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Alright everyone, welcome to this segment of our Phys 608 Laser 

Spectroscopy course. I am Distinguished Professor Doctor M A Gondal, 

and today we embark on a crucial topic: Chapter 3, focusing on the Width 

and Profile of Spectral Lines. 

Understanding the shapes and breadths of these lines is absolutely 

fundamental to interpreting spectroscopic data and, indeed, to the very 

essence of laser spectroscopy. We'll be delving into why spectral lines are 

not infinitely sharp, what determines their characteristics, and how we can 

extract rich physical information from them. 

So, let's begin. 
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Let's start with the basics of spectral lines, and address the fundamental 

question: why are they never infinitely narrow? 

The first point to establish, as you well know, is that spectroscopy, at its 

heart, detects discrete transitions. These are transitions between quantized 

energy levels of atoms, molecules, or ions. When an electron jumps from a 

higher energy state to a lower one, it emits a photon. Conversely, it can 

absorb a photon to jump to a higher state. It's these energy packets, these 

photons, that we detect and analyze. 

Now, in an idealized, almost naive picture, we might imagine that each 

specific transition corresponds to a perfectly defined energy difference. If 

the energy difference is precisely 𝛥𝐸, then the emitted or absorbed photon 

should have a single, unique frequency, which we'll call 𝜈0 (𝜈0), or 

equivalently, a single wavelength, 𝜆0 (𝜆0). This follows directly from the 

Planck-Einstein relation, 𝐸 = ℎ𝜈 (𝐸 = ℎ𝜈). So, if 𝛥𝐸 is perfectly sharp, 𝜈0 

should also be perfectly sharp, leading to an infinitely narrow spectral line – 

a delta function in the frequency domain. 



However, the third point brings us to the reality of the laboratory. When we 

actually perform an experiment and measure the intensity of light 

associated with a spectral transition, we find that the intensity is not 

concentrated at a single frequency. Instead, it is distributed over a small, 

but undeniably finite, frequency interval. We represent this distribution as 

𝐼(𝜈) (𝐼(𝜈)), an intensity function that varies with frequency. This is the 

experimentally observed spectral line, and it always has some width. The 

core question of this chapter is: what gives rise to this width? Why isn't it a 

perfect spike? 
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Continuing from our observation that spectral lines have a finite width, the 

immediate consequence is profound. Every "spectral line" we observe 

possesses a measurable width and, just as importantly, a characteristic 

shape, which we call its profile. This width and profile are not just artifacts; 

they are rich carriers of physical information. They tell us about the 

environment of the atoms or molecules, about their interactions, their 

motion, and even about the fundamental nature of quantum mechanics 

itself. 

Understanding these widths and their corresponding profiles is absolutely 

essential in a wide array of scientific and technological fields. Let's look at a 

few examples to appreciate the scope: 

First, precision metrology, particularly in the context of atomic clocks. The 

accuracy of an atomic clock is fundamentally linked to the narrowness and 

stability of the spectral line used as its reference. The narrower the line, the 

more precisely we can define a unit of time. So, understanding and 

minimizing line broadening is paramount here. 

Second, these line shapes are critical for diagnostics of astrophysical and 

laboratory plasmas. When we look at the light from distant stars or from 

fusion experiments, the width and shape of spectral lines tell us about the 

temperature, density, and even the elemental composition of these 



incredibly hot and often turbulent environments. Different broadening 

mechanisms dominate under different plasma conditions, so a careful 

analysis of the line profile can unravel these parameters. 

Third, in the realm of laser design and frequency stabilization. For a laser to 

operate efficiently and, crucially, at a very specific frequency, we need to 

understand the gain profile of the lasing medium, which is directly related to 

the spectral line shape of the transition involved. Stabilizing a laser's 

frequency to a very high degree often involves locking it to a narrow atomic 

or molecular reference line. Again, the characteristics of this reference line 

are key. 

And fourth, understanding line shapes allows for fundamental tests of 

quantum electrodynamics, or QED. QED is our most precise theory of light-

matter interactions. Some subtle QED effects, like the Lamb shift, actually 

manifest as small shifts or asymmetries in spectral lines. Measuring these 

with high precision requires a thorough understanding of all other 

contributions to the line shape and width, so we can isolate the QED effect. 

So, you see, this isn't just an academic exercise. The width and profile of 

spectral lines have far-reaching implications. 
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Let's now delve into the concept of Energy Levels and the Central, or 

Resonance, Frequency. This forms the basis for understanding where a 

spectral line is centered, before we even get to its width. 

Consider a quantum system – this could be an atom, a molecule, or an ion. 

We're interested in two specific stationary states of this system. What do 

we mean by stationary states? These are states with well-defined energies, 

states that, in the absence of perturbations, do not change in time. 

We'll label these states. There's an upper, or initial, state with energy 𝐸i 

(𝐸i). The subscript 'i' can stand for 'initial'. The units of energy here are 



Joules (𝐽) in the S.I. system, though electronvolts (𝑒𝑉) or wavenumbers 

(cm−1) are also commonly used in spectroscopy. 

And there's a lower, or final, state with energy 𝐸k (𝐸k). The subscript 'k' can 

represent the 'final' state in some conventions, or simply be an index 

distinct from 'i'. This state also has its energy in Joules. 

Now, a transition between these two states involves an energy difference. 

This energy difference, 𝛥𝐸 (𝛥𝐸), must either be supplied to the system for 

absorption to occur (if the system goes from 𝐸k to 𝐸i), or it is released by 

the system during emission (if the system goes from 𝐸i to 𝐸k). 

Mathematically, this energy difference is simply: 

𝛥𝐸 = 𝐸i − 𝐸k 

If 𝐸i is greater than 𝐸k, then 𝛥𝐸 is positive. This corresponds to emission if 

the system starts in state 𝑖 and transitions to state 𝑘, releasing a photon of 

energy 𝛥𝐸. If the system starts in state 𝑘 and transitions to state 𝑖, it must 

absorb a photon of energy 𝛥𝐸. The absolute magnitude of this energy 

difference is what's crucial for the photon involved. 
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We've established the energy difference, 𝛥𝐸, associated with a quantum 

transition. The next crucial step is to connect this energy to the frequency 

of the electromagnetic radiation – the light – that is either absorbed or 

emitted. This connection is given by the fundamental Planck-Einstein 

relation. 

This relation states that the central frequency, 𝜈0, of the spectral line is 

given by: 

𝜈0 =
𝛥𝐸

ℎ
 

Let's break this down: 



* 𝜈0 is the central, or resonance, frequency of the transition. This is the 

frequency where, ideally, the interaction between the light and the quantum 

system is strongest. Its units are Hertz (Hz), or cycles per second. * 𝛥𝐸 is 

the energy difference between the two quantum states involved, as we 

discussed, typically in Joules. * ℎ is Planck's constant. Its value is given 

here as 

ℎ = 6.62607015 × 10−34 J s 

It's important to note that since 2019, Planck's constant is a defined 

constant, used in the redefinition of the kilogram. It's a fundamental 

constant of nature, linking the energy of a photon to its frequency. 

So, this 𝜈0 is what we often call the "line center." It's the characteristic 

frequency we associate with a specific atomic or molecular transition. 

Now, in spectroscopy, and particularly in theoretical treatments involving 

quantum mechanics, it's often more convenient to work with angular 

frequency, 𝜔, rather than the ordinary frequency 𝜈. The reason for this will 

become clearer later, but it primarily helps to eliminate factors of 2𝜋 that 

frequently appear in equations. 

The relationship between angular frequency 𝜔0 and ordinary frequency 𝜈0 

is: 

𝜔0 = 2𝜋𝜈0 

The units of angular frequency are radians per second (rad s
−1

). Since 

radians are dimensionless, this is often just written as inverse seconds 

(𝑠−1). 

So, if we want to express the Planck-Einstein relation using angular 

frequency, we would write 𝛥𝐸 = ℏ𝜔0, where ℏ is the reduced Planck 

constant, 
ℎ

2𝜋
. This form is very common in quantum mechanics. 
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Continuing our discussion on frequency notation, this slide underscores a 

practical point you'll encounter frequently in spectroscopy literature. 

The bullet point states: "In spectroscopy literature, using 𝜔 is often more 

convenient for quantum-mechanical expressions involving phases 𝑒−𝑖𝜔𝑡." 

Let's unpack why this is the case. Quantum mechanics describes particles, 

like electrons, using wavefunctions. The time evolution of these 

wavefunctions often involves phase factors. For a state with energy 𝐸, its 

time-dependent phase factor is 𝑒−𝑖𝐸𝑡/ℏ (𝑒−𝑖𝐸𝑡/ℏ). Using the relation 𝐸 = ℏ𝜔, 

this phase factor becomes simply 𝑒−𝑖𝜔𝑡 (𝑒−𝑖𝜔𝑡). Notice how clean that 

looks! If we were to use ordinary frequency 𝜈, the phase factor would be 

𝑒−𝑖2𝜋𝜈𝑡 (𝑒−𝑖2𝜋𝜈𝑡). That extra factor of 2𝜋 would appear in many, many 

equations, making them more cumbersome. 

This convenience extends to Fourier transforms, which are fundamental in 

relating time-domain signals to frequency-domain spectra, and also in 

perturbation theory, where energy denominators often involve differences 

of frequencies. Using 𝜔 consistently simplifies the mathematical formalism 

in these areas. 

So, while 𝜈 in Hertz might be more intuitive when thinking about 

experimental frequencies, 𝜔 in radians per second often makes the 

underlying quantum mechanical equations look more elegant and easier to 

manipulate. We'll see more examples of this as we progress. For now, just 

be aware that both notations are used, and it's important to be comfortable 

converting between them. The dashes at the bottom of the slide suggest 

this is a continuation or a pause before a new idea, which is indeed the 

case as we'll move to define the line profile next. 
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Now that we've discussed the central frequency of a spectral line, let's 

formally define the concept of the Line Profile, which we denote as 𝐼(𝜈). 



The first point states that the line profile, 𝐼(𝜈), represents the 

experimentally recorded intensity as a function of frequency, 𝜈. When you 

set up a spectrometer and scan across a spectral feature, what you 

measure is how the intensity of light (either absorbed or emitted) changes 

as you tune your detection frequency. That measured curve of intensity 

versus frequency is the line profile. It's the "shape" of the spectral line that 

we talked about earlier. The notation 𝐼(𝜈) is explicitly shown enclosed in a 

box, emphasizing its definition. 

The units of this intensity, 𝐼(𝜈), can vary quite a bit depending on the 

specific experimental setup and the type of detector used. 

For example: 

* If you are measuring spectral irradiance, the units might be Watts per 

square centimeter per Hertz $\( \mathrm{W\,cm^{-2}\,Hz^{-1}}$\). This tells 

you the power per unit area per unit frequency interval. * In photon counting 

experiments, which are common in many laser spectroscopy applications, 

the intensity might be recorded as counts per second $\( 

\mathrm{counts\,s^{-1}}$\), or counts per second per frequency interval. * 

Other units are also possible, such as Joules per cubic meter per Hertz $\( 

\mathrm{J\,m^{-3}\,Hz^{-1}}$\) if you're talking about spectral energy 

density. 

The key is that 𝐼(𝜈) represents how the strength of the signal varies with 

frequency, regardless of the specific units chosen for that strength. 

Crucially, the central maximum of this observed intensity distribution, 𝐼(𝜈), 

occurs at or very near the resonance frequency, 𝜈 = 𝜈0, which we defined 

earlier from the energy level difference 𝛥𝐸 = ℎ𝜈0. 

This 𝜈0 is the peak of the line profile. 

So, to summarize the last point: The complete functional dependence 𝐼(𝜈) 

in the vicinity of this central frequency 𝜈0 is called the line profile. It’s not 

just the peak; it’s the entire curve – how the intensity rises, peaks, and then 



falls off as you move away from the central frequency. This profile contains 

a wealth of information, which we are about to explore. 
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Continuing our discussion on the line profile, 𝐼(𝜈), let's consider how we 

model these shapes and what they tell us. 

The first bullet point mentions common analytical models that are used to 

describe these line profiles. We will study these in detail in later slides, but 

for now, it's good to be aware of their names: 

* Lorentzian: This profile arises from several broadening mechanisms, 

most notably natural broadening (due to finite lifetimes of excited states) 

and collisional or pressure broadening. It has characteristic "wings" that fall 

off relatively slowly. * Gaussian: This profile is characteristic of Doppler 

broadening, which results from the random thermal motion of the atoms or 

molecules emitting or absorbing light. It falls off more rapidly in the wings 

compared to a Lorentzian. * Voigt: Often, in real systems, both Lorentzian 

and Gaussian broadening mechanisms are present simultaneously. The 

Voigt profile is a convolution of a Lorentzian and a Gaussian profile, and it's 

frequently needed to accurately model experimental line shapes, especially 

in gases at moderate pressures. 

There are other, more complex models as well, but these three are the 

workhorses of line shape analysis. 

The second bullet point is absolutely key: The profile, 𝐼(𝜈), encodes the 

physical broadening mechanisms at play. A spectral line is not just a peak; 

its specific shape – how wide it is, how quickly its wings decay, whether it's 

symmetric or asymmetric – provides deep insights into the physics of the 

system and its environment. 

Let's list some of these broadening mechanisms that contribute to the 

overall line profile: 



* Natural lifetime: This is a fundamental quantum mechanical effect. 

Excited states have finite lifetimes, which, via the energy-time uncertainty 

principle, leads to an inherent uncertainty in their energy, and thus a spread 

in the frequency of emitted photons. This typically results in a Lorentzian 

profile. * Doppler shifts: Atoms or molecules in a gas are in constant 

random motion. This motion causes Doppler shifts in the observed 

frequency of light – towards higher frequencies if moving towards the 

observer, and lower if moving away. The Maxwell-Boltzmann distribution of 

velocities leads to a Gaussian line shape. * Collisions: Interactions 

between the emitting/absorbing species and other particles (either of the 

same kind or different) can perturb the energy levels or interrupt the phase 

of the emitted/absorbed radiation. This is known as collisional or pressure 

broadening and often leads to a Lorentzian component. * External fields: 

The presence of external electric fields (Stark effect) or magnetic fields 

(Zeeman effect) can split or shift energy levels, leading to broadening or 

the appearance of multiple line components. * Instrumental resolution: 

Finally, the measuring instrument itself (spectrometer, interferometer) has a 

finite resolution. It cannot distinguish between infinitesimally close 

frequencies. This instrumental response function gets convolved with the 

true physical line shape, contributing to the observed width. 

So, when we look at a spectral line, its profile is often a composite result of 

several of these mechanisms acting together. A significant part of laser 

spectroscopy involves carefully designing experiments to isolate these 

effects or using sophisticated line shape analysis to deconvolve them and 

extract the underlying physics. 
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Alright, let's take a moment to visualize what we've been discussing. On 

this page, we have a graph that represents a typical spectral line profile. 

Let's examine the axes first. The horizontal axis is labeled "Frequency (𝜈)" 

and its units are given as Hertz (Hz). This represents the frequency of the 



light we are observing or measuring. The vertical axis is labeled "Intensity 

(𝐼)" and the units are described as "arbitrary units." This is common for 

schematic diagrams because, as we discussed, the specific units of 

intensity can vary. What's important here is the relative intensity at different 

frequencies. 

Now, looking at the curve itself, it's a bell-shaped curve, which is 

characteristic of many spectral lines. • It starts at a low intensity at low 

frequencies (far left). • As the frequency increases, the intensity rises, 

reaching a peak at a specific frequency labeled 𝜈0 (nu sub zero). This 𝜈0 is 

our central or resonance frequency, the point of maximum intensity. The 

intensity at this peak is labeled 𝐼(𝜈0) (I of nu sub zero) on the vertical axis. • 

As the frequency continues to increase beyond 𝜈0, the intensity falls off, 

eventually approaching zero at very high frequencies (far right). 

The graph also highlights some important points for defining the width of 

this line, which we'll discuss formally in the next slide. You can see a 

horizontal dashed line drawn at an intensity level of 
𝐼(𝜈0)

2
 (I of nu sub zero 

divided by two), which is exactly half of the peak intensity. This dashed line 

intersects the line profile at two points. • The frequency at the intersection 

on the lower frequency side (left of 𝜈0) is labeled 𝜈1 (nu sub one). • The 

frequency at the intersection on the higher frequency side (right of 𝜈0) is 

labeled 𝜈2 (nu sub two). 

These two frequencies, 𝜈1 and 𝜈2, are crucial because they define the 

points where the line's intensity has dropped to half its maximum value. 

The difference between 𝜈2 and 𝜈1 is what we will soon define as the Full 

Width at Half Maximum, or FWHM. This graph provides a clear visual 

representation of these key features of a spectral line profile. The shape 

depicted here looks somewhat like a Lorentzian or perhaps a Voigt profile, 

with fairly extended wings. 
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Now that we have a visual understanding of a line profile from the previous 

graph, let's formally define one of the most common and practical 

measures of a spectral line's breadth: the Full Width at Half Maximum, 

often abbreviated as FWHM. 

The first step, as highlighted on the previous graph and stated here, is to 

identify the two frequencies where the intensity of the spectral line, 𝐼(𝜈) 

(I(ν)), drops to exactly one-half of its peak value. Let 𝜈0 (nu sub zero) be 

the frequency at which the intensity is maximum, 𝐼(𝜈0). We are looking for 

two frequencies, 𝜈1 (nu sub one) and 𝜈2 (nu sub two), such that the 

intensity at these frequencies is equal to half the peak intensity. 

Mathematically, this is expressed as: 

𝐼(𝜈1) = 𝐼(𝜈2) =
𝐼(𝜈0)

2
 

Typically, 𝜈1 will be less than 𝜈0, and 𝜈2 will be greater than 𝜈0, assuming a 

symmetric line shape, though the definition holds even for asymmetric 

lines. 

Once we have these two frequencies, 𝜈1 and 𝜈2, the Full Width at Half 

Maximum, which we'll denote by the symbol 𝛿𝜈 (delta nu), is simply the 

difference between them. Since width must be a positive quantity, we take 

the absolute value: 

𝛿𝜈 = |𝜈2 − 𝜈1| 

This 𝛿𝜈 (delta nu) is the FWHM. It represents the full span in frequency 

over which the line's intensity is greater than or equal to half its maximum 

intensity. It's a very convenient and widely used metric because it gives a 

single number that characterizes the "width" of the line. A smaller 𝛿𝜈 

implies a narrower, more sharply defined spectral line, which is often 

desirable in high-resolution spectroscopy. Conversely, a larger 𝛿𝜈 indicates 

a broader line, which might be due to one or more of the broadening 

mechanisms we mentioned earlier. 



The FWHM is a direct, measurable quantity from an experimental 

spectrum, as we saw on the graph. 

Page 11: 

Let's continue with some important notes regarding the Full Width at Half 

Maximum, or FWHM. 

The first point mentions an alternative symbol often used for FWHM, 

especially in quantum optics. The symbol 𝛤 (capital Gamma) is frequently 

used to denote the FWHM, or sometimes the half-width at half-maximum 

(HWHM) depending on context, especially when discussing decay rates or 

natural linewidths. So, if you see 𝛤 in the context of spectral lines, it's very 

likely related to the line's width. It's always good practice to check the 

definition being used in any specific text or paper. 

The second point introduces another related quantity: the Half-Width at 

Half-Maximum, or HWHM. As the name suggests, the HWHM is simply half 

of the FWHM. So, HWHM equals 
𝛿𝜈

2
. While the HWHM is a perfectly valid 

quantity, it is generally less commonly used in general optics and 

spectroscopy literature compared to the FWHM. The FWHM, being the full 

width, is often more directly comparable to, for example, the bandwidth of 

filters or the resolution of instruments. 

The third point emphasizes the practical utility of the FWHM. It is the most 

practical single-number characterization of a line's breadth. Why is it so 

practical? Firstly, it can be directly read off a plotted spectrum. As we saw 

in the diagram on page 9, you find the peak, go down to half the height, 

and measure the width there. This makes it very intuitive and easy to 

determine experimentally. Secondly, if you have an analytical model for 

your line shape (like a Lorentzian or Gaussian), the FWHM can be 

precisely related to the parameters of that model. So, it can also be fitted 

mathematically from the data, providing a robust measure of the width. 



For these reasons, FWHM is the go-to parameter for describing spectral 

linewidths in a vast number to contexts. The dashes here indicate we're 

pausing before moving to a new aspect, which will be converting FWHM 

between different units. 
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Now, let's discuss how to convert the Full Width at Half Maximum (FWHM) 

between different, but related, physical quantities: specifically, between 

frequency, angular frequency, and wavelength. 

Slide 5: Converting FWHM Between Frequency, Angular Frequency, 

and Wavelength 

First, let's tackle the conversion between Frequency (𝜈, in Hertz) and 

Angular Frequency (𝜔, in radians per second). This is labeled as "1. 

Frequency ↔ Angular Frequency". 

The fundamental definition linking these two quantities, as we've seen 

before, is: 

𝜔 = 2𝜋𝜈 

Here, 𝜔 (omega) is the angular frequency, and 𝜈 (nu) is the ordinary 

frequency. The factor of 2𝜋 (two pi) arises because there are 2𝜋 radians in 

one full cycle. 

Now, if we are interested in small changes or widths, like the FWHM, we 

can consider how a small change in 𝜈, let's call it 𝛿𝜈 (delta nu), relates to a 

corresponding small change in 𝜔, let's call it 𝛿𝜔 (delta omega). Assuming 

2𝜋 is a constant, we can simply say that for small differentials or for finite 

widths (like the FWHM), the relationship is: 

𝛿𝜔 = 2𝜋𝛿𝜈 

So, if you know the FWHM in Hertz (which is 𝛿𝜈), you can find the FWHM 

in radians per second (which is 𝛿𝜔) by simply multiplying by 2𝜋. 



Conversely, if you have 𝛿𝜔, you divide by 2𝜋 to get 𝛿𝜈. This conversion is 

straightforward due to the linear relationship between 𝜔 and 𝜈. This is a 

very common conversion, especially when moving between experimental 

results (often quoted in Hertz or Megahertz or Gigahertz) and theoretical 

expressions (often derived in terms of 𝜔). 
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Next, let's address the conversion of FWHM between Frequency (𝜈) and 

Wavelength (𝜆). This is labeled as "2. Frequency ↔ Wavelength". 

The starting point for this conversion is the dispersion relation for light in a 

vacuum. This fundamental equation relates the speed of light (𝑐), the 

frequency (𝜈), and the wavelength (𝜆) of an electromagnetic wave: \\[c = 

\nu \lambda 

(c = \nu \lambda) 

Here, 'c' is the speed of light in vacuum. Its defined value is exactly c 

equals two hundred ninety-nine million, seven hundred ninety-two 

thousand, four hundred fifty-eight meters per second ( c = 2.99792458 

\times 10^{8}\, \text{m s}^{-1} ). This value is exact because the meter is 

defined in terms of the speed of light. 

Now, we want to relate a small change (or width) in frequency, \delta \nu 

(delta nu), to a corresponding small change (or width) in wavelength, \delta 

\lambda (delta lambda). To do this, we can differentiate the dispersion 

relation c = \nu \lambda . Since c is a constant, its differential is zero. We 

use the product rule for differentiating \nu \lambda : d(\nu \lambda) = 

\lambda\, d\nu + \nu\, d\lambda 

(d(\nu \lambda) = \lambda\, d\nu + \nu\, d\lambda) 

Setting the differential of c to zero, we get: 0 = \lambda\, d\nu + \nu\, 

d\lambda 

(0 = \lambda\, d\nu + \nu\, d\lambda) 



Or, using finite small changes \delta \nu and \delta \lambda instead of 

infinitesimals d\nu and d\lambda , we can write: 0 \approx \lambda\, \delta 

\nu + \nu\, \delta \lambda 

(0 \approx \lambda\, \delta \nu + \nu\, \delta \lambda) 

For small enough widths, this approximation becomes very good. 

The slide asks us to solve for \delta \lambda (delta lambda). Rearranging 

the equation, we get: \nu\, \delta \lambda = -\lambda\, \delta \nu 

(\nu\, \delta \lambda = -\lambda\, \delta \nu) 

And from this, we can isolate \delta \lambda . We'll see the result on the 

next page. This process of differentiation is a standard way to relate small 

changes in variables that are connected by a formula. 
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Continuing from the previous page, where we had the relation zero equals 

lambda delta nu plus nu delta lambda (0 = \lambda \delta \nu + \nu \delta 

\lambda), we can now solve for \delta \lambda (delta lambda), the change 

in wavelength corresponding to a change in frequency \delta \nu (delta nu). 

Rearranging, we get: 

\delta \lambda = -\frac{\lambda\, \delta \nu}{\nu} 

Now, we can make this expression look a bit more common. We know from 

the dispersion relation that \lambda = \frac{c}{\nu} (λ = c/ν), or equivalently, 

\nu = \frac{c}{\lambda} (ν = c/λ). Let's substitute \nu = \frac{c}{\lambda} into 

the denominator: 

\delta \lambda = -\frac{\lambda\, \delta \nu}{c/\lambda} 

This simplifies to: 

\delta \lambda = -\frac{\lambda^2\, \delta \nu}{c} 



Alternatively, and as shown on the slide, we can substitute \lambda = 

\frac{c}{\nu} into the numerator of the first expression: δλ equals minus (c 

divided by nu) times δν all divided by nu. 

\delta \lambda = -\frac{(c/\nu)\, \delta \nu}{\nu} 

Which gives: 

\delta \lambda = -\frac{c}{\nu^2}\, \delta \nu 

This is the form presented on the slide. Both expressions are equivalent. 

Let's discuss the negative sign. The negative sign indicates that an 

increase in frequency ( \delta \nu > 0) corresponds to a decrease in 

wavelength ( \delta \lambda < 0), and vice-versa. This is intuitive: higher 

frequency means shorter wavelength. However, when we talk about widths, 

like FWHM, we are interested in the magnitude of this spread. Widths are 

inherently positive quantities. 

Therefore, when we calculate the magnitude of the wavelength FWHM, 

which we denote as the absolute value of \delta \lambda (|δλ|), we take the 

absolute value of the expression: 

|\delta \lambda| = \frac{c}{\nu^2} |\delta \nu| 

Or, using the other form involving \lambda : 

|\delta \lambda| = \frac{\lambda^2}{c} |\delta \nu| 

Often, when \nu is the central frequency \nu_0 , and \lambda is the central 

wavelength \lambda_0 , we write: 

|\delta \lambda| = \frac{\lambda_0^2}{c} |\delta \nu| 

Or, the absolute value of \delta \lambda equals c divided by nu sub zero 

squared, all times the absolute value of δν. 

|\delta \lambda| = \frac{c}{\nu_0^2} |\delta \nu| 



This formula is extremely useful for converting a frequency width (like a 

laser linewidth specified in MHz) into a wavelength width (in picometers or 

nanometers). 

Finally, the slide mentions typical laboratory usage. Wavelength \lambda 

(lambda) is often expressed in nanometers (nm, 10^{-9} meters) or 

Angstroms (Å, 10^{-10} meters) for visible and UV light. Frequency \nu (nu) 

for optical transitions is very high, typically in the Terahertz range (THz, 

10^{12} Hz). For example, visible light around 500 nanometers has a 

frequency of about 600 Terahertz. The corresponding wavelength width, 

\delta \lambda (delta lambda), for typical optical transitions, often lies in the 

picometer range (pm, 10^{-12} meters). For instance, a laser linewidth of a 

few Megahertz (MHz, 10^6 Hz) in the visible spectrum corresponds to a 

\delta \lambda of femtometers (fm, 10^{-15} meters) to picometers. The 

slide says picometers, which is a good general range to keep in mind for 

many common linewidths encountered in spectroscopy. 
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Now we move to Slide 6, which introduces the concept of Unit-Independent 

Relative Halfwidths. This is a very powerful idea for comparing spectral 

features across different frequency or wavelength ranges. 

The first point defines the relative (dimensionless) width for any variable x . 

If x is some quantity (like frequency \nu , angular frequency \omega , or 

wavelength \lambda ), and \delta x (delta x ) is its width (e.g., FWHM), then 

the relative width is defined as: 

\left|\frac{\delta x}{x}\right| 

This quantity is dimensionless because both \delta x and x have the same 

units, so they cancel out. For example, if frequency \nu is in Hertz and 

\delta \nu is in Hertz, then \frac{\delta \nu}{\nu} is unitless. This makes it a 

very convenient way to express "how wide" something is in proportion to its 

central value. 



The second point is a key result. It states that starting with x = \nu (our 

frequency) and using the conversions we've just discussed, we can prove a 

very elegant equality: 

\left|\frac{\delta \nu}{\nu}\right| = \left|\frac{\delta \omega}{\omega}\right| = 

\left|\frac{\delta \lambda}{\lambda}\right| 

Let's think about why this must be true. For frequency \nu and angular 

frequency \omega , we know \omega = 2\pi\nu . Therefore, \delta \omega = 

2\pi\delta \nu . So, 

\frac{\delta \omega}{\omega} = \frac{2\pi\delta \nu}{2\pi\nu} = \frac{\delta 

\nu}{\nu} 

The 2\pi factors cancel perfectly. So, the first equality, \left|\frac{\delta 

\nu}{\nu}\right| = \left|\frac{\delta \omega}{\omega}\right| , is straightforward. 

The third point on the slide begins a derivation example, specifically for \nu 

\rightarrow \omega , which we just mentally walked through. \frac{\delta 

\omega}{\omega} equals \frac{2\pi \times \delta \nu}{2\pi \times \nu} , which 

simplifies to \frac{\delta \nu}{\nu} . So, the relative width in terms of angular 

frequency is indeed identical to the relative width in terms of ordinary 

frequency. 

We'll look at the \nu \rightarrow \lambda conversion on the next slide to 

complete the proof of the second equality. The beauty of this result is that if 

you calculate the relative width using any one of these representations ( \nu 

, \omega , or \lambda ), you immediately know it for the others. 
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Let's continue with the derivation of the equality of relative widths, focusing 

now on the relationship between the relative width in frequency \frac{\delta 

\nu}{\nu} and the relative width in wavelength \frac{\delta \lambda}{\lambda} 

. 



The slide provides the derivation example for \nu \to \lambda. It reminds us 

to use the relation \nu=\frac{c}{\lambda} (nu equals c divided by lambda), or 

equivalently, \lambda=\frac{c}{\nu} . 

From our earlier work on page 14, we found the relation for the magnitudes 

of the widths: 

|\delta \lambda| =\frac{c}{\nu^2}|\delta \nu| \quad \text{or equivalently} \quad 

|\delta \lambda| =\frac{\lambda^2}{c}|\delta \nu| 

Let's use the first form: |\delta \lambda| =\frac{c}{\nu^2}|\delta \nu| . 

Now, to find the relative wavelength width, \frac{|\delta \lambda|}{\lambda} , 

we divide by \lambda: 

\frac{|\delta \lambda|}{\lambda} = \frac{\left(\frac{c}{\nu^2}|\delta 

\nu|\right)}{\lambda} 

Substitute \lambda=\frac{c}{\nu} into this expression: 

\frac{|\delta \lambda|}{\lambda} = \frac{\left(\frac{c}{\nu^2}|\delta 

\nu|\right)}{\frac{c}{\nu}} 

Now, let's simplify this. The 'c' in the numerator cancels with the 'c' in the 

denominator. One factor of \nu in the denominator (from \frac{c}{\nu}) 

cancels with one factor of \nu in \nu^2 in the numerator's denominator. 

So, we are left with: 

\frac{|\delta \lambda|}{\lambda} = \frac{\left(\frac{1}{\nu}|\delta \nu|\right)}{1} 

Which is simply: 

\frac{|\delta \lambda|}{\lambda} = \frac{|\delta \nu|}{\nu} 

The slide shows this derivation more compactly. It starts from 

\frac{\delta \nu}{\nu}=-\frac{\delta \lambda}{\lambda}, 



which comes from differentiating \ln (\nu)=\ln (c)-\ln (\lambda) . If 

\nu\lambda=c , then 

d(\nu\lambda)=0, 

so 

\delta \nu\cdot\lambda+\nu\cdot\delta \lambda=0. 

Dividing by \nu\lambda gives 

\frac{\delta \nu}{\nu}+\frac{\delta \lambda}{\lambda}=0, 

or 

\frac{\delta \nu}{\nu}=-\frac{\delta \lambda}{\lambda}. 

When we take the magnitudes, the negative sign disappears: The absolute 

value of \frac{\delta \nu}{\nu} equals the absolute value of \frac{\delta 

\lambda}{\lambda}. 

\left|\frac{\delta \nu}{\nu}\right|=\left|\frac{\delta \lambda}{\lambda}\right| 

This confirms the second part of the equality we stated on the previous 

page. 

So, we have now established that: 

\left|\frac{\delta \nu}{\nu}\right|=\left|\frac{\delta 

\omega}{\omega}\right|=\left|\frac{\delta \lambda}{\lambda}\right| 

The final bullet point highlights the immense practical importance of this 

result. Once the relative width is known in any one representation 

(frequency, angular frequency, or wavelength), it is immediately known in 

all others. 

This is extremely convenient for comparing spectroscopy results obtained 

across vastly different parts of the electromagnetic spectrum. For example, 

you might have a microwave transition with a certain \frac{\delta \nu}{\nu} , 

an infrared transition, a visible transition, and an ultraviolet transition. By 



comparing their relative widths, \frac{\delta \nu}{\nu} , you are comparing 

them on a common, dimensionless footing. This allows for a more 

fundamental comparison of the "sharpness" or "Q-factor" of these different 

transitions, irrespective of their absolute frequencies or wavelengths. It's a 

very powerful unifying concept. 
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Now we turn to Slide 7, titled "Kernel and Wings—Anatomy of a Spectral 

Line." Just like a biological specimen, a spectral line has an anatomy, 

different regions that have distinct characteristics and often reveal different 

physical processes. We broadly divide the line profile into two main parts: 

the kernel (or core) and the wings. 

Let's first discuss the Kernel, also referred to as the core of the line. 

• This is defined as the frequency interval \nu_{1} \leq \nu \leq \nu_{2} , 

where \nu_{1} and \nu_{2} are the two frequencies at which the intensity is 

half of its maximum value. So, the kernel is essentially the region 

encompassed by the Full Width at Half Maximum (FWHM). The width of 

the kernel is the FWHM, \delta \nu = \nu_{2} - \nu_{1} . 

• A crucial characteristic of the kernel is that it contains half of the 

maximum intensity. This is by definition of FWHM. However, it's important 

to distinguish this from containing half of the total integrated intensity or 

area under the curve. The fraction of total area within the FWHM depends 

on the specific line shape (e.g., for a Lorentzian, about 47% of the area is 

within the FWHM, while for a Gaussian, it's about 76%). The statement 

here refers to the intensity values themselves: within this region, the 

intensity is at least half of the peak intensity. 

• Physically, the shape and width of the kernel are typically dominated by 

the most probable, or strongest, physical broadening process. For 

example, in gases at low pressures, the kernel is often primarily determined 

by Doppler broadening, which arises from the thermal motion of the atoms 



or molecules. In other situations, like high-pressure gases or for certain 

transitions, collisional broadening or natural broadening might dominate the 

kernel. 

Next, we have the Wings of the spectral line. 

• The wings are the regions of the line profile that lie outside the kernel. 

That is, frequencies \nu such that \nu < \nu_{1} , which is the low-frequency 

wing, and frequencies \nu such that \nu > \nu_{2} , which is the high-

frequency wing. 

• So, if the kernel is the central, most intense part of the line, the wings 

are the "tails" of the distribution, where the intensity is less than half of the 

maximum and gradually falls off as you move further away from the line 

center \nu_{0} . 

Understanding both the kernel and the wings is essential for a complete 

picture of the line profile and the physics it encodes. 
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Continuing our discussion on the anatomy of a spectral line, let's focus 

more on the characteristics and significance of the wings. 

The first bullet point makes a critical observation: In the wings, the intensity 

falls rapidly as we move away from the line center, but theoretically, for 

many line shapes (like a pure Lorentzian), it never reaches exact zero at 

any finite frequency offset. Of course, experimentally, it will eventually fall 

below the noise floor of your detection system. More importantly, these 

wings, though they may be faint, carry the fingerprints of additional physical 

mechanisms that might be less dominant in the kernel. These can include: 

• Collisional broadening: Even if Doppler broadening dominates the 

kernel, the far wings of a line in a gaseous sample are often governed by 

the details of interatomic or intermolecular collisions. The precise way the 



intensity falls off in the far wings can tell us about the interaction potentials 

between the colliding particles. 

• Quantum interference: In some cases, interference effects between 

different transition pathways or nearby resonance states can significantly 

alter the shape of the wings, sometimes leading to asymmetries or 

characteristic dips and peaks. 

So, while the kernel gives you the main story, the wings often contain the 

subtle subplots and finer details. 

The second bullet point emphasizes that the behavior of the line profile in 

the wings is not just an academic curiosity; it has very practical implications 

and determines several important phenomena: 

1. Laser gain bandwidth: For a laser to operate, the gain medium must 

provide amplification over a certain range of frequencies. The width of this 

gain profile is directly related to the spectral line shape of the lasing 

transition. The extent of the wings determines how far off-resonance the 

laser can still potentially lase, or how much bandwidth is available for 

tuning or for supporting short pulses. 

2. Radiation transport in stellar atmospheres: When light travels 

through the atmosphere of a star, it is repeatedly absorbed and re-emitted 

by atoms and ions. The opacity of the stellar material at any given 

frequency depends on the line profiles of the transitions present. The wings 

of strong absorption lines can significantly affect the overall energy 

transport, as photons in the wings can travel further before being 

reabsorbed than photons near the line center. This is crucial for building 

accurate models of stellar structure and spectra. 

3. Accuracy limits of atmospheric remote sensing: When we use 

spectroscopy to measure the composition of Earth's atmosphere (or other 

planetary atmospheres), we are often looking at absorption lines of various 

molecules (like CO₂ , H₂ O, O₃ ). The ability to accurately determine the 



concentration of these species depends on how well we can model their 

line shapes. The wings of these absorption lines can overlap, and how they 

add up is critical. If the wing behavior is not correctly accounted for, it can 

lead to significant errors in retrieved atmospheric parameters. This is 

especially important for understanding greenhouse gases and climate 

change. 

So, the wings, while perhaps less intense, are certainly not less important 

than the kernel. 
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This slide adds a final important point regarding the wings of a spectral line, 

particularly in the context of modeling. 

The bullet point states: "For precise modelling, wings often require different 

mathematical treatment (e.g., Lorentzian tails)." 

This is a crucial practical consideration in quantitative spectroscopy. While 

a simple model (like a pure Gaussian for Doppler broadening) might 

adequately describe the kernel of a line, it often fails to accurately 

represent the far wings. 

For example, Doppler broadening leads to a Gaussian profile which falls off 

very rapidly (exponentially with the square of the frequency offset). 

However, even in a low-pressure gas where Doppler broadening dominates 

the core, there will always be some underlying natural broadening and 

potentially some collisional broadening, both of which typically contribute 

Lorentzian components. 

Lorentzian profiles have wings that decay much more slowly (as one over 

the square of the frequency offset) than Gaussian profiles. Therefore, at 

large frequency offsets from the line center (in the far wings), the intensity 

predicted by a Lorentzian can be many orders of magnitude higher than 

that predicted by a Gaussian that fits the core well. 



So, if you need to model the line profile accurately over a wide dynamic 

range, especially far out into the wings, you often cannot rely on a single, 

simple line shape function. 

A common approach is to use a Voigt profile, which is a convolution of a 

Gaussian and a Lorentzian, as this naturally incorporates both types of 

behavior. 

In some situations, more complex models are needed, perhaps involving 

sums of different profiles or modifications to account for specific physical 

effects like line mixing or speed-dependent collisional effects. 

The mention of "Lorentzian tails" specifically highlights that even if the core 

appears Gaussian, the far wings are often better described by the power-

law decay characteristic of a Lorentzian. 

This necessity for different mathematical treatment for the wings 

underscores their distinct physical origin and their importance in 

applications where even low levels of off-resonant absorption or emission 

are significant, such as in atmospheric transmission calculations or in 

assessing crosstalk between closely spaced spectral channels. Careful 

attention to the wings is a hallmark of high-precision spectroscopy. 
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Here we have a detailed diagram illustrating the "Anatomy of a Spectral 

Line: Kernel and Wings," visually summarizing what we've just discussed. 

Let's examine the main graph first. 

The axes are similar to the previous line profile graph: * The horizontal axis 

is "Frequency (\nu)". * The vertical axis is "Intensity I(\nu)". We see a bell-

shaped curve representing the spectral line. * The peak intensity is at \nu_0 

(nu sub zero), and its value is I(\nu_0). * The half-maximum intensity level, 

\frac{I(\nu_0)}{2}, is marked with a dashed horizontal line. 



The graph clearly demarcates the different regions: * The central, blue-

shaded region is labeled "Kernel (Core)". This region extends from \nu_1 

(nu sub one) to \nu_2 (nu sub two), which are the frequencies where the 

intensity is \frac{I(\nu_0)}{2}. * The horizontal double arrow within this blue 

region is labeled "\text{FWHM} = \delta \nu = |\nu_2 - \nu_1|", explicitly 

showing that the Full Width at Half Maximum defines the extent of the 

kernel. 

* The regions outside the kernel, on either side, are shaded in a light 

orange/pink color and labeled "Wing". * The low-frequency wing is for \nu < 

\nu_1. * The high-frequency wing is for \nu > \nu_2. You can see the 

intensity in these wing regions gradually decreases as you move further 

from the line center \nu_0. 

Now, look at the inset graph in the upper right corner, titled "Logarithmic 

Intensity Scale." This is a very important addition. * The horizontal axis is 

still "Frequency (\nu)". The example values are 100, 500, and 900, 

presumably in some arbitrary units consistent with the main graph's nu-

axis. * The vertical axis is now "log[ Intensity I(\nu)\]", meaning the 

logarithm of the intensity. The tick marks are at 100 (which is 1, 

representing 𝐼0), 10
−1, 10−2, 10−3, and 10−4. This means each major 

division downwards represents a factor of 10 decrease in intensity. 

Why is a logarithmic scale so useful? Because spectral line intensities can 

span many orders of magnitude. The wings of a line might be thousands or 

millions of times weaker than the peak. On a linear scale (like the main 

graph), these faint wings would be almost indistinguishable from zero. 

However, on a logarithmic scale, even these very low intensities become 

visible and their functional form can be studied. 

The shape of the line profile looks different on a log scale. For example, a 

Lorentzian profile, which looks like a bell curve on a linear scale, would 

show its characteristic slow (power-law) decay in the wings more clearly as 

straight lines on a log-log plot, or a specific curvature on a semi-log plot like 



this one. A Gaussian, in contrast, would appear as a parabola on a semi-

log plot (log intensity vs. frequency squared). 

This inset graph powerfully illustrates why spectroscopists often plot 

spectra on a logarithmic intensity scale when they are interested in the 

behavior of the wings or in detecting weak features alongside strong ones. 

It allows you to see details that would be completely hidden on a linear plot. 

The main graph shows the overall shape and FWHM clearly, while the log 

plot gives a much better view of the wing structure. 
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We now move to Slide 8, which provides an "Overview of Broadening 

Mechanisms." This serves as context for later sections where we will delve 

into each of these mechanisms in more detail. Understanding these 

mechanisms is key to interpreting the width and profile of the spectral lines 

we observe. 

Let's go through the primary types of broadening: 

1. Natural (lifetime) broadening: 

This is a fundamental quantum mechanical effect. It arises because excited 

states of atoms or molecules have a finite lifetime*. An excited state doesn't 

last forever; it will eventually decay, typically by emitting a photon. * The 

Heisenberg energy-time uncertainty principle states that 𝛥𝐸𝛥𝑡 ≥
ℏ

2
 (Delta E 

Delta t is greater than or equal to h-bar over two). If an excited state has a 

finite lifetime 𝛥𝑡 (often denoted by 𝜏, tau), then there is an inherent 

uncertainty or spread in its energy, 𝛥𝐸. * Since the frequency of the emitted 

photon is related to the energy difference (𝜈 =
𝛥𝐸transition

ℎ
), this uncertainty in 

the energy of the excited state (and/or the ground state if it's also unstable) 

leads to a spread in the frequencies of the emitted photons. * This natural 

broadening mechanism always results in a Lorentzian line shape. It's an 

intrinsic property of the transition and cannot be eliminated, though its 



magnitude varies greatly between different transitions. For allowed 

transitions, it's often small compared to other broadening effects, but for 

forbidden transitions with very long lifetimes, it can be exceedingly small. 

2. Doppler (thermal motion) broadening: 

* This mechanism is due to the thermal motion of the emitting or absorbing 

particles (atoms, molecules, ions) in a gas. These particles are moving 

randomly with a distribution of velocities. * If a particle is moving towards an 

observer (or a detector), the light it emits or absorbs will be shifted to a 

higher frequency (blueshifted) due to the Doppler effect. If it's moving 

away, the light will be shifted to a lower frequency (redshifted). * Since the 

particles in a gas have a Maxwell-Boltzmann distribution of velocities along 

the line of sight, the observed spectral line will be a composite of all these 

Doppler-shifted components. * The result of this averaging over the velocity 

distribution is a Gaussian line shape. * Doppler broadening is often the 

dominant broadening mechanism in low-pressure gases at moderate to 

high temperatures. Its magnitude increases with temperature and 

decreases with the mass of the particle. 

3. Collisional (pressure) broadening: 

* This type of broadening arises from perturbations to the energy levels or 

the phase of the emitted/absorbed radiation due to collisions between the 

active particle and other particles in the sample (which could be other 

active particles or buffer gas atoms/molecules). * These collisions can 

interrupt the process of emission or absorption, effectively shortening the 

coherent interaction time, which, again via the uncertainty principle, leads 

to energy broadening. They can also directly shift the energy levels during 

the collision. * Collisional broadening typically results in a Lorentzian line 

shape. * Its magnitude is dependent on the gas pressure (hence it's also 

called pressure broadening), as higher pressure means more frequent 

collisions. It also depends on the temperature (which affects collision rates 

and strengths) and the nature of the colliding species. 



These three – Natural, Doppler, and Collisional broadening – are often the 

most significant contributors to the observed linewidths in many 

spectroscopic experiments. We will explore them in much greater depth. 
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Continuing our overview of broadening mechanisms from the previous 

slide: 

4. Stark, Zeeman, and other field-induced broadenings: 

* These types of broadening occur when the emitting or absorbing atoms or 

molecules are subjected to external electric fields or magnetic fields. 

* Stark broadening refers to the effect of electric fields. Electric fields can 

be externally applied, or they can be microscopic fields produced by nearby 

ions and electrons, especially in plasmas. These fields can shift and split 

energy levels, leading to a broadening or splitting of the spectral line. The 

line shape can be complex depending on the specific quantum numbers of 

the states involved and the nature of the field. 

* Zeeman broadening (or splitting) is the analogous effect for magnetic 

fields. Magnetic fields also lift the degeneracy of energy levels (e.g., those 

with different magnetic quantum numbers, 𝑚J), causing a single line to split 

into multiple components. If these components are not resolved, they 

manifest as a broadening of the line. 

* Other types of field interactions can also occur, for instance, with strong 

laser fields themselves (e.g., AC Stark effect or power broadening). 

* The common theme is that external fields perturb the energy levels of the 

quantum system, thus modifying the spectral line. 

5. Instrumental broadening: 



* This is not a property of the atoms or molecules themselves, but rather a 

characteristic of the measuring apparatus – the spectrograph, 

spectrometer, or interferometer used to record the spectrum. 

* Any real instrument has a finite resolving power. It cannot perfectly 

distinguish between two very closely spaced frequencies. Instead, it has an 

"instrumental response function" which describes how an ideal, infinitely 

narrow (𝛿 function) spectral line would appear when measured by that 

instrument. This response function itself has a certain width. 

* The observed spectrum is essentially a convolution of the true, physical 

line profile (due to natural, Doppler, collisional, etc., broadening) with this 

instrumental response function. 

* Therefore, the measured linewidth will always be greater than or equal to 

the true physical linewidth. 

To obtain the intrinsic physical line profile, the contribution from 

instrumental broadening must be carefully characterized and then 

deconvolved* from the measured spectrum. Deconvolution is a 

mathematical procedure that attempts to "undo" the blurring effect of the 

instrument. This is often a challenging but necessary step in high-resolution 

spectroscopy. 

So, when we look at an experimental spectral line, we must remember that 

its observed width and shape are a combination of these intrinsic physical 

broadening mechanisms and the characteristics of our measurement 

system. Disentangling these contributions is a key task in quantitative 

spectroscopy. The dashes indicate the end of this overview section. 

Page 23: 

We now move to Slide 9, which discusses "Typical Orders of Magnitude—

Why Widths Matter." This slide is crucial because it puts concrete numbers 

to the broadening mechanisms we've just introduced, illustrating their 



relative importance and why understanding them is so vital for various 

applications. 

Let's look at some examples: 

First, the Natural linewidth of a typical allowed optical transition: 

* The slide states that 𝛤nat (Gamma sub nat, representing the natural 

FWHM linewidth) is approximately 107 Hz (ten to the power of seven 

Hertz). * This is equivalent to about a few Megahertz (MHz). For example, 

107 Hz is 10 MHz. * This natural linewidth arises from the finite lifetime of 

the excited state due to spontaneous emission. For typical allowed 

electronic transitions in the visible or near-UV range, excited state lifetimes 

are often in the nanosecond range (e.g., 1 to 100 nanoseconds). A 10 

nanosecond lifetime (10−8 s) corresponds roughly to a natural linewidth of 

about 16 MHz (using 𝛤 ≈
1

2𝜋𝜏
). So, a few MHz to tens of MHz is a good 

ballpark figure for many common atomic and molecular transitions. While 

this might seem small, we'll see it can be dwarfed by other effects. 

Second, the Doppler width for the sodium D line at 300 K: 

* The sodium D line is a very famous yellow line in the spectrum of sodium, 

with a central wavelength 𝜆0 (lambda sub zero) of approximately 589 nm. * 

The temperature is given as 300 K, which is approximately room 

temperature. * Under these conditions, the Doppler width, denoted 𝛿𝜈D 

(delta nu sub D), is approximately 1.5 GHz. That's 1.5 × 109 Hz. * Compare 

this to the natural linewidth: 1.5 GHz is 1500 MHz. This is about two orders 

of magnitude larger than a typical natural linewidth of, say, 15 MHz! This 

clearly shows that for many common situations (like room temperature 

atomic vapors), Doppler broadening can be the dominant mechanism 

determining the observed linewidth if you're using conventional 

spectroscopy. 



Third, the Collisional width in air at 1 atmosphere for the same 

transition (presumably referring to a transition similar to the sodium D line 

or a generic optical transition): 

* The conditions are specified: in air, at a pressure of 1 atmosphere. * We'll 

see the value for this on the next page, but this sets the context. Collisional 

broadening depends on the density of colliding partners (related to 

pressure) and the interaction cross-sections. At atmospheric pressure, 

collision rates are quite high. 

These numbers immediately tell us that if we want to do spectroscopy that 

resolves features narrower than the Doppler width, or if we want to study 

the natural lineshape itself, we need techniques to either reduce Doppler 

broadening (like laser cooling or using atomic beams) or to circumvent it 

(like saturation spectroscopy or two-photon spectroscopy, which we'll cover 

later in the course). The sheer magnitude of Doppler broadening often 

masks the finer details of the natural line. 
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Continuing with typical orders of magnitude for linewidths: 

* We were about to see the value for the Collisional width in air at 1 

atmosphere for a typical optical transition. The slide states that 𝛤coll 

(Gamma sub coll, representing the collisional FWHM linewidth) is 

approximately 100 MHz. That's 108  Hz. 

* Let's compare this to the other values. The natural linewidth was a few 

MHz (e.g., ∼ 10 MHz). The Doppler width for sodium at 300K was ∼

1500 MHz (1.5 GHz). So, this collisional width of 100 MHz (at 1 atm) is 

significantly larger than the natural width but still notably smaller than the 

Doppler width at room temperature for a light atom like sodium. 

* However, remember that collisional width is proportional to pressure. If 

the pressure were much higher, or if we were dealing with molecules with 

larger collisional cross-sections, this collisional width could become 



comparable to or even exceed the Doppler width. Conversely, at very low 

pressures, collisional broadening becomes much less significant. 

Next, the slide discusses the capabilities of Ultra-high resolution 

spectrometers: 

* Examples given are Fabry-Pérot interferometers and Fourier transform 

interferometers (FTIRs or FTSs). These are instruments specifically 

designed for achieving very high spectral resolution. 

These instruments can resolve spectral features, meaning they can 

distinguish linewidths (𝛿𝜈,  delta nu), down to values less than or equal to ≤

1 MHz under favorable conditions*. 

* "Favorable conditions" means the instrument is well-aligned, stable, and 

the source is bright enough, etc. This 1 MHz resolution is already 

approaching the regime of typical natural linewidths for many allowed 

optical transitions. This means such instruments can begin to resolve the 

natural lineshape if Doppler and collisional broadening are sufficiently 

minimized. 

Finally, the slide provides crucial Context: laser cooling and atomic 

clocks. 

* Applications like laser cooling (which is used to cool atoms to microkelvin 

temperatures or even lower) and atomic clocks (which are the most precise 

timekeeping devices ever made) require spectral lines that are narrowed to 

the Hertz (Hz) or even sub-Hertz level! 

* Compare this to the MHz and GHz figures we've been discussing. A 1 Hz 

linewidth is six orders of magnitude narrower than a 1 MHz natural 

linewidth, and nine orders of magnitude narrower than a typical Doppler 

width at room temperature. 

Achieving such incredibly narrow lines demands the extreme suppression 

of all broadening sources* – natural broadening (by choosing transitions 



with very long lifetimes, often "forbidden" transitions), Doppler broadening 

(through extensive laser cooling and trapping, leading to very low atomic 

velocities), collisional broadening (by working in ultra-high vacuum with 

very dilute atomic samples), and also minimizing any field-induced 

broadening and instrumental effects to an extraordinary degree. 

This progression of numbers – from GHz for Doppler, to tens or hundreds 

of MHz for collisional (at 1 atm) and natural widths, down to MHz for high-

res spectrometers, and finally to Hz or sub-Hz for cutting-edge applications 

– really underscores why a deep understanding and control of linewidths 

are absolutely paramount in modern laser spectroscopy and atomic 

physics. The dashes indicate the conclusion of this point. 
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Now we arrive at Slide 10, which addresses a practical but important 

question: "Why Spectroscopists Prefer Angular Frequency 𝜔 (omega)." 

We've touched upon this briefly before, but this slide elaborates on the 

reasons. Using 𝜔 (omega) instead of 𝜈 (nu) often simplifies many 

theoretical expressions. 

The first major reason is that: The Schrödinger equation contains the 

phase factor 𝑒−𝑖𝜔𝑡 (e to the power of minus i omega t), making 𝜔 the 

natural variable in quantum dynamics. 

* As we discussed earlier, the time evolution of a quantum state with 

energy 𝐸 is governed by a phase factor 𝑒−𝑖𝐸𝑡/ℏ (e to the power of minus i E 

t divided by h-bar). 

* Using the fundamental relation 𝐸 = ℏ𝜔 (Energy equals h-bar times 

omega), this phase factor becomes 𝑒−𝑖𝜔𝑡. 

* If we were to use ordinary frequency 𝜈 (where 𝐸 = ℎ𝜈), the phase factor 

would be 𝑒−𝑖2𝜋𝜈𝑡/(2𝜋) — no, that's not right. If 𝐸 = ℎ𝜈, then 



𝐸/ℏ =
ℎ𝜈

ℎ/(2𝜋)
= 2𝜋𝜈. 

So the phase factor is 𝑒−𝑖2𝜋𝜈𝑡. 

* The point is that the 𝜔 in 𝑒−𝑖𝜔𝑡 appears naturally when ℏ is used in the 

denominator (𝐸/ℏ). Since the Schrödinger equation is inherently quantum 

mechanical and involves ℏ, expressions derived from it are often cleaner 

when angular frequency 𝜔 is used. This is because the 2𝜋 factors that 

would otherwise appear (linking 𝜈 to 𝜔) are absorbed into the definition of ℏ 

from ℎ. 

The second reason is that: Fourier transforms and time-frequency 

uncertainty relations appear cleaner without extra 2𝜋 factors. 

* Fourier transforms are fundamental for relating time-domain phenomena 

(like the decay of an excited state or the duration of a laser pulse) to 

frequency-domain spectra (like the line profile or the pulse bandwidth). 

* The standard definition of the Fourier transform pair often involves 𝑒±𝑖𝜔𝑡 

or 𝑒±𝑖2𝜋𝜈𝑡. When 𝜔 is used, the expressions for the transform and its 

inverse are often more symmetric and lack stray 2𝜋 factors in the 

exponents or prefactors. 

* This cleanliness extends to the time-frequency uncertainty principle. The 

slide shows two forms: 

* When expressed in terms of angular frequency 𝜔 and time 𝑡, one 

common form is: 

𝛥𝜔 𝛥𝑡 ≥
1

2
 

* When expressed in terms of ordinary frequency 𝜈 and time 𝑡, the same 

relationship becomes: 

𝛥𝜈 𝛥𝑡 ≥
1

4𝜋
 



* Clearly, the version with 𝛥𝜔 is simpler and avoids the factor of 4𝜋 in the 

denominator. This is a direct consequence of 𝜔 = 2𝜋𝜈, so 𝛥𝜔 = 2𝜋𝛥𝜈. 

Substituting this into 𝛥𝜔 𝛥𝑡 ≥
1

2
 gives (2𝜋𝛥𝜈)𝛥𝑡 ≥

1

2
, which leads to 𝛥𝜈 𝛥𝑡 ≥

1

4𝜋
. 

* Since these uncertainty relations are foundational in understanding 

linewidths (e.g., natural broadening from lifetime) and the limits of pulse 

durations, using 𝜔 simplifies their statement. 

These are two very compelling reasons why theoretical spectroscopists, 

and indeed many physicists working with waves and quantum mechanics, 

often prefer to work with angular frequency 𝜔. 

Page 26: 

Continuing with why spectroscopists often prefer angular frequency 𝜔 

(omega): 

A third reason is presented: Perturbation-theory matrix elements often 

involve denominators containing 𝜔0 − 𝜔 (omega naught minus 𝜔), again 

avoiding 2𝜋 factors. 

* Perturbation theory is a cornerstone of quantum mechanics used to 

calculate how energy levels and transition probabilities are affected by 

small interactions (perturbations), such as the interaction of an atom with a 

light field. 

* The formulae derived from perturbation theory frequently include terms in 

the denominator that look like (𝐸initial − 𝐸intermediate ± ℏ𝜔photon) or, when 

expressed in frequencies, (𝜔transition −𝜔light) or (𝜔resonant − 𝜔applied). 

* If these were written in terms of ordinary frequency 𝜈 (nu), they would 

often look like ℎ(𝜈resonant − 𝜈applied) or (𝜈resonant − 𝜈applied), but if they arise 

from energy differences involving ℏ𝜔, then using 𝜔 directly avoids having 

to write ℏ(2𝜋𝜈resonant − 2𝜋𝜈applied) and then factoring out the 2𝜋. 



* Essentially, because energy in quantum mechanics is naturally linked to 

ℏ𝜔, differences in such energies or comparisons with photon energies (also 

ℏ𝜔) are simpler when expressed directly in 𝜔. 

Now, having made the case for 𝜔, the slide offers a practical perspective: 

In plotting, spectroscopists may stick to 𝜈 (Hz) for an intuitive frequency 

scale, but algebraic derivations almost always adopt 𝜔. 

* This is a very common practice. When presenting experimental data or 

discussing frequencies in a way that needs to be easily related to 

instrument settings or common wavelength ranges, units of Hertz (Hz, 

MHz, GHz, THz) or wavenumbers (cm−1) are often more intuitive for 

experimentalists. 

* However, when developing the underlying theory, deriving equations for 

line shapes, transition rates, or nonlinear optical susceptibilities, the 

mathematical elegance and compactness offered by 𝜔 usually make it the 

preferred choice. Most theoretical textbooks and papers in spectroscopy 

will use 𝜔 extensively in their derivations. 

Finally, a crucial reminder: Conversion is straightforward; always keep 

track of units (rad s
−1

 vs. Hz). 

* The relationship is simple: 𝜔 = 2𝜋𝜈. 

* It's vital to be clear about which type of frequency is being used, 

especially when plugging numbers into formulas or comparing theoretical 

expressions with experimental results. The units are your guide: * 𝜔 

(omega) has units of radians per second (rad s
−1

), or often just s−1 since 

radians are dimensionless. * 𝜈 (nu) has units of Hertz (Hz), which is also 

s−1 but specifically means cycles per second. 

* Mistaking one for the other will lead to errors by a factor of 2𝜋, which is 

about 6.28 – a significant discrepancy! So, always be meticulous about 

units and the definitions of frequency being used. 



The dashes indicate the end of this discussion on frequency units. This 

concludes our initial overview of spectral line characteristics and the 

reasons behind the conventions used in the field. We are now well-

prepared to delve deeper into the specific broadening mechanisms. 

  


