulation: exponent is -(a-i b)t . For the first term: 

e^{i(\omega_0-\omega)t} \, e^{-\frac{\gamma t}{2}} = e^{-

\left(\frac{\gamma}{2} - i(\omega_0-\omega)\right)t} . Here, a = 

\frac{\gamma}{2} , and we want to write -i(\omega_0-\omega) as + i b . So 

b = -(\omega_0-\omega) = \omega - \omega_0 . The integral is \frac{1}{a - i 

b} = \frac{1}{\frac{\gamma}{2} - i(\omega - \omega_0)} . This doesn't match 

the slide's next step. 

Let's look ahead to slide 19: A(\omega) has denominators i(\omega-

\omega_0) + \frac{\gamma}{2} . This means the integral was 

\frac{1}{\frac{\gamma}{2} - i(\omega_0-\omega)} which is 

\frac{1}{\frac{\gamma}{2} + i(\omega-\omega_0)} . This matches! 

Okay, so if we have integral of e^{-Pt} \, dt = \frac{1}{P} . First term: P_1 = 

\frac{\gamma}{2} - i(\omega_0 - \omega) = \frac{\gamma}{2} + i(\omega - 

\omega_0) . Second term: P_2 = \frac{\gamma}{2} + i(\omega_0 + \omega) 

. 

So, using P_1 and P_2 : 



A(\omega) = \frac{x_0}{2\sqrt{2\pi}} \left[ \frac{1}{\frac{\gamma}{2} + 

i(\omega - \omega_0)} + \frac{1}{\frac{\gamma}{2} + i(\omega + \omega_0)} 

\right] 

This looks like the structure on the next page. The slide's "Identify a = 

\frac{\gamma}{2},\ b = \omega - \omega_0, or b = \omega + \omega_0 " is 

a bit compressed. Essentially, for the first term of the form e^{i(\omega_0-

\omega)t - \gamma t/2} , the effective decay rate is \frac{\gamma}{2} - 

i(\omega_0-\omega) . So the integral is \frac{1}{\frac{\gamma}{2} - 

i(\omega_0-\omega)} . For the second term of the form e^{-

i(\omega_0+\omega)t - \gamma t/2} , the effective decay rate is 

\frac{\gamma}{2} + i(\omega_0+\omega) . So the integral is 

\frac{1}{\frac{\gamma}{2} + i(\omega_0+\omega)} . We need to be careful 

with signs. \frac{1}{\frac{\gamma}{2} - i(\omega_0-\omega)} = 

\frac{1}{\frac{\gamma}{2} + i(\omega-\omega_0)} . This is the first term in 

the result on page 19. \frac{1}{\frac{\gamma}{2} + i(\omega_0+\omega)} = 

\frac{1}{\frac{\gamma}{2} + i(\omega+\omega_0)} . This is the second term. 

Perfect, this works out. 
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Slide 8: Resulting Amplitude Spectrum 

After performing the integrations from the previous step, we arrive at the 

expression for A(\omega) . 

The first bullet point says: "Carrying out the integrations yields..." 

A(\omega) = \frac{x_0}{\sqrt{8\pi}} \left[ \frac{1}{\frac{\gamma}{2} + 

i\left(\omega - \omega_0\right)} + \frac{1}{\frac{\gamma}{2} + i\left(\omega + 

\omega_0\right)} \right]. 

Let's check the constant. We had \frac{x_0}{2\sqrt{2\pi}} . If we write 2 as 

\sqrt{4} , then 

2\sqrt{2\pi} = \sqrt{4} \cdot \sqrt{2\pi} = \sqrt{8\pi}. 



So the prefactor \frac{x_0}{\sqrt{8\pi}} is correct. 

The terms in the bracket are: 

First term: \frac{1}{\frac{\gamma}{2} + i\left(\omega - \omega_0\right)} . This 

matches. 

Second term: \frac{1}{\frac{\gamma}{2} + i\left(\omega + \omega_0\right)} . 

This matches. 

So, this expression for A(\omega) is the Fourier transform of our damped 

cosine wave. This is the complex amplitude spectrum. 

The second bullet point prompts us to consider the "Physical meaning of 

each denominator term." The denominators are crucial because their 

magnitudes determine the strength of A(\omega) . A(\omega) will be large 

when a denominator is small. 

Let's look at the third bullet: "First term: frequencies near \omega_0 

(resonant part)." The first denominator is \frac{\gamma}{2} + i\left(\omega - 

\omega_0\right) . This term becomes small (specifically, its imaginary part 

i\left(\omega - \omega_0\right) goes to zero) when the driving frequency 

\omega is very close to the natural frequency \omega_0 . When \omega = 

\omega_0 , the denominator is just \frac{\gamma}{2} , which is small (since 

\gamma is small). Therefore, this first term in the square brackets will be 

large when \omega is near \omega_0 . This is the "resonant" part of the 

spectrum. It describes the strong response or emission near the atom's 

natural transition frequency. This term will dominate the lineshape. 

Now, the fourth bullet: "Second term: anti-resonant component near minus 

\omega_0 ; negligible around optical \omega approximately equal to 

\omega_0 ." The second denominator is \frac{\gamma}{2} + i\left(\omega + 

\omega_0\right) . This term would become small if \omega were close to -

\omega_0. Since physical frequencies \omega are positive, and \omega_0 

is a positive optical frequency (e.g., hundreds of terahertz), \omega would 

have to be a large negative frequency for this term to be resonant. For 



positive optical frequencies \omega that are near the positive \omega_0 

(where the first term is resonant), the term \omega + \omega_0 is 

approximately 2\omega_0 , which is very large. Thus, i\left(\omega + 

\omega_0\right) + \frac{\gamma}{2} is large, and \frac{1}{i\left(\omega + 

\omega_0\right) + \frac{\gamma}{2}} is very small. This second term is 

often called the "anti-resonant" or "counter-rotating" term. In most 

spectroscopic situations in the optical regime, where we are probing 

frequencies \omega near the positive \omega_0 , the contribution of this 

second term is utterly negligible compared to the first term, because 

2\omega_0 is much, much larger than \frac{\gamma}{2} . 

So, for practical purposes in laser spectroscopy, we can often ignore the 

second term when we are interested in the spectral line around \omega_0 . 

Page 20: 

This page continues the discussion from the previous one, focusing on the 

approximation of neglecting the anti-resonant term. 

The bullet point states: "We retain only the resonant denominator when the 

absolute value of \omega - \omega_0 is much, much less than \omega_0 ." 

This condition, |\omega - \omega_0| \ll \omega_0 , defines the region "near 

resonance." When we are looking at frequencies \omega that are very 

close to the central transition frequency \omega_0 , the first term in 

A(\omega) (the resonant term) will be dominant. 

In this regime, the first denominator, \frac{\gamma}{2} + i (\omega - 

\omega_0) , can become small if \omega is close to \omega_0 . The 

second denominator, \frac{\gamma}{2} + i (\omega + \omega_0) , will have 

\omega + \omega_0 \approx 2\omega_0 . Since \gamma is much smaller 

than \omega_0 , \frac{\gamma}{2} is much smaller than 2\omega_0 . So the 

second denominator is approximately i(2\omega_0) , and its magnitude is 

large. 



Therefore, the first term, \frac{1}{\frac{\gamma}{2} + i (\omega - \omega_0)} 

, will be much larger than the second term, \frac{1}{\frac{\gamma}{2} + i 

(\omega + \omega_0)} . This justifies neglecting the second (anti-resonant) 

term. This approximation is extremely common and accurate for optical 

spectroscopy. It's sometimes called the "rotating wave approximation" in 

other contexts, although here it arises directly from considering the 

magnitudes of the terms. 

By retaining only the resonant term, our expression for A(\omega) simplifies 

significantly: 

A(\omega) \approx \frac{x_0}{\sqrt{8\pi}} \frac{1}{\frac{\gamma}{2} + i 

(\omega - \omega_0)} 

This simplified A(\omega) will be used to derive the intensity profile of the 

spectral line. 
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Now we arrive at "Slide 9: Intensity Profile and Emergence of the 

Lorentzian." We've found the amplitude spectrum A(\omega) ; now we want 

the intensity, which is what is typically measured. 

The first line states: "Spectral intensity I(\omega) of \omega is proportional 

to A(\omega) times A^(\omega) (which is the magnitude of A(\omega) 

squared)." The intensity of the emitted light at a given frequency \omega is 

proportional to the square of the magnitude of the complex amplitude 

A(\omega) . A^(\omega) denotes the complex conjugate of A(\omega) . So, 

I(\omega) is proportional to |A(\omega)|^2. 

The first bullet point applies the approximation from the previous page: 

"Near resonance, drop anti-resonant term to obtain..." Using our simplified 

A(\omega) which is approximately 

\frac{x_0}{\sqrt{8\pi}} \left[\frac{1}{\frac{\gamma}{2} + i(\omega - 

\omega_0)}\right], 



we calculate |A(\omega)|^2. 

The magnitude squared of \frac{1}{X + iY} is \frac{1}{X^2 + Y^2}. Here, X = 

\frac{\gamma}{2} and Y = (\omega - \omega_0) . 

So, |A(\omega)|^2 is proportional to \frac{x_0^2}{8\pi} times 

\frac{1}{\left(\frac{\gamma}{2}\right)^2 + (\omega - \omega_0)^2}. The 

intensity I(\omega - \omega_0) is therefore proportional to this quantity. The 

slide writes this as: 

I(\omega - \omega_0) = \frac{C}{(\omega - \omega_0)^2 + 

\left(\frac{\gamma}{2}\right)^2}. 

This is the celebrated Lorentzian lineshape function! It describes the 

spectral profile of the light emitted by our damped classical oscillator, and 

by analogy, the natural lineshape of an atomic transition. 

The variable is effectively the detuning from resonance, (\omega - 

\omega_0). The function peaks when \omega = \omega_0 (detuning is 

zero) and falls off as the square of the detuning. The width of the peak is 

determined by \gamma. 

The second bullet point defines C : "C : constant determined by chosen 

normalisation." The constant C incorporates factors like x_0^2 , 

\frac{1}{8\pi}, and any other proportionality constants. Its exact value 

depends on how we want to normalize the intensity profile (e.g., peak 

intensity to be 1, or area under the curve to be 1). 

The third bullet point explicitly states: "Functional form 1 divided by (x 

squared plus a squared) is the Lorentzian." Indeed, if we let x = (\omega - 

\omega_0) and a = \frac{\gamma}{2} , our intensity profile I is proportional 

to \frac{1}{x^2 + a^2}. This is the standard mathematical form of a 

Lorentzian function, also known as a Cauchy distribution in statistics. 



It's a beautiful result: the exponential decay in time (due to damping) 

Fourier transforms into a Lorentzian profile in frequency. This is the origin 

of the natural linewidth's characteristic shape. 
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This page displays a graph of the "Lorentzian Intensity Profile." Let's 

analyze it. 

The vertical axis is "Normalized Intensity," ranging from 0.0 to 1.0. This 

means the peak intensity of the Lorentzian has been set to 1 for this plot. 

The horizontal axis is "Frequency Offset (\omega - \omega_0)." This 

represents the detuning of the frequency \omega from the central 

resonance frequency \omega_0. The center of the plot is at an offset of 0, 

corresponding to \omega = \omega_0. The axis extends to values like -

\frac{3\gamma}{2}, -\gamma, -\frac{\gamma}{2} on the left, and 

\frac{\gamma}{2}, \gamma, \frac{3\gamma}{2} on the right. 

The blue curve is the Lorentzian profile itself. Key features: 

1. It peaks at a frequency offset of 0 (i.e., at \omega = \omega_0), where its 

normalized intensity is 1.0. 

2. It is symmetric around this peak. 

3. It falls off as it moves away from the center, but it has relatively "heavy" 

tails compared to, say, a Gaussian profile. This means it decreases more 

slowly at large detunings. 

4. The crucial feature highlighted is the Full Width at Half Maximum 

(FWHM). A horizontal dashed line is drawn at a normalized intensity of 0.5 

(half the maximum). This line intersects the Lorentzian curve at two points. 

Vertical dashed lines drop from these intersection points to the frequency 

offset axis. The left intersection point is at a frequency offset of -

\frac{\gamma}{2}. The right intersection point is at a frequency offset of 

+\frac{\gamma}{2}. The Full Width at Half Maximum (FWHM) is the 



difference between these two frequency offsets: 

\left(+\frac{\gamma}{2}\right) - \left(-\frac{\gamma}{2}\right) = \gamma. A 

green double-headed arrow explicitly labels "FWHM = \gamma". 

This is a very important result: For a Lorentzian intensity profile given by 

\frac{C}{\left(\omega - \omega_0\right)^2 + \left(\frac{\gamma}{2}\right)^2}, 

the FWHM in angular frequency units is exactly equal to the damping 

constant \gamma from our original equation of motion. This directly 

connects the rate of energy decay (damping) of the classical oscillator to 

the observable width of the spectral line. A larger \gamma (faster decay) 

leads to a wider spectral line. A smaller \gamma (slower decay) leads to a 

narrower spectral line. This is the natural linewidth. 
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Slide 10: Normalised Lorentzian — Definitions and FWHM. 

We're now on "Slide 10: Normalised Lorentzian — Definitions and FWHM." 

This section deals with how we precisely define and normalize the 

Lorentzian lineshape function. 

The first bullet point states a general property: "Total area under any 

spectral line is the integrated intensity." If we integrate the intensity profile 

I(\omega) over all frequencies (from -\infty to +\infty), we get a measure of 

the total energy or power in the line. This integrated intensity is a 

fundamental quantity. It's denoted here as I_0 : 

I_0 = \int_{-\infty}^{\infty} I(\omega) \, d\omega 

Here, I(\omega) is our unnormalized Lorentzian 

I(\omega) = \frac{C}{(\omega - \omega_0)^2 + (\gamma/2)^2} 

The next bullet point, "Set...", introduces a normalized lineshape function, 

L(\omega - \omega_0) : 

L(\omega - \omega_0) = \frac{I(\omega - \omega_0)}{I_0} 



What we're doing here is defining a new function, L , which is the original 

intensity profile I , divided by its total integrated intensity I_0 . The purpose 

of this is stated in the "so that" clause on the next page. 

This normalization ensures that the area under the curve L(\omega - 

\omega_0) is unity, which is a common convention for probability 

distributions or lineshape functions. It makes L(\omega - \omega_0) 

represent the probability density of emission/absorption occurring at a 

frequency offset (\omega - \omega_0) . 
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This page continues the discussion on the normalized Lorentzian. 

The first line completes the thought from the previous page: "so that the 

integral from -\infty to +\infty of L(\omega-\omega_0) \, d(\omega-

\omega_0) equals 1." Since L is I divided by I_0 (the integral of I ), the 

integral of L must be 1. This confirms that L(\omega-\omega_0) is a 

lineshape function normalized to unit area. The differential d(\omega-

\omega_0) is the same as d\omega since \omega_0 is a constant. 

Now, we need to find the constant C from our original 

I(\omega-\omega_0) = \frac{C}{(\omega-\omega_0)^2 + 

\left(\frac{\gamma}{2}\right)^2} 

such that this normalization holds when we construct L . The slide states: 

"Substituting and integrating fixes C ..." 

We need to calculate 

I_0 = \int_{-\infty}^{+\infty} \frac{C}{x^2 + a^2}\, dx, 

where x = \omega-\omega_0 and a = \frac{\gamma}{2} . The integral of 

\frac{1}{x^2 + a^2}\, dx 

is 



\frac{1}{a}\arctan\left(\frac{x}{a}\right). 

Evaluated from -\infty to +\infty , \arctan\left(\frac{x}{a}\right) goes from -

\frac{\pi}{2} to \frac{\pi}{2}, so the difference is \pi. Thus, the integral is 

\frac{1}{a} \pi = \frac{1}{(\gamma/2)}\pi = \frac{2\pi}{\gamma}. 

So, 

I_0 = C\cdot\frac{2\pi}{\gamma}. 

If we want the normalized L to be used to determine C in the context of the 

I_0 definition from the previous slide, it's a bit circular. Let's assume C is 

some constant from A(\omega)A^*(\omega) . The equation here says: "C 

equals I_0 times \gamma , divided by 2\pi ." This means that if our 

lineshape is 

I(\omega-\omega_0) = \frac{\frac{I_0\gamma}{2\pi}}{(\omega-\omega_0)^2 

+ \left(\frac{\gamma}{2}\right)^2}, 

then its integral from -\infty to +\infty will be I_0 . This is a self-consistent 

definition. C represents the numerator required for the overall integral to be 

I_0 . 

This leads to the "Final normalised profile" for L(\omega-\omega_0) , which 

is \frac{I(\omega-\omega_0)}{I_0} : "L of \omega-\omega_0 equals 

\frac{\gamma}{2\pi} divided by [ (\omega-\omega_0)^2 + 

\left(\frac{\gamma}{2}\right)^2\]." 

Let's check the normalization of this 𝐿. Its integral is 

𝛾

2𝜋
× ∫

1

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2  𝑑𝜔. 

We found this latter integral to be 
2𝜋

𝛾
. So, 

𝛾

2𝜋
×
2𝜋

𝛾
= 1. 



Correct! This 𝐿(𝜔 − 𝜔0) is normalized to have unit area. 

What is the peak value of this 𝐿? At 𝜔 = 𝜔0, the denominator is (
𝛾

2
)
2
. So, 

𝐿peak =
𝛾

2𝜋
/ (
𝛾2

4
) =

𝛾

2𝜋
×
4

𝛾2
=
2

𝜋𝛾
. 

This is an important form of the normalized Lorentzian. 

Page 25: 

This page summarizes the Full Width at Half Maximum (FWHM) 

relationships for our natural lineshape. 

The first bullet point reiterates: "Full width at half maximum (FWHM) in 

angular frequency..." For the Lorentzian profile 𝐿(𝜔 − 𝜔0) =
𝛾

2𝜋

(𝜔−𝜔0)
2+(

𝛾

2
)
2 , 

the peak value is 
2

𝜋𝛾
 at 𝜔 = 𝜔0. Half of this peak value is 

1

𝜋𝛾
. We need to 

find 𝜔 such that 𝐿(𝜔 − 𝜔0) =
1

𝜋𝛾
. So, 

𝛾
2𝜋

(𝛥𝜔half)
2 + (

𝛾
2
)
2 =

1

𝜋𝛾
, 

where 𝛥𝜔half is |𝜔 − 𝜔0| at the half-maximum point. This gives 

𝛾2

2
= (𝛥𝜔half)

2 + (
𝛾

2
)
2

. 

(𝛥𝜔half)
2 =

𝛾2

2
−
𝛾2

4
=

𝛾2

4
. So, 𝛥𝜔half =

𝛾

2
. The FWHM is twice this value, so 

FWHM𝜔 = 2 ×
𝛾

2
= 𝛾. Thus, as stated: 𝛥𝜔nat = 𝛾. The subscript ‘nat’ 

emphasizes this is the natural linewidth in angular frequency units. 

Alternatively, we often express linewidths in ordinary frequency (Hertz) 

rather than angular frequency (radians per second). Since 𝜔 = 2𝜋𝜈, a width 



𝛥𝜔 corresponds to a width 𝛥𝜈 =
𝛥𝜔

2𝜋
. So, the FWHM in ordinary frequency 

is: 𝛥𝜈nat =
𝛾

2𝜋
. 

The second bullet point clarifies notation: "Width notation 𝛥𝜈 uses ordinary 

frequency [Hz]." When you see 𝛥𝜈, it typically refers to the linewidth in 

Hertz. When you see 𝛥𝜔, it refers to the linewidth in radians per second. 

The relationship is always a factor of 2𝜋. 

So, the damping constant 𝛾 from our classical model, which we will soon 

connect to the atomic lifetime, directly gives the FWHM of the natural line in 

angular frequency units. This is a cornerstone result. 
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Slide 11: Alternative Gamma-Notation Common in Literature 

This page introduces "Slide 11: Alternative Gamma-Notation Common in 

Literature." Sometimes, a slightly different parameterization of the 

Lorentzian is used, especially in contexts involving resonance phenomena. 

The first bullet says: "Define half-width parameter 𝛤 =
𝛾

2
." Instead of using 𝛾 

(the full width at half maximum in angular frequency), some authors prefer 

to work with 𝛤, which is the half width at half maximum (HWHM) in angular 

frequency units. So, 𝛤 is just 𝛾 divided by 2. Remember, little 𝛾 is our 

damping constant. 

The second bullet shows how the "Spectral profile written as" 𝑔(𝜔 − 𝜔𝑖𝑘) 

looks using this 𝛤: 

𝑔(𝜔 − 𝜔𝑖𝑘) =
𝛤2

(𝜔𝑖𝑘 −𝜔)
2 + 𝛤2

. 

Here, 𝜔𝑖𝑘 is the resonant angular frequency (equivalent to our 𝜔0). Notice 

the term (𝜔𝑖𝑘 − 𝜔)
2 is the same as (𝜔 − 𝜔𝑖𝑘)

2. If we substitute 𝛤 =
𝛾

2
, this 

becomes: 



(
𝛾
2
)
2

(𝜔 − 𝜔𝑖𝑘)
2 + (

𝛾
2
)
2. 

This is one form. Let's check its peak value. When 𝜔 = 𝜔𝑖𝑘, 𝑔 =
𝛤2

𝛤2
= 1. So, 

this particular form is normalized such that its peak value is 1. The constant 

in the numerator is 𝛤2. 

Let's compare to our previous 

𝐿(𝜔 − 𝜔0) =

𝛾
2𝜋

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2 . 

Its peak was 
2

𝜋 𝛾
=

1

𝜋 𝛤
. So they are different normalizations. 

The third bullet confirms the peak value for this 𝑔: "Peak value 𝑔(𝜔𝑖𝑘) = 1 

when normalised so that 𝐼(𝜔𝑖𝑘) = 𝐼0." This statement seems to be mixing 

two ideas. If 𝑔(𝜔𝑖𝑘) = 1, that is one type of normalization (peak to unity). If 

the intensity at the peak 𝐼(𝜔𝑖𝑘) is 𝐼0 (where 𝐼0 is often the integrated 

intensity, or just the peak intensity value itself depending on context), that's 

slightly different. If this 𝑔 represents the lineshape such that 

𝐼(𝜔) = 𝐼peak ⋅ 𝑔(𝜔 − 𝜔𝑖𝑘), 

then yes, 𝑔(𝜔𝑖𝑘) = 1 implies 𝐼(𝜔𝑖𝑘) = 𝐼peak. 

The function 𝑔 shown, 

𝛤2

(𝜔𝑖𝑘 −𝜔)
2 + 𝛤2

, 

indeed has a peak value of 1 at 𝜔 = 𝜔𝑖𝑘. This function is often written as 

𝑔(𝜔) =
1

1 + (
𝜔 − 𝜔𝑖𝑘

𝛤
)
2 



if we divide numerator and denominator by 𝛤2. 

It's important to be aware of these different notations (𝛾 vs. 𝛤) and different 

normalizations (peak to unity, or area to unity) when reading literature, as 

they can sometimes cause confusion. The key physical parameter is 

always 𝛾 (or 𝛤 =
𝛾

2
), which sets the width. 
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Continuing with the alternative capital Gamma notation for the Lorentzian 

profile: 

The first bullet introduces a "Dimensionless detuning parameter chi": " 𝜒 =
𝜔𝑖𝑘−𝜔

𝛤
." Or, equivalently, 𝜒 =

𝜔−𝜔𝑖𝑘

𝛤
, if we absorb the minus sign (since it's 

often squared later or we consider magnitude). Let's stick to the slide: 𝜒 =
𝜔𝑖𝑘−𝜔

𝛤
. This parameter 𝜒 measures how far the frequency 𝜔 is from the 

resonance 𝜔𝑖𝑘, in units of the half-width 𝛤. At resonance (𝜔 = 𝜔𝑖𝑘), 𝜒 = 0. 

When 𝜔 is one half-width away from resonance (i.e., |𝜔 − 𝜔𝑖𝑘| = 𝛤), then 

|𝜒| = 1. 

The second bullet point shows the "Compact form" of the spectral profile 𝑔 

using this 𝜒 parameter: " 𝑔(𝜔 − 𝜔𝑖𝑘) =
1

1+𝜒2
." Let's verify this. Our 𝑔 from 

the previous page (normalized to peak at 1) was 
𝛤2

(𝜔𝑖𝑘−𝜔)
2+𝛤2

. If we divide 

the numerator and denominator by 𝛤2, we get: 
1

(
(𝜔𝑖𝑘−𝜔)

2

𝛤2
)+1

. Since 𝜒 =
𝜔𝑖𝑘−𝜔

𝛤
, 

then 𝜒2 = (
𝜔𝑖𝑘−𝜔

𝛤
)
2
. So, 𝑔 indeed equals 

1

1+𝜒2
. This is a very neat and 

common way to write a Lorentzian normalized to have a peak value of 1. 

The third bullet point gives the "Integrated area in this normalisation": " 

∫ 𝐼
+∞

−∞
(𝜔) 𝑑𝜔 = 𝜋𝐼0𝛤." Here, it's important to understand what 𝐼(𝜔) and 𝐼0 

represent. If 𝐼(𝜔) = 𝐼0 ⋅ 𝑔(𝜔 − 𝜔𝑖𝑘), where 𝑔 is the function 
1

1+𝜒2
 and 𝐼0 is 



the peak intensity (so 𝐼(𝜔𝑖𝑘) = 𝐼0), then we need to integrate 𝐼0 ⋅
𝛤2

(𝜔𝑖𝑘−𝜔)
2+𝛤2

 𝑑𝜔. The integral of 
𝛤2

𝑥2+𝛤2
 𝑑𝑥 from −∞ to +∞ is: 

𝛤2 ⋅ [
1

𝛤
arctan (

𝑥

𝛤
)] (evaluated from −∞ to +∞) 

= 𝛤2 ⋅
1

𝛤
⋅ 𝜋 = 𝜋𝛤. 

So, the integral of 𝐼(𝜔) 𝑑𝜔 would be 𝐼0 (the peak value) times 𝜋 times 𝛤. 

This matches the slide perfectly: ∫ 𝐼
+∞

−∞
(𝜔) 𝑑𝜔 = 𝜋𝐼0𝛤. Here, 𝐼0 must be 

interpreted as the peak value of 𝐼(𝜔). 
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This page provides a "Side-by-side comparison of 𝐿(𝜔) and 𝑔(𝜔) 

normalisations," which is very helpful for clarifying the differences between 

the two Lorentzian forms we've discussed. 

On the left, we have the "𝑔(𝜔 − 𝜔𝑖𝑘) Normalization." 

* The plot shows 𝑔(𝜔 − 𝜔𝑖𝑘) on the vertical axis, peaking at 1.0 (as 

indicated by "1.0" and "0.90" on the axis, it's actually labelled 1.0 where it 

hits the peak from the text). The axis label is 𝑔(𝜔 − 𝜔𝑖𝑘). 

* The horizontal axis is 𝜔 −𝜔𝑖𝑘, with points like −2𝛾, −𝛾, −
𝛾

2
, 0, 

𝛾

2
, 𝛾, 2𝛾 

shown. Wait, the x-axis is actually labelled in terms of capital 𝛤 implicitly via 

the relation 𝛥𝜔 = 2𝛤. Let's check the parameters below. Parameters used: 

𝜔0 = 𝜔𝑖𝑘 = 0. 𝛾 = 2, 𝛤 =
𝛾

2
= 1. 

* So, 𝛤 = 1. The x-axis units are effectively units of capital 𝛤. 

* The FWHM is indicated by a red arrow "𝛥𝜔 = 2𝛤 = 2". At half maximum 

(𝑔 = 0.5), the width is indeed 2𝛤. 

* Below the plot: "Normalized so that 𝑔(𝜔𝑖𝑘) = 1 at peak." "Peak 𝑔(0) = 1 

(by definition)." This is consistent with 𝑔 =
1

1+𝜒2
. 



On the right, we have the "𝐿(𝜔 − 𝜔0) Normalization." 

* The vertical axis is 𝐿(𝜔 − 𝜔0). The peak value is indicated around 0.318. 

The axis has 0.191, 0.286, 0.318, 0.382. 

* The horizontal axis is 𝜔 −𝜔0. Again, with 𝛾 = 2 and 𝜔0 = 0. 

* The FWHM is indicated by a red arrow "𝛥𝜔 = 𝛾 = 2". 

* Below the plot: "Normalized so that ∫ 𝐿(𝜔 − 𝜔0) 𝑑𝜔 = 1." "Peak 𝐿(0) =
2

𝜋𝛾
". Let's check this peak value. With 𝛾 = 2, Peak 𝐿(0) =

2

𝜋⋅2
=

1

𝜋
. 
1

𝜋
 is 

approximately 
1

3.14159
, which is about 0.3183. This matches the 0.318 value 

on the graph! 

The "Parameters used for plots" at the bottom confirm: "𝜔0 = 𝜔𝑖𝑘 = 0 

(center frequency), 𝛾 = 2, 𝛤 =
𝛾

2
= 1." So, for both plots, the actual FWHM 

in angular frequency is 2. For 𝑔, this FWHM is 2𝛤. For 𝐿, this FWHM is 𝛾. 

Since 𝛤 =
𝛾

2
, these are consistent. 

* 𝑔(𝜔 − 𝜔𝑖𝑘) =
1

1+(
𝜔−𝜔𝑖𝑘

𝛤
)
2 is normalized to have a peak value of 1. Its 

FWHM is 2𝛤. Its integral is 𝜋𝛤. 

* 𝐿(𝜔 − 𝜔0) =
𝛾/(2𝜋)

(𝜔−𝜔0)
2+(𝛾/2)2

 is normalized to have an area of 1. Its FWHM 

is 𝛾. Its peak value is 
2

𝜋𝛾
. 

Students often get confused by these different forms. This slide makes it 

very clear that they are just different ways of scaling the same underlying 

Lorentzian shape, chosen for convenience depending on whether one 

wants to emphasize the peak value or the total area. The crucial physical 

width parameter (𝛾, or 2𝛤) remains the same. 
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Slide 12: Energy Loss Rate Derived Directly From the Equation of 

Motion 

Now we shift gears slightly with "Slide 12: Energy Loss Rate Derived 

Directly From the Equation of Motion." We're going back to our original 

differential equation to look at the energy dissipation. 

The first bullet says: "Multiply the motion equation by 𝑚𝑥̇(𝑡)." 

Our equation of motion (from page 8, after multiplying by 𝑚) is: 

𝑚𝑥̈(𝑡) + 𝑚𝛾𝑥̇(𝑡) + 𝑚𝜔0
2𝑥(𝑡) = 0. 

Let's multiply every term by 𝑥̇(𝑡) (not 𝑚𝑥̇(𝑡) as the slide says, because the 

𝑚 is already in the equation if we started from Newton's law with 𝑚, or if we 

take the original 𝑥̈ + 𝛾𝑥̇ + 𝜔0
2𝑥 = 0 and multiply by 𝑚𝑥̇ now): 

Let's use 

𝑥̈ + 𝛾𝑥̇ + 𝜔0
2𝑥 = 0 

and multiply by 𝑚𝑥̇. 

This gives: 

𝑚𝑥̇𝑥̈ + 𝑚𝛾(𝑥̇)2 +𝑚𝜔0
2𝑥𝑥̇ = 0. 

The slide says: " 𝑚𝑥̇𝑥̈ + 𝑚𝜔0
2𝑥𝑥̇ = −𝑚𝛾(𝑥̇)2." 

This is equivalent to: 

𝑚𝑥̇𝑥̈ + 𝑚𝜔0
2𝑥𝑥̇ = −𝑚𝛾(𝑥̇)2. 

Ah, the slide's equation is slightly different: " 𝑚𝑥̈𝑥̇ + 𝑚𝜔0
2𝑥𝑥̇ = −𝑚𝛾(𝑥̇)2." 

This matches what I wrote if I move the gamma term to the right. 

The second bullet is key: "Recognise left side as the total time derivative of 

mechanical energy." 

The left side is 𝑚𝑥̇𝑥̈ + 𝑚𝜔0
2𝑥𝑥̇. 



Let's consider the mechanical energy 𝑊(𝑡) of the oscillator. It has two 

parts: kinetic energy and potential energy. 

Kinetic Energy (KE) = 
1

2
𝑚(𝑥̇)2. 

Potential Energy (PE) associated with the spring = 
1

2
𝑘𝑥2. Since 𝜔0

2 =
𝑘

𝑚
, 

then 𝑘 = 𝑚𝜔0
2. So, PE = 

1

2
𝑚𝜔0

2𝑥2. 

The total mechanical energy 𝑊(𝑡) is: 

𝑊(𝑡) =
1

2
𝑚(𝑥̇)2 +

1

2
𝑚𝜔0

2𝑥2. 

Now, let's find the time derivative of 𝑊(𝑡), 
𝑑𝑊

𝑑𝑡
: 

𝑑𝑊

𝑑𝑡
=
𝑑

𝑑𝑡
[
1

2
𝑚(𝑥̇)2] +

𝑑

𝑑𝑡
[
1

2
𝑚𝜔0

2𝑥2]. 

Using the chain rule: 

𝑑

𝑑𝑡
[
1

2
𝑚(𝑥̇)2] =

1

2
𝑚 ⋅ 2𝑥̇𝑥̈ = 𝑚𝑥̇𝑥̈, 

and 

𝑑

𝑑𝑡
[
1

2
𝑚𝜔0

2𝑥2] =
1

2
𝑚𝜔0

2 ⋅ 2𝑥𝑥̇ = 𝑚𝜔0
2𝑥𝑥̇. 

So, 

𝑑𝑊

𝑑𝑡
= 𝑚𝑥̇𝑥̈ + 𝑚𝜔0

2𝑥𝑥̇. 

This is precisely the left-hand side of the equation we derived in the first 

bullet! 

Therefore, the third bullet point states "Therefore..." and this implies we can 

substitute 
𝑑𝑊

𝑑𝑡
 into our equation. 
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Continuing from the previous page, since the left side of our modified 

equation of motion is 
𝑑𝑊

𝑑𝑡
 (the rate of change of mechanical energy), we can 

write: 

𝑑𝑊

𝑑𝑡
= −𝛾𝑚 (𝑥̇(𝑡))

2
 

This equation is profoundly important. It states that the rate at which the 

mechanical energy 𝑊 of the oscillator changes is equal to −𝛾𝑚 times the 

velocity squared. Since 𝑚 (mass) and (𝑥̇)2 (velocity squared) are always 

non-negative, and 𝛾 (damping constant) is positive, 
𝑑𝑊

𝑑𝑡
 is always less than 

or equal to zero. This means the mechanical energy of the oscillator is 

always decreasing (or constant if 𝑥̇ = 0), which makes perfect sense: the 

damping term is dissipating energy. This energy is being lost to radiation in 

our model. The rate of this energy loss is proportional to the damping 

constant 𝛾 and the square of the velocity. 

The second bullet says: "Insert 𝑥(𝑡) = 𝑥0𝑒
−𝛾𝑡/2cos(𝜔0𝑡) and discard 𝛾2 

terms (small)." This is our approximate solution for 𝑥(𝑡) under weak 

damping. We first need 𝑥̇(𝑡). 

𝑥̇(𝑡) =
𝑑

𝑑𝑡
[𝑥0𝑒

−𝛾𝑡/2cos(𝜔0𝑡)] 

Using the product rule: 

𝑥̇(𝑡) = 𝑥0 [(−
𝛾

2
) 𝑒−𝛾𝑡/2cos(𝜔0𝑡) − 𝜔0𝑒

−𝛾𝑡/2sin(𝜔0𝑡)] 

𝑥̇(𝑡) = −𝑥0𝑒
−𝛾𝑡/2 [

𝛾

2
cos(𝜔0𝑡) + 𝜔0sin(𝜔0𝑡)] 

Now we need (𝑥̇(𝑡))
2
. This will be 𝑥0

2𝑒−𝛾𝑡 times the square of the term in 

the bracket. 



[
𝛾

2
cos(𝜔0𝑡) + 𝜔0sin(𝜔0𝑡)]

2

=
𝛾2

4
cos2(𝜔0𝑡) + 𝜔0

2sin2(𝜔0𝑡) + 𝛾𝜔0cos(𝜔0𝑡)sin(𝜔0𝑡) 

The instruction says to "discard 𝛾2 terms." So we neglect the 
𝛾2

4
cos2(𝜔0𝑡) 

term. We also should probably neglect the 𝛾𝜔0 term if 𝜔0 is much larger 

than 𝛾, or if we are averaging. 

Let's see what the slide simplifies this to. The slide gives the result for 
𝑑𝑊

𝑑𝑡
 

after this substitution: 

𝑑𝑊

𝑑𝑡
= −𝛾𝑚𝑥0

2𝑒−𝛾𝑡sin2(𝜔0𝑡) 

This expression is missing an 𝜔0
2. If 𝑥̇ ≈ −𝑥0𝜔0𝑒

−𝛾𝑡/2sin(𝜔0𝑡) (which comes 

from neglecting the 𝛾/2 term in 𝑥̇ as 𝛾 ≪ 𝜔0), then (𝑥̇)2 ≈

𝑥0
2𝜔0

2𝑒−𝛾𝑡sin2(𝜔0𝑡). Then 

𝑑𝑊

𝑑𝑡
= −𝛾 𝑚 𝑥0

2𝜔0
2𝑒−𝛾𝑡sin2(𝜔0𝑡) 

Yes, the slide seems to have a typo and is missing 𝜔0
2. Let's proceed with 

what the slide provides and see if it corrects later or if this is a particular 

approximation path. 

The third bullet says: "Time-average over many optical cycles, using 

⟨sin2⟩ =
1

2
." The term sin2(𝜔0𝑡) oscillates rapidly. Over many cycles of 𝜔0𝑡, 

the average value of sin2(𝜔0𝑡) is 
1

2
. (Similarly, ⟨cos2⟩ =

1

2
.) 

So, the time-averaged power radiated, 𝑃‾, which is the magnitude of ⟨
𝑑𝑊

𝑑𝑡
⟩, 

becomes: "P bar equals the magnitude of , equals 𝛾/2, times 𝑚, times 𝑥0
2, 

times 𝜔0
2, times 𝑒−𝛾𝑡." In symbolic form, 

𝑃‾(𝑡) =
1

2
 𝛾 𝑚 𝜔0

2 𝑥0
2 𝑒−𝛾𝑡 



Aha! The 𝜔0
2 has reappeared here in the 𝑃‾ expression. This confirms my 

suspicion of a typo in the intermediate 
𝑑𝑊

𝑑𝑡
 expression on the slide. The 

correct time-averaged power radiated is indeed proportional to 𝜔0
2. So, 

𝑃‾(𝑡) =
1

2
 𝛾 𝑚 𝜔0

2 𝑥0
2 𝑒−𝛾𝑡 

This shows that the average power radiated by the oscillator also decays 

exponentially, but with a rate constant 𝛾, not 𝛾/2. This is because power is 

related to amplitude squared, and if amplitude decays as 𝑒−𝛾𝑡/2, then 

amplitude squared (and hence power) decays as (𝑒−𝛾𝑡/2)
2
= 𝑒−𝛾𝑡. 

Page 31: 

This page provides a concise conclusion from the energy loss rate 

calculation. 

The single bullet point states: "Radiant power decays with the same time 

constant 𝜏 =
1

𝛾
." 

From the previous page, the time-averaged power radiated, 𝑃‾(𝑡), was 

found to be proportional to 𝑒−𝛾𝑡. 

A function that decays as 𝑒−𝑡/𝜏 has a time constant 𝜏. 

Comparing 𝑒−𝛾𝑡 with 𝑒−𝑡/𝜏, we see that 𝛾 corresponds to 
1

𝜏
, or equivalently, 

𝜏 =
1

𝛾
. 

So, the characteristic time for the power to decay by a factor of 
1

𝑒
 is 𝜏 =

1

𝛾
. 

Recall that the amplitude 𝑥(𝑡) of the oscillation decayed as 𝑒−𝛾𝑡/2. The time 

constant for the amplitude decay is therefore 
2

𝛾
. 



It's important to distinguish between the decay of amplitude (time constant 
2

𝛾
) and the decay of energy or power (time constant 

1

𝛾
). Since energy is 

proportional to amplitude squared, its decay rate is twice as fast (or its time 

constant is half as long). 

This time constant 𝜏 =
1

𝛾
 is directly related to the lifetime of the excited state 

in the quantum mechanical picture, as we will see shortly. The damping 

constant 𝛾, which determines the FWHM of the spectral line (𝛥𝜔nat = 𝛾), is 

also the reciprocal of the power decay time constant. This 

interconnectedness is central to understanding natural linewidth. 

Page 32: 

Now we explicitly bridge our classical findings to the quantum world with 

"Slide 13: Connecting Damping Constant 𝛾 to Quantum Lifetime 𝜏." 

The first bullet point introduces a key quantum concept: "Quantum 

spontaneous-emission rate for state |𝑖⟩: Einstein 𝐴i coefficient [s−1]." In 

quantum mechanics, an atom in an excited state |𝑖⟩ can spontaneously 

decay to lower energy states. If we consider all possible decay channels 

from state |𝑖⟩, the total rate at which the population of state |𝑖⟩ depletes due 

to spontaneous emission is given by the Einstein 𝐴i coefficient, often 

denoted 𝐴i (or sometimes 𝐴𝑖𝑘 if referring to a specific transition to state 𝑘, 

but 𝐴i usually implies the total decay rate out of state 𝑖). The units of 𝐴i are 

inverse seconds (s−1), representing a probability per unit time of decay. 

The second bullet point defines "Mean lifetime": 

𝜏i =
1

𝐴i

 

The mean lifetime, 𝜏i, of an excited state |𝑖⟩ is simply the reciprocal of its 

total spontaneous emission rate 𝐴i. If 𝐴i is large (high probability of decay 

per second), then the lifetime 𝜏i is short. If 𝐴i is small (low probability of 



decay per second), the lifetime 𝜏i is long. This is analogous to radioactive 

decay. 

The third, crucial bullet point makes the connection: "Identify 𝛾 = 𝐴i." 

This is the pivotal identification. The damping constant 𝛾 in our classical 

damped oscillator model, which governs the rate of energy loss and 

determines the spectral linewidth, is identified with the total spontaneous 

emission rate 𝐴i from the excited state in the quantum mechanical picture. 

This means that the classical "friction" due to radiation is the macroscopic 

manifestation of the quantum process of spontaneous emission. Since 𝐴i =
1

𝜏i

, this also means 𝛾 =
1

𝜏i

. This is a profound link. The lifetime of the excited 

atomic state directly determines the damping in our classical model and 

hence the natural linewidth. Longer lifetime means smaller 𝐴i, smaller 𝛾, 

and thus a narrower line. Shorter lifetime means larger 𝐴i, larger 𝛾, and a 

broader line. 

Page 33: 

Building on the connection 𝛾 = 𝐴i =
1

𝜏i

, this page expresses the "Natural 

linewidth in frequency units." 

The first bullet point presents the formula: " 𝛥𝜈nat =
𝐴i

2𝜋
=

1

2𝜋𝜏i

 " 

We established earlier (Page 25) that the FWHM natural linewidth in 

ordinary frequency units (Hertz) is 𝛥𝜈nat =
𝛾

2𝜋
. 

Now, substituting 𝛾 = 𝐴i, we get 𝛥𝜈nat =
𝐴i

2𝜋
. 

And since 𝐴i =
1

𝜏i

 (where 𝜏i is the lifetime of the upper state involved in the 

emission), we can also write: 

𝛥𝜈nat =
1

2𝜋𝜏i

 



This is one of the most fundamental equations in spectroscopy concerning 

natural linewidths. It directly relates an observable spectral feature (the 

linewidth 𝛥𝜈nat) to a fundamental property of the excited atomic state (its 

lifetime 𝜏i). This relationship has units of Hertz (s−1) since 𝜏i is in seconds 

and 2𝜋 is dimensionless. 

The second bullet point highlights the implication: "Any decrease in 𝜏i 

widens the line; longer-lived states generate ultra-narrow features." 

* If the lifetime 𝜏i of the excited state is short (it decays quickly), then 
1

𝜏i

 is 

large, leading to a large natural linewidth 𝛥𝜈nat. The spectral line will be 

broad. 

* Conversely, if the lifetime 𝜏i is long (the state is metastable or very slow to 

decay), then 1τi
1

𝜏i

 is small, resulting in a small natural linewidth 𝛥𝜈nat. The 

spectral line will be very narrow. 

This is why transitions from metastable states, which have very long 

lifetimes, are candidates for ultra-high resolution spectroscopy and atomic 

clocks – their natural linewidths are exceptionally small. For example, 

"forbidden" transitions often have very small A coefficients and thus very 

long lifetimes, leading to extremely narrow natural linewidths. 

Page 34: 

Now we approach the natural linewidth from a different but complementary 

angle: "Slide 14: Uncertainty Principle Perspective." 

The first bullet point introduces the "Energy-time uncertainty relation": 

𝛥𝐸i 𝛥𝑡 ≥
ℏ

2
 

This is one of Heisenberg's uncertainty principles. It states that there is a 

fundamental limit to the precision with which certain pairs of 

complementary physical properties of a particle can be known 



simultaneously. For energy and time, it means that if a system exists in an 

energy state 𝐸i for a limited duration 𝛥𝑡, then the energy of that state 

cannot be perfectly defined; it will have an inherent uncertainty or spread, 

𝛥𝐸i. The shorter the duration 𝛥𝑡, the larger the uncertainty 𝛥𝐸i must be. ℏ is 

the reduced Planck constant. 

The second bullet point connects this to our system: "For exponential 

decay, 𝛥𝑡 ≈ 𝜏i." 

The third bullet point states: "Hence..." Substituting 𝛥𝑡 ≈ 𝜏i into the 

uncertainty relation (and often for order-of-magnitude estimates, the 

"greater than or equal to ℏ/2" is taken as "approximately ℏ"), we get: 

𝛥𝐸i ≈
ℏ

𝜏i

 

This means that due to its finite lifetime 𝜏i, an excited state |𝑖⟩ does not 

have an infinitely sharp energy. Instead, its energy is "smeared out" or 

uncertain by an amount 𝛥𝐸i, which is inversely proportional to its lifetime 𝜏i. 

This 𝛥𝐸i is often called the energy width of the state. 

A very short-lived state (small 𝜏i) will have a large energy width (large 𝛥𝐸i). 

A long-lived state (large 𝜏i) will have a small energy width (small 𝛥𝐸i). This 

is a direct consequence of the wave nature of quantum particles and the 

Fourier relationship between time and frequency (or energy). 

Page 35: 

Continuing with the uncertainty principle perspective: 

The first bullet point relates "Frequency uncertainty (linewidth)" to the 

energy uncertainty we just discussed. We have 𝛥𝐸i ≈
ℏ

𝜏i

. Since energy 𝐸 

and angular frequency 𝜔 are related by 𝐸 = ℏ𝜔 (for photons, and by 

analogy for energy level differences), an uncertainty in energy 𝛥𝐸i 



corresponds to an uncertainty in angular frequency 𝛥𝜔 given by 𝛥𝐸i = ℏ𝛥𝜔. 

So, ℏ𝛥𝜔 ≈
ℏ

𝜏i

. Dividing by ℏ, we get: 

𝛥𝜔 =
𝛥𝐸i

ℏ
=
1

𝜏i

. 

This 𝛥𝜔 represents the uncertainty in the angular frequency of the 

transition originating from state |𝑖⟩, which is essentially the natural linewidth 

in angular frequency units. Compare this to our earlier result: 𝛥𝜔nat = 𝛾. 

And we identified 𝛾 = 𝐴i =
1

𝜏i

. So, 𝛥𝜔nat =
1

𝜏i

. The uncertainty principle gives 

us the same result! This consistency is very satisfying and shows that the 

natural linewidth can be understood as a direct manifestation of the energy-

time uncertainty principle applied to unstable excited states. 

The second bullet point considers a more general case: "If both upper and 

lower states are unstable (lifetimes 𝜏i, 𝜏k), total uncertainty adds in 

quadrature." Often, an optical transition occurs between an excited state |𝑖⟩ 

(lifetime 𝜏i) and a lower state |𝑘⟩ (lifetime 𝜏k). If the lower state |𝑘⟩ is not the 

ground state, it too might be unstable and have a finite lifetime 𝜏k. In this 

case, both state |𝑖⟩ and state |𝑘⟩ have energy widths: 

𝛥𝐸i ≈
ℏ

𝜏i

 

𝛥𝐸k ≈
ℏ

𝜏k

 

The width of the spectral line for the transition 𝑖 → 𝑘 will then depend on the 

energy widths of both states. Since these uncertainties are typically 

independent, they add in quadrature (like errors). The total energy width of 

the transition, 𝛥𝐸transition, would be 

𝛥𝐸transition = √(𝛥𝐸i)
2 + (𝛥𝐸k)

2. 

The corresponding total linewidth in angular frequency, 𝛥𝜔, is given by 



ℏ𝛥𝜔 = √(
ℏ

𝜏i

)

2

+ (
ℏ

𝜏k

)

2

. 

Dividing by ℏ, we get: 

𝛥𝜔 = √(
1

𝜏i

)
2

+ (
1

𝜏k

)
2

. 

This is the general formula for the natural linewidth (in angular frequency) 

when both the initial and final states of the transition have finite lifetimes. If 

the lower state |𝑘⟩ is the ground state, it is perfectly stable, so 𝜏k is infinite, 

and 
1

𝜏k

 is zero. In this case, 𝛥𝜔 simplifies back to 
1

𝜏i

, which is the result we 

had before. 

So, the linewidth is determined by the sum of the decay rates (𝐴i + 𝐴k if you 

like, since 𝐴 =
1

𝜏
), or more precisely, 

𝛾total = 𝛾i + 𝛾k = 𝐴i + 𝐴k. 

Then 𝛥𝜔 = 𝛾total. This means 

(
1

𝜏total

)
2

= (
1

𝜏i

)
2

+ (
1

𝜏k

)
2

 

is not quite right. Actually, the total decay rate relevant for the linewidth is 

𝛾total =
1

𝜏i

+
1

𝜏k

. 

So, the total linewidth 𝛥𝜔 should be 

𝛥𝜔 =
1

𝜏i

+
1

𝜏k

. 

The quadrature addition is usually for independent, random errors. 

Lifetimes contribute to widths. Let's check standard texts. The linewidth 



(FWHM in angular frequency) of a transition between two unstable states 

with decay rates 𝛾i and 𝛾k is 𝛾i + 𝛾k. So 𝛥𝜔 = 𝛾i + 𝛾k. Perhaps the slide's 

formula 

𝛥𝜔 = √(
1

𝜏i

)
2

+ (
1

𝜏k

)
2

 

is related to a specific definition or context for "uncertainty." Let's assume 

it's presented this way for a reason within this course's framework, possibly 

relating to independent probability distributions for energy. The more 

common form for FWHM is additive for decay rates. I will proceed with the 

slide's formula but note this potential nuance. 

Page 36: 

This page provides a visual representation of "Energy Level Uncertainty 

and Transition Linewidth," corresponding to the discussion on the previous 

page. 

On the left, we see two energy levels depicted: 

* An upper energy level 𝐸i, shown as a light blue, somewhat "fuzzy" or 

broadened horizontal band. An arrow next to it indicates its energy width, 

𝛥𝐸i ≈
ℏ

𝜏i

. This visually represents that the energy of state 𝐸i is not perfectly 

sharp but has a spread due to its finite lifetime 𝜏i. 

* A lower energy level 𝐸k, shown as a light green, similarly fuzzy horizontal 

band. An arrow indicates its width, 𝛥𝐸k ≈
ℏ

𝜏k

. This state also has an energy 

spread due to its lifetime 𝜏k. 

On the right, we have equations and a diagram: 

"Total Linewidth (Energy):" 

ℏ𝛥𝜔 = √(𝛥𝐸i)
2 + (𝛥𝐸k)

2 



This explicitly states that the total energy width of the transition (ℏ𝛥𝜔) is 

found by adding the individual energy widths of the two states (𝛥𝐸i and 𝛥𝐸k) 

in quadrature. 

"Total Linewidth (Frequency):" 

𝛥𝜔 = √
1

𝜏i
2 +

1

𝜏k
2 

This is the same formula for the angular frequency linewidth as on the 

previous slide, derived from the energy width formula by substituting 𝛥𝐸i =
ℏ

𝜏i

 and 𝛥𝐸k =
ℏ

𝜏k

. 

Below these equations, there's a vector diagram illustrating the quadrature 

addition for energies. 

* A vertical vector represents 𝛥𝐸i. 

* A horizontal vector represents 𝛥𝐸k. 

* The resultant vector, representing the total energy uncertainty ℏ𝛥𝜔, is the 

hypotenuse of the right triangle formed by 𝛥𝐸i and 𝛥𝐸k. Its length is indeed 

√(𝛥𝐸i)
2 + (𝛥𝐸k)

2. 

The caption summarizes: "The energy uncertainties 𝛥𝐸i and 𝛥𝐸k of the two 

states add in quadrature to give the total transition linewidth ℏ𝛥𝜔." 

This visual makes the concept of quadrature addition very clear. As noted 

before, this specific method of combining widths (quadrature) might differ 

from the simple sum of decay rates (𝛾i + 𝛾k) found in some other contexts 

for convoluted Lorentzians. However, the slide is consistent with its own 

presentation. The key takeaway is that if both levels involved in a transition 

are unstable, both contribute to the overall natural linewidth of that 

transition. 

Page 37: 



We now shift to "Slide 15: Power Emitted by an Ensemble of Atoms." So 

far, we've mostly considered a single atom or oscillator. What happens 

when we have many? 

The first bullet point defines: " 𝑁i : number density [𝑚−3] of atoms in state 

|𝑖⟩." 𝑁i represents the number of atoms per unit volume that are in the 

specific excited state |𝑖⟩ from which emission will occur. Its units are 

typically atoms per cubic meter. 

The second bullet gives the "Radiant power for transition 𝑖 → 𝑘": 

𝑑𝑊𝑖𝑘

𝑑𝑡
= 𝑁i𝐴𝑖𝑘ℎ𝜔𝑖𝑘 

Let's interpret this: * 𝐴𝑖𝑘 is the Einstein A coefficient for the specific 

transition from state |𝑖⟩ to state |𝑘⟩. It's the probability per unit time that one 

atom in state |𝑖⟩ will decay to state |𝑘⟩ by emitting a photon. Units: 𝑠−1. * 

ℎ𝜔𝑖𝑘 (or ℎ𝜈𝑖𝑘) is the energy of each photon emitted during this 𝑖 → 𝑘 

transition. Units: Joules.  𝑁i𝐴𝑖𝑘 gives the number of 𝑖 → 𝑘 transitions 

occurring per unit volume per unit time. (Number of atoms/volume 

transitions/atom/time = transitions/volume/time). * So, 𝑁i𝐴𝑖𝑘ℎ𝜔𝑖𝑘 is the total 

energy emitted per unit volume per unit time due to the 𝑖 → 𝑘 transition. 

This is the power density. 

The slide uses 
𝑑𝑊𝑖𝑘

𝑑𝑡
, which usually signifies power. If 𝑁i is number density, 

then this expression is power per unit volume. If 𝑁i were total number of 

atoms in state 𝑖 in some volume 𝛥𝑉, then 𝑁i𝐴𝑖𝑘ℎ𝜔𝑖𝑘 would be total power 

from that volume. Let's assume 𝑁i here is number density, so 
𝑑𝑊𝑖𝑘

𝑑𝑡
 is power 

density. 

The third bullet point concerns detection: "Detector of area capital 𝐴 at 

distance 𝑟 subtends solid angle 𝑑𝛺 =
𝐴

𝑟2
." This is the standard definition of 

solid angle. If we have a detector with a surface area 𝐴, placed at a 

distance 𝑟 from the light source, and if the detector surface is perpendicular 



to the line of sight and 𝑟 is much larger than the dimensions of 𝐴 and the 

source, then the solid angle 𝑑𝛺 that the detector "sees" or collects light 

from is approximately 
𝐴

𝑟2
. Units are steradians. 

The fourth bullet point sets an assumption: "Assuming isotropic emission, 

power reaching detector..." Isotropic emission means the atoms emit 

photons equally in all directions. The total solid angle around a point is 4𝜋 

steradians. If the emission is isotropic, the power emitted per unit solid 

angle is the total power (or power density times volume) divided by 4𝜋. The 

power reaching the detector will then be this power per unit solid angle 

multiplied by the solid angle 𝑑𝛺 subtended by the detector. 

We'll see the formula on the next page. 

Page 38: 

This page continues from the previous one, giving the formula for the 

power reaching the detector. 

The equation presented is: 

𝑃𝑖𝑘 = 𝑁i 𝐴𝑖𝑘  ℎ 𝜔𝑖𝑘 𝛥𝑉 ⋅
𝐴

4𝜋𝑟2
 

Let's break this down: 

* 𝑁i 𝐴𝑖𝑘  ℎ 𝜔𝑖𝑘: As discussed, this is the power emitted per unit volume from 

the 𝑖 → 𝑘 transition (assuming 𝑁i is number density). 

* 𝛥𝑉: This term, capital 𝛥𝑉, must represent the volume of the ensemble of 

atoms that we are observing. So, 𝑁i  𝐴𝑖𝑘 ℎ 𝜔𝑖𝑘 𝛥𝑉 is the total power emitted 

isotropically by the atoms in the volume 𝛥𝑉. 

* 
𝐴

𝑟2
: This is the solid angle 𝑑𝛺 subtended by the detector of area 𝐴 at 

distance 𝑟, as defined on the previous page. 



* 
1

4𝜋
: This factor accounts for isotropic emission. The total power is spread 

over 4𝜋 steradians. So, 
Total Power

4𝜋
 is the power per unit solid angle. 

* Multiplying power per unit solid angle by the detector's solid angle 
𝐴

𝑟2
 gives 

the power 𝑃𝑖𝑘 that is intercepted by the detector. 

So, 

𝑃𝑖𝑘 = [(𝑁i 𝛥𝑉) 𝐴𝑖𝑘  ℎ 𝜔𝑖𝑘] ⋅ [
𝑑𝛺

4𝜋
] 

(𝑁i  𝛥𝑉) is the total number of atoms in state 𝑖 in the observed volume. Let 

this be 𝑁𝑖,total. 

Then 

𝑃𝑖𝑘 = 𝑁𝑖,total 𝐴𝑖𝑘 ℎ 𝜔𝑖𝑘 × (fraction of solid angle covered by detector) 

This formula makes sense. It tells us that the power received by the 

detector is proportional to: 

1. The number of atoms in the upper state within the observed volume 

(𝑁i  𝛥𝑉). 

2. The spontaneous emission rate for the specific transition (𝐴𝑖𝑘). 

3. The energy of each photon (ℎ 𝜔𝑖𝑘). 

4. The fraction of the total solid angle that the detector covers (
𝐴

4𝜋𝑟2
). 

The bullet point below the equation states: "Measuring 𝑃𝑖𝑘 allows 

determination of 𝑁i provided 𝐴𝑖𝑘 is known." 

This is a key application. If we can measure the power 𝑃𝑖𝑘 arriving at our 

detector, and if we know the geometry (𝐴,  𝑟,  𝛥𝑉), the transition properties 

(𝐴𝑖𝑘 ,  ℎ 𝜔𝑖𝑘), then we can rearrange the formula to solve for 𝑁i, the number 

density of atoms in the excited state. This is a fundamental way to probe 



populations in atomic and molecular systems, for example, in plasmas, 

flames, or interstellar gas clouds. Of course, calibrating such 

measurements (knowing 𝐴𝑖𝑘,  𝛥𝑉 accurately, detector efficiency etc.) can be 

challenging. 

Page 39: 

This page provides a visual for "Slide 15: Power Emitted by an Ensemble of 

Atoms." 

The diagram shows: 

* A central blue sphere labeled 𝛥𝑉. This represents the small volume 

containing the ensemble of emitting atoms. 

* Numerous arrows radiate outwards from 𝛥𝑉 in all directions, signifying 

isotropic emission of photons. These photons are labeled with energy ℎ𝜔𝑖𝑘. 

* A dashed circle surrounds 𝛥𝑉, suggesting a sphere over which the 

radiation is spreading. 

* To the right, at a distance 𝑟 from 𝛥𝑉, there is a red curved segment 

labeled 𝐴. This represents the area of a detector. 

* Orange lines define a cone from 𝛥𝑉 to the edges of the detector 𝐴, 

indicating the solid angle 𝛥𝛺 (or 𝑑𝛺) that the detector subtends from the 

source. 

* A green arrow labeled 𝑃𝑖𝑘 points from 𝛥𝑉 towards the detector 𝐴, 

representing the power from the i-k transition that reaches the detector. 

This diagram nicely illustrates all the components of the equation from the 

previous page: the emitting volume 𝛥𝑉, the isotropic emission of photons of 

energy ℎ𝜔𝑖𝑘, the detector of area 𝐴 at distance 𝑟, the solid angle 𝛥𝛺 it 

covers, and the resulting power 𝑃𝑖𝑘 received. It helps to visualize how only 

a fraction of the total isotropically emitted power is captured by a detector 

of finite size. 
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Now we switch from emission to "Slide 16: Absorption Geometry and 

Beer's Law." This is fundamental for understanding how light intensity 

decreases as it passes through an absorbing medium. 

The first bullet describes the setup: "Plane monochromatic wave enters 

sample of thickness 𝑧." Imagine a beam of light, which is a plane wave 

(wavefronts are planes) and monochromatic (single frequency or very 

narrow band of frequencies), incident on a sample of absorbing material. 

The sample has a certain thickness 𝑧 along the direction of light 

propagation. 

The second bullet describes the "Intensity decrement over 𝑑𝑧": "dI equals 

minus 𝛼𝑖𝑘(𝜔) of omega, times I, times 𝑑𝑧." 

𝑑𝐼 = −𝛼𝑖𝑘(𝜔) 𝐼 𝑑𝑧 

Let's break this down: * 𝐼 is the intensity of the light at some point within the 

sample. * 𝑑𝑧 is an infinitesimally small thickness of the sample that the light 

is passing through. * 𝑑𝐼 is the change in intensity as the light traverses this 

small thickness 𝑑𝑧. The minus sign indicates that the intensity decreases* 

due to absorption. * 𝛼𝑖𝑘(𝜔) is the "absorption coefficient." It's a property of 

the material for the specific transition 𝑖 → 𝑘 at the light's angular frequency 

𝜔. It quantifies how strongly the material absorbs light at that frequency. A 

larger 𝛼𝑖𝑘(𝜔) means stronger absorption. Its units will be inverse length 

(e.g., m−1) so that 𝛼𝑖𝑘(𝜔) 𝑑𝑧 is dimensionless. 

This equation states that the fractional decrease in intensity 
𝑑𝐼

𝐼
 is 

proportional to the thickness 𝑑𝑧 traversed: 

𝑑𝐼

𝐼
= −𝛼𝑖𝑘(𝜔) 𝑑𝑧 

The third bullet says: "Integrate from 0 to 𝑧." We want to find the total 

change in intensity as the light passes through the entire sample of 



thickness 𝑧. We assume the light enters the sample at position 0 with an 

initial intensity 𝐼0. 

Integrating 
𝑑𝐼

𝐼
= −𝛼𝑖𝑘(𝜔) 𝑑𝑧 from 𝐼 = 𝐼0 to 𝐼 = 𝐼(𝑧) and from position 0 to 𝑧: 

Integral (
𝑑𝐼

𝐼
) from 𝐼0 to 𝐼(𝑧) gives ln (

𝐼(𝑧)

𝐼0
). Integral (−𝛼𝑖𝑘(𝜔) 𝑑𝑧) from 0 to 𝑧 

gives −𝛼𝑖𝑘(𝜔) 𝑧 (assuming 𝛼𝑖𝑘(𝜔) is constant throughout the sample). 

So, 

ln (
𝐼(𝑧)

𝐼0
) = −𝛼𝑖𝑘(𝜔) 𝑧 

Exponentiating both sides gives: 

𝐼(𝑧)

𝐼0
= 𝑒−𝛼𝑖𝑘(𝜔) 𝑧 

Or, "I of 𝑧 equals 𝐼0, e to the power of (minus 𝛼𝑖𝑘(𝜔), times 𝑧)." 

This is Beer's Law (or the Beer-Lambert Law). It describes the exponential 

attenuation of light intensity as it passes through an absorbing medium. 

The intensity decays exponentially with penetration depth 𝑧, and the rate of 

decay is determined by the absorption coefficient 𝛼𝑖𝑘(𝜔). 

The fourth bullet defines: "𝛼𝑖𝑘(𝜔) : absorption coefficient [m−1]." As 

mentioned, its units are inverse length, for example, per meter. If 𝛼𝑖𝑘(𝜔) is 

large, the light is absorbed very quickly over a short distance. If 𝛼𝑖𝑘(𝜔) is 

small, the light can penetrate much further before being significantly 

attenuated. This 𝛼𝑖𝑘(𝜔) will also have a frequency dependence, typically 

peaking at the resonance frequency 𝜔0, and having a lineshape (e.g., 

Lorentzian if dominated by natural broadening). 

Page 41: 

This page provides more detail on the absorption coefficient 𝛼𝑖𝑘(𝜔), 

expressing it in terms of microscopic quantities. 



The first bullet states: "Expressed via cross-section 𝜎𝑖𝑘(𝜔) and 

populations..." " 

𝛼𝑖𝑘(𝜔) = 𝜎𝑖𝑘(𝜔) × [𝑁i − (
𝑔i

𝑔k

)𝑁k] 

" 

Let's dissect this important formula: 

* 𝜎𝑖𝑘(𝜔) is the "absorption cross-section" for the transition 𝑖 → 𝑘 at angular 

frequency 𝜔. It has units of area (e.g., m2). It represents the effective area 

that an atom in state |i> presents to an incoming photon of frequency 𝜔 for 

an absorption event to occur. Like 𝛼𝑖𝑘(𝜔), 𝜎𝑖𝑘(𝜔) also has a frequency 

dependence (a lineshape). 

* 𝑁i is the number density (population per unit volume) of atoms in the 

lower state |i> (the initial state for absorption). 

* 𝑁k is the number density of atoms in the upper state |k> (the final state for 

absorption). 

* 𝑔i and 𝑔k are the statistical weights (degeneracies) of the lower state |i> 

and upper state |k>, respectively. These are integers (e.g., 2 𝐽 + 1 for an 

atomic level with total angular momentum 𝐽). 

The term in the square brackets, 

[𝑁i − (
𝑔i

𝑔k

)𝑁k], 

is crucial. 

* 𝑁i represents the population available for absorption. 

 (
𝑔i

𝑔k

)𝑁k represents the population in the upper state that can contribute to 

stimulated emission*. Stimulated emission is a process where an incoming 

photon of the correct frequency can induce an atom in the upper state |k> 



to emit a second, identical photon and transition down to state |i>. This 

process adds light rather than absorbing it. The factor 
𝑔i

𝑔k

 accounts for the 

degeneracies. 

* So, the net absorption is proportional to the difference between the 

effective population in the lower state that can absorb (𝑁i) and the effective 

population in the upper state that can be stimulated to emit ((
𝑔i

𝑔k

)𝑁k). 

If 𝑁i > (
𝑔i

𝑔k

)𝑁k, then 𝛼𝑖𝑘 is positive, and we have net absorption. This is the 

usual case in thermal equilibrium, where lower states are more populated. 

If 𝑁i < (
𝑔i

𝑔k

)𝑁k, then 𝛼𝑖𝑘 would be negative. This corresponds to net 

stimulated emission, or optical gain. This condition is known as "population 

inversion" and is the basis for laser operation. 

If 𝑁i = (
𝑔i

𝑔k

)𝑁k, then 𝛼𝑖𝑘 = 0, and the medium is transparent to light at that 

frequency (absorption and stimulated emission balance out). 

The second bullet considers a common scenario: "For 𝑁k much, much less 

than 𝑁i (ground state dominated): 𝛼𝑖𝑘 is approximately 𝜎𝑖𝑘𝑁i." 

If the population of the upper state 𝑁k is negligible compared to the 

population of the lower state 𝑁i (e.g., if state |i> is the ground state or a 

very low-lying state, and the temperature is not extremely high), then the 

stimulated emission term (
𝑔i

𝑔k

)𝑁k can be ignored. 

In this case, the absorption coefficient simplifies to 

𝛼𝑖𝑘(𝜔) ≈ 𝜎𝑖𝑘(𝜔) × 𝑁i. 

The absorption is then directly proportional to the absorption cross-section 

and the number density of absorbers in the lower state. This is a very 

common approximation for absorption spectroscopy of dilute gases or 

weakly excited systems. 
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We now return to our classical damped oscillator model, but this time we 

consider what happens when it's driven by an external field. This leads to 

Slide 17: Driven Damped Oscillator Yields Absorption Profile. 

The first bullet introduces the "External electric field of light": 

𝐸(𝑡) = 𝐸0𝑒
𝑖𝜔𝑡. This represents a monochromatic electromagnetic wave 

(light) with angular frequency 𝜔 and amplitude 𝐸0, interacting with our 

atom/oscillator. We're using complex notation for the field; the actual 

electric field would be the real part, 𝐸0cos(𝜔𝑡), if 𝐸0 is real. 

The second bullet states: "Charge 𝑞 = 𝑒 experiences force 𝑞𝐸(𝑡)." 

Our classical oscillator is an electron with charge 𝑒 (which is −1.602 ×

10−19 Coulombs, though often 𝑒 is used for the magnitude of the charge, 

and the sign handled by context). This charge, when placed in the external 

electric field 𝐸(𝑡), experiences a force 𝐹ext = 𝑒𝐸(𝑡). This force will drive the 

oscillator. 

The equation of motion for the damped oscillator (from Page 8), 

𝑚𝑥̈ + 𝑚𝛾𝑥̇ + 𝑚𝜔0
2𝑥 = 0, 

now needs to include this external driving force on the right-hand side: 

𝑚𝑥̈ + 𝑚𝛾𝑥̇ + 𝑚𝜔0
2𝑥 = 𝑒𝐸0𝑒

𝑖𝜔𝑡. 

Or, dividing by 𝑚: 

𝑥̈ + 𝛾𝑥̇ + 𝜔0
2𝑥 =

𝑒𝐸0
𝑚

𝑒𝑖𝜔𝑡. 

This is the equation for a driven, damped harmonic oscillator. 

The third bullet point connects this to previous work: "Linear response 

theory (from Sect. 2.6) gives frequency-dependent absorption coefficient 

near resonance." 



Solving the driven oscillator equation (typically looking for the steady-state 

solution where the oscillator oscillates at the driving frequency 𝜔) allows us 

to find the induced dipole moment of the atom, 𝑝(𝑡) = 𝑒𝑥(𝑡). From the 

induced dipole moment, we can find the complex polarizability of the atom, 

and from that, the macroscopic susceptibility of the medium, and finally the 

complex refractive index. The imaginary part of the complex refractive 

index is related to the absorption coefficient 𝛼(𝜔). 

This is a standard procedure in linear response theory. Section 2.6 of this 

course presumably covered this derivation. The key result is that the 

absorption coefficient 𝛼(𝜔) derived from this model will also show a 

resonant behavior near 𝜔 = 𝜔0, and it will have a Lorentzian lineshape. 
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This page presents the result for the absorption coefficient 𝛼(𝜔) derived 

from the driven damped oscillator model discussed on the previous page. 

The equation for alpha of omega is: 

𝛼(𝜔) =
𝑁𝑒2

4𝜖0𝑚𝑐
×

𝛾

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2. 

Let's analyze the terms in this formula: 

* 𝑁: This is the number density of oscillators (atoms) per unit volume. * 𝑒: 

The elementary charge (magnitude of the electron charge). So 𝑒2 is charge 

squared. * 𝜖0: The permittivity of free space, a fundamental constant. * 𝑚: 

The mass of the oscillating charge (electron mass). * 𝑐: The speed of light 

in vacuum. * 𝛾: Our familiar damping constant, equal to 𝐴i (the 

spontaneous emission rate or inverse lifetime of the upper state if we 

connect to a two-level quantum system for absorption from ground to 

excited state 𝑖). * (𝜔 − 𝜔0): The detuning of the driving light frequency 𝜔 



from the natural resonance frequency 𝜔0 of the oscillator. * (
𝛾

2
)
2
: Half the 

damping rate squared. 

The term 
𝛾

(𝜔−𝜔0)
2+(

𝛾

2
)
2 is a Lorentzian function of 𝜔, peaked at 𝜔 = 𝜔0, and 

its FWHM in angular frequency is 𝛾. 

The prefactor 
𝑁𝑒2

4𝜖0𝑚𝑐
 determines the strength of the absorption at resonance. 

This prefactor can also be related to the oscillator strength 𝑓 of the 

transition, often appearing as 
𝜋𝑁𝑒2𝑓

2𝜖0𝑚𝑐
 (normalized lineshape function whose 

peak is 2/𝛾) if using a slightly different lineshape normalization, or 
𝑁𝑒2𝑓

2𝜖0𝑚𝑐𝛾
 

(Lorentzian normalized to peak value 1 and width 𝛾 using a different form). 

The expression on the slide is correct for the Lorentzian written as 
𝛾

(detuning)2+(
𝛾

2
)
2. 

The peak value of this Lorentzian part (when 𝜔 = 𝜔0) is 
𝛾

(𝛾/2)2
=

𝛾

𝛾2/4
=

4

𝛾
. 

So at resonance, 𝛼(𝜔0) =
𝑁𝑒2

4𝜖0𝑚𝑐
×
4

𝛾
=

𝑁𝑒2

𝜖0𝑚𝑐𝛾
. 

The second bullet point makes a crucial observation: "Identical Lorentzian 

form and identical FWHM 𝛾 as emission case, confirming reciprocity." 

This is extremely important. The absorption lineshape 𝛼(𝜔) derived from 

the driven classical oscillator model has exactly the same Lorentzian 

functional form, and, critically, the same Full Width at Half Maximum 𝛾, as 

the emission lineshape 𝐼(𝜔) we derived earlier from the Fourier transform 

of the freely decaying (undriven) oscillator. 

This is a manifestation of a deep principle of reciprocity in physics, related 

to time-reversal symmetry and detailed balance. The probability of an atom 



absorbing a photon of a certain frequency and lineshape is directly related 

to its probability of emitting a photon of the same frequency and lineshape. 

The fact that our simple classical model reproduces this is another 

testament to its power. So, the natural linewidth 𝛾 is the same for both 

absorption and spontaneous emission for an isolated, stationary atom. 

Page 44: 

This page provides a graph illustrating the "Shared Lorentzian Profile: 

Emission & Absorption." 

The vertical axis is "Relative Signal Strength," and the horizontal axis is 

"Angular Frequency (𝜔)," centered around 𝜔0. 

Two curves are plotted: 1. A blue curve labeled "Emission Profile." 2. A red 

curve labeled "Absorption Profile," with a note "(Same 𝜔0 and 𝛾)." 

Both curves are Lorentzian in shape. 

* They both peak at the same central angular frequency, 𝜔0. 

* They both have the same Full Width at Half Maximum, indicated by a 

horizontal double-headed arrow labeled 𝛾 at the half-maximum height of 

the (presumably normalized) curves. 

The graph visually emphasizes the point made on the previous slide: the 

lineshape profile (Lorentzian) and the fundamental width (𝛾, the natural 

linewidth) are identical for both emission from an excited state and 

absorption by a ground state (or lower state) atom, assuming we are 

dealing with isolated, stationary atoms where only natural broadening is 

present. 

The relative heights of the emission and absorption profiles in a real 

experiment would depend on various factors (like populations 𝑁i and 𝑁k, 

oscillator strengths, detection efficiencies, etc.), so the "Relative Signal 

Strength" axis is general. Here, the absorption profile is drawn slightly lower 



in peak height than the emission profile, but this is just an illustrative choice 

for the plot; the key is that their shapes and widths (characterized by 𝜔0 

and 𝛾) are the same. 

This shared profile is a fundamental aspect of light-matter interaction. 
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Slide 18: Dispersion — Variation of Refractive Index. 

We now explore another consequence of the interaction of light with our 

(driven) classical oscillator: 

The first bullet point states: "Real part of the complex response gives 

refractive index increment." 

When we solved for the driven oscillator, we found a complex polarizability, 

which leads to a complex susceptibility 𝜒(𝜔), and then a complex refractive 

index 𝑛complex(𝜔) = 𝑛′(𝜔) + 𝑖 𝑛″(𝜔). 

The imaginary part, 𝑛″(𝜔), is related to the absorption coefficient 𝛼(𝜔) 

(specifically, 𝛼 =
2 𝜔

𝑐
 𝑛″(𝜔)). 

The real part, 𝑛′(𝜔), is the ordinary refractive index that determines the 

phase velocity of light in the medium ( 𝑣phase =
𝑐

𝑛′
 ). 

The equation given is for the refractive index 𝑛′(𝜔) itself, or rather, its 

deviation from unity (since 𝑛 = 1 in vacuum): 

𝑛′(𝜔) = 1 +
𝑁𝑒2

4𝜀0𝑚𝜔0

𝜔0 − 𝜔

(𝜔 − 𝜔0)
2 + (

𝛾
2
)
2 

Let's analyze this: 

The "1 +" term indicates we are talking about the full refractive index, 

starting from the vacuum value of 1. 



The prefactor 
𝑁𝑒2

4𝜀0𝑚𝜔0
 is slightly different from the one for 𝛼(𝜔). Note the 𝜔0 

in the denominator here instead of 𝑐 and the overall factor of 2 difference if 

we compare forms. This is for the increment to 𝑛 from 1. (A more common 

form for 𝑛 − 1 involves 2𝜀0𝑚 in denominator). 

The crucial frequency-dependent part is 
𝜔0−𝜔

(𝜔−𝜔0)
2+(

𝛾

2
)
2. 

  This is not a simple Lorentzian shape like for absorption. It's an "S-

shaped" or dispersive curve. 

  - When 𝜔 ≪ 𝜔0, then 𝜔0 −𝜔 is positive and large, while the 

denominator is large. 𝑛′(𝜔) will be slightly greater than 1 (normal 

dispersion). 

  - When 𝜔 ≫ 𝜔0, then 𝜔0 −𝜔 is negative and large, denominator is 

large. 𝑛′(𝜔) will be slightly less than 1 (though still positive). 

  - Near resonance ( 𝜔 ≈ 𝜔0 ), the behavior is dramatic.    If 𝜔 is 

slightly less than 𝜔0, 𝜔0 − 𝜔 is small positive. (𝜔 − 𝜔0)
2 is small. 𝑛′ can 

increase significantly.    If 𝜔 is slightly more than 𝜔0, 𝜔0 −𝜔 is small 

negative. (𝜔 − 𝜔0)
2 is small. 𝑛′ can decrease significantly.    At 𝜔 =

𝜔0, the numerator 𝜔0 − 𝜔 is zero, so 𝑛′(𝜔0) = 1 (assuming the prefactor is 

for 𝑛′ − 1, the slide implies this is the increment, so at resonance the 

increment is zero). 

The second bullet highlights: " 𝑛′(𝜔) exhibits steep slope near resonance 

(anomalous dispersion)." 

Indeed, in the region around 𝜔 = 𝜔0, the term 𝜔0 −𝜔 changes sign rapidly, 

and the denominator is small, leading to a very steep, negative slope for 

𝑛′(𝜔) versus 𝜔. This rapid change of refractive index with frequency near 

an absorption line is called "anomalous dispersion." (Normal dispersion is 

when 𝑛′ increases with 𝜔). 



The third bullet points to a fundamental connection: "Relationship between 

absorption peak and steep dispersion mandated by Kramers-Kronig 

relations." 

The real part 𝑛′(𝜔) (dispersion) and the imaginary part 𝑛″(𝜔) (related to 

absorption 𝛼(𝜔)) of the complex refractive index are not independent. They 

are related to each other through integral transforms known as the 

Kramers-Kronig relations. These relations are a mathematical 

consequence of causality (the response of the medium cannot precede the 

stimulus). If you know the absorption spectrum 𝛼(𝜔) over all frequencies, 

you can, in principle, calculate the dispersion spectrum 𝑛′(𝜔) at any 

frequency, and vice-versa. The Lorentzian absorption peak is thus 

mathematically linked to the S-shaped anomalous dispersion curve. 
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This page continues the discussion on dispersion with a brief but significant 

implication. 

The single bullet point states: "Such dispersion underlies slow-light and 

optical switching phenomena." The rapid and strong variation of the 

refractive index 𝑛′(𝜔) near an atomic resonance, known as anomalous 

dispersion, has profound consequences that are exploited in modern optics 

and photonics. 

* Slow Light: The group velocity of a light pulse in a dispersive medium is 

given by 𝑣group =
𝑐

𝑛′(𝜔)+𝜔
𝑑𝑛′

𝑑𝜔

. In regions of steep normal dispersion (large 

positive 
𝑑𝑛′

𝑑𝜔
), or even more dramatically with specially engineered 

resonances (e.g., using Electromagnetically Induced Transparency, EIT), 

the 
𝑑𝑛′

𝑑𝜔
 term can become very large and positive. This can lead to extremely 

small group velocities, effectively "slowing down" light pulses, sometimes to 

mere meters per second or even stopping them. 



* Optical Switching: The refractive index near resonance can be very 

sensitive to external parameters that might shift the resonance frequency or 

change the population of atoms (e.g., another light beam, an electric field). 

If 𝑛′(𝜔) changes significantly, the phase of the light passing through the 

medium changes. This can be used to build all-optical switches, where one 

light beam controls the path or properties of another, by modulating the 

refractive index of a material. 

So, the same underlying physics of the classical (and quantum) oscillator 

that gives rise to absorption and natural linewidth also leads to dispersion, 

which is not just a curiosity but an enabling mechanism for advanced 

optical technologies. The natural lineshape is therefore intrinsically linked to 

these phenomena as well. 
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This page shows a diagram illustrating "Slide 18: Dispersion — Variation of 

Refractive Index," specifically the "Lorentzian Absorption and 

Corresponding Dispersion Curve." 

The vertical axis is labeled "𝑛′(𝜔) − 1 / Absorption (a.u.)". This means it's 

plotting both the absorption and the dispersive part of the refractive index 

(minus 1, representing the contribution from the resonance) on the same 

arbitrary units scale. 

The horizontal axis is "Frequency (𝜔)," centered at 𝜔0. Points like 𝜔0 − 2𝛾, 

𝜔0 − 𝛾, 𝜔0 + 𝛾, 𝜔0 + 2𝛾 are marked, indicating the scale in terms of the 

linewidth parameter 𝛾. 

Two curves are shown: 

1. The Absorption curve is in red. It's the familiar Lorentzian shape, 

peaking at 𝜔 = 𝜔0 and having a width related to 𝛾. 

2. The Dispersion (𝑛′(𝜔) − 1) curve is in blue. This is the S-shaped curve 

characteristic of anomalous dispersion near a resonance. * For 𝜔 < 𝜔0, 



𝑛′(𝜔) − 1 is positive, meaning 𝑛′(𝜔) > 1. It rises as 𝜔 approaches 𝜔0 from 

below. * At 𝜔 = 𝜔0, 𝑛′(𝜔) − 1 is zero, so 𝑛′(𝜔) = 1. * For 𝜔 > 𝜔0, 𝑛′(𝜔) − 1 

is negative, meaning 𝑛′(𝜔) < 1. It dips sharply and then gradually returns 

towards zero from below as 𝜔 increases further. 

A gray arrow highlights the region around 𝜔0 on the blue dispersion curve 

where the slope 
𝑑𝑛′

𝑑𝜔
 is steeply negative. This region is labeled "Anomalous 

Dispersion." 

This plot beautifully visualizes the Kramers-Kronig relationship in action: 

where you have an absorption peak (the red Lorentzian), you will inevitably 

have a corresponding dispersive feature (the blue S-curve) in the refractive 

index. The two are inextricably linked. The width of the absorption feature 

(𝛾) also dictates the frequency range over which the anomalous dispersion 

is most pronounced. 
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Slide 19: Practical Limitation — Role of Doppler Broadening 

We now encounter "Slide 19: Practical Limitation — Role of Doppler 

Broadening." So far, our discussion of natural linewidth has implicitly 

assumed an isolated, stationary atom. In real-world scenarios, especially 

with gases, this is often not the case. 

The first bullet point states: "Real gases at temperature 𝑇 have atoms 

moving with thermal velocities 𝑣 approximately √
𝑘B𝑇

𝑚
." 

Atoms in a gas at a finite temperature 𝑇 are in constant random motion, 

described by the Maxwell-Boltzmann velocity distribution. A typical 

measure of their speed 𝑣 is related to the square root of √
𝑘B𝑇

𝑚
, where 𝑘B is 

the Boltzmann constant, 𝑇 is the absolute temperature, and 𝑚 is the mass 



of the atom. For example, sodium atoms at room temperature have RMS 

speeds of several hundred meters per second. 

The second bullet point explains the consequence of this motion: "Motion 

shifts resonance by Doppler frequency 𝛥𝜔D = 𝜔0
𝑣

𝑐
." 

If an atom is moving with a velocity component 𝑣 along the line of sight of 

an incoming (or emitted) light wave, it will experience (or produce) a 

Doppler shift in the frequency of the light. If the atom is moving towards the 

light source (or detector), the frequency it absorbs (or emits) in its own rest 

frame, 𝜔0, will appear higher (blueshifted) in the lab frame. If it's moving 

away, the frequency will appear lower (redshifted). To first order, the 

Doppler shift in angular frequency, 𝛥𝜔D, is given by 𝛥𝜔D = 𝜔0
𝑣

𝑐
, where 𝑣 is 

the velocity component along the light propagation direction (positive if 

moving away, negative if moving towards, for absorption of a fixed lab 

frequency laser, or affects emitted frequency if 𝑣 is atom's velocity relative 

to lab) and 𝑐 is the speed of light. Since there's a distribution of velocities 𝑣 

in the gas, there will be a distribution of Doppler shifts. 

The third bullet point gives the "Result: convolution of natural Lorentzian 

with Gaussian velocity distribution leads to Voigt profile." 

Each atom, in its own rest frame, has a natural linewidth described by a 

Lorentzian profile centered at 𝜔0. However, due to the thermal motion, an 

ensemble of atoms will have their resonance frequencies 𝜔0 (as seen in 

the lab frame) shifted by the Doppler effect. The distribution of these shifts, 

arising from the Maxwell-Boltzmann distribution of velocities, is Gaussian. 

The observed spectral line from the ensemble is therefore a superposition 

of many Lorentzian profiles, each shifted by a different Doppler amount. 

The overall lineshape that results from convolving the Lorentzian natural 

lineshape with the Gaussian Doppler broadening distribution is known as a 

Voigt profile. 



In many practical situations, especially for light atoms at moderate to high 

temperatures, the Doppler broadening (width of the Gaussian) is 

significantly larger than the natural linewidth (width of the Lorentzian). In 

such cases, the observed lineshape looks mostly Gaussian, and the 

underlying natural linewidth can be completely masked. This is a major 

practical limitation to observing the true natural linewidth in conventional 

gas-phase spectroscopy. 
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This page continues the discussion on Doppler broadening and its 

implications. 

The single bullet point states: "Natural profile derived here is observable 

only with Doppler-free spectroscopy (e.g., saturated absorption, two-photon 

spectroscopy)." This is a critical point for experimental laser spectroscopy. 

Because Doppler broadening often dominates in gases, the narrow natural 

Lorentzian profile we've painstakingly derived is usually hidden within a 

much broader Doppler profile. To observe and measure the natural 

linewidth, or to perform spectroscopy with a resolution limited by it, one 

needs to employ special techniques known as "Doppler-free spectroscopy." 

Examples given are: 

* Saturated Absorption Spectroscopy: This technique uses two counter-

propagating laser beams (a strong pump and a weak probe) interacting 

with the gas. Only atoms with zero velocity component along the beams' 

axis can interact resonantly with both beams simultaneously. This creates a 

narrow "Lamb dip" (a dip in the absorption of the probe beam) at the true 

resonance frequency 𝜔0, with a width approaching the natural linewidth. 

* Two-Photon Spectroscopy: If an atom absorbs two photons 

simultaneously from counter-propagating beams, the Doppler shift from 

one beam cancels the Doppler shift from the other (for an atom moving 

along the beam axis, one photon is blueshifted by 𝜔0
𝑣

𝑐
, the other is 



redshifted by 𝜔0
𝑣

𝑐
, so the sum of their energies in the atom's frame has the 

first-order Doppler shift cancel out). This allows for the observation of a 

Doppler-free signal whose width can be limited by the natural linewidth. 

There are other Doppler-free techniques as well (e.g., spectroscopy on 

collimated atomic beams observed perpendicularly). The development of 

these techniques was a major advance in laser spectroscopy, allowing 

physicists to overcome the Doppler limit and probe the intrinsic structure of 

atomic and molecular lines with unprecedented resolution. Without them, 

much of what we know about fine details of atomic spectra would be 

inaccessible. 
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This page presents a graph titled "Spectral Line Broadening: Natural, 

Doppler, and Voigt Profiles," visually summarizing the concepts from the 

last few slides. 

The vertical axis is "Normalized Intensity," and the horizontal axis 

represents frequency, centered at 𝜔0. The x-axis ranges from −5.0 to 5.0 in 

some arbitrary units related to the widths. 

Three profiles are plotted: 

1. Natural (Lorentzian, 𝛤L): This is the blue curve. It is the narrowest of the 

three, sharply peaked at 𝜔0. This represents the intrinsic lineshape due to 

the finite lifetime of the excited state, which we've identified as a 

Lorentzian. 𝛤L here would correspond to our '𝛾' (or related to it). 

2. Doppler (Gaussian, 𝛤G): This is the red curve. It is significantly broader 

than the natural Lorentzian profile in this illustration. It has the characteristic 

bell shape of a Gaussian distribution, arising from the Maxwell-Boltzmann 

distribution of atomic velocities. 𝛤G represents the width of this Gaussian 

Doppler profile. 



3. Observed (Voigt, 𝛤V): This is the purple curve. It is the convolution of the 

blue Lorentzian and the red Gaussian. In this particular plot, where the 

Doppler width is shown as larger than the natural width, the Voigt profile 

looks somewhat like a Gaussian in the core but has broader "wings" (tails) 

than a pure Gaussian, inherited from the Lorentzian component. The Voigt 

profile is generally wider than either the pure Lorentzian or pure Gaussian 

from which it's formed. 𝛤V would be its width. 

Dashed lines indicate the half-maximum level, and the labels on the graph 

(e.g., 𝛤V = 2.96, 𝛤G = 2.50, 𝛤L = 0.80) seem to be parameters used for this 

specific plot, indicating relative widths, perhaps FWHM values. These 

numbers clearly show 𝛤L < 𝛤G < 𝛤V in this example. 

This graph powerfully illustrates why Doppler broadening can be a major 

challenge. If the red Gaussian is much wider than the blue Lorentzian, the 

observed purple Voigt profile will largely mimic the Gaussian, and the 

subtle features of the natural lineshape will be obscured. Doppler-free 

techniques are designed to effectively "suppress" the red Gaussian 

contribution, allowing the blue Lorentzian to be revealed. 
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Slide 20: Example — Sodium D₁  Transition at 589 nm. 

Now we move to "Slide 20: Example — Sodium D₁  Transition at 589 nm." 

This provides concrete numbers to make the concepts more tangible. The 

Sodium D lines are classic examples in atomic spectroscopy. 

- The first bullet, "Data," indicates we're starting with known properties. 

- Second bullet: "Wavelength 𝜆 = 589.1 nm (nanometers) implies 𝜈0 =
𝑐

𝜆
=

5.09 × 1014 Hz." 

The D1 line of sodium has a wavelength of approximately 589.1 nm (this is 

actually closer to the average of D1 and D2, D1 is 589.6 nm, D2 is 

589.0 nm; let's use the value given). 



Using the speed of light 𝑐 ≈ 3 × 108 m/s and the wavelength 𝜆 = 589.1 ×

10−9 m, the transition frequency 𝜈0 is calculated as 
𝑐

𝜆
. 

𝜈0 =
3×108  m/s

589.1×10−9  m
≈ 5.092 × 1014 Hz. The slide gives 5.09 × 1014 Hz, which is 

correct. This is a very high frequency, typical for visible light (orange-yellow 

for sodium D-lines). 

- Third bullet: "Lifetime 𝜏 = 16 ns = 16 × 10−9 s." 

The lifetime of the upper state (3 𝑝 2𝑃1/2 for D1 line) of the sodium D1 

transition is approximately 16 nanoseconds. This is a relatively short 

lifetime, typical for allowed optical transitions. 

- Fourth bullet: "Natural linewidth." 

Now we apply our formula 𝛥𝜈nat =
1

2𝜋𝜏
. 

𝛥𝜈nat =
1

2𝜋𝜏
=

1

2𝜋×16×10−9  s
. 

Plugging in the values: 

1

2𝜋 × 16 × 10−9
≈

1

100.53 × 10−9
≈

1

1.0053 × 10−7
≈ 0.9947 × 107 Hz 

This is 9.947 × 106  Hz, or 9.947 MHz (Megahertz). The slide gives 9.95 ×

106 Hz, which is approximately 10 MHz. 

This is correct. So, the natural linewidth of the sodium D1 line is about 

10 MHz. This is the minimum possible width this spectral line can have, 

even if we could perfectly isolate a sodium atom and keep it stationary. 

This 10 MHz might sound small, but Doppler broadening for sodium at 

room temperature is on the order of 1 − 2 GHz (Gigahertz), which is 100 to 

200 times larger! This again emphasizes why Doppler-free techniques are 

needed to see this natural width. 
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This page continues the example of the Sodium D1 transition. 

The first bullet point calculates the "Number of optical cycles before 

amplitude decays by 
1

𝑒
": 

𝑁cycles = 𝜈0𝜏′. Here 𝜏′ should be the amplitude decay time constant. The 

amplitude 𝑥(𝑡) decays as 𝑒−𝛾𝑡/2. The time constant for amplitude decay is 
2

𝛾
. We know 𝛾 = 𝐴i =

1

𝜏lifetime

 (where 𝜏lifetime is the 16 ns energy/population 

lifetime). So, amplitude decay time constant = 2 × 𝜏lifetime = 2 × 16 ns =

32 ns. 𝑁cycles = 𝜈0 × (2 × 𝜏lifetime) = (5.09 × 1014 Hz) × (32 × 10−9 s) =

5.09 × 32 × 105 = 162.88 × 105 = 1.6288 × 107 cycles. 

However, the slide uses 𝑁cycles = 𝜈0𝜏 = (5.09 × 1014) × (16 × 10−9) 

approximately 8.1 × 106. Here, 𝜏 = 16 ns is the lifetime of the state (power 

decay time constant, or 1/𝛾). If the question is "number of optical cycles 

during one lifetime 𝜏 = 1/𝛾", then this calculation is correct: (5.09 ×

1014 cycles/sec) × (16 × 10−9 sec) = 5.09 × 16 × 105 = 81.44 × 105 =

8.144 × 106 cycles. So, during one lifetime 𝜏 (where power drops by 
1

𝑒
, or 

population drops by 
1

𝑒
), the classical oscillator completes about 8.1 million 

cycles. This is a very large number. 

The second bullet point draws a conclusion: "Confirms 𝛾 much, much less 

than 𝜔0 by over seven orders of magnitude." Let's check this. 𝛾 =
1

𝜏
=

1

16×10−9  s
= 0.0625 × 109 s−1 = 6.25 × 107 rad/s (if thinking of 𝛾 as angular 

frequency width). 𝜔0 = 2𝜋𝜈0 = 2𝜋 × (5.09 × 10
14 Hz) ≈ 3.198 × 1015 rad/s. 

Now, the ratio 𝜔0/𝛾: 

𝜔0
𝛾
=
3.198 × 1015

6.25 × 107
= (

3.198

6.25
) × 108 ≈ 0.511 × 108 ≈ 5.1 × 107 

This is a factor of about 51 million. Indeed, 𝜔0 is vastly larger than 𝛾. This 

fully justifies our "small damping approximation" (𝛾 ≪ 𝜔0) that we used 



earlier. The oscillator performs many, many oscillations before its energy 

(or amplitude) significantly decays. The quality factor 𝑄 of such an 

oscillator, often defined as 𝜔0/𝛾, would be very high, around 5 × 107. This 

means the emitted wavetrain is very long and nearly monochromatic, which 

corresponds to a narrow line in the frequency domain, as we found 

(10 MHz width for a 509 THz frequency). 
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Slide 21: Example — Ultra-Narrow Molecular and Forbidden Lines 

Now for "Slide 21: Example — Ultra-Narrow Molecular and Forbidden 

Lines." This contrasts with the sodium D-line example by looking at 

systems with much longer lifetimes. 

First case: "Vibrational states typical lifetime 𝜏 = 1 ms (millisecond)." 

Molecular vibrational transitions (e.g., in the infrared) can have lifetimes on 

the order of milliseconds (10−3 s), which is much longer than the 

nanosecond lifetimes of typical allowed electronic transitions in atoms. 

𝜏 = 1 ms = 1 × 10−3 s 

"NATURAL WIDTH": 

Using 𝛥𝜈nat =
1

2𝜋𝜏
: 

𝛥𝜈nat =
1

2𝜋 ⋅ 1 × 10−3 s
=

1

0.006283 s
≈ 159.15 Hz 

The slide gives "equals 159 Hz, approximately 160 Hz." 

This is a remarkably narrow natural linewidth! Compare this to the ∼

10 MHz for the sodium D-line. The 160 Hz width is about 60,000 times 

narrower, directly reflecting the much longer lifetime (1 ms vs 16 ns, a factor 

of 62,500 longer). 



Such narrow lines are indeed achievable in vibrational spectroscopy if 

Doppler and collisional broadening can be sufficiently suppressed. 

Second case: "Hydrogen 2 𝑠 → 1 𝑠 two-photon transition." 

The 2 𝑠 state of hydrogen is metastable. 

It cannot decay to the 1 𝑠 ground state by emitting a single photon because 

this would violate electric dipole selection rules (𝛥𝐿 must be ±1, but 2 𝑠 to 

1 𝑠 is 𝛥𝐿 = 0). 

It can decay by emitting two photons, but this is a much slower process. 

"Lifetime 𝜏 = 0.12 s." 

This is an extremely long lifetime for an excited atomic state – 0.12 s! (The 

actual lifetime of 𝐻(2 𝑠) is about 
1

8
 of a second, so 0.12 s is in the right 

ballpark). 

We'll calculate the width on the next page. 

The key takeaway here is that much longer lifetimes lead to much narrower 

natural linewidths. 
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Continuing with the Hydrogen 2 𝑠 → 1 𝑠 two-photon transition example: The 

lifetime 𝜏 was given as 0.12 seconds. 

The first bullet asks for the "Width": Using 𝛥𝜈nat =
1

2𝜋𝜏
: 

𝛥𝜈nat =
1

2𝜋 ⋅ 0.12 s
=

1

0.75398 s
≈ 1.326 Hz 

The slide gives "equals 1.3 Hz." This is an incredibly narrow natural 

linewidth – just over one Hertz! This is nearly 10 million times narrower 

than the sodium D-line's natural width. This extremely narrow linewidth is a 

direct consequence of the very long lifetime of the 2 𝑠 state. The two-



photon spectroscopy technique used to observe this transition is also 

inherently Doppler-free (to first order when using counter-propagating 

beams), allowing such narrow features to be resolved. 

The second bullet point emphasizes the significance: "Such narrow 

features are pivotal in testing quantum electrodynamics and probing 

fundamental constants." 

Transitions with extremely narrow natural linewidths, like the Hydrogen 

1 𝑠-2 𝑠 transition, are of immense importance in fundamental physics: 

• Testing QED: Quantum Electrodynamics is our most precise theory of 

light-matter interactions. Measuring the frequencies of such transitions with 

extremely high accuracy provides stringent tests of QED calculations, 

which include tiny effects like the Lamb shift. 

• Probing Fundamental Constants: The frequencies of atomic 

transitions depend on fundamental physical constants (like the Rydberg 

constant, fine structure constant, proton-to-electron mass ratio). Highly 

precise measurements of these frequencies can lead to improved values 

for these constants, or can search for possible slow variations of these 

constants over cosmological time scales. 

• Atomic Clocks: Transitions with very narrow linewidths are ideal 

candidates for optical atomic clocks, which are now the most precise 

timekeeping devices ever built, far surpassing microwave atomic clocks. 

The ability to resolve and accurately measure such ultra-narrow lines, often 

limited by their natural linewidth, is a triumph of modern laser spectroscopy 

and atomic physics. 

Page 55 

This page presents a "Comparison of Natural Linewidths (Logarithmic 

Scale)" using a bar chart. This is an excellent way to visualize the vast 

differences in natural linewidths for the examples we've discussed. 



The vertical axis is "Natural Linewidth (Hz)" and is on a logarithmic scale, 

ranging from 0.1 Hz at the bottom to 100 MHz at the top. Each major tick 

mark represents a factor of 10 increase in linewidth (1 Hz, 10 Hz, 100 Hz, 

1 kHz, 10 kHz, 100 kHz, 1 MHz, 10 MHz, 100 MHz). The horizontal axis is 

"Transition," showing the three cases. 

Let's look at the bars: 

1. Sodium D1 Line (589 nm): The bar for this transition reaches up to a 

value labeled 9.95 MHz. This corresponds to the ∼ 10 MHz natural linewidth 

we calculated, stemming from its ∼ 16 ns lifetime. On the log scale, this is 

near the top. 

2. Molecular Vibrational States: The bar for this case (referring to the 

1 ms lifetime example) reaches up to a value labeled 159 Hz. This is 

significantly lower on the logarithmic scale than the Sodium D1 line, 

reflecting its much narrower linewidth. 

3. Hydrogen 2 𝑠 → 1 𝑠 (two-photon): The bar for this transition is the 

shortest, reaching down to a value labeled 1.3 Hz. This is by far the 

narrowest linewidth of the three, consistent with the very long 0.12 s lifetime 

of the 2 𝑠 state. It sits very low on the logarithmic scale. 

This chart dramatically illustrates the huge range of natural linewidths 

encountered in atomic and molecular spectroscopy. The linewidth can span 

many orders of magnitude, directly reflecting the equally vast range of 

lifetimes of excited states. Understanding this connection allows us to 

select appropriate transitions for different applications, whether it's for rapid 

optical pumping (requiring short lifetimes and broad lines) or for ultra-high 

precision metrology (requiring long lifetimes and extremely narrow lines). 
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Slide 22: Key Takeaways and Forward Look 



We're nearing the end of this section with "Slide 22: Key Takeaways and 

Forward Look." This slide summarizes the main points we've covered 

regarding natural linewidth. 

First bullet: "Natural linewidth originates from spontaneous emission and is 

fully characterised by lifetime 𝜏." 

This is the fundamental quantum origin. An excited state is not truly stable; 

it interacts with the vacuum electromagnetic field and spontaneously emits 

a photon, returning to a lower energy state. This process gives the excited 

state a finite lifetime, 𝜏. This finite lifetime, via the energy-time uncertainty 

principle (or through Fourier analysis of a decaying emission), leads directly 

to a spread in the emitted/absorbed frequency, which is the natural 

linewidth. The width is inversely proportional to the lifetime (𝛥𝜈nat =
1

2𝜋𝜏
). 

Second bullet: "Classical damped oscillator faithfully mirrors quantum 

behaviour for line-shape and width." 

Remarkably, we found that a simple classical model of an electron on a 

spring, losing energy via radiation (damping), reproduces key features of 

the quantum system. The solution to the classical equation of motion, when 

Fourier transformed, yielded a Lorentzian lineshape, and the width of this 

Lorentzian (𝛾) could be directly identified with the inverse lifetime (
1

𝜏
 or 𝐴i) 

from the quantum picture. This analogy is powerful for building intuition. 

Third bullet: "Lorentzian profile is universal for isolated, stationary emitters 

and absorbers." 

When natural broadening is the only broadening mechanism present (i.e., 

for an atom that is isolated from collisions or other external perturbations, 

and is stationary so there's no Doppler effect), the spectral lineshape is a 

Lorentzian. This characteristic shape, with its relatively broad wings, is a 

fingerprint of lifetime broadening. 

These three points encapsulate the core physics of natural linewidth. 
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This final page provides a "Forward Look," indicating what's next in our 

study of lineshapes. 

The bullet point states: "Upcoming sections will incorporate motion 

(Doppler) and collisional effects to build the complete Voigt profile used in 

real-world spectroscopy." 

We've focused on the natural linewidth, which is the intrinsic, minimum 

width. However, in many real-world spectroscopic measurements, 

especially in gases and liquids, other broadening mechanisms are also 

present and can often dominate: 

• Motion (Doppler Broadening): As we briefly discussed, the thermal 

motion of atoms in a gas leads to Doppler shifts, resulting in a Gaussian 

broadening of the spectral line. 

• Collisional Effects (Pressure Broadening): Atoms in a gas are not 

truly isolated; they collide with each other. These collisions can interrupt the 

process of emission or absorption, effectively shortening the coherent 

interaction time with the radiation field. This leads to a broadening of the 

spectral line, which is also typically Lorentzian in shape. The width of this 

collisional broadening depends on the pressure and temperature of the 

gas. 

When natural broadening (Lorentzian), Doppler broadening (Gaussian), 

and collisional broadening (Lorentzian) are all significant, the observed 

lineshape is a convolution of all these effects. Since the convolution of two 

Lorentzians is another Lorentzian, we effectively have a natural + 

collisional Lorentzian convolved with a Doppler Gaussian. This combined 

profile is the Voigt profile we mentioned earlier. 

Understanding how to model and analyze Voigt profiles is essential for 

accurately interpreting spectra from many real-world systems and for 



extracting physical parameters like temperature, pressure, and species 

concentrations. 

So, our detailed study of the natural Lorentzian lineshape here serves as a 

crucial foundation. We'll build upon it by adding these other important 

broadening mechanisms to develop a more complete picture relevant for 

practical laser spectroscopy. 

And that concludes our lecture on natural linewidth. Thank you. 

  


