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Alright everyone, welcome back to Phys 608, Laser Spectroscopy. Today, we 
embark on a new and fundamentally important topic: Chapter 2, Section 8, 
which deals with Transition Probabilities. As you can see, these notes were 
prepared by Distinguished Professor Doctor M. A. Gondal. 

This section is absolutely central to understanding how light interacts with 
matter, which, as you know, is the very essence of spectroscopy. We'll be 
diving deep into what determines the likelihood of an atom or molecule 
absorbing or emitting a photon, and how we can use this knowledge to probe 
the universe around us, from the atmospheres of distant stars to the intricate 
workings of molecules in our laboratories. So, let's begin our exploration of 
transition probabilities. 
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Let's start with the core question regarding transition probabilities – Why do 
they matter? Why do we, as physicists and spectroscopists, dedicate so 
much effort to understanding and quantifying them? 

The first bullet point gets straight to the heart of it: The spectral-line 

intensity, which we denote as 𝐼line (capital 𝐼line), is what we observe in an 

experiment. It's the brightness of a spectral line, or the depth of an absorption 
feature. This observable intensity depends on two, crucially, independent 
factors. 

First, there's the population density of the initial quantum level. This is the 
number of atoms or molecules per unit volume that are in the specific starting 
state for the transition. This could be an excited state if we're looking at 
emission, or a lower state (often the ground state) if we're looking at 

absorption. Conventionally, we denote this population density as 𝑁i or 𝑁k, 
where 'i' or 'k' labels the initial quantum level. It makes intuitive sense, doesn't 



it? The more atoms or molecules you have in the starting state, the stronger 
the resulting spectral line will be, all other things being equal. 

Second, and this is where transition probabilities come in directly, is the 
intrinsic probability that a quantum jump actually occurs once the 
particle is in that initial level. This inherent likelihood of a transition 
happening is precisely what we call the transition probability. It's not enough 
for an atom to be in the right state; there's also a specific, quantifiable chance 
per unit time that it will make the jump to another state by either emitting or 
absorbing a photon. This is an intrinsic property of the two states involved and 
the nature of their coupling via the electromagnetic field. 

So, you have two ingredients: how many particles are ready to make the jump 
(population density), and how likely each one is to actually make that jump 
(transition probability). Both are essential. 

Now, why is knowing these transition probabilities so powerful? The second 
bullet point tells us: Knowing transition probabilities allows one to reverse-
engineer physical conditions from measured spectra. This is a profound 
statement. We measure light, the spectrum. If we have accurate knowledge 
of the transition probabilities for the species we're observing, we can then 
work backwards from the measured line intensities to deduce information 
about the source of that light. This could be the temperature, the pressure, 
the density, or the chemical composition of the environment where those 
atoms or molecules reside. It’s like having a cosmic or molecular Rosetta 
Stone. 
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Let's consider a couple of concrete examples to illustrate just how vital these 
transition probabilities are. 

First, a classic application: We can infer element abundances in stellar 

atmospheres or interstellar clouds. Imagine pointing a telescope at a 



distant star. The light collected passes through a spectrometer, and we see a 
pattern of absorption or emission lines. Each element, and indeed each 
ionization state of an element, has a unique fingerprint of spectral lines. By 
measuring the relative intensities of these lines, and critically, by knowing the 
transition probabilities associated with each specific line, astrophysicists can 
determine the relative amounts of hydrogen, helium, carbon, iron, and so on, 
in that star's atmosphere or in a vast, cold interstellar gas cloud. Without 
accurate transition probabilities, those beautiful spectra would remain 
largely qualitative "fingerprints." With them, they become powerful 
quantitative tools for cosmic chemistry. 

Another important example: We can derive the temperature, 𝑇, of a remote 

plasma by comparing the populations of two different excited levels. We'll 
delve into the details of this later, but the basic idea is that the relative 
populations of different energy levels in a system in thermal equilibrium are 
governed by the Boltzmann distribution, which is temperature-dependent. If 
we can measure the intensities of spectral lines originating from two different 
excited states that decay to a common lower level, and if we know their 

respective transition probabilities (specifically, their Einstein 𝐴 coefficients, 
which we'll define soon), we can work out the relative populations of those 
excited states. From that ratio, we can then deduce the temperature of the 
plasma, even if it's millions of light-years away or in a harsh laboratory 
environment where direct temperature measurement is impossible. 

The italicized text on this slide really drives the point home: In astrophysics, 
the electromagnetic spectrum is often the only information channel. We 
can't go there and take a sample. We rely entirely on the light that reaches us. 
Accurate transition data transform mere light into quantitative 
diagnostics of chemical composition, density, and thermal balance. It's 
this transformation from qualitative observation to quantitative 



understanding that makes transition probabilities so indispensable. They are 
the key that unlocks the physical information encoded in the light. 
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Beyond their crucial role in diagnostics and astrophysics, transition 
probabilities also serve another profound purpose: they are exquisitely 
sensitive probes of theoretical wavefunctions. This connects directly to the 
foundations of quantum mechanics and computational chemistry. 

Remember, the wavefunctions of an atom or molecule describe the 
distribution of its electrons. The probability of a transition occurring due to 
interaction with light is determined by how these charge distributions change, 
which is encapsulated in something called the dipole matrix element, which 
in turn depends directly on the initial and final state wavefunctions. 

The slide highlights a critical point: Small inaccuracies in the calculated 
charge distribution of a molecule produce large errors in predicted line 
strengths. This sensitivity is actually a good thing for testing our theoretical 
models! If our quantum chemical calculations produce wavefunctions that 
are even slightly off, the predicted transition probabilities might be 
significantly different from experimentally measured values. Therefore, 
comparing highly accurate experimental measurements of transition 
probabilities (or related quantities like line strengths or lifetimes) with 
theoretical predictions provides a very rigorous test of our quantum-
chemical models. It helps us refine our understanding of molecular structure 
and electron behavior, pushing the boundaries of computational physics and 
chemistry. So, transition probabilities are not just for looking outwards to the 
cosmos; they're also for looking inwards, to test the very accuracy of our 
fundamental theories of matter. 
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This slide provides a nice visual summary of how we use transition 
probabilities, particularly in an astrophysical context, for Inferring 
Astrophysical Properties from Spectra using Transition Probabilities. 

Let's walk through the diagram. On the left, we see a representation of a Star, 
emitting Starlight. This starlight, carrying information from the star, travels 
across vast distances. 

Then, this starlight is collected by a Telescope. The telescope's primary 
function here is to gather as much light as possible and direct it to an 
analytical instrument. 

The light from the telescope is then fed into a Spectrograph. The 
spectrograph is the key instrument that disperses the light by wavelength, 
much like a prism creating a rainbow. It spreads the starlight out into its 
constituent colors, or more precisely, its spectrum. 

Finally, on the right, we see the output: a Spectrum. The horizontal axis is 

Wavelength, 𝜆. The spectrum itself is shown as a band of colors, 

representing the continuous emission from the star. Superimposed on this 
continuous spectrum are several dark lines. These are absorption lines. They 
occur because cooler gas, perhaps in the outer atmosphere of the star or in 
an interstellar cloud between the star and us, absorbs specific wavelengths 
of light corresponding to transitions within the atoms or molecules in that gas. 

Now, how do transition probabilities fit in? The positions of these absorption 
lines tell us which elements or molecules are present, as each has a unique 
spectral fingerprint. But it's the strength or intensity of these lines – how dark 
or prominent they are – that tells us how much of each element is there, or 
what the temperature and pressure conditions are. And to decode that 
intensity information, to go from "there's a line here" to "there's this much iron 
at this temperature," we absolutely need to know the transition probability for 
each of those specific absorption lines. 



This diagram beautifully illustrates the journey of light from a celestial object 
to a data product that, with the help of transition probabilities, unveils the 
physics of its source. 
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Now, let's delve into a specific example of how transition probabilities are 
used, as introduced in the slide titled "From Populations to Temperature – 
The Boltzmann Connection." This is a very common and powerful technique, 
especially in plasma diagnostics and astrophysics. 

The first bullet point sets up the scenario: Consider two different excited 

levels, let's call their energies 𝐸i and 𝐸e, that both decay to a common lower 

level, whose energy is 𝐸k. Imagine an atom or ion with a set of energy levels. 
We're interested in two specific excited states, 'i' and 'e'. The key here is that 
both of these states have an allowed radiative transition down to the same 
lower level 'k'. This lower level could be the ground state or another, lower-
lying excited state. 

Next, what do we do experimentally? We measure the intensities, 𝐼𝑖𝑘  and 

𝐼𝑒𝑘, of the two spectral lines corresponding to these transitions: 𝐸i decaying to 

𝐸k, and 𝐸e decaying to 𝐸k. So, when an atom in state 'i' drops to state 'k', it 
emits a photon of a specific energy and wavelength, giving rise to a spectral 
line. We measure the total power or number of photons in this line, which is 

its intensity 𝐼𝑖𝑘. Similarly, we measure the intensity 𝐼𝑒𝑘  for the line produced 

when atoms decay from state 'e' to 𝐸k. 

The crucial insight, as highlighted in the third bullet point, is that provided the 

transition probabilities, 𝐴𝑖𝑘  and 𝐴𝑒𝑘, are known, the line-intensity ratio 
yields... well, it yields a way to determine the relative populations of states 'i' 
and 'e', and from there, as we'll see, the temperature. The 'A' coefficients here 
are the Einstein A coefficients for spontaneous emission, which represent the 
probability per unit time for an atom in an excited state to spontaneously 



decay to a lower state by emitting a photon. We'll define these more formally 
very soon. For now, the key takeaway is that if we know these A values – these 
intrinsic probabilities of decay for our two chosen transitions – then the ratio 

of the measured intensities 𝐼𝑖𝑘  to 𝐼𝑒𝑘  becomes a very informative quantity. 
Let's see how on the next slide. 
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Alright, building on our scenario of two excited states decaying to a common 
lower level, this slide presents the key equations. 

First, we have the relationship between the measured line intensities and the 
atomic parameters. The ratio of the intensity of the line from state 'i' to state 

'k', denoted 𝐼𝑖𝑘, to the intensity of the line from state 'e' to state 'k', denoted 

𝐼𝑒𝑘, is given by: 

𝐼𝑖𝑘
𝐼𝑒𝑘

=
𝑁𝑖  ℎ 𝜈𝑖𝑘  𝐴𝑖𝑘

𝑁𝑒  ℎ 𝜈𝑒𝑘  𝐴𝑒𝑘
. 

Let's break this down carefully: 

* 𝑁𝑖  is the population density of the upper state 'i' (number of atoms per unit 

volume in state i). * 𝑁𝑒 is the population density of the other upper state 'e'. * 

ℎ is Planck's constant. * 𝜈𝑖𝑘 is the frequency of the photon emitted when an 

atom transitions from state i to state k. So, ℎ𝜈𝑖𝑘 is the energy of that photon. * 

𝜈𝑒𝑘 is the frequency of the photon emitted for the e to k transition, and ℎ𝜈𝑒𝑘 is 

its energy. * 𝐴𝑖𝑘  is the Einstein A coefficient for spontaneous emission from 

state i to state k – it's the probability per unit time that an atom in state i will 

decay to state k by emitting a photon. * 𝐴𝑒𝑘  is the corresponding Einstein A 
coefficient for the e to k transition. 

This equation makes perfect sense: the intensity of a spectral line is 

proportional to the number of atoms in the initial upper state (𝑁), the energy 

of each photon emitted (ℎ𝜈), and the rate at which each atom emits such a 



photon (𝐴). So, the ratio of intensities directly reflects the ratios of these 
quantities for the two transitions. 

Now, the crucial connection to temperature comes from the second bullet 
point: Under conditions of thermal equilibrium, the level populations obey 
the Boltzmann law. This law states that the ratio of the population of state 'i' 

(𝑁𝑖) to the population of state 'e' (𝑁𝑒) is given by: 

𝑁𝑖

𝑁𝑒
=

𝑔𝑖

𝑔𝑒
exp [−

𝐸𝑖 − 𝐸𝑒

𝑘𝐵𝑇
]. 

Let's dissect this Boltzmann equation: 

* 𝑁𝑖  and 𝑁𝑒 are the populations we've already discussed. * 𝑔𝑖 and 𝑔𝑒 are the 
statistical weights (also known as degeneracies) of levels i and e, 

respectively. The statistical weight 𝑔 is the number of distinct quantum states 
that have the same energy. For example, if an energy level has an angular 

momentum 𝐽, it might have 2 𝐽 + 1 magnetic sublevels, all with the same 

energy in the absence of an external field; in that case, 𝑔 would be 2 𝐽 + 1. * 𝐸𝑖 

and 𝐸𝑒 are the energies of states i and e. So, 𝐸𝑖 − 𝐸𝑒 is the energy difference 

between these two upper states. * 𝑘𝐵 is the Boltzmann constant. * 𝑇 is the 

absolute temperature in Kelvin. 

This Boltzmann law tells us that in thermal equilibrium, higher energy states 
are less populated than lower energy states, and the exact ratio depends 

exponentially on the energy difference and the temperature. The 𝑔𝑖

𝑔𝑒
 factor 

accounts for the fact that there might be more "slots" available at one energy 
than another. 

So, we now have two equations. The first relates measurable line intensities 
to population ratios and known A-values. The second relates population 
ratios to temperature and known energy levels and degeneracies. We are 

getting very close to being able to determine 𝑇. 
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Continuing with our discussion of determining temperature using line 
intensity ratios: 

We just introduced the Boltzmann constant, 𝑘B. Its value is approximately 

1.381 × 10−23 Joules per Kelvin (J K−1). It's a fundamental constant that links 

energy at the particle level with temperature at the macroscopic level. 

Now, the key step is highlighted in the second bullet point: Combining both 

equations isolates 𝑇. Let's think about this. 

From the first equation on the previous slide, we can write the population 

ratio 𝑁i

𝑁e
 as: 

𝑁i

𝑁e
=

𝐼𝑖𝑘
𝐼𝑒𝑘

⋅
𝜈𝑒𝑘𝐴𝑒𝑘

𝜈𝑖𝑘𝐴𝑖𝑘
. 

We can measure the intensity ratio 𝐼𝑖𝑘
𝐼𝑒𝑘

. The frequencies 𝜈𝑖𝑘 and 𝜈𝑒𝑘 are known 

from the wavelengths of the spectral lines. If the Einstein coefficients 𝐴𝑖𝑘  and 

𝐴𝑒𝑘  are also known, then we can determine the population ratio 𝑁i

𝑁e
 purely from 

experimental measurements and known atomic data. 

Once we have 𝑁i

𝑁e
, we can plug it into the Boltzmann law from the previous 

slide: 

𝑁i

𝑁e
=

𝑔i

𝑔e
⋅ exp [−

𝐸i − 𝐸e

𝑘B𝑇
]. 

Since the energy levels 𝐸i and 𝐸e, and their degeneracies 𝑔i and 𝑔e, are known 
properties of the atom or molecule, the only unknown in this equation is the 

temperature, 𝑇. We can rearrange this equation to solve for 𝑇. For example, 

by taking the natural logarithm of both sides. 



This ability to determine temperature remotely is incredibly powerful. 
However, there's a critical caveat, emphasized by the statement: No reliable 
A-values implies no accurate astrophysical thermometer. This 

underscores the importance of transition probabilities. If our values for 𝐴𝑖𝑘  

and 𝐴𝑒𝑘  are inaccurate or unknown, then our calculation of 𝑁i

𝑁e
 from the 

intensity ratio will be flawed, and consequently, the temperature 𝑇 we derive 

will also be incorrect. The entire method hinges on having accurate atomic 
data for these transition probabilities. This is why so much effort in physics 
and chemistry is dedicated to both experimentally measuring and 
theoretically calculating these A-values with high precision. Without them, 
one of our primary tools for diagnosing remote plasmas and astrophysical 
environments simply wouldn't work reliably. 
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This slide provides a very helpful visual, an energy level diagram, to illustrate 
the scenario we've been discussing for Radiative Decays for Temperature 
Determination. 

Let's examine the diagram. We see three horizontal lines representing three 
distinct energy levels of an atom or molecule. 

• The top level is labeled 𝐸i. To its right, it's noted that its population, 

weighted by degeneracy, is 𝑁i𝑔i. 

• The middle level is labeled 𝐸e. Its population is 𝑁e𝑔e. 

• The bottom level is labeled 𝐸k. Its population is 𝑁k𝑔k. This 𝐸k is the 

common lower level to which both 𝐸i and 𝐸e can decay. 

Now, let's look at the transitions, which are indicated by vertical arrows: 

• There's a red arrow pointing downwards from level 𝐸i to level 𝐸k. This 
represents the radiative decay from state i to state k. Above this arrow, it's 



labeled 𝐴𝑖𝑘, signifying the Einstein A coefficient for this specific spontaneous 

emission process. Beside the arrow, ℎ𝜈𝑖𝑘 is written, representing the energy 

of the photon emitted during this transition. So, 𝐸i − 𝐸k = ℎ𝜈𝑖𝑘. 

• Similarly, there's another red arrow, slightly shorter, pointing downwards 

from level 𝐸e to the same common lower level 𝐸k. This represents the 
radiative decay from state e to state k. This transition is characterized by its 

Einstein A coefficient, 𝐴𝑒𝑘, and it results in the emission of a photon with 

energy ℎ𝜈𝑒𝑘. Thus, 𝐸e − 𝐸k = ℎ𝜈𝑒𝑘. 

This diagram perfectly encapsulates the physical situation. We have two 

distinct upper states, 𝐸i and 𝐸e, each capable of spontaneously emitting a 

photon and transitioning to the common lower state 𝐸k. The rates of these 

spontaneous emissions are governed by 𝐴𝑖𝑘  and 𝐴𝑒𝑘, respectively. By 

measuring the intensities of the light (photons ℎ𝜈𝑖𝑘 and ℎ𝜈𝑒𝑘) produced by 

these two decay pathways, and knowing 𝐴𝑖𝑘  and 𝐴𝑒𝑘, along with the energies 

and degeneracies, we can, as we've discussed, determine the relative 

populations 𝑁i and 𝑁e, and subsequently, the temperature 𝑇 of the system, 
assuming it's in thermal equilibrium. This visual aid really helps to solidify the 
concepts we've been building up with equations. 
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Alright, we've been talking a lot about these 'A coefficients' and 'transition 
probabilities'. It's time for a more formal definition. This slide provides a 
Definitions – Einstein Coefficients Refresher. These coefficients are 
foundational to understanding light-matter interactions, particularly 
spontaneous emission, stimulated emission, and absorption. Albert Einstein 
introduced them in his groundbreaking 1917 paper that laid the quantum 
mechanical groundwork for the laser. 



The first bullet point sets the stage: For a pair of stationary states, which 
we'll denote using ket notation as $\ket{i}$ (for the upper state) and 
$\ket{k}$ (for the lower state), we define the following three coefficients: 

1. Spontaneous emission coefficient, capital 𝐴𝑖𝑘: This is defined as the 
probability per unit time that an isolated excited particle (atom or molecule) 
currently in the upper state, $\ket{i}$, will spontaneously emit a photon and 
drop to the lower state, $\ket{k}$. The key here is "spontaneous" – this 
process happens on its own, without any external radiation field needing to be 
present to trigger it. It's an intrinsic property of the excited state. The units of 

𝐴𝑖𝑘  are inverse time, typically seconds to the minus one (s−1). A higher 𝐴𝑖𝑘  

value means a faster spontaneous decay. 

2. Stimulated (or induced) emission coefficient, capital 𝐵𝑖𝑘: This is defined 

as the probability per unit time and per spectral energy density 𝜌(𝜈) that a 
photon (from an external radiation field) causes the particle, which is already 
in the excited state $\ket{i}$, to emit a second photon and transition down to 
the lower state, $\ket{k}$. This is fundamentally different from spontaneous 
emission. Stimulated emission requires the presence of an external radiation 

field, characterized by its spectral energy density 𝜌(𝜈) (rho as a function of 

frequency 𝜈). The emitted photon in stimulated emission is a "clone" of the 

incident photon – it has the same frequency, direction, phase, and 
polarization. This is the critical process for light amplification in lasers 
(L.A.S.E.R. - Light Amplification by Stimulated Emission of Radiation). The 

units of 𝐵𝑖𝑘 need careful consideration. It's probability per unit time, so (s−1), 

divided by spectral energy density. Spectral energy density 𝜌(𝜈) has units of 

energy per volume per frequency interval, so Joules per meter cubed per Hertz 

(J m−3Hz−1), which is equivalent to Joules times seconds per meter cubed 

(𝐽𝑠 m−3). Therefore, 𝐵𝑖𝑘 will have units of s−1 divided by 𝐽𝑠 m−3, which 

simplifies to meters cubed per Joule per second squared (m3J−1s−2). We'll 

see these units connect to other fundamental quantities later. 
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Continuing our definitions of the Einstein Coefficients: 

3. Absorption coefficient, capital 𝐵𝑘𝑖: Note the reversal of indices here – 𝑘 to 

𝑖, signifying a transition from the lower state (ket 𝑘) to the upper state (ket 𝑖). 

This coefficient is defined as the probability per unit time and per spectral 

energy density 𝜌(𝜈) that an incident photon from the external radiation field 
is absorbed by the particle, causing it to be elevated from the lower state (ket 

𝑘) to the upper state (ket 𝑖). 

Like stimulated emission, absorption is also driven by the external radiation 

field 𝜌(𝜈). It's the process by which atoms or molecules gain energy from the 

light field. The units of 𝐵𝑘𝑖  are the same as those for 𝐵𝑖𝑘: typically m3 J−1 s−2. 

Now, a profoundly important point, highlighted in the next bullet: Einstein 
showed that thermodynamic equilibrium of matter and radiation enforces 
precise algebraic relations between these A and B coefficients, as well as 
connecting them to the Planck black-body spectrum. 

In his 1917 paper, Einstein considered a collection of atoms in thermal 
equilibrium with a blackbody radiation field. By requiring that the rates of 
upward and downward transitions balance in steady state, and that the 
radiation field conforms to Planck's law, he derived fundamental 

relationships between 𝐴𝑖𝑘, 𝐵𝑖𝑘, and 𝐵𝑘𝑖. Specifically, he found that 𝐵𝑖𝑘 is 

related to 𝐵𝑘𝑖  through their degeneracies (𝑔𝑘𝐵𝑘𝑖 = 𝑔𝑖𝐵𝑖𝑘), and 𝐴𝑖𝑘  is related to 

𝐵𝑖𝑘 by a factor involving 𝜈3 (𝐴𝑖𝑘 =
8𝜋ℎ𝜈3

𝑐3
𝐵𝑖𝑘). These relations are incredibly 

powerful because if you can determine one of these coefficients, you can find 
the others. 

Finally, the last bullet point states the overarching goal for us in this part of 
the course: Our goal in this chapter is to relate these phenomenological 



Einstein coefficients (𝐴𝑖𝑘, 𝐵𝑖𝑘, 𝐵𝑘𝑖) to calculable or measurable quantities 

such as dipole matrix elements, denoted 𝐷𝑖𝑘. 

The Einstein coefficients are defined in terms of probabilities and rates. But 
what, at a deeper quantum mechanical level, determines these probabilities? 
It turns out they are governed by the strength of the coupling between the 
atom's electric dipole moment and the electromagnetic field, which is 

quantified by these dipole matrix elements 𝐷𝑖𝑘. These matrix elements can be 
calculated from the wavefunctions of the initial and final states. So, we want 
to bridge the gap between the macroscopic description (Einstein coefficients) 
and the microscopic quantum mechanical description (dipole matrix 
elements). This connection is key to both predicting and understanding 
transition strengths from first principles. 
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Slide 4: 

Now let's focus on Spontaneous Emission and derive the associated 
Population Decay Law. This is Slide 4. 

Imagine an atom or molecule is in an excited state, let's call it state |𝑖⟩. This 

state might be able to decay spontaneously to several different lower levels. 

The first point addresses this: If multiple lower levels, denoted by |𝑘⟩, are 

reachable from state |𝑖⟩, each with its own specific spontaneous emission 

coefficient 𝐴𝑖𝑘, then we define a total spontaneous decay rate for state |𝑖⟩, 

which we'll call 𝐴i. 

This total decay rate, 𝐴i, is simply the sum of all the individual spontaneous 

emission rates to all possible lower levels 𝑘. So, the equation is: 

𝐴i = ∑𝐴𝑖𝑘

k

 



This makes intuitive sense: if there are multiple pathways out of state |𝑖⟩, the 

total rate of leaving state |𝑖⟩ is the sum of the rates for each pathway. Each 𝐴𝑖𝑘  

is a probability per unit time for a specific 𝑖 to 𝑘 decay. 𝐴i is the total 

probability per unit time that the particle in state |𝑖⟩ will undergo any 
spontaneous decay. 

Now, consider a large number of identical particles, 𝑁i(𝑡), all in the excited 

state |𝑖⟩ at some time 𝑡. How does this population change over time due to 
spontaneous emission? The second bullet point gives us the answer: The 

population 𝑁i(𝑡) in level |𝑖⟩ obeys the following differential equation: 

𝑑𝑁i

𝑑𝑡
= −𝐴i𝑁i 

Let's understand this equation: 

* 𝑑𝑁i

𝑑𝑡
 is the rate of change of the population in state |𝑖⟩. * The negative sign 

indicates that the population is decreasing due to spontaneous emission 

(particles are leaving state |𝑖⟩). * The rate of decrease is proportional to 𝐴i, the 

total spontaneous decay rate from state |𝑖⟩. * And, crucially, the rate of 

decrease is also proportional to 𝑁i itself – the number of particles currently in 

state |𝑖⟩. The more particles there are in the excited state, the more decays 

per second will occur. This is characteristic of a first-order decay process. 

This simple differential equation is the starting point for describing how an 
excited state population decays naturally. 
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We've just seen the differential equation governing the decay of an excited 

state population 𝑁i due to spontaneous emission: 

𝑑𝑁i

𝑑𝑡
= −𝐴i𝑁i. 



Now, let's look at its solution and interpretation. 

The first bullet point presents the solution to this first-order linear differential 
equation, which describes a pure exponential decay: 

𝑁i(𝑡) = 𝑁i
0exp(−𝐴i𝑡). 

Let's break this down: * 𝑁i(𝑡) is the population of state 𝑖 at any time 𝑡. * 𝑁i
0 

(i.e., 𝑁i subscript 0) is the initial population of state 𝑖 at time 𝑡 = 0. * 𝐴i is the 

total spontaneous decay rate constant for state 𝑖, as defined on the previous 

slide (sum of 𝐴𝑖𝑘  over all lower states 𝑘). * 𝑡 is time. 

This equation tells us that the population of the excited state decreases 
exponentially from its initial value, with the "steepness" of this decrease 

determined by 𝐴i. 

Next, we define a very important related quantity: the Mean spontaneous 

lifetime, denoted by the Greek letter 𝜏i (tau subscript 𝑖). The lifetime 𝜏i is 

defined as the reciprocal of the total spontaneous decay rate 𝐴i: 

𝜏i =
1

𝐴i
. 

The lifetime has units of time (e.g., seconds, nanoseconds, microseconds). A 

state with a large decay rate 𝐴i will have a short lifetime 𝜏i, and vice versa. A 

long-lived state is one that decays slowly. 

Finally, what is the physical interpretation of this lifetime, 𝜏i? The slide tells 

us: after one lifetime (i.e., when 𝑡 = 𝜏i), the population drops to 1
𝑒

 (one over 

𝑒) of its initial value. Let's verify this. If we substitute 𝑡 = 𝜏i =
1

𝐴i
 into the decay 

equation: 

𝑁i (at 𝑡 = 𝜏i) = 𝑁i
0exp(−𝐴i (

1

𝐴i
)) = 𝑁i

0exp(−1). 



Since 𝑒 (Euler's number) is approximately 2.718, 1
𝑒

 is approximately 0.368. So, 

after one lifetime, the population of the excited state has decayed to about 
36.8% of its original value. This is a standard and very useful benchmark for 
characterizing exponential decay processes. It's analogous to the half-life 

concept, but for 1
𝑒

 decay rather than 1
2

 decay. (The half-life, 𝑡1/2, is related to 𝜏 

by 𝑡1/2 = 𝜏ln(2)). 
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This slide presents a graph visually depicting Spontaneous Emission, 

specifically the exponential decay of the population 𝑁(𝑡) = 𝑁0 𝑒
−𝐴𝑡. 

Let's examine the graph carefully. 

The vertical axis represents the Population 𝑁(𝑡), and it's crucial to note that 

this is a log scale. The axis is marked with values like 1 𝑒 + 3 (which means 

1 × 103, or one thousand) and 1 𝑒 + 2 (one hundred). There's also a label 𝑁0/

𝑒, which represents the population after one lifetime, approximately 36.8% of 

the initial population 𝑁0. 

The horizontal axis represents Time, 𝑡, on a linear scale. It's marked at 0, and 

then at integer multiples of the lifetime: 𝜏i, 2𝜏i, and 3𝜏i. 

The red line on the graph shows the decay of the population 𝑁(𝑡) over time. 

Because the 𝑦-axis is logarithmic and the decay is exponential, the plot of 

𝑁(𝑡) versus 𝑡 appears as a straight line with a negative slope. This is a 
hallmark of exponential decay when viewed on a semi-log plot. 

There's an important annotation: "Slope of ln(𝑁) vs. 𝑡 plot = -A". This is 

mathematically precise. If 𝑁(𝑡) = 𝑁0 𝑒
−𝐴𝑡, then ln(𝑁(𝑡)) = ln(𝑁0) − 𝐴𝑡. This 

is an equation of a straight line (𝑦 = 𝑚𝑥 + 𝑐) where 𝑦 is ln(𝑁(𝑡)), 𝑥 is 𝑡, the 𝑦-

intercept 𝑐 is ln(𝑁0), and the slope 𝑚 is −𝐴. 



Now, let's look at the inset on the right, titled "Competing Decay Channels." 

This inset shows an energy level diagram. There's an upper level labeled |𝑖⟩. 
From this level, there are three downward arrows, indicating decays to three 

different lower levels, labeled |𝑘1⟩, |𝑘2⟩, and |𝑘3⟩. Each of these decay 

channels would have its own spontaneous emission rate, say 𝐴𝑖,𝑘1
, 𝐴𝑖,𝑘2

, and 

𝐴𝑖,𝑘3
. The diagram simplifies this by labeling each specific decay with an "A", 

implying these are individual channel rates. 

Below these, it states: Capital A equals Sigma Capital A. This means that the 

total decay rate, Capital A (which is 𝐴i in our main discussion), used in the 

exponential decay formula 𝑁(𝑡) = 𝑁0 𝑒
−𝐴𝑡, is the sum of the individual decay 

rates for all possible spontaneous emission channels out of state 𝑖. This 
reinforces the concept from Slide 12. 

So, the graph and the inset together provide a comprehensive visual and 
conceptual summary of spontaneous emission and the resulting exponential 
population decay, including the scenario where multiple decay pathways 

contribute to the overall lifetime of the excited state. The point 𝑁0/𝑒 at 𝑡 = 𝜏i 

is clearly shown; for example, if 𝑁0 is 1 𝑒 + 3, then 𝑁0/𝑒 would be roughly 368. 
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Now that we understand how the population of an excited state decays, let's 
consider the light that is actually emitted. This brings us to Slide 5, titled 
Radiant Power of a Spectral Line. 

The first bullet point focuses on a specific decay channel from an upper 

state, |𝑖⟩, to a particular lower state, |𝑘⟩. We're interested in the power 

radiated in the spectral line corresponding to just this 𝑖 to 𝑘 transition. The 

equation for the instantaneous radiant power, 𝑃𝑖𝑘(𝑡), is given by: 

𝑃𝑖𝑘(𝑡) = 𝑁i(𝑡) ℎ 𝜈𝑖𝑘  𝐴𝑖𝑘  

Let's break this equation down thoroughly: 



* 𝑃𝑖𝑘(𝑡) is the radiant power at time 𝑡 due to the 𝑖 to 𝑘 transition. Power is 

energy per unit time.  𝑁i(𝑡) is the population of the upper state 𝑖 at time 𝑡. We 

know from previous slides that this typically decays exponentially, 𝑁i(𝑡) =

𝑁𝑖0 exp(−𝐴i𝑡), where 𝐴i is the total* decay rate from state 𝑖. 

* ℎ is Planck's constant. 

* 𝜈𝑖𝑘 is the frequency of the photon emitted during the 𝑖 to 𝑘 transition. 

Therefore, ℎ 𝜈𝑖𝑘 is the energy of a single photon emitted in this specific 
transition. 

* 𝐴𝑖𝑘  is the Einstein 𝐴 coefficient for spontaneous emission for this specific 

channel, 𝑖 to 𝑘. It represents the probability per unit time that an atom in state 

𝑖 will decay to state 𝑘. 

The logic of this equation is as follows: 𝑁i(𝑡) times 𝐴𝑖𝑘  gives the number of 𝑖 to 

𝑘 transitions occurring per unit time (i.e., the number of photons of frequency 

𝜈𝑖𝑘 emitted per unit time). Each of these photons carries an energy ℎ 𝜈𝑖𝑘. So, 
(number of photons per second) times (energy per photon) gives the total 
energy per second, which is the power. 

The second bullet point clarifies the symbols and their units: 

* 𝑃𝑖𝑘  is the power, and its S.I. unit is Watts, denoted by capital 𝑊. One Watt is 

one Joule per second. * ℎ 𝜈𝑖𝑘 is the photon energy, and its S.I. unit is Joules, 

denoted by capital 𝐽. 

* 𝐴𝑖𝑘  is the spontaneous emission rate for the specific 𝑖 to 𝑘 channel. Its unit 

is inverse seconds (𝑠−1), representing probability per unit time. 

So, if you know the population of the upper state, the energy of the emitted 

photon for a specific transition, and the Einstein 𝐴 coefficient for that 

transition, you can calculate the power radiated in that spectral line. Since 

𝑁i(𝑡) is time-dependent, the radiant power 𝑃𝑖𝑘(𝑡) will also be time-

dependent, typically decaying exponentially if 𝑁i(𝑡) does. 
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Continuing our discussion on the radiant power of a spectral line, this slide 
adds a couple of important practical considerations. 

The first point notes that the Line intensity observed along a given direction 
may further depend on the angular distribution of emitted photons (dipole 
pattern, polarization). 

This is a crucial experimental detail. The equation 𝑃𝑖𝑘(𝑡) = 𝑁i(𝑡)ℎ𝜈𝑖𝑘𝐴𝑖𝑘  gives 
the total power emitted in all directions due to the i to k transition. However, 
spontaneous emission, especially electric dipole emission which is most 
common, is not generally isotropic. For example, a classical oscillating dipole 

has a characteristic donut-shaped radiation pattern (a dipole pattern), 
meaning it radiates more intensely in some directions than others 
(specifically, perpendicular to the dipole axis, and not at all along the axis). 

Furthermore, the emitted light can be polarized. The polarization 
characteristics will also depend on the nature of the transition and the 
orientation of the emitting atoms or molecules, perhaps relative to an external 
field or a surface. Therefore, if you set up a detector in a specific direction to 
measure the line intensity, what you actually measure will be influenced by 

this angular distribution and polarization. To get the total power 𝑃𝑖𝑘, you might 
need to integrate over all solid angles or carefully account for these factors in 
your experimental setup and calibration. The asterisk on "angular*" likely 
points to these complexities. 

The second bullet point highlights an experimental application: 

Experimentally, 𝑃𝑖𝑘(𝑡) provides a direct route to determining 𝐴𝑖𝑘  if 𝑁i(𝑡) is 
independently known or controllable. 

This is the inverse of the previous slide. If we can measure the radiant power 

𝑃𝑖𝑘(𝑡) (perhaps by carefully collecting all emitted light or by calibrating for the 



angular factors), and if we have a way to know or control the population of the 

upper state 𝑁i(𝑡), then we can rearrange the formula to solve for 𝐴𝑖𝑘: 

𝐴𝑖𝑘 =
𝑃𝑖𝑘(𝑡)

𝑁i(𝑡)ℎ𝜈𝑖𝑘
. 

This is a common method for experimentally measuring Einstein A 
coefficients. For instance, one might use a short laser pulse to excite a known 

number of atoms to state i (thus controlling 𝑁i(𝑡 = 0)), and then measure the 

subsequent fluorescence power 𝑃𝑖𝑘(𝑡) as the state decays. This allows for the 

determination of 𝐴𝑖𝑘, a fundamental atomic or molecular property. 

The "---" at the bottom simply indicates that the lecture notes might have 
more to say on this, but for now, these are the key points from this slide. 
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We've discussed spontaneous emission extensively. Now, let's consider what 
happens Beyond Spontaneous Emission, looking at Additional Decay 
Channels that can depopulate an excited state. This is Slide 6. 

The first bullet point introduces Collision-induced (radiationless) 
transitions. These are processes where an excited atom or molecule loses its 
energy not by emitting a photon (which is a radiative transition), but by 
transferring that energy to another particle during a collision. This is often 
called "collisional quenching." These are radiationless because no photon is 
emitted in the process; the excess energy typically goes into kinetic energy of 
the colliding partners or into exciting internal degrees offerteedom of the 
collision partner. 

The scenario is described in the second bullet: Molecule A, which is in an 

excited state with energy 𝐸i (denoted 𝐴(𝐸i)), collides with a partner particle 

B. This partner B could be another atom or molecule of the same kind, or a 
different species present in the environment (e.g., a buffer gas). 



What is the probability of such a collisional transition occurring? The third 
bullet gives an expression for the transition probability per unit time for a 
specific collisional de-excitation from state i of molecule A to some state k of 
molecule A (which could be the ground state or a lower excited state). This 
rate, let's call it the rate constant for collisional quenching from i to k, is given 
by the equation: 

𝑑𝑃𝑖𝑘
coll

𝑑𝑡
= 𝜈 𝑁B 𝜎𝑖𝑘

coll 

Let's clarify the terms in this expression, which will be detailed on the next 
slide: 

* The left side, 𝑑𝑃𝑖𝑘
coll

𝑑𝑡
, represents the probability per unit time for a single 

molecule A in state 𝐸i to undergo a collisional transition to state k due to 
collisions with B particles. This is essentially a rate constant for the process. * 

𝜈 (Greek letter nu, representing speed) is related to the relative speed of the 

colliding particles A and B. * 𝑁B is the number density of the collision partner 

B. * 𝜎𝑖𝑘
coll (Greek letter sigma) is the cross-section for the inelastic collision 

that leads to the i to k transition in molecule A. 

We'll define these terms more precisely on the next page, but the overall idea 
is that the collisional transition rate depends on how often collisions occur 
(related to speed and density of B) and how effective each collision is at 
causing the specific i-to-k transition (related to the cross-section). 
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This slide continues our discussion of additional decay channels by defining 
the terms in the expression for the collision-induced transition rate we just 
saw, and by introducing stimulated emission as another decay pathway. 

First, let's clarify the terms for the collisional rate, 𝑑𝑃𝑖𝑘
coll

𝑑𝑡
= 𝜈 𝑁B 𝜎𝑖𝑘

coll: 



* Capital N sub B is the density of particle B (the collision partner), with 

units of particles per cubic meter m−3. A higher density of B means more 

frequent collisions. * 𝜈 (lowercase Greek nu) is the mean relative speed 

between particles A and B, with units of meters per second m s−1. Higher 

relative speeds also lead to more frequent collisions. This speed is related to 

the temperature and masses of the colliding particles. * 𝜎𝑖𝑘
coll (lowercase 

Greek sigma) is the inelastic cross-section for the collision that takes 
molecule A from state i to state k. It has units of area, typically meters 

squared m2. You can think of the cross-section as an effective "target area" 
that particle B must hit on particle A to cause this specific quenching 
transition. Larger cross-sections mean more effective collisions for 
quenching. 

So, these three factors – density of colliders, relative speed, and cross-
section – combine to determine the rate of collision-induced radiationless 
transitions. 

Next, the slide reminds us of another important process that can depopulate 

an excited state: Stimulated emission in an intense radiation field, 𝜌(𝜈𝑖𝑘). 

We've already defined the Einstein 𝐵𝑖𝑘 coefficient. The probability per unit 

time for an atom in state i to undergo stimulated emission to state k, in the 

presence of a radiation field with spectral energy density 𝜌(𝜈𝑖𝑘) at the 

transition frequency 𝜈𝑖𝑘, is given by: 

𝑑𝑃𝑖𝑘
ind

𝑑𝑡
= 𝜌(𝜈𝑖𝑘) 𝐵𝑖𝑘  

Here, "ind" stands for induced, which is another term for stimulated. 𝐵𝑖𝑘 is the 

Einstein coefficient for stimulated emission from i to k. So, if there's an 
external radiation field present (like from a laser), it can actively pull 
population out of the excited state via stimulated emission, in addition to 
spontaneous emission and collisions. 



The slide concludes with the phrase "Effective lifetime including all* 
channels", which sets the stage for the next slide where we'll combine all 
these rates. 
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Now, let's combine all these decay processes – spontaneous emission, 
stimulated emission, and collisional quenching – to understand the effective 
lifetime of an excited state. 

The equation presented gives the inverse of the effective lifetime of state i, 

denoted 1

𝜏i
eff (tau sub i, effective): 

1

𝜏i
eff = ∑(𝐴𝑖𝑘 + 𝜌(𝜈𝑖𝑘) 𝐵𝑖𝑘 + 𝜈 𝑁B 𝜎𝑖𝑘

coll)

k

 

Let's analyze this crucial equation. The term 1

𝜏eff
 is the total effective decay 

rate out of state i. It's the sum of rates from all processes and all channels: 

* 𝐴𝑖𝑘  is the rate of spontaneous emission from state i to a specific lower 

state k. This term is intrinsic to the atom/molecule and doesn't depend on the 
external environment, other than allowing for the existence of state k. It is 
labeled "spontaneous" below the equation. 

* 𝜌(𝜈𝑖𝑘) 𝐵𝑖𝑘 is the rate of stimulated emission (or induced emission) from 
state i to state k, driven by the external radiation field with spectral energy 

density 𝜌 at the transition frequency 𝜈𝑖𝑘. This term depends on the intensity of 
the radiation field. It is labeled "induced." 

* 𝜈 𝑁B 𝜎𝑖𝑘
coll is the rate of collisional de-excitation (quenching) from state i to 

state k due to collisions with particle B. This term depends on the density 𝑁B 

of the collision partner and the temperature (which affects 𝜈 and 𝜎). It is 

labeled "collisional." 



The summation, indicated by the capital 𝛴k (Sigma subscript k), means we 

sum these contributions over all possible final states 𝑘 to which state i can 

transition through any of these mechanisms. 

So, the total rate at which population leaves state i is the sum of all these 

individual rates. The effective lifetime, 𝜏i
eff, is the reciprocal of this total rate. 

The second bullet point introduces a powerful experimental technique: 

Varying 𝜌 or 𝑁B in a Stern-Vollmer plot separates the individual contributions. 

This is a key idea. Suppose we want to isolate these different rate constants. 
We can conduct experiments where we measure the effective lifetime (or its 

reciprocal, the decay rate) as a function of, say, the quencher density 𝑁B, 

while keeping the radiation field 𝜌 constant (perhaps even zero if we are only 

interested in 𝐴 and collisional terms). 

If we plot 1

𝜏eff
 versus 𝑁B, the equation takes the form of a straight line: 

1

𝜏eff
= (∑(𝐴𝑖𝑘 + 𝜌 𝐵𝑖𝑘)

k

) + (∑𝜈

k

 𝜎𝑖𝑘
coll)𝑁B. 

This is 𝑦 = intercept + slope ∗ 𝑥. 

The intercept would give the sum of spontaneous and stimulated emission 

rates (in the absence of the specific quencher 𝐵). The slope would give the 

total collisional quenching rate constant due to 𝐵 (∑ 𝜈k  𝜎𝑖𝑘
coll). 

Similarly, one could vary the radiation density 𝜌 if trying to isolate 𝐵𝑖𝑘. This 
method, particularly when varying quencher concentration, is known as 
Stern-Vollmer analysis, and it's a cornerstone of photochemistry and 
photophysics for studying quenching processes. 
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This slide shows a Stern-Vollmer Plot, which visually represents the method 
we just discussed for separating different decay contributions. 

Let's analyze the graph: 

• The vertical axis (y-axis) is labeled 1
𝜏
 (Effective Decay Rate), in arbitrary 

units. It ranges from 0 to 30 on this particular plot. Remember, 1
𝜏
 is the total 

rate at which the excited state is depopulated. 

• The horizontal axis (x-axis) is labeled 𝑁 (Density of Quencher B), also in 

arbitrary units. It ranges from 0 to 4. This "N" represents 𝑁B, the concentration 
of the collisional quenching agent. 

The plot shows several data points (blue circles) that lie on a straight line 

with a positive slope. This linear relationship is exactly what we expect from 
the Stern-Vollmer equation discussed on the previous page, assuming other 

factors like temperature (affecting 𝜈 and 𝜎) and any background radiation 

field (affecting 𝜌𝐵𝑖𝑘) are kept constant. 

At the top of the graph, the equation for the line is given as: 

1

𝜏
= 𝛴𝐴 + 𝑘𝑁 

Let's interpret this in the context of our previous discussion: 

• Sigma A (capital Sigma A) on the y-axis represents the y-intercept of the 

line. This is the value of 1
𝜏
 when 𝑁 (the quencher concentration) is zero. So, 

Sigma A corresponds to the sum of all decay rates that are not dependent on 
the quencher B. In the simplest case, this would be the sum of spontaneous 

emission rates (∑ 𝐴𝑖𝑘k ) and any stimulated emission rates if a background 

radiation field is present. The graph shows an arrow pointing to the y-
intercept, labeled "Sigma A". 



• k in the equation represents the slope of the line. This "k" is the Stern-

Vollmer quenching constant. It corresponds to the term (∑ 𝜈k  𝜎coll,𝑖𝑘) from our 

more general equation. It quantifies how effectively the quencher B de-
excites the molecule A per unit concentration of B. An annotation on the 
graph indicates "Slope = k". 

So, by performing an experiment where you measure the excited state lifetime 

(and thus 1
𝜏
) at different known concentrations of a quencher (𝑁), you can plot 

this data. If it forms a straight line, the intercept gives you the intrinsic decay 
rate of the excited state in the absence of that specific quencher, and the 

slope gives you the bimolecular quenching rate constant for that quencher. 
This is a very powerful tool for studying excited state dynamics and 
interactions. 
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We're now shifting gears to a very important theoretical framework. This is 
Slide 7, introducing the Two-Level Atom in a Classical Light Field – Basic 
Idea. This is a cornerstone model in laser spectroscopy and quantum optics, 
often called the semi-classical model. 

The first bullet point explains the core approximation: We model the 
radiation (the asterisk suggests this is an approximation) as a classical 
plane wave. This means we treat the light field not as a collection of photons 
(which would be a fully quantum optical treatment), but as a continuous 
electromagnetic wave, described by classical Maxwell's equations. This 
approximation is generally valid whenever photon statistics are not 
essential for the phenomenon we are studying. For many problems involving 
lasers, especially continuous wave (CW) lasers with high photon numbers, 
this classical field approximation works very well. 

The specific form of this classical plane wave electric field, 𝐸⃗ (𝑡), is given as: 



𝐸⃗ (𝑡) = 𝐸0cos(𝜔𝑡 − 𝑘𝑧) 𝑒̂ 

Let's break this down: * 𝐸0 is the scalar amplitude of the electric field wave. * 

𝜔 (lowercase Greek omega) is the angular frequency of the light. * 𝑡 is time. * 

𝑘 is the wavenumber (𝑘 =
2𝜋

𝜆
), where 𝜆 is the wavelength. * 𝑧 is the direction 

of propagation of the wave. * 𝑒̂ (e with a caret) is the unit vector specifying the 
polarization of the electric field (e.g., along the x-axis). 

So, we have a classical, oscillating electric field. What about the atom? The 
second bullet point clarifies: The atom (asterisk again, signifying it's a 
simplified model of a real atom) remains fully quantum mechanical, with 

an unperturbed Hamiltonian denoted 𝐻̂0. This is the "semi" part of semi-

classical: classical field, quantum atom. The unperturbed Hamiltonian 𝐻̂0 
describes the atom in isolation, and its eigenstates are the familiar energy 
levels of the atom. 

Now, a crucial simplification for this model: Restrict attention to just two 
stationary eigenstates of the atom. 

Instead of considering all the infinite energy levels of a real atom, we focus on 
only two levels that are relevant to the interaction with the light field, typically 
two levels whose energy difference is close to the energy of the photons in the 

classical light field (ℏ𝜔). This is the "two-level atom" (TLA) approximation. It 

simplifies the mathematics enormously while still capturing a vast amount of 
interesting physics, like Rabi oscillations, absorption, and stimulated 
emission. We will explore this model in detail. 
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Let's elaborate on the specifics of our two-level atom and an important 
approximation related to its interaction with the light field. 

First, we define our two levels: 



• We have a Lower level, which we'll denote using ket notation as |𝑎⟩, with 

energy capital E sub a as 𝐸a. 

• And we have an Upper level, denoted as |𝑏⟩, with energy capital E sub b 

as 𝐸b. 

So, 𝐸b is greater than 𝐸a. The energy difference 𝐸b − 𝐸a will be crucial, as we 

expect resonance when this matches ℏ𝜔, where 𝜔 is the frequency of our 
classical light field. 

Next, we introduce a critical simplification known as the dipole 
approximation (or sometimes the long-wavelength approximation). The 
condition for this approximation to be valid is related to the relative sizes of 
the atom and the wavelength of the light. 

• Consider the Atomic size, 𝑑. For a typical atom, this is on the order of 

Angstroms, so roughly 0.1 nm (zero point one n m). 

• Now consider the Optical wavelength, 𝜆 (Greek letter lambda). For visible 

light, 𝜆 is typically around 500 nm (five hundred n m). 

Comparing these, we see that the wavelength of light (𝜆, around 500 nm) is 

much, much larger than the physical extent of the atom (𝑑, around 0.1 nm). 

Mathematically, 𝜆 is much, much greater than 𝑑 (i.e., 𝜆 ≫ 𝑑). 

What is the consequence of this? 

The final bullet point explains: Hence, the phase factor 𝑘𝑧 in our classical 

electric field 𝐸(𝑡) = 𝐸0cos(𝜔𝑡 − 𝑘𝑧)𝑒̂ can be considered approximately zero 
(or at least constant) inside the atom. 

Remember 𝑘 =
2𝜋

𝜆
. Since 𝜆 is so large compared to the atomic dimension 𝑑, 

the term 𝑘𝑧 (where 𝑧 here would be the spatial coordinate within the atom, 

varying from 0 to 𝑑) will be very small: 



𝑘𝑑 = (
2𝜋

𝜆
)𝑑. 

Since 𝑑
𝜆

 is very small (approx 0.1

500
=

1

5000
), 𝑘𝑑 is also very small. 

This means that the phase of the electric field, 𝜔𝑡 − 𝑘𝑧, does not change 

significantly as you move across the tiny region occupied by the atom at any 
given instant in time. Therefore, the spatial variation of the electric field 
across the atom can be neglected. We can effectively treat the electric field 
as being uniform over the volume of the atom, oscillating only in time. This is 
the essence of the dipole approximation. It simplifies the interaction 
Hamiltonian considerably, as we'll see. 
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This slide provides an excellent visual illustration of the Dipole 
Approximation, contrasting the Atomic Size vs. Wavelength. In the diagram, 
we see a large, oscillating red curve representing the Incoming 
Electromagnetic Wave. The equation for this wave is written on the right: 

𝐸⃗ (𝑡) = 𝐸0cos(𝜔𝑡 − 𝑘𝑧)𝑒̂, which is our classical plane wave. 

Crucially, superimposed on this wave, we see a small, blueish circle labeled 
"Atom." The diagram is drawn such that the wavelength of the EM wave (the 
distance between successive crests, for example) is vastly larger than the 
diameter of the circle representing the atom. 

This visual makes the core idea of the dipole approximation immediately 
clear. At any given instant in time, the tiny atom experiences a nearly uniform 

electric field. Even though the electric field 𝐸(𝑡) is varying in space (due to the 

𝑘𝑧 term), these spatial variations occur over a length scale comparable to 𝜆. 

Since the atom is so much smaller than 𝜆, the field is essentially constant 
across the atom's extent. 



Imagine zooming in on just the tiny region occupied by the atom. The segment 
of the long red sine wave that passes through the atom would look almost like 

a flat line. Its value would be determined by the phase 𝜔𝑡 − 𝑘𝑧0, where 𝑧0 is, 

say, the position of the atom's center, but the variation due to 𝑧 changing 

within the atom itself is negligible. 

This approximation allows us to simplify the interaction of the atom with the 
light by considering only the time variation of the field at a single point (e.g., 
the atom's nucleus) and ignoring its spatial variation across the electron 
cloud. This is why it's called the dipole approximation: it leads to an 
interaction term involving the electric dipole moment of the atom. 

Page 24: 

Now that we've established the dipole approximation, let's look at the 
Hamiltonian that describes the interaction of our two-level atom with the 
classical light field. This is Slide 8: Interaction Hamiltonian and Dipole 
Operator. 

The first bullet point introduces the Total Hamiltonian, denoted 𝐻̂ (capital H 
with a caret). This total Hamiltonian is the sum of two parts: 

𝐻̂ = 𝐻̂0 + 𝑉̂(𝑡) 

* 𝐻̂0 is the unperturbed Hamiltonian of the atom itself, which we discussed 

earlier. Its eigenstates are our levels $\ket{a}$ and $\ket{b}$ with energies 𝐸a 

and 𝐸b. 

* 𝑉̂(𝑡) is the interaction Hamiltonian, which describes the interaction 

between the atom and the external classical electric field. It's time-
dependent because the electric field itself is oscillating in time. 

The second bullet point gives the form of this interaction Hamiltonian within 
the dipole approximation: 



𝑉̂(𝑡) = −𝑒 𝑟 ⋅ 𝐸⃗ (𝑡) 

And if we substitute our classical field 𝐸⃗ (𝑡) = 𝐸0cos(𝜔𝑡)𝑒̂ (where we've now 

dropped the 𝑘𝑧 term due to the dipole approximation, effectively setting 𝑧 = 0 
at the atom's location), this becomes: 

𝑉̂(𝑡) = −𝑒 𝑟 ⋅ 𝐸⃗ 0cos(𝜔𝑡)𝑒̂ 

Let's be precise here. * 𝑒 is the elementary charge (magnitude, a positive 

value). * 𝑟  is the position operator of the electron within the atom (relative to 

the nucleus, typically). * 𝐸⃗ (𝑡) is the classical electric field vector at the 

position of the atom. In the dipole approximation, 𝐸⃗ (𝑡) = 𝐸0cos(𝜔𝑡)𝑒̂, where 

𝐸0 is the scalar amplitude and 𝑒̂ is the polarization unit vector. 

So, 𝑉̂(𝑡) = −𝑒 (𝑟 ⋅ 𝑒̂) 𝐸0cos(𝜔𝑡). 

Now, the third bullet point asks us to Introduce the dipole moment 

operator. The electric dipole moment operator for an electron of charge −𝑒 at 

position 𝑟  is usually defined as 𝑝̂op = −𝑒 𝑟 . The slide defines 𝑝̂ = −𝑒 𝑟 . This is 

consistent with the standard definition of the electric dipole moment operator 
for an electron. 

If we use this definition, then our interaction Hamiltonian 𝑉̂(𝑡) can be written 
very compactly as: 

𝑉̂(𝑡) = 𝑝̂ ⋅ (𝐸0cos(𝜔𝑡)𝑒̂) 

Or more simply, 𝑉̂(𝑡) = 𝑝̂ ⋅ 𝐸⃗ (𝑡). 

This is a common form: the interaction energy is the dot product of the 
electric dipole moment operator of the atom and the external electric field. 

(A quick check on conventions: some texts define the dipole moment as 𝑞 𝑟 , 

so for an electron with 𝑞 = −𝑒, 𝑝̂op = −𝑒 𝑟 . The interaction potential is then 

−𝑝̂op ⋅ 𝐸⃗ = −(−𝑒 𝑟 ) ⋅ 𝐸⃗ = 𝑒 𝑟 ⋅ 𝐸⃗ . Other texts use 𝑉 = −𝑑 ⋅ 𝐸⃗  where 𝑑  is the 



dipole moment. If 𝑑 = +𝑒 𝑟  (effective positive charge displacement), then 𝑉 =

−𝑒 𝑟 ⋅ 𝐸⃗ . If 𝑑 = −𝑒 𝑟  (electron dipole), then 𝑉 = −(−𝑒 𝑟 ) ⋅ 𝐸⃗ = 𝑒 𝑟 ⋅ 𝐸⃗ . 

Let's stick to the slide's definitions: 𝑉̂(𝑡) = −𝑒 𝑟 ⋅ 𝐸⃗ (𝑡), and the dipole 

operator 𝑝̂ = −𝑒 𝑟 . Therefore, 𝑉̂(𝑡) = 𝑝̂ ⋅ 𝐸⃗ (𝑡). This means the term −𝑒 𝑟 ⋅ 𝑒̂ is 

the component of the dipole moment operator along the electric field 
polarization direction. 
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We have our interaction Hamiltonian 𝑉̂(𝑡) which includes a cos(𝜔𝑡) term. For 
mathematical convenience, especially when solving time-dependent 
quantum mechanics problems, it's often useful to rewrite this cosine 
function. 

The first bullet point states: For presentation purposes, rewrite cosine via 

complex exponentials. Using Euler's formula, we can express 𝐸0cos(𝜔𝑡) as: 

𝐸0cos(𝜔𝑡) =
𝐸0

2
[𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡] 

The slide then defines a quantity 𝐴0 =
𝐸0

2
 (Be careful, this 𝐴0 is an amplitude of 

the electric field components, not an Einstein A coefficient). So, 

𝐸0cos(𝜔𝑡) = 𝐴0(𝑒
𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡) 

This decomposition is very useful because the 𝑒𝑖𝜔𝑡  and 𝑒−𝑖𝜔𝑡  terms behave 
differently when we consider energy conservation in transitions. One can be 
thought of as corresponding to photon absorption (or creating a field 
quantum) and the other to photon emission (or annihilating a field quantum), 
though in this classical field treatment, it's more about which term will lead to 
resonance. 

The second bullet point provides the Physical picture: 



The atom experiences an oscillating electric force (asterisk) capable of 
driving transitions if the frequency is near resonance. 

The asterisk on "force" is important. Strictly speaking, 

𝑉̂(𝑡) = 𝑝̂ ⋅ 𝐄(𝑡) 

is an interaction potential energy. An electric force would be related to the 
gradient of this potential (or, for time-varying fields, more complex). 

However, the time-varying interaction potential energy itself is what drives the 
transitions. The atom's electron cloud is "pushed and pulled" by the 
oscillating electric field of the light wave. 

If this "pushing and pulling" occurs at a frequency 𝜔 that is close to a natural 

transition frequency of the atom (e.g., 𝐸b−𝐸a

ℏ
), then the atom can efficiently 

absorb energy from the field and make a transition from a lower state to an 
upper state, or be stimulated to emit energy and transition from an upper 
state to a lower state. This near-resonance condition is key for significant 
interaction. 

The "---" at the bottom suggests more could be said, but these are the main 
points for now. 
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We're now ready to tackle the core problem: how does the quantum state of 
our two-level atom evolve under the influence of the classical light field? This 
is Slide 9, focusing on the Time-Dependent Schrödinger Equation – State 
Expansion. 

The first step is to Solve the fundamental equation of motion in quantum 
mechanics, the Time-Dependent Schrödinger Equation (TDSE). It is written 
as: 



𝐻̂𝛹(𝑟 , 𝑡) = 𝑖ℏ
∂𝛹(𝑟 , 𝑡)

∂𝑡
. 

Let's break this down: 

* 𝐻̂ is the total Hamiltonian we defined on Slide 24: 𝐻̂ = 𝐻̂0 + 𝑉̂(𝑡). It includes 

both the unperturbed atomic Hamiltonian and the time-dependent 
interaction with the light field. 

* 𝛹(𝑟 , 𝑡) is the total wavefunction of the atom. It's a function of the electron's 

spatial coordinates (collectively denoted by 𝑟 ) and time 𝑡. This wavefunction 
contains all possible information about the state of the atom. 

* 𝑖 is the imaginary unit, square root of minus 1. 

* ℏ is the reduced Planck constant ( ℎ divided by 2𝜋 ). 

* The right side is 𝑖ℏ times the time derivative of the wavefunction. 

Solving this partial differential equation directly can be very difficult. A 
standard and powerful technique is to use a state expansion, as described in 
the second bullet point: 

Express the total wavefunction 𝛹 as a superposition of the unperturbed 

eigenstates of the atom, which we denote as |𝑛⟩. 

Recall that 𝐻̂0 (the unperturbed atomic Hamiltonian) has a set of stationary 

eigenstates 𝑢n(𝑟 ), with corresponding energies 𝐸n: 

𝐻̂0 𝑢n(𝑟 ) = 𝐸n 𝑢n(𝑟 ). 

These 𝑢n(𝑟 ) form a complete basis set. 

So, we can write the time-dependent wavefunction 𝛹(𝑟 , 𝑡) as a sum over 
these basis states: 

𝛹(𝑟 , 𝑡) = ∑𝐶n
n

(𝑡) 𝑢n(𝑟 ) 𝑒
−
𝑖𝐸n𝑡
ℏ . 



Let's analyze this expansion: 

* The sum is over all possible unperturbed eigenstates 𝑛 of the atom. 

* 𝑢n(𝑟 ) is the spatial part of the 𝑛-th stationary state wavefunction. 

* 𝑒−
𝑖𝐸n𝑡

ℏ  is the standard time-evolution factor for an eigenstate of 𝐻̂0 if there 

were no perturbation. 

* 𝐶n(𝑡) are the crucial time-dependent complex coefficients (or amplitudes). 

If there were no interaction 𝑉̂(𝑡), these 𝐶n(𝑡) would be constant. Because of 

𝑉̂(𝑡), these coefficients will change over time, describing how the probability 

of finding the atom in different states |𝑛⟩ evolves. The square of the 

magnitude of 𝐶n(𝑡), which is |𝐶n(𝑡)|
2, gives the probability that the atom is in 

state 𝑛 at time 𝑡. 

Our goal now will be to substitute this expansion into the TDSE and derive 

equations that govern the evolution of these coefficients 𝐶n(𝑡). 
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We've just written the general state expansion for the wavefunction 𝛹. Now, 
let's apply it to our specific case of interest: the two-level truncation. 

As the first bullet point states, for our two-level system consisting of a lower 

state ket |𝑎⟩ (with energy 𝐸a and spatial wavefunction 𝑢a(𝑟 )) and an upper 

state ket |𝑏⟩ (with energy 𝐸b and spatial wavefunction 𝑢b(𝑟 )), the expansion 

simplifies to: 

𝛹(𝑟 , 𝑡) = 𝑎(𝑡) 𝑢a(𝑟 ) 𝑒
−
𝑖𝐸a𝑡
ℏ + 𝑏(𝑡) 𝑢b(𝑟 ) 𝑒

−
𝑖𝐸b𝑡
ℏ . 

Here: * We've replaced the generic coefficients 𝐶a(𝑡) and 𝐶b(𝑡) with simply 

𝑎(𝑡) and 𝑏(𝑡), respectively. These are the time-dependent complex 

amplitudes for being in state |𝑎⟩ and state |𝑏⟩. * 𝑢a(𝑟 ) and 𝑢b(𝑟 ) are the 

spatial parts of the wavefunctions for the lower and upper states. * The 



exponential terms are the usual time-evolution phases for the unperturbed 
energy eigenstates. 

The second bullet point explains the Probabilistic meaning of these 
amplitudes, which is fundamental to quantum mechanics: 1. The absolute 

square of 𝑎(𝑡), written as |𝑎(𝑡)|2, is the probability of finding the atom in the 

lower state ket |𝑎⟩ at time 𝑡. 2. Similarly, the absolute square of 𝑏(𝑡), written 

as |𝑏(𝑡)|2, is the probability of finding the atom in the upper state ket |𝑏⟩ at 

time 𝑡. 

These probabilities will change over time as the atom interacts with the light 

field. For example, if the atom starts in the lower state |𝑎⟩ and absorbs a 

photon, |𝑎(𝑡)|2 will decrease and |𝑏(𝑡)|2 will increase. 

Finally, there's the Normalization condition: 3. Normalization: |𝑎(𝑡)|2 +

|𝑏(𝑡)|2 = 1. 

This equation states that the sum of the probabilities of being in state |𝑎⟩ or 

state |𝑏⟩ must always be 1. This is true if there is no decay to other states or 

if we are considering only the population within this two-level manifold. It 
means the atom is somewhere within these two levels. In more advanced 
treatments where spontaneous emission to other levels or ionization is 
included, this sum might be less than 1, indicating "loss" from the two-level 
system. But for a closed, ideal two-level system, this normalization holds. 

Our task now is to find equations that tell us how 𝑎(𝑡) and 𝑏(𝑡) change over 
time. 

Page 28: 

This slide, titled "Deriving Coupled Amplitude Equations – Full Algebra," 

outlines the mathematical steps to find out how our state amplitudes 𝑎(𝑡) 

and 𝑏(𝑡) evolve. 



The first instruction is to Insert the two-level expansion (for 𝛹(𝑟, 𝑡) from the 

previous slide) into the full Time-Dependent Schrödinger Equation (𝐻̂𝛹 =

𝑖ℏ
𝑑𝛹

𝑑𝑡
), and then project onto each state ($\ket{a}$ and $\ket{b}$). 

This is a standard procedure. "Projecting onto a state" means, for example, to 

get the equation for 𝑎(𝑡), we would multiply the entire Schrödinger equation 

from the left by the complex conjugate of the spatial wavefunction of state 𝑎 

(𝑢a
∗(𝑟)) and then integrate over all spatial coordinates (𝑑𝜏). We use the 

orthogonality of the eigenfunctions (⟨𝑢a|𝑢b⟩ = 0 if 𝑎 is not equal to 𝑏, and 

⟨𝑢a|𝑢a⟩ = 1). This process will isolate a differential equation for 𝑎̇(𝑡) (the time 

derivative of 𝑎(𝑡)) and similarly another one for 𝑏̇(𝑡). These will typically be 

coupled, meaning 𝑎̇ will depend on 𝑏, and 𝑏̇ will depend on 𝑎. 

Next, we need to Define the energy splitting between the two levels in 
angular frequency units. This is often called the Bohr frequency for the 
transition. The slide defines: 

𝜔𝑎𝑏 =
𝐸a − 𝐸b

ℏ
 

It also notes that 

𝜔𝑎𝑏 = −𝜔𝑏𝑎. 

Let's be very careful with this definition. We defined $\ket{a}$ as the lower 

level (energy 𝐸a) and $\ket{b}$ as the upper level (energy 𝐸b), so 𝐸b > 𝐸a. 

Therefore, 𝐸a − 𝐸b is a negative quantity. This means 𝜔𝑎𝑏, as defined here, will 
be a negative angular frequency. The more conventional positive transition 
frequency would be 

𝜔0 =
𝐸b − 𝐸a

ℏ
, 

so, 𝜔𝑎𝑏 = −𝜔0. This sign convention is important and we must keep it in mind 
as we proceed. 



Finally, the slide says Introduce dipole matrix element*. The asterisk 
indicates that the definition or more details will follow, presumably on the 
next slide. This dipole matrix element will be the key quantity that couples the 

two states via the interaction Hamiltonian 𝑉(𝑡). It will appear in our coupled 

equations for 𝑎(𝑡) and 𝑏(𝑡). 
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Here we see the definition of the dipole matrix element and the resulting 
coupled amplitude equations. 

First, the dipole matrix element, capital 𝐷𝑎𝑏, is defined as: 

$$D_{ab} = -e \int u_\text{a}^{*(\mathbf}{r}) \, (\mathbf{r} \cdot \hat{e}) \, 
u_\text{b}(\mathbf{r}) \, d\tau.$$ 

It's also stated that 𝐷𝑎𝑏 = 𝐷𝑏𝑎
∗  (D subscript ba with an asterisk for complex 

conjugate). 

Let's break down 𝐷𝑎𝑏: 

* −𝑒 is the charge of the electron (e being the positive elementary charge). 
\(u_\text{a}^{(\mathbf}{r})\) is the complex conjugate of the spatial 

wavefunction for the lower state |𝑎⟩. * 𝐫 is the electron position operator. * 𝑒̂ 
is the unit vector defining the polarization of the classical electric field. So, 
(𝐫 ⋅ 𝑒̂) is the component of the electron's position vector along the direction of 

the electric field. * 𝑢b(𝐫) is the spatial wavefunction for the upper state |𝑏⟩. * 

The integral is over all spatial coordinates (𝑑𝜏). 

This 𝐷𝑎𝑏  represents the matrix element of the operator −𝑒(𝐫 ⋅ 𝑒̂) between 

states |𝑎⟩ and |𝑏⟩. Recall that our interaction Hamiltonian 𝑉(𝑡) was −𝑒(𝐫 ⋅ 𝑒̂) 

times 𝐸0cos(𝜔𝑡). So 𝐷𝑎𝑏  is essentially ⟨𝑎|𝑉(𝑡)|𝑏⟩ divided by  𝐸0cos(𝜔𝑡). It 

quantifies the strength of the coupling between states |𝑎⟩ and |𝑏⟩ by the 

electric field component along 𝑒̂. 



The relation 𝐷𝑎𝑏 = 𝐷𝑏𝑎
∗  is standard for Hermitian operators like −𝑒(𝐫 ⋅ 𝑒̂), as 

long as 

𝐷𝑏𝑎 = ⟨𝑏|−𝑒(𝐫 ⋅ 𝑒̂)|𝑎⟩. 

The next bullet point states an important property: 𝐷𝑎𝑏  vanishes for 𝑎 = 𝑏 

(i.e., 𝐷𝑎𝑎 or 𝐷𝑏𝑏) by parity -> no diagonal Stark term. For systems with 
inversion symmetry, like atoms, the diagonal matrix elements 

𝐷𝑎𝑎 = ⟨𝑎|−𝑒(𝐫 ⋅ 𝑒̂)|𝑎⟩ 

are zero. This means that the interaction Hamiltonian 𝑉(𝑡) we are using does 

not cause a first-order energy shift (a linear Stark shift) to the levels |𝑎⟩ and |𝑏⟩ 

themselves; it only couples them off-diagonally. (Quadratic Stark shifts can 
occur from second-order perturbation theory). 

Finally, we arrive at the Resulting amplitude equations (exact, before 
approximation): 

The time derivative of 𝑎(𝑡), denoted 𝑎̇(𝑡), is: 

𝑎̇(𝑡) = −
𝑖

ℏ
 𝑏(𝑡) 𝐷𝑎𝑏  𝐸0 cos(𝜔𝑡) 𝑒𝑖𝜔𝑎𝑏𝑡 . 

And the time derivative of 𝑏(𝑡), denoted 𝑏̇(𝑡), is: 

𝑏̇(𝑡) = −
𝑖

ℏ
 𝑎(𝑡) 𝐷𝑏𝑎  𝐸0 cos(𝜔𝑡) 𝑒−𝑖𝜔𝑎𝑏𝑡 . 

Let's analyze these important equations: 

* They are a pair of coupled, first-order linear differential equations for the 

amplitudes 𝑎(𝑡) and 𝑏(𝑡). * The rate of change of 𝑎(𝑡) (𝑎̇(𝑡)) depends on the 

current amplitude of 𝑏(𝑡), and vice-versa. This is the coupling. * The coupling 

strength involves the dipole matrix element (𝐷𝑎𝑏  or 𝐷𝑏𝑎), the electric field 

amplitude (𝐸0), and is inversely proportional to ℏ. * The term cos(𝜔𝑡) comes 



directly from our oscillating electric field. * The exponential terms, exp(𝑖𝜔𝑎𝑏𝑡) 

and exp(−𝑖𝜔𝑎𝑏𝑡), involve our previously defined atomic transition frequency 

𝜔𝑎𝑏 =
𝐸a − 𝐸b

ℏ
. 

Since 𝐸a < 𝐸b, 𝜔𝑎𝑏  is negative. Let 𝜔𝑎𝑏 = −𝜔0, where 

𝜔0 =
𝐸b − 𝐸a

ℏ
 

is the positive Bohr frequency. Then 

exp(𝑖𝜔𝑎𝑏𝑡) = exp(−𝑖𝜔0 𝑡), 

and 

exp(−𝑖𝜔𝑎𝑏𝑡) = exp(𝑖𝜔0 𝑡). 

These equations are the exact result of substituting the two-level expansion 

into the TDSE and projecting, assuming 𝐷𝑎𝑎 = 𝐷𝑏𝑏 = 0. They form the starting 
point for further approximations, like the Rotating Wave Approximation. 
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This slide offers a physical interpretation of the coupled amplitude equations 
we just derived. 

It states: Mathematics encodes physically intelligible statement: 
amplitude of one level changes proportional to amplitude of the other, 
field strength, and phase mismatch. 

Let's unpack this concise summary by looking back at the equations from the 

previous page, for instance, the one for 𝑎̇(𝑡): 

𝑎̇(𝑡) = −
𝑖

ℏ
 𝑏(𝑡) 𝐷𝑎𝑏  𝐸0 cos(𝜔𝑡) exp(𝑖𝜔𝑎𝑏𝑡) 



1. "amplitude of one level changes proportional to amplitude of the 

other": The rate of change of 𝑎(𝑡) (i.e., 𝑎̇(𝑡)) is directly proportional to 𝑏(𝑡), 

the current amplitude of the other state. Similarly, 𝑏̇(𝑡) is proportional to 𝑎(𝑡). 

This signifies that for a transition to occur from state |𝑏⟩ to state |𝑎⟩ (thus 

changing 𝑎(𝑡)), there must be some population amplitude in state |𝑏⟩ to begin 

with. The system is driven between the two states. 

2. "field strength": The rate of change is also proportional to 𝐸0, the 
amplitude of the external electric field. A stronger field will drive transitions 

more effectively, leading to faster changes in the amplitudes 𝑎(𝑡) and 𝑏(𝑡). 

The dipole matrix element 𝐷𝑎𝑏  also contributes to this "strength" of 

interaction. 

3. "phase mismatch": This is captured by the time-dependent terms: cos(𝜔𝑡) 

and exp(𝑖𝜔𝑎𝑏𝑡). Recall that 

cos(𝜔𝑡) =
1

2
[exp(𝑖 𝜔𝑡) + exp(−𝑖 𝜔𝑡)]. 

So the product cos(𝜔𝑡) exp(𝑖𝜔𝑎𝑏𝑡) will produce terms like exp(𝑖(𝜔 + 𝜔𝑎𝑏)𝑡) 

and exp(𝑖(−𝜔 + 𝜔𝑎𝑏)𝑡). Let's use 

𝜔0 =
𝐸b − 𝐸a

ℏ
 

(positive atomic frequency), so 𝜔𝑎𝑏 = −𝜔0. Then the terms become 

exp(𝑖(𝜔 − 𝜔0)𝑡) and exp(−𝑖(𝜔 + 𝜔0)𝑡). The term exp(𝑖(𝜔 − 𝜔0)𝑡) contains 

the difference between the applied field frequency (𝜔) and the atomic 

transition frequency (𝜔0). This difference, 𝜔 − 𝜔0, is the detuning. If this 

detuning is small (i.e., 𝜔 is close to 𝜔0, or "near resonance"), this exponential 
term oscillates slowly. If the detuning is large, it oscillates rapidly. The term 

exp(−𝑖(𝜔 + 𝜔0)𝑡) involves the sum of frequencies and always oscillates 

rapidly. The efficiency of driving the transition (how quickly 𝑎(𝑡) and 𝑏(𝑡) 
change) will be critically sensitive to this "phase mismatch" or detuning. We 



expect the strongest interaction when 𝜔 is very close to 𝜔0. These phase 
factors govern the coherent accumulation of probability amplitude in the 
target state. 

The "---" at the bottom indicates that this is a summary point. These exact 
equations, while physically intelligible, are still a bit complex to solve directly 
due to the rapidly oscillating terms. This will lead us to the Rotating Wave 
Approximation. 

Page 31: 

The exact coupled amplitude equations we derived contain terms that 
oscillate at high frequencies. To simplify them and gain more insight, we 

introduce a very common and powerful approximation. This is Slide 11: 
Rotating-Wave Approximation (RWA) and Rabi Frequency. 

The first step is to Write cosine as sum of co-rotating and counter-rotating* 

exponentials. As we've seen, the term 𝐸0cos(𝜔𝑡) from the electric field can 

be written as 𝐸0

2
[exp(𝑖𝜔𝑡) + exp(−𝑖𝜔𝑡)]. When this is multiplied by the atomic 

phase factors like exp(𝑖𝜔𝑎𝑏𝑡) or exp(−𝑖𝜔𝑎𝑏𝑡) from the previous equations, 

we get terms involving sums and differences of frequencies. 

Let's be very clear about frequencies. Let 𝜔0 =
𝐸b−𝐸a

ℏ
 be the positive natural 

transition frequency of the atom (assuming 𝐸b > 𝐸a). Our previous 𝜔𝑎𝑏  was 
𝐸a−𝐸b

ℏ
= −𝜔0. 

The equations for 𝑎̇(𝑡) and 𝑏̇(𝑡) involved terms like: 

For 𝑎̇(𝑡): 

cos(𝜔𝑡)exp(𝑖𝜔𝑎𝑏𝑡) = cos(𝜔𝑡)exp(−𝑖𝜔0𝑡) 

 =
1

2
[exp(𝑖𝜔𝑡) + exp(−𝑖𝜔𝑡)]exp(−𝑖𝜔0𝑡) 



 =
1

2
[exp(𝑖(𝜔 − 𝜔0)𝑡) + exp(−𝑖(𝜔 + 𝜔0)𝑡)] 

For 𝑏̇(𝑡): 

cos(𝜔𝑡)exp(−𝑖𝜔𝑎𝑏𝑡) = cos(𝜔𝑡)exp(𝑖𝜔0𝑡) 

 =
1

2
[exp(𝑖𝜔𝑡) + exp(−𝑖𝜔𝑡)]exp(𝑖𝜔0𝑡) 

 =
1

2
[exp(𝑖(𝜔 + 𝜔0)𝑡) + exp(−𝑖(𝜔 − 𝜔0)𝑡)] 

Now, let's look at the slide's statements about which terms vary slowly or 

fast, keeping in mind their definition 𝜔𝑎𝑏 =
𝐸a−𝐸b

ℏ
. If state 'a' is lower and 'b' is 

upper (as per page 22), then 𝜔𝑎𝑏  is negative. The slide states: * Terms like 

𝑒𝑖(𝜔−𝜔𝑎𝑏)𝑡  vary slowly near resonance. If 𝜔𝑎𝑏 = −𝜔0, then (𝜔 − 𝜔𝑎𝑏) =

(𝜔 + 𝜔0). This term exp(𝑖(𝜔 + 𝜔0)𝑡) is a fast oscillating term, as 𝜔 and 𝜔0 are 

both large optical frequencies. * Terms like 𝑒𝑖(𝜔+𝜔𝑎𝑏)𝑡  oscillate very fast -> 

average to zero over relevant timescales. If 𝜔𝑎𝑏 = −𝜔0, then (𝜔 + 𝜔𝑎𝑏) =

(𝜔 − 𝜔0). This term exp(𝑖(𝜔 − 𝜔0)𝑡) contains the detuning (𝜔 − 𝜔0). If 𝜔 is 

near 𝜔0 (resonance), this term varies slowly. 

It appears the slide's labeling of "slow" and "fast" here is reversed if we strictly 

follow their definition of 𝜔𝑎𝑏 =
𝐸a−𝐸b

ℏ
 with 𝐸a < 𝐸b. The RWA always keeps the 

terms that vary as exp(±𝑖(𝜔 − 𝜔0)𝑡), where 𝜔0 is the positive atomic 
transition frequency. These are the "near-resonant" or "co-rotating" terms. 

The terms that vary as exp(±𝑖(𝜔 + 𝜔0)𝑡) are the "far off-resonant" or 

"counter-rotating" terms. 

So, the principle of the RWA is: Neglect fast counter-rotating terms 
(formally equivalent to secular approximation). These fast terms (involving 

𝜔 + 𝜔0) oscillate very rapidly, typically at twice the optical frequency. Over 

the timescale of significant evolution of the amplitudes 𝑎(𝑡) and 𝑏(𝑡) (which 



is governed by the strength of interaction, related to the Rabi frequency), 
these fast terms average out to nearly zero and do not contribute significantly 
to the long-term evolution. By neglecting them, we simplify the equations 
considerably. This approximation is extremely good for most cases in laser 
spectroscopy involving optical frequencies. 
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Having introduced the Rotating-Wave Approximation (RWA), we can now write 
down the simplified coupled amplitude equations. But first, we need to define 
a key parameter that emerges naturally. 

The first bullet point is to Define Rabi frequency (strength of coherent 
coupling). 

The Rabi frequency, often denoted by a capital Omega (𝛺), quantifies the 

strength of the coherent interaction between the two-level atom and the light 
field. The slide defines it as: 

𝛺𝑎𝑏 =
𝐷𝑎𝑏𝐸0

ℏ
 

Let's analyze this: 

• Capital 𝐷𝑎𝑏  is the dipole matrix element ⟨𝑎|(−𝑒 𝑟 𝑒̂)|𝑏⟩ we defined earlier. 

It represents the strength of the electric dipole coupling between states |𝑎⟩ 

and |𝑏⟩ along the field polarization 𝑒̂. 

• 𝐸0 is the amplitude of the classical electric field. 

• ℏ is the reduced Planck constant. 

The units of 𝐷𝑎𝑏𝐸0 are (charge × length × electric field), which is energy. 

Energy divided by ℏ is angular frequency. So, 𝛺𝑎𝑏  indeed has units of angular 

frequency (radians per second). A larger 𝐷𝑎𝑏  or a stronger field 𝐸0 leads to a 



larger Rabi frequency, meaning the atom is driven more strongly between the 
two levels. 

Now, for the Simplified amplitude equations under RWA: 

The slide presents them as: 

𝑎̇(𝑡) = −
𝑖

2
𝛺𝑎𝑏exp(𝑖 𝛥𝜔 𝑡) 𝑏(𝑡) 

𝑏̇(𝑡) = −
𝑖

2
𝛺𝑏𝑎exp(−𝑖 𝛥𝜔 𝑡) 𝑎(𝑡) 

(Note: 𝛺𝑏𝑎 =
𝐷𝑏𝑎𝐸0

ℏ
. Since \(D_{ba} = D_{ab}^\), then \(\Omega_{ba} = 

\Omega_{ab}^\).) 

Let's carefully consider the detuning, Capital 𝛥𝜔, which appears in the 
exponent. 

The slide defines it as: 

𝛥𝜔 = 𝜔 − 𝜔𝑎𝑏  

If we use our convention: 𝜔 is the field's angular frequency. 𝜔𝑎𝑏 =
𝐸a−𝐸b

ℏ
. Since 

𝐸a is the lower level and 𝐸b is the upper, 𝐸a − 𝐸b is negative. Let 

𝜔0 =
𝐸b − 𝐸a

ℏ
 

be the positive atomic transition frequency. So, 𝜔𝑎𝑏 = −𝜔0. 

Then, the slide's 𝛥𝜔 = 𝜔 − (−𝜔0) = 𝜔 + 𝜔0. 

If this 𝛥𝜔 = 𝜔 + 𝜔0 is used in the exponents, then the terms exp(𝑖(𝜔 + 𝜔0)𝑡) 
are the fast oscillating (counter-rotating) terms that the RWA is supposed to 
discard! 



This indicates a persistent notational inconsistency on the slides. For the 
RWA equations to be correct, the exponential terms must involve the true 

detuning from resonance, which is 𝛥 = 𝜔 − 𝜔0. 

So, if we assume the RWA equations written here are the intended correct 

forms after applying RWA, then the 𝛥𝜔 in these specific equations must 

represent the true detuning. 

Let's proceed by assuming the RWA correctly selected the slowly varying 

terms: The term for 𝑎̇(𝑡) (which drives population from 𝑏 to 𝑎) should involve 

exp(𝑖(𝜔field − 𝜔atomic transition)𝑡). The term for 𝑏̇(𝑡) (which drives population 

from 𝑎 to 𝑏) should involve exp(−𝑖(𝜔field − 𝜔atomic transition)𝑡). 

Let's assume 𝛥𝜔 in these equations is actually 𝛿 = 𝜔 − 𝜔0. 

Then: 

𝑎̇(𝑡) = −
𝑖

2
𝛺𝑎𝑏exp(𝑖 𝛿𝑡) 𝑏(𝑡) 

𝑏̇(𝑡) = −
𝑖

2
𝛺𝑏𝑎exp(−𝑖 𝛿𝑡) 𝑎(𝑡) 

These equations describe the coherent evolution of the amplitudes 𝑎(𝑡) and 

𝑏(𝑡) under the RWA. They are much simpler than the exact equations 
because the rapidly oscillating terms have been removed. These are the 
fundamental equations for phenomena like Rabi oscillations. 

I will state the equations as on the slide, and define Rabi frequency 𝛺𝑎𝑏  as 
𝐷𝑎𝑏𝐸0

ℏ
. For the detuning, I will use the symbol 𝛥𝜔 as on the slide, but clarify 

that it should represent the difference between the applied field frequency 𝜔 

and the actual atomic resonance frequency 𝜔0 =
𝐸b−𝐸a

ℏ
 for the equations to 

correctly describe the physics of the RWA. 
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This slide addresses the accuracy of the Rotating-Wave Approximation 
(RWA). 

It states: RWA is exceptionally accurate when the absolute value of 𝛥𝜔, 

denoted |𝛥𝜔|, and the Rabi frequency, 𝛺𝑎𝑏, are both much, much less than 

𝜔𝑎𝑏  (in the optical domain). 

Let's clarify the terms here to be consistent with standard understanding: 

* |𝛥𝜔| should be interpreted as the magnitude of the detuning, i.e., 
|𝜔field − 𝜔atomic resonance|. Let's call this |𝛿|. * 𝛺𝑎𝑏  here refers to the Rabi 

frequency, which quantifies the coupling strength. Let's call this 𝛺R. * The 

𝜔𝑎𝑏  on the right side of the inequality must refer to the atomic transition 

frequency itself, 𝜔0 =
𝐸b−𝐸a

ℏ
, which is typically an optical frequency (e.g., ∼

1015 rad/s). 

So, the condition for the RWA's high accuracy is: 

|𝛿| ≪ 𝜔0 and 𝛺R ≪ 𝜔0. 

This makes physical sense: 

1. The detuning |𝛿| being small compared to 𝜔0 ensures that the "slowly" 

varying terms exp(𝑖𝛿𝑡) are indeed much slower than the optical frequency 
itself. 

2. The Rabi frequency 𝛺R being small compared to 𝜔0 ensures that the 
timescale for significant population transfer (which is inversely proportional 

to 𝛺R) is much longer than the period of the optical field (2𝜋/𝜔0). This gives 

the "fast" counter-rotating terms (oscillating at frequencies around 2𝜔0) 
enough time to average out effectively before the atomic state changes much. 

In the optical domain, 𝜔0 is very large. Rabi frequencies 𝛺R (even for intense 

lasers) and achievable detunings |𝛿| (while still getting appreciable 

interaction) are typically many orders of magnitude smaller than 𝜔0. For 



example, 𝜔0 might be 1015 rad/s, while 𝛺R might be 109 rad/s (for a strong 

field) or less, and |𝛿| might also be in a similar range for resonant 

spectroscopy. Since 109 ≪ 1015, the RWA holds extremely well. 

The RWA can break down for very high field intensities (where 𝛺R becomes 

comparable to 𝜔0) or in different frequency regimes (e.g., microwave 

transitions where 𝜔0 is much smaller, and 𝛺R might not be negligible in 
comparison). But for most laser spectroscopy in the optical regime, it's a 
remarkably robust and accurate approximation. 
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This slide presents a Phasor Diagram to help visualize the Rotating Wave 
Approximation. 

Imagine the complex plane, with a real axis (Re) and an imaginary axis. The 

terms like exp(𝑖𝜙) can be represented as vectors (phasors) of unit length, 

making an angle 𝜙 with the real axis. As time 𝑡 evolves, these phasors rotate 
in the complex plane. 

The diagram shows a circle, representing the path of a unit phasor. There are 
two key phasors depicted: 

1. A red vector is labeled as the "Counter-rotating term: 𝑒𝑖(𝜔+𝜔𝑎𝑏)𝑡" and is 

also marked "(fast)". The caption above it says: "This term rotates very rapidly 

(at approximately 2𝜔𝑎𝑏𝑡, assuming 𝜔 is close to 𝜔𝑎𝑏) and averages to zero." 

Here, to be consistent with the idea of a fast term, 𝜔𝑎𝑏  should be interpreted 

as the positive atomic frequency, 𝜔0. So this is 𝑒𝑖(𝜔+𝜔0)𝑡. This phasor spins 

around the origin very quickly. Over any significant timescale for atomic 
evolution, its average value will be close to zero. This is the term discarded by 
the RWA. 

2. A blue vector is labeled as the "Co-rotating term: 𝑒𝑖(𝜔−𝜔𝑎𝑏)𝑡", which is 

then equated to "𝑒𝑖𝛥𝜔𝑡" and marked "(slow)". The caption below it says: "Near 



resonance (𝛥𝜔 small), this term rotates slowly." Again, interpreting 𝜔𝑎𝑏  as 𝜔0 

(positive atomic frequency), this term is 𝑒𝑖(𝜔−𝜔0)𝑡 = 𝑒𝑖𝛿𝑡, where 𝛿 = (𝜔 − 𝜔0) 

is the detuning. If 𝜔 is close to 𝜔0, then 𝛿 is small, and this phasor rotates 
slowly in the complex plane. This is the term that the RWA keeps, as its slow 
evolution allows it to coherently drive the atomic system. 

This phasor diagram provides a very intuitive picture. The interaction 
Hamiltonian effectively has two driving components in this semi-classical 

picture when we expand cos(𝜔𝑡). One component (the counter-rotating one) 

rotates so fast in the interaction frame that its effect averages out. The other 
component (the co-rotating one) rotates slowly (or is nearly stationary if on 
resonance) and can thus effectively and coherently "push" the atomic state 
vector, leading to transitions. 

The RWA essentially says we can ignore the dizzyingly fast red vector and only 
pay attention to the more leisurely blue vector when we are near resonance. 
This greatly simplifies the description of the system's dynamics. 
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Now we consider a further simplification beyond the RWA, applicable in 
certain limits. This is Slide 12: Weak-Field (Perturbative) Approximation. 

This approach is essentially equivalent to first-order time‐dependent 
perturbation theory. 

First, we Assume an initial condition: all atoms are in the ground state. For 

our two‐level system |𝑎⟩ (lower) and |𝑏⟩ (upper), if |𝑎⟩ is the ground state, this 

means: 

• The amplitude 𝑎(0) equals 1. (Probability of being in state |𝑎⟩ at 𝑡 = 0 is 
|𝑎(0)|2 = 1.) 

• The amplitude 𝑏(0) equals 0. (Probability of being in state |𝑏⟩ at 𝑡 = 0 is 
|𝑏(0)|2 = 0.) 



The system starts entirely in the lower state. 

Next, we make a crucial assumption about the interaction: 

Further assume the field is so weak and/or the interaction time is so short 

that the absolute square of 𝑏(𝑡), |𝑏(𝑡)|2, remains much, much less than 1 
throughout the evolution. 

This means that the probability of the atom transitioning to the upper state |𝑏⟩ 
remains very small. Only a tiny fraction of the population (if any) is transferred 
to the excited state. 

What's the consequence of this assumption? 

Under these conditions, we can set the amplitude of the ground state 𝑎(𝑡) 

approximately equal to 1 in the right‐hand side of the coupled RWA 

equations, and then integrate the equation for 𝑏(𝑡). 

Recall the RWA equation for 𝑏̇(𝑡) (from slide 32, assuming 𝛥𝜔 is the true 

detuning 𝛿 = 𝜔 − 𝜔0): 

𝑏̇(𝑡) = −
𝑖

2
𝛺𝑏𝑎𝑒

−𝑖𝛿𝑡𝑎(𝑡). 

If |𝑏(𝑡)|2 ≪ 1, and since |𝑎(𝑡)|2 + |𝑏(𝑡)|2 = 1 (for a closed system), then 
|𝑎(𝑡)|2 must be approximately 1. We can thus approximate 𝑎(𝑡) by its initial 

value, 𝑎(0) = 1. 

So, the equation for 𝑏̇(𝑡) becomes: 

𝑏̇(𝑡) ≈ −
𝑖

2
𝛺𝑏𝑎𝑒

−𝑖𝛿𝑡 . 

This is now a much simpler differential equation for 𝑏(𝑡) because 𝑎(𝑡) is no 

longer a time‐varying unknown on the right‐hand side. We can directly 

integrate this equation with respect to time (from 0 to 𝑡) with the initial 



condition 𝑏(0) = 0 to find 𝑏(𝑡). This is the essence of first‐order perturbation 
theory for this system. 
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Having made the weak-field (perturbative) approximation, we can now solve 

for the amplitude 𝑏(𝑡) of the upper state. 

The slide states: Obtain 𝑏(𝑡) (keeping both rotating and counter-rotating 
parts before the RWA step). 

This is an interesting instruction. It implies that for this particular derivation of 

𝑏(𝑡) in the perturbative limit, we might go back to the equations before 

applying the RWA (from Slide 29), set 𝑎(𝑡) = 1, and integrate. 

The exact equation for 𝑏̇(𝑡) was: 

𝑏̇(𝑡) = −
𝑖

ℏ
 𝑎(𝑡) 𝐷𝑏𝑎  𝐸0 cos(𝜔𝑡) exp(−𝑖 𝜔𝑎𝑏  𝑡). 

Let 𝑎(𝑡) = 1. Recall 𝜔𝑎𝑏 =
𝐸a−𝐸b

ℏ
= −𝜔0 (where 𝜔0 is the positive atomic 

frequency 𝐸b−𝐸a

ℏ
). 

And 

cos(𝜔𝑡) =
1

2
[exp(𝑖 𝜔𝑡) + exp(−𝑖 𝜔𝑡)]. 

And 

𝛺𝑏𝑎 =
𝐷𝑏𝑎  𝐸0

ℏ
. 

So, 

𝑏̇(𝑡) = −
𝑖

2
 𝛺𝑏𝑎  [exp(𝑖 𝜔𝑡) + exp(−𝑖 𝜔𝑡)]exp(𝑖 𝜔0𝑡) 

which can be written as 



𝑏̇(𝑡) = −
𝑖

2
 𝛺𝑏𝑎  [exp(𝑖(𝜔 + 𝜔0)𝑡) + exp(−𝑖(𝜔 − 𝜔0)𝑡)]. 

Integrating this from 0 to 𝑡 with 𝑏(0) = 0 gives: 

𝑏(𝑡) = −
𝑖

2
 𝛺𝑏𝑎  [

exp(𝑖(𝜔 + 𝜔0)𝑡) − 1

𝑖(𝜔 + 𝜔0)
+

exp(−𝑖(𝜔 − 𝜔0)𝑡) − 1

−𝑖(𝜔 − 𝜔0)
]. 

This can be simplified to 

𝑏(𝑡) = −
1

2
 𝛺𝑏𝑎  [

exp(𝑖(𝜔 + 𝜔0)𝑡) − 1

𝜔 + 𝜔0
−

exp(−𝑖(𝜔 − 𝜔0)𝑡) − 1

𝜔 − 𝜔0
]. 

The equation on the slide for 𝑏(𝑡) is: 

𝑏(𝑡) =
𝛺𝑎𝑏

2
 [
exp(𝑖 𝛥𝜔 𝑡) − 1

𝛥𝜔
−

exp(𝑖(𝜔 + 𝜔𝑎𝑏)𝑡) − 1

𝜔 + 𝜔𝑎𝑏
]. 

Here, 𝛺𝑎𝑏 =
𝐷𝑎𝑏 𝐸0

ℏ
. And 𝛥𝜔 was defined on Slide 32 as 

𝛥𝜔 = 𝜔 − 𝜔𝑎𝑏 = 𝜔 − (−𝜔0) = 𝜔 + 𝜔0. 

And 

𝜔 + 𝜔𝑎𝑏 = 𝜔 − 𝜔0. 

So the slide's equation is: 

𝑏(𝑡) =
𝛺𝑎𝑏

2
 [
exp(𝑖(𝜔 + 𝜔0)𝑡) − 1

𝜔 + 𝜔0
−

exp(𝑖(𝜔 − 𝜔0)𝑡) − 1

𝜔 − 𝜔0
]. 

This form is similar to my derived one if 𝛺𝑎𝑏  is related to −𝛺𝑏𝑎. ( 𝐷𝑎𝑏 = 𝐷𝑏𝑎
∗  ). 

The key is that it contains two terms: one involving the sum frequency 𝜔 + 𝜔0, 
which is the counter-rotating term, and one involving the difference frequency 

𝜔 − 𝜔0, which is the co-rotating (resonant) term. This expression for 𝑏(𝑡) has 
indeed kept both. 



Now, the second bullet point: Near resonance, where the magnitude of the 

detuning |𝛥𝜔| (which should be |𝜔 − 𝜔0|) is much less than 𝜔𝑎𝑏  (which 

should be 𝜔0, the atomic frequency), we drop the second, rapidly oscillating 

fraction -> this leads to the standard first-order perturbation result. 

If we are near resonance (𝜔 ≈ 𝜔0), then the term with denominator 𝜔 + 𝜔0 

(approx 2𝜔0) is much smaller than the term with denominator 𝜔 − 𝜔0 (which 
is small). So, the first term in the square brackets of the slide's equation 

(related to 𝜔 + 𝜔0, the counter-rotating part) is often neglected. The 

remaining term (related to 𝜔 − 𝜔0, the resonant part) is the standard RWA 

result for 𝑏(𝑡) in first-order perturbation theory. 

If the slide's "𝛥𝜔" is 𝜔 + 𝜔0 and 𝜔 + 𝜔𝑎𝑏  is 𝜔 − 𝜔0, then we would drop the 

first term and keep the second. The slide's labeling here for which term is 
dropped might need careful reading. The term that is "rapidly oscillating" 

refers to its contribution to 𝑏(𝑡); near resonance, the term with 𝜔 − 𝜔0 in the 
denominator is dominant. 

Essentially, applying the RWA at this stage simplifies 𝑏(𝑡). 
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We're now ready to calculate the probability of finding the atom in the excited 

state |𝑏⟩ after some interaction time 𝑡, based on our perturbative calculation 

of 𝑏(𝑡). This is Slide 13: Transition Probability vs. Detuning – Sinc-Squared 
Profile. 

The first bullet point states: The probability to find the atom in state ket b 

after time 𝑡, which we denote 𝑃𝑎→𝑏(𝑡) (P from a to b at time 𝑡), is simply the 

absolute square of the amplitude 𝑏(𝑡): |𝑏(𝑡)|2. If we take the expression for 

𝑏(𝑡) obtained under the RWA and in the perturbative limit (keeping only the 

resonant term), and then calculate its squared magnitude, we arrive at a 
famous result: 



𝑃𝑎→𝑏(𝑡) = (
𝛺𝑎𝑏

2
)
2

[
sin (

𝛥𝜔 𝑡
2 )

𝛥𝜔
2

]

2

. 

Let's analyze this equation: 

• 𝛺𝑎𝑏  is the Rabi frequency (𝐷𝑎𝑏𝐸0

ℏ
). It represents the strength of the atom-

field coupling. 

• 𝛥𝜔 is the detuning from resonance (𝜔field − 𝜔atomic resonance). 

• 𝑡 is the interaction time. 

The term sin
(𝑥)

𝑥
 is known as the (unnormalized) sinc function, sinc(𝑥). So the 

expression is proportional to [sinc (
𝛥𝜔 𝑡

2
)]

2
. 

Next, let's look at the Key features of this sinc-squared profile: 

1. Maximum at exact resonance, i.e., when 𝛥𝜔 = 0. When the laser 

frequency 𝜔 is exactly equal to the atomic transition frequency 𝜔0, the 

detuning 𝛥𝜔 is zero. In this case, we need to take the limit of sin(𝑥)

𝑥
 as 𝑥 

approaches 0. This limit is 1. So, at resonance, 

𝑃𝑎→𝑏(𝑡) = (
𝛺𝑎𝑏

2
)
2

𝑡2 = (
𝛺𝑎𝑏  𝑡

2
)
2

. 

This shows that on resonance, the transition probability (in this perturbative 

regime) grows quadratically with the interaction time 𝑡 and quadratically with 

the Rabi frequency 𝛺𝑎𝑏. 

This sinc-squared lineshape is fundamental in many areas of physics, 
including diffraction and Fourier analysis, and it appears here as the natural 
lineshape for transitions induced by a coherent field for a finite interaction 
time. 
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Continuing with the key features of the sinc-squared profile for the transition 
probability: 

2. Width of the central lobe is inversely proportional to the interaction 

time 𝑡 (this is a manifestation of the Fourier limit). 

The sinc-squared function, [
sin(

𝛥𝜔𝑡

2
)

𝛥𝜔

2

]

2

, has its first zeros when the argument of 

the sine function, (𝛥𝜔𝑡

2
), is equal to ±𝜋 (plus or minus pi), ±2𝜋, and so on (but 

not zero). 

So, sin (
𝛥𝜔𝑡

2
) = 0 when 𝛥𝜔𝑡

2
= 𝑛𝜋, for 𝑛 = ±1,±2,… 

This means the first zeros occur at 𝛥𝜔 = ±(
2𝜋

𝑡
). 

The width of the central maximum (e.g., the full width between the first two 

zeros) is therefore (4𝜋

𝑡
). 

More commonly, the full width at half maximum (FWHM) of this central peak 

is approximately 0.886 × (
2𝜋

𝑡
), or roughly proportional to 1

𝑡
. 

This inverse relationship between the spectral width (in terms of 𝛥𝜔) and the 

interaction time 𝑡 is a direct consequence of the time-frequency uncertainty 

principle, often referred to as the Fourier limit. 

To get a very sharply defined transition in terms of frequency (small 𝛥𝜔 width), 

you need a long interaction time 𝑡. 

Conversely, a short interaction time 𝑡 inherently leads to a broader range of 

frequencies that can cause the transition. 



3. The envelope is a classic sinc squared (sinc2) pattern (compare this to 
single-slit diffraction analogy). 

The overall shape of 𝑃(𝛥𝜔) vs 𝛥𝜔 shows a prominent central peak, followed 
by successively smaller side-lobes on either side. 

This mathematical form is identical to the intensity pattern observed in 
Fraunhofer diffraction from a single slit, where the sinc function arises from 
the Fourier transform of the rectangular slit aperture. 

The analogy is quite deep: the finite interaction time 𝑡 in our spectroscopy 

problem plays a role similar to the finite width of the slit in diffraction. 

Finally, the slide reiterates the on-resonance case: 

* At resonance (when 𝛥𝜔 = 0): 

The transition probability, 𝑃𝑎→𝑏
res (𝑡) (P resonant from 𝑎 to 𝑏 at time 𝑡), is given 

by: 

(
𝛺𝑎𝑏𝑡

2
)
2

 

As we noted, this shows a quadratic dependence on both the Rabi frequency 
(field strength) and the interaction time, under the condition that this 
probability remains small (the perturbative regime). 
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Now, a crucial point about the validity of the weak-field perturbation theory 
we've been using. 

The slide states the Validity constraint for weak-field perturbation: 

The quantity 𝛺𝑎𝑏𝑡

2
 must be much, much less than 1 ( 𝛺𝑎𝑏𝑡

2
≪ 1 ). 



Let's understand why. Our perturbative calculation assumed that the 

population of the upper state, |𝑏(𝑡)|2, remains small, and consequently, the 

population of the lower state, 𝑎(𝑡), remains approximately 1. The expression 

for the transition probability on resonance (𝛥𝜔 = 0) is 𝑃res = (
𝛺𝑎𝑏𝑡

2
)
2

. So, the 

condition |𝑏(𝑡)|2 ≪ 1 directly translates to (𝛺𝑎𝑏𝑡

2
)
2
≪ 1, which is equivalent to 

𝛺𝑎𝑏𝑡

2
≪ 1. If this condition is met, our approximation holds. The transition 

probability grows, but doesn't become so large as to significantly deplete the 

ground state or violate the smallness assumption for |𝑏(𝑡)|2. 

What happens if this condition is violated? This occurs for long pulses (large 

𝑡) or strong fields (large 𝛺𝑎𝑏). If 𝛺𝑎𝑏𝑡

2
 is NOT much less than 1, then the 

probability |𝑏(𝑡)|2 can become significant. This means 𝑎(𝑡) can no longer be 
approximated as 1. The system can undergo substantial population transfer, 
and even population inversion, with the population cycling back and forth 

between states |𝑎⟩ and |𝑏⟩. This phenomenon is known as Rabi oscillation or 
Rabi flopping. In such cases, the simple perturbative solution is no longer 

accurate. We need the full (non-perturbative) Rabi solution, which involves 

solving the coupled RWA equations for 𝑎(𝑡) and 𝑏(𝑡) without approximating 

𝑎(𝑡) = 1. This leads to sinusoidal oscillations in the populations |𝑎(𝑡)|2 and 
|𝑏(𝑡)|2 as a function of time and field strength. 

So, the weak-field approximation is very useful for understanding the initial 
growth of transition probability and the lineshape, but it breaks down when 
the interaction becomes too strong or too long, at which point the more 
complete Rabi model is required. 
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This slide presents a graph of the Transition Probability 𝑃 versus Detuning 

𝛥𝜔, visually showing the sinc-squared profile we've been discussing. 



Let's examine the graph: 

• The vertical axis is labeled 𝑃(𝛥𝜔, 𝑡), representing the transition 

probability from state |𝑎⟩ to state |𝑏⟩ as a function of detuning 𝛥𝜔 and for a 

fixed interaction time 𝑡. The scale shown goes from 0.00 up to around 0.19, 
but the peak seems to be higher, near an indicated value. 

• The horizontal axis is labeled Detuning (𝛥𝜔 = 𝜔field − 𝜔atomic). The 

center is at 𝛥𝜔 = 0 (exact resonance). The axis is marked in units of 2𝜋

𝑡
 (i.e. 

2𝜋

𝑡
). So we see points like −3(

2𝜋

𝑡
), −2(

2𝜋

𝑡
), −1(

2𝜋

𝑡
), 0, +1(

2𝜋

𝑡
), +2 (

2𝜋

𝑡
), 

+3(
2𝜋

𝑡
). 

The plotted curve, shown in orange, has the characteristic sinc-squared 
shape: 

• A tall central maximum occurs at 𝛥𝜔 = 0 (exact resonance). The peak 

value of this probability is labeled on the graph as 𝑃 = (
𝛺𝑡

2
)
2

. This matches 

our formula for the on-resonance probability in the perturbative regime. The y-

axis also has a tick mark labeled (𝛺𝑡

2
)
2

 at the peak. 

• The probability drops to zero at detunings where 𝛥𝜔 𝑡

2
= ±𝜋,±2𝜋,… This 

means the first zeros occur when 𝛥𝜔 = ±
2𝜋

𝑡
. These points are clearly visible 

on the x-axis labels. 

• Between these zeros, there are sidelobes of diminishing intensity. For 

example, there are smaller peaks centered roughly around 𝛥𝜔 = ±
3𝜋

𝑡
, 𝛥𝜔 =

±
5𝜋

𝑡
, and so on. 

This graph beautifully illustrates several key concepts: 



1. The resonant nature of the interaction: the transition is most probable 
when the laser is tuned exactly to the atomic frequency. 

2. The spectral width of the transition is inversely proportional to the 

interaction time 𝑡. A shorter 𝑡 would make this central peak wider (and the 

zeros further apart). A longer 𝑡 would make it narrower. 

3. The possibility of exciting the atom even when off-resonance, albeit with 
lower probability, especially within the central lobe. 

This profile is fundamental to understanding how coherent light interacts with 
a two-level system for a finite duration. 
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This slide, titled "Interaction Time, Fourier Limit, and Spectral Resolution," 
delves deeper into the relationship between the duration of the light-matter 
interaction and the resulting spectral features. 

First, it suggests we Define a characteristic time scale, denoted by a capital 

𝑇. The slide gives: Capital 𝑇 equals 2

𝛺𝑎𝑏
, which is also written as ℏ

𝐷𝑎𝑏𝐸0
2

. Let's 

check the consistency here. On page 32, the Rabi frequency 𝛺𝑎𝑏  was defined 

as 𝐷𝑎𝑏𝐸0

ℏ
. So, 2

𝛺𝑎𝑏
 would be 2ℏ

𝐷𝑎𝑏𝐸0
. The slide has 𝑇 =

ℏ
𝐷𝑎𝑏𝐸0

2

 which is also 2ℏ

𝐷𝑎𝑏𝐸0
. So 

these are consistent. 

This characteristic time 𝑇 =
2

𝛺𝑎𝑏
 is related to the Rabi cycle. For example, on 

resonance, the probability of transition 𝑃res = (
𝛺𝑎𝑏𝑡

2
)
2

. If we set 𝑃res = 1 (a full 

transition, though this violates perturbation theory), then 𝛺𝑎𝑏𝑡

2
= 1, so 𝑡 =

2

𝛺𝑎𝑏
. 

This 't' is our capital 𝑇. So, 𝑇 is the time it would take to achieve unit 
probability (a pi-pulse condition, where population is fully inverted) if the 



perturbative formula were extrapolated. This 𝑇 marks the boundary where 
perturbation theory definitely breaks down. 

The second bullet point then states: For interaction times 𝑡 much, much less 

than this characteristic time 𝑇 (i.e., 𝑡 ≪ 𝑇), the perturbative regime holds, and 
the spectral profile (the sinc-squared function) derived earlier is valid. This is 

consistent with our earlier condition 𝛺𝑎𝑏𝑡

2
≪ 1. Since 𝑇 =

2

𝛺𝑎𝑏
, the condition 

𝑡 ≪ 𝑇 implies 𝑡 ≪
2

𝛺𝑎𝑏
, or 𝛺𝑎𝑏𝑡

2
≪ 1. So, as long as the actual interaction time 𝑡 

is short compared to this characteristic time 𝑇, our weak-field approximation 
and the resulting sinc-squared lineshape are good descriptions. 

Finally, a fundamental point: Finite interaction time implies inherent 
spectral uncertainty. This is a direct consequence of the Fourier transform 
relationship between time and frequency. If an interaction occurs only for a 

finite duration 𝑡, then the energy (and thus frequency) of the transition cannot 

be defined with perfect precision. There will be an inherent spread or 
uncertainty in the frequency response, as we saw with the width of the sinc-
squared profile. This is not just a limitation of our instruments; it's a 
fundamental aspect of quantum mechanics and wave phenomena. 
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Continuing with the theme of interaction time and spectral uncertainty: 

The slide first gives the approximate relationship for this spectral uncertainty: 

Capital 𝛥𝜔 is on the order of 1
𝑡
 (𝛥𝜔 ∼

1

𝑡
). This means the characteristic width 

of the spectral feature (e.g., the central lobe of our sinc-squared profile) in 

terms of angular frequency (𝛥𝜔) is inversely proportional to the interaction 

time (𝑡). For a more precise measure, the full width between the first zeros of 

the sinc-squared profile was 4𝜋

𝑡
, and the FWHM is also proportional to 1

𝑡
. So, 



𝛥𝜔 ∼
1

𝑡
 is a good rule of thumb for the minimum achievable spectral width 

given an interaction time 𝑡. 

An example is provided: Laser pulses with a duration 𝑡 = 10 ns possess a 

transform-limited linewidth of approximately 100 MHz. Let's check this. If 𝑡 =

10 ns = 10 × 10−9 s = 10−8 s. Then 1
𝑡
=

1

10−8 s
= 108 s−1 = 108 Hz = 100 MHz. 

This is the spectral width in terms of ordinary frequency 𝜈 (𝛥𝜈). Since 𝛥𝜔 =

2𝜋𝛥𝜈, if 𝛥𝜈 ∼
1

𝑡
, then 𝛥𝜔 ∼

2𝜋

𝑡
. This is consistent. A 10 ns pulse inherently 

cannot define an energy or frequency with a precision better than about 

100 MHz. This is the Fourier limit or transform limit. 

The final bullet point emphasizes the practical importance of this concept: 
Understanding this time-frequency reciprocity is essential for designing 
selective excitation schemes and for high-resolution spectroscopy. If you 
want to excite only a very specific, narrow energy level without affecting 
nearby levels (selective excitation), you need a spectrally narrow excitation 
source. This implies, from time-frequency reciprocity, that you need a long 
interaction time. This could mean using a continuous wave (CW) laser or very 
long pulses. For high-resolution spectroscopy, where the goal is to distinguish 
very closely spaced spectral lines, you also need to achieve very narrow 
effective linewidths. This again points to the need for maximizing the coherent 
interaction time between the light and the atoms/molecules. Techniques like 
Ramsey interferometry are specifically designed to achieve long effective 
interaction times to overcome this limit. 

The "---" at the end suggests this topic has more depth, but these are the key 
takeaways for now. 
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So far, we've mostly considered interaction with a monochromatic (single-
frequency) light field. Now, let's broaden our perspective. 



Slide 15: Broadband Radiation – Introducing Spectral Energy Density. 

The first point acknowledges a reality of many light sources: 

Realistic sources often possess a bandwidth, let's call it lowercase 𝛿𝜔 (to 

distinguish from detuning Capital 𝛥𝜔), which is much larger than the Fourier 

limit of 1
𝑡
 (where 𝑡 is the interaction time or coherence time of the atom). 

Think of thermal light sources (like a lamp), which are inherently broadband. 
Even some lasers, like mode-locked lasers producing ultrashort pulses, have 

very large bandwidths. If this source bandwidth 𝛿𝜔 is much larger than the 

natural width of the atomic transition (or the Fourier width 1
𝑡
 if 𝑡 is short), then 

our previous single-frequency treatment needs modification. 

The crucial step is: Replace the single-frequency field amplitude (like 𝐸0) 

with a spectral energy density*, denoted 𝜌(𝜔) (rho as a function of omega). 

𝜌(𝜔) is the spectral energy density. Its units are given as J m−3 rad−1 s. 

Let's break this down: 

* Joules per meter cubed (J m−3) is energy density (energy per unit volume). 

* So, 𝜌(𝜔) is the energy density per unit angular frequency interval. If you 

integrate 𝜌(𝜔) 𝑑𝜔 over a small range of angular frequencies 𝑑𝜔, you get the 

energy density of the radiation field within that frequency range. The rad−1 s is 

equivalent to (rad/s)−1, which is (angular frequency)−1. 

The definition of 𝜌(𝜔) is further clarified by how it relates to the total field 
energy, which will be shown on the next slide. The idea is that instead of a 

single 𝐸0 at a single 𝜔, we now have a distribution of energy across a range of 

frequencies, described by 𝜌(𝜔). This is essential for dealing with non-

monochromatic light. 
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Continuing with broadband radiation, this slide provides the connection 

between the spectral energy density 𝜌(𝜔) and the total field energy, and then 
shows how to calculate the transition probability with a broadband source. 

First, the relationship of 𝜌(𝜔) to total field energy density: 

The integral from 0 to ∞ of 𝜌(𝜔) 𝑑𝜔 equals 𝜖0𝐸0
2

2
. 

Let's interpret this carefully: 

• The left side, integral of 𝜌(𝜔) 𝑑𝜔 over all positive angular frequencies, 
represents the total energy density (U) of the radiation field, in Joules per 
meter cubed. 

• The right side, 𝜖0𝐸0
2

2
, is the familiar expression for the energy density of a 

monochromatic plane wave with amplitude 𝐸0 (𝜖0 is the permittivity of free 
space). 

So, this equation is essentially saying that if you sum up all the energy 

contributions from all frequencies in your broadband field (as given by 𝜌(𝜔)), 

the total energy density is 𝑈. The 𝐸0
2 on the right might be interpreted as 

2 𝑈/𝜖0, defining an "effective" total field amplitude squared, or it's a way to 

normalize 𝜌(𝜔) if the total energy density is known. 

Next, how does the interaction strength change with a broadband source? 

The Dipole interaction strength at each frequency component 𝜔 of the 

field now becomes 𝛺𝑎𝑏(𝜔) =
𝐷𝑎𝑏𝐸(𝜔)

ℏ
. 

Here, 𝐸(𝜔) is not the total field amplitude, but rather represents the electric 

field amplitude per unit angular frequency interval associated with 𝜌(𝜔). 
(Specifically, 

𝜌(𝜔) 𝑑𝜔 =
1

2
𝜖0 |𝐸(𝜔) 𝑑𝜔|2 



if 𝐸(𝜔) is a spectral field amplitude, or related through a proportionality). This 
means the coupling strength itself can be frequency-dependent if the source 

spectrum 𝐸(𝜔) is not flat. 

Now, the crucial part: The transition probability integrated over the 
broadband source. 

The total probability of transition from state 𝑎 to 𝑏 after time 𝑡, 𝑃𝑎𝑏(𝑡), is given 
by an integral: 

𝑃𝑎𝑏(𝑡) =
𝐷𝑎𝑏

2

2𝜖0ℏ
2
∫ 𝜌

+∞

−∞

(𝜔) [
sin (

(𝜔𝑏𝑎 − 𝜔)𝑡
2 )

(𝜔𝑏𝑎 − 𝜔)
2

]

2

𝑑𝜔. 

The sinc-squared function is: [
sin(

(𝜔𝑏𝑎−𝜔)𝑡

2
)

(𝜔𝑏𝑎−𝜔)

2

]

2

. 

Let's break this down: 

• The prefactor 𝐷𝑎𝑏
2

2𝜖0ℏ
2
 involves the squared dipole matrix element |𝐷𝑎𝑏|

2 (with 

𝐷𝑎𝑏  here given by ⟨𝑎|(−𝑒𝑟 ⋅ 𝑒̂)|𝑏⟩), permittivity of free space, and ℏ squared. 

• 𝜌(𝜔) is the spectral energy density of the incident broadband radiation. 

• The sinc-squared term is the transition probability profile we found for a 

monochromatic field of frequency 𝜔, where 𝜔𝑏𝑎 is the atomic transition 

frequency 𝐸b−𝐸a

ℏ
, and (𝜔𝑏𝑎 − 𝜔) is the detuning. 

• We are integrating this product over all frequencies 𝜔 of the incident light 

(from −∞ to +∞, though 𝜌(𝜔) is usually defined for positive 𝜔; often the sinc2 

is symmetric so the integral can be taken from 0 to ∞ and doubled, or 𝜌(𝜔) is 
defined for negative frequencies too via Fourier transforms). 



This equation makes intuitive sense: the broadband source is like a collection 

of many monochromatic components. Each component 𝜔 contributes to the 

transition probability according to the sinc-squared profile centered at that 𝜔 

(or rather, centered at 𝜔𝑏𝑎 for the atomic response). We sum up all these 

contributions, weighted by how much energy density 𝜌(𝜔) there is at each 

frequency 𝜔. This is a standard way to handle transitions induced by a non-

monochromatic field. 

The "---" at the bottom implies more to come. 
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Now we evaluate the integral for the transition probability 𝑃𝑎𝑏(𝑡) under a 

specific condition. This is Slide 16: Result for Slowly Varying 𝜌(𝜔) – Linear 
Growth in Time. 

The first key assumption is: If 𝜌(𝜔) (the spectral energy density of the source) 

varies slowly across the spectral region where the sinc-squared kernel is 

appreciable, we can approximate 𝜌(𝜔) as being constant and equal to its 

value at resonance, 𝜌(𝜔𝑏𝑎). 

Let's visualize this. The sinc-squared function, 

[
sin (

(𝜔𝑏𝑎 − 𝜔)𝑡
2 )

𝜔𝑏𝑎 − 𝜔
2

]

2

, 

is sharply peaked around 𝜔 = 𝜔𝑏𝑎 (the atomic resonance frequency). Its 

width is approximately 1
𝑡
. If the source spectrum 𝜌(𝜔) is much broader than 

this width 1
𝑡
, and doesn't change much across this narrow region, then we can 

effectively pull 𝜌(𝜔) out of the integral from the previous slide, evaluating it at 

𝜔 = 𝜔𝑏𝑎. 



The second step is to Evaluate the remaining integral using a standard 
identity. 

The integral we need to evaluate is: 

∫ [
sin (

(𝜔𝑏𝑎 − 𝜔)𝑡
2 )

𝜔𝑏𝑎 − 𝜔
2

]

2

∞

−∞

𝑑𝜔. 

Let 𝑌 = 𝜔𝑏𝑎 − 𝜔. Then 𝑑𝑌 = −𝑑𝜔. As 𝜔 goes from −∞ to ∞, 𝑌 goes from ∞ to 

−∞. 

The integral becomes: 

∫ [
sin (

𝑌𝑡
2 )

𝑌
2

]

2
−∞

∞

(−𝑑𝑌) = ∫ [
sin (

𝑌𝑡
2 )

𝑌
2

]

2
∞

−∞

𝑑𝑌. 

This is of the form 

∫ [
sin(𝑎𝑥)

𝑥
]

2∞

−∞

𝑑𝑥 

where 𝑎 =
𝑡

2
. The full integral 

∫ [
sin(𝑎𝑥)

𝑥
]

2∞

−∞

𝑑𝑥 

is equal to |𝑎|𝜋. 

Here, the form is 

∫ [
sin (

𝑌𝑡
2 )

𝑌
2

]

2

𝑑𝑌. 

Let 𝑢 =
𝑌

2
. Then 𝑑𝑌 = 2 𝑑𝑢. 



The integral becomes 

∫ [
sin(𝑢𝑡)

𝑢
]

2

(2 𝑑𝑢) = 2∫ [
sin(𝑢𝑡)

𝑢
]

2

𝑑𝑢. 

The integral 

∫ [
sin(𝑢𝑡)

𝑢
]

2∞

−∞

𝑑𝑢 

is equal to |𝑡|𝜋. 

So the result is 2|𝑡|𝜋. Assuming 𝑡 > 0, this is 2𝜋𝑡. 

The slide on page 45 also shows a related integral: 

∫
sin2(𝑥𝑡)

𝑥2

∞

−∞

𝑑𝑥 = 𝜋𝑡 (if 𝑥 is the integration variable). 

This integral is correct. 

Let's re-verify the integral of the sinc-squared function we have: 

∫ [
sin (

𝑌𝑡
2 )

𝑌
2

]

2
∞

−∞

𝑑𝑌. 

This is 

4∫
sin2 (

𝑌𝑡
2 )

𝑌2
𝑑𝑌. 

Let 𝑍 =
𝑌𝑡

2
. Then 𝑑𝑌 =

2 𝑑𝑍

𝑡
. 

Substituting, we obtain 

= 4∫
sin2(𝑍)

(
2 𝑍
𝑡 )

2 (
2 𝑑𝑍

𝑡
) = 4∫

𝑡2sin2(𝑍)

4 𝑍2
(
2 𝑑𝑍

𝑡
) = 2 𝑡∫

sin2(𝑍)

𝑍2
𝑑𝑍. 



Since 

∫
sin2(𝑍)

𝑍2
𝑑𝑍 = 𝜋, 

the result is 2𝜋𝑡. 

So, yes, the integral of the sinc-squared kernel 

[
sin (

𝑌𝑡
2 )

𝑌
2

]

2

 

over 𝑑𝑌 is indeed 2𝜋𝑡. 

With 𝜌(𝜔𝑏𝑎) pulled out and the integral evaluated as 2𝜋𝑡, we can now Obtain 

a simple expression for 𝑃𝑎𝑏(𝑡), which will be on the next slide. 
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Following the approximation and integration from the previous slide, we now 

get the simplified expression for the transition probability 𝑃𝑎𝑏(𝑡) induced by 

broadband radiation, and the corresponding absorption rate. 

The transition probability 𝑃𝑎𝑏(𝑡) is: 

𝑃𝑎𝑏(𝑡) =
𝜋

𝜖0ℏ
2
𝐷𝑎𝑏

2 𝜌(𝜔𝑏𝑎)𝑡 

Let's verify this. The prefactor on page 44 was 𝐷𝑎𝑏
2

2𝜖0ℏ
2
. We multiplied this by 

𝜌(𝜔𝑏𝑎) and the integral result (2𝜋𝑡). 

So, 𝐷𝑎𝑏
2

2𝜖0ℏ
2
× 𝜌(𝜔𝑏𝑎) × (2𝜋𝑡) =

𝜋𝐷𝑎𝑏
2 𝜌(𝜔𝑏𝑎)𝑡

𝜖0ℏ
2

. 

This matches the slide. It's important to remember that 𝐷𝑎𝑏
2  here should really 

be |𝐷𝑎𝑏|
2, the squared magnitude of the dipole matrix element. 



This result is very significant: the transition probability 𝑃𝑎𝑏(𝑡) now grows 

linearly with time 𝑡. 

Consequently, the rate of absorption, Capital R sub ab, which is 𝑑𝑃𝑎𝑏

𝑑𝑡
, 

becomes constant: 

Capital R sub ab equals d by dt of P sub ab of t, which gives: 

𝑅𝑎𝑏 =
𝜋

𝜖0ℏ
2
𝐷𝑎𝑏

2 𝜌(𝜔𝑏𝑎) 

Again, 𝐷𝑎𝑏
2  should be |𝐷𝑎𝑏|

2. 

This constant rate of absorption is a hallmark of transitions induced by a 
broadband, incoherent field (or a field whose coherence time is much shorter 

than 𝑡). This is essentially Fermi's Golden Rule for this system: the transition 
rate is proportional to the square of the matrix element and the density of 

states (here represented by 𝜌(𝜔𝑏𝑎)). 

The final bullet point draws an important contrast: 

This linear-in-time behaviour (for 𝑃𝑎𝑏(𝑡)) contrasts with the quadratic 

growth (𝑃𝑎𝑏(𝑡) ∝ 𝑡2) seen for monochromatic resonant excitation in the 
perturbative regime. 

Recall from page 38, for monochromatic light on resonance, 𝑃res(𝑡) = (
𝛺𝑎𝑏𝑡

2
)
2

, 

which is quadratic in 𝑡. 

So, the time dependence of the transition probability is fundamentally 

different depending on whether the excitation is monochromatic and 

coherent over time 𝑡, or broadband and incoherent. Broadband excitation 
leads to a constant transition rate. 

The "---" indicates the end of this particular thought. 
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Now we connect our result for the broadband absorption rate to one of 
Einstein's fundamental coefficients. 

Slide 17: Connection to Einstein B Coefficient. 

The first point reminds us of a key assumption in Einstein's original derivation 
of the A and B coefficients: The radiation field used in Einstein's derivation 
was assumed to be isotropic (asterisk). Our plane-wave result, which we 

used to define 𝐷𝑎𝑏 = ⟨𝑎|(−𝑒𝑟 ⋅ 𝑒̂)|𝑏⟩ based on a specific field polarization 𝑒̂, 
must therefore be angle-averaged. Einstein considered atoms in equilibrium 
with thermal blackbody radiation, which is isotropic (looks the same in all 

directions) and unpolarized. Our 𝐷𝑎𝑏 = ⟨𝑎|(−𝑒𝑟 ⋅ 𝑒̂)|𝑏⟩ involved a specific 

polarization direction 𝑒̂. To compare with Einstein's B coefficient, we need to 
average over all possible orientations of the atomic dipole relative to the field 
polarization, or equivalently, average over all field polarization directions if the 
dipoles are fixed. 

The second bullet gives the result of this averaging for randomly oriented 

dipoles: The expectation value of 𝑝z
2 equals 1

3
 times the expectation value of 

𝑝2. Here, 𝑝z could be the component of the dipole moment along a specific 

field direction, and 𝑝2 is its total squared magnitude. More relevant to our 

𝐷𝑎𝑏: our 𝐷𝑎𝑏
2  was effectively |(𝑒̂ ⋅ 𝑑 𝑎𝑏)|

2, where 

𝑑 𝑎𝑏 = ⟨𝑎| − 𝑒𝑟|𝑏⟩ 

is the vector dipole matrix element. When we average (𝑒̂ ⋅ 𝑑 𝑎𝑏)
2

 over all 

orientations of 𝑑 𝑎𝑏  relative to a fixed 𝑒̂ (or vice versa), the result is 1
3
|𝑑 𝑎𝑏|

2. So, 

the angle-averaged value of our |𝐷𝑎𝑏|
2 (which was specific to one 

polarization) becomes 1

3
 times the squared magnitude of the vector dipole 

matrix element between states 𝑎 and 𝑏. Let's denote this true squared dipole 

matrix element as |𝑑𝑎𝑏
true|2. So, 



|𝐷𝑎𝑏|averaged
2 =

1

3
|𝑑𝑎𝑏

true|2. 

The third bullet states: Replacing |𝐷𝑎𝑏|
2 with |𝐷𝑎𝑏|

2 divided by 3 in our 

previous rate 𝑅𝑎𝑏 yields: 𝑅𝑎𝑏 = 𝜌(𝜔𝑏𝑎) 𝐵𝑎𝑏. Our previous rate (from page 46) 

was 

𝑅𝑎𝑏 =
𝜋

𝜖0 ℏ
2
|𝐷𝑎𝑏|before avg

2  𝜌(𝜔𝑏𝑎). 

If we replace |𝐷𝑎𝑏|before avg
2  with 1

3
|𝑑𝑎𝑏

true|2, then: 

𝑅𝑎𝑏 =
𝜋

3 𝜖0 ℏ
2
|𝑑𝑎𝑏

true|2 𝜌(𝜔𝑏𝑎). 

This equation is now in the form 𝑅𝑎𝑏 = 𝐵𝑎𝑏  𝜌(𝜔𝑏𝑎), which is precisely the 

definition of the Einstein 𝐵 coefficient for absorption (or stimulated emission, 

as 𝐵𝑎𝑏 and 𝐵𝑏𝑎 are related by degeneracies). Here, 𝐵𝑎𝑏 would be for the 

transition from 𝑎 to 𝑏. 

Page 48: 

Following the connection to the Einstein 𝐵𝑎𝑏 coefficient, this slide gives the 

explicit expression for 𝐵𝑎𝑏 that results from our derivation. 

It says: with 

𝐵𝑎𝑏 =
𝜋𝑒2

3𝜖0ℏ
2
|𝐷𝑎𝑏|

2. 

Let's be very careful about the 𝐷𝑎𝑏  in this formula for 𝐵𝑎𝑏. 

On the previous slide, we had 

$$R_{ab} = \frac{\pi}{3 \epsilon_0 \hbar^2} \left| d_{\text{true\_\text{ab}}} 
\right|^2 \rho(\omega_{ba}).$$ 

And 



𝑅𝑎𝑏 = 𝐵𝑎𝑏𝜌(𝜔𝑏𝑎). 

So, 

$$B_{ab} = \frac{\pi}{3 \epsilon_0 \hbar^2} \left| d_{\text{true\_\text{ab}}} 
\right|^2.$$ 

Here, $\left| d_{\text{true\_\text{ab}}} \right|^2$ is the squared magnitude of 

the electric dipole moment matrix element, |⟨𝑎|−𝑒 𝑟 |𝑏⟩|2. 

If 𝐷𝑎𝑏  in the slide's 𝐵𝑎𝑏 formula is meant to be the matrix element of the 
position vector r alone, i.e., 

𝐷𝑎𝑏 = |⟨𝑎|𝑟 |𝑏⟩|, 

then 

$$\left| d_{\text{true\_\text{ab}}} \right|^2 = e^{2} \left|\langle 
a|\vec{r}|b\rangle\right|^2 = e^{2} \left| D_{\text{ab\_\text{of}\_\text{r}}} 
\right|^2.$$ 

In that case, 

$$B_{ab} = \frac{\pi e^{2}}{3 \epsilon_0 \hbar^2} \left| 
D_{\text{ab\_\text{of}\_\text{r}}} \right|^2.$$ 

This is a standard form if 𝐷𝑎𝑏  there refers to the position matrix element. 

It's essential to be clear about whether 𝐷𝑎𝑏  includes the charge 𝑒 or not, and 
whether it's a scalar component or a vector magnitude. Assuming the formula 

is for the commonly tabulated 𝐵𝑎𝑏 coefficient, 𝐷𝑎𝑏  in this context typically 

refers to the magnitude of the matrix element of the position operator 𝑟. 

The slide then makes a very important concluding statement: 

Thus, experimental determination of 𝐵𝑎𝑏, or an ab-initio (asterisk, meaning 

from first principles theory) calculation of 𝐷𝑎𝑏  (the dipole matrix element), 



immediately provides all other Einstein coefficients (A and the other B) via the 
detailed balance relations. 

This highlights the power of these connections. If you can measure 𝐵𝑎𝑏 (e.g., 

from absorption strength), you can use Einstein's relations (which link 𝐴𝑏𝑎 to 

𝐵𝑏𝑎, and 𝐵𝑏𝑎 to 𝐵𝑎𝑏 via degeneracies) to find 𝐴𝑏𝑎 (the spontaneous emission 

rate) and 𝐵𝑏𝑎 (the stimulated emission coefficient for the reverse transition). 

Similarly, if you can theoretically calculate the dipole matrix element 𝐷𝑎𝑏  from 

quantum mechanics (e.g., from computed wavefunctions), you can predict 

𝐵𝑎𝑏 and then all the other coefficients. This interconnectedness is a beautiful 
aspect of the theory of radiation. 

The "---" suggests this is a key summary point for this section. 
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Now we need to consider a common situation in real atoms and molecules: 
energy levels are often degenerate. This is Slide 18: Degeneracy and Line 

Strength, 𝑆𝑖𝑘. 

The first bullet point explains the issue: For levels possessing degeneracy, 

𝑔i and 𝑔k (for example, due to magnetic sublevels), the transition rate must be 

calculated by summing over all possible final sublevels and averaging over all 
initial sublevels. 

Let's say our initial level 'i' is actually a manifold of 𝑔i degenerate states (e.g., 

different 𝑀J values for a given 𝐽). Similarly, the final level 'k' might consist of 𝑔k 

degenerate states. A transition can occur from any initial sublevel to any final 

sublevel. To get the overall rate for the 𝑖 → 𝑘 transition, we need to consider 
all these possibilities. The standard procedure is to sum the rates for 
transitions from a specific initial sublevel to all possible final sublevels, and 
then average this sum over all equally populated initial sublevels (assuming 
thermal equilibrium or unpolarized excitation). 



To handle this systematically, we Define the line strength*, often denoted 𝑆𝑖𝑘  

(Capital 𝑆𝑖𝑘). The slide gives the definition: 

𝑆𝑖𝑘 = ∑ ∑ |𝐷𝑖𝑘
(𝑚𝑛)

|
2

𝑔k

𝑛=1

𝑔i

𝑚=1

 

Let's break this down: 

* 𝑔i is the degeneracy of the initial level 𝑖. 'm' is an index for the initial 

sublevels (𝑚 = 1,2, … , 𝑔i). * 𝑔k is the degeneracy of the final level 𝑘. 'n' is an 

index for the final sublevels (𝑛 = 1,2,… , 𝑔k). * 𝐷𝑖𝑘
(𝑚𝑛) is the dipole matrix 

element connecting initial sublevel 'm' of level 𝑖 to final sublevel 'n' of level 𝑘. 

This 𝐷 would be |⟨𝑖, 𝑚 ∣ operator ∣ 𝑘, 𝑛⟩|. The operator is typically the electric 

dipole moment operator. * So, |𝐷𝑖𝑘
(𝑚𝑛)

|
2

 is the squared magnitude of this 

specific sublevel-to-sublevel matrix element. The line strength 𝑆𝑖𝑘  is the sum 

of these squared magnitudes over all possible pairs* of initial and final 
sublevels. 

The line strength 𝑆𝑖𝑘  is a fundamental quantity that encapsulates the total 
"strength" of the radiative transition between the entire level 'i' and the entire 
level 'k', accounting for all contributing sublevel transitions. It's independent 

of the polarization of light if summed over all components of 𝐷. It's a purely 

atomic/molecular property. Atomic physicists often tabulate 𝑆𝑖𝑘  values. 
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Having defined the line strength 𝑆𝑖𝑘, we can now write a Generalized Einstein 
coefficient that incorporates degeneracy. 

The slide presents the Einstein 𝐵 coefficient for a transition from level 𝑖 to 

level 𝑘 (e.g., absorption if 𝑖 is lower, or stimulated emission if 𝑖 is upper, 

though 𝐵𝑖𝑘 usually refers to 𝑖 → 𝑘 process probability per unit energy density): 



𝐵𝑖𝑘 =
𝜋

3𝜖0ℏ
2𝑔i

𝑆𝑖𝑘 

Let's analyze this: 

* 𝑆𝑖𝑘  is the line strength we just defined: ∑ ∑ |𝐷𝑖𝑘
(𝑚𝑛)

|
2

nm , where 𝐷𝑖𝑘
(𝑚𝑛) is the 

dipole moment matrix element (e.g., ⟨𝑖,𝑚|𝑒 𝑟|𝑘, 𝑛⟩). 

 𝑔i is the statistical weight (degeneracy) of the initial* level 'i'. The 1
𝑔i

 factor here 

accounts for averaging over the initial sublevels, assuming they are equally 
populated. 

* The factor 𝜋

3𝜖0ℏ
2
 is familiar from our previous expression for 𝐵𝑎𝑏 (page 48, 

where 𝐵𝑎𝑏 =
𝜋𝑒2

3𝜖0ℏ
2
|⟨𝑎|𝑟|𝑏⟩|2). If 𝑆𝑖𝑘 = ∑ |⟨𝑖,𝑚|𝑒 𝑟 |𝑘, 𝑛⟩|2𝑚,𝑛  (sum of squared 

dipole moment matrix elements), then the formula for 𝐵𝑖𝑘 is correct as 

written. If 𝑆𝑖𝑘 = ∑ |⟨𝑖,𝑚|𝑟 |𝑘, 𝑛⟩|2𝑚,𝑛  (sum of squared position matrix 

elements), then an 𝑒2 factor is missing in the numerator of 𝐵𝑖𝑘 on the slide (it 

should be 𝜋𝑒2𝑆𝑖𝑘

3𝜖0ℏ
2𝑔i

). Given typical conventions for line strength 𝑆 including the 

charge 𝑒, the slide's formula 𝐵𝑖𝑘 =
𝜋𝑆𝑖𝑘

3𝜖0ℏ
2𝑔i

 is often used. 

The next bullet highlights the practical utility of line strengths: 

* Tables of 𝑆𝑖𝑘  are standard outputs of sophisticated atomic-structure codes 
(e.g., GRASP, CIV3) and directly feed astrophysical modelling software. 

Calculating line strengths from first principles requires complex quantum 
mechanical calculations of atomic wavefunctions and matrix elements. 
Computer programs like GRASP (General-purpose Relativistic Atomic 
Structure Program) or CIV3 (Configuration Interaction Version 3) are designed 

for this. The resulting 𝑆𝑖𝑘  values are crucial inputs for astrophysical models 

that interpret stellar and interstellar spectra, as well as for plasma physics, 
laser design, and other applications. 



Finally, a very important practical warning: 

* Beware of unit conventions: switching from angular frequency 𝜔 to 

ordinary frequency 𝜈 introduces a factor of 2𝜋. 

The Einstein coefficients and spectral energy density are defined. For 
instance, spectral energy density can be defined per unit angular frequency, 

𝜌𝜔, or per unit ordinary frequency, 𝜌𝜈. Since 𝜔 = 2𝜋𝜈, it follows that 𝑑𝜔 =

2𝜋 𝑑𝜈. For the energy in a given spectral interval to be the same, 𝜌𝜔  𝑑𝜔 must 

equal 𝜌𝜈  𝑑𝜈. Substituting 𝑑𝜔 gives 𝜌𝜔 × 2𝜋 𝑑𝜈 = 𝜌𝜈  𝑑𝜈. This implies that 𝜌𝜈 =

2𝜋 𝜌𝜔. 

Now, the Einstein 𝐵 coefficient is defined such that the transition rate is 𝐵 

times 𝜌. So, if we have 𝐵𝜔, the rate is 𝐵𝜔 × 𝜌𝜔. If we have 𝐵𝜈, the rate is 

𝐵𝜈 × 𝜌𝜈. For the rate to be the same, 𝐵𝜔 × 𝜌𝜔 must equal 𝐵𝜈 × (2𝜋𝜌𝜔). This 

means that 𝐵𝜔 = 2𝜋 𝐵𝜈, or conversely, 𝐵𝜈 =
𝐵𝜔

2𝜋
. 

The Einstein 𝐴 coefficient, being a spontaneous rate, is unaffected by this. 

However, the relationship between 𝐴 and 𝐵 coefficients will look different 

depending on whether 𝐵 is defined with respect to 𝜔 or 𝜈. For example, the 

ratio 𝐴𝑘𝑖

𝐵𝑘𝑖
 is often written as 8𝜋ℎ𝜈3

𝑐3
 if 𝐵𝑘𝑖  is 𝐵𝜈. If 𝐵𝑘𝑖  is 𝐵𝜔, then 𝐴𝑘𝑖

𝐵𝑘𝑖
 is ℎ𝜔3

𝜋2𝑐3
, or 

similar, depending on exact forms. So, always, always check the definitions 

when using tabulated values or formulas from different sources. This is a 

common pitfall that can lead to errors of 2𝜋 if you're not careful! 
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Alright, let's move on to Slide 19, which discusses an Effective Two-Level 

System with Open Decay Channels. So far, our two-level atom model (|𝑎⟩ 

and |𝑏⟩) has largely been treated as a closed system, especially when we 

normalized |𝑎|2 + |𝑏|2 = 1. But real life is more complicated. 



The first bullet point brings us to Reality: neither ket a nor ket b is truly 
closed; spontaneous emission, collisions, or other mechanisms remove 
population. This is a critical point. Even if we are driving the transition 

between |𝑎⟩ and |𝑏⟩ with a laser, both level |𝑎⟩ and level |𝑏⟩ can decay to 
other levels outside of our two-level consideration. For example, the upper 

state |𝑏⟩ might spontaneously emit to level |𝑎⟩, but it might also 

spontaneously emit to some other lower level, say |𝑐⟩. Or, it could be 

collisionally quenched to |𝑎⟩ or to |𝑐⟩. Similarly, the lower state |𝑎⟩ might not 
be perfectly stable; it could be collisionally excited to other states, or if it's not 
the true ground state, it might decay to even lower states. These processes 
act as "leaks" or "sinks" for the population within our idealized two-level 
system. 

So, how do we account for these additional loss mechanisms? The second 
bullet point suggests a pragmatic approach: Phenomenologically include 

decay constants. Instead of trying to model all possible other levels and 
interactions explicitly (which would make our two-level model intractable), 

we can introduce effective decay rates for states |𝑎⟩ and |𝑏⟩ that lump 
together all these loss processes. 

Specifically, as the next two bullets define: 

• 𝛾a (lowercase Greek gamma subscript a): This represents the total decay 

rate out of state |𝑎⟩ due to all processes other than transitions to state |𝑏⟩ 

induced by our coherent field. This could include spontaneous decay from |𝑎⟩ 

to other levels (if |𝑎⟩ is not the ground state), collisional de-excitation of |𝑎⟩ to 

other levels, or even ionization from |𝑎⟩. Its units are inverse time (e.g., s−1). 

• 𝛾b (lowercase Greek gamma subscript b): Similarly, this represents the 

total decay rate out of state |𝑏⟩ due to all processes other than coherent 

transitions to state |𝑎⟩ (like stimulated emission to |𝑎⟩) or absorption from |𝑎⟩. 

This 𝛾b would include spontaneous emission from |𝑏⟩ to any level (including 



|𝑎⟩, but also any other level |𝑐⟩, |𝑑⟩, etc.), collisional quenching of |𝑏⟩ to any 

other level, ionization from |𝑏⟩, and so on. 

By introducing these phenomenological decay rates 𝛾a and 𝛾b, we 
acknowledge that our two-level system is "open" and that population can be 
lost from it. This will modify our coupled amplitude equations, as we'll see 
next. 
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Now that we've introduced the phenomenological decay rates 𝛾a and 𝛾b for 
our open two-level system, let's see how they modify the coupled amplitude 
equations. We'll consider these equations under the Rotating Wave 
Approximation (RWA), which we previously found to be: 

𝑎̇ = −
𝑖

2
𝛺𝑎𝑏exp(𝑖𝛿𝑡) 𝑏 

𝑏̇ = −
𝑖

2
𝛺𝑏𝑎exp(−𝑖𝛿𝑡) 𝑎 

where 𝛿 = 𝜔𝑓𝑖𝑒𝑙𝑑 − 𝜔𝑎𝑡𝑜𝑚𝑖𝑐. 

The slide shows the Modified amplitude equations (under RWA): 

The time derivative of 𝑎(𝑡), 𝑎̇(𝑡), is now: 

𝑎̇(𝑡) = −
𝑖

2
𝛺𝑎𝑏exp(𝑖𝛥𝜔 𝑡) 𝑏(𝑡) −

𝛾a

2
 𝑎(𝑡) 

The time derivative of 𝑏(𝑡), 𝑏̇(𝑡), is now: 

𝑏̇(𝑡) = −
𝑖

2
𝛺𝑎𝑏exp(−𝑖𝛥𝜔 𝑡) 𝑎(𝑡) −

𝛾b

2
 𝑏(𝑡) 

(Note: the slide uses 𝛺𝑎𝑏  in both equations; more symmetrically, the second 

equation might have 𝛺𝑏𝑎 = 𝛺𝑎𝑏
∗ . Assuming 𝐷𝑎𝑏  is real, 𝛺𝑎𝑏 = 𝛺𝑏𝑎.) 

Let's analyze these modified equations: 



* The first terms on the right-hand side of each equation are familiar: they 

describe the coherent coupling between states |𝑎⟩ and |𝑏⟩ driven by the light 

field with Rabi frequency 𝛺𝑎𝑏  and detuning 𝛥𝜔. These terms drive population 

back and forth. 

* The new terms are minus 𝛾a

2
 𝑎(𝑡) in the equation for 𝑎̇(𝑡), and minus 𝛾b

2
 𝑏(𝑡) 

in the equation for 𝑏̇(𝑡). These represent the decay of the amplitudes 𝑎(𝑡) and 

𝑏(𝑡) due to the loss rates 𝛾a and 𝛾b. Why 𝛾/2 for the amplitude decay, when 𝛾 

is a population decay rate? Recall that population is |𝑎|2. If, for example, 

population 𝑁a decays as 

𝑑𝑁a

𝑑𝑡
= −𝛾a 𝑁a, 

and 𝑁a = |𝑎|2, then 

\[\frac{d|a|^2}{dt} = \left(a^ \frac{da}{dt} + a \frac{da^}{dt}\right) = -
\gamma_\text{a} \, |a|^2.\] 

If 

𝑑𝑎

𝑑𝑡
= −

𝛾a

2
 𝑎, 

then 

\[a^ \frac{da}{dt} + a \frac{da^}{dt} = a\left(-\frac{\gamma_\text{a}}{2}\right)a + 
a\left(-\frac{\gamma_\text{a}}{2}\right)a^* = -\gamma_\text{a} \, |a|^2.\] 

So, a population decay rate 𝛾 corresponds to an amplitude decay rate of 𝛾/2. 

This is correct. 

2. Steady-State Solutions: Because of these decay terms, if the laser field is 
applied continuously, the system will evolve towards a steady state where 

𝑎̇ = 0 and 𝑏̇ = 0. In this steady state, the populations |𝑎|2 and |𝑏|2 will be 
constant in time. These steady-state populations depend on the laser 



intensity (via 𝛺𝑎𝑏), detuning (𝛥𝜔), and the decay rates (𝛾a, 𝛾b). Finding these 
steady-state solutions is crucial for understanding many phenomena in laser 
spectroscopy, such as: * Fluorescence spectroscopy: The amount of 

fluorescence light emitted from state |𝑏⟩ is proportional to the steady-state 

population of |𝑏⟩. * Saturation spectroscopy: When the laser field is strong, 
it can significantly alter the populations (e.g., reduce the population 

difference |𝑎|2 − |𝑏|2). This "saturation" effect, which depends on reaching a 
steady state, is the basis for techniques like saturated absorption 
spectroscopy. 

These modified equations are often the starting point for deriving the optical 
Bloch equations, which provide a more complete description of a dissipative 
two-level system, often in terms of the density matrix. 
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This slide provides a simple but effective energy level diagram illustrating an 
Effective Two-Level System with Decay Channels. 

Let's examine the diagram: 

The vertical axis is labeled Energy, increasing upwards. 

We see two horizontal lines representing our two atomic levels: 

– A lower level labeled $\ket{a}$. – An upper level labeled $\ket{b}$. 

A red double-headed vertical arrow connects $\ket{a}$ and $\ket{b}$. This 

arrow is labeled with Capital Omega (𝛺). This represents the coherent 

coupling between the two levels driven by the external laser field, with a 

strength characterized by the Rabi frequency 𝛺. The double arrow indicates 
that the field can drive transitions both upwards (absorption from $\ket{a}$ to 
$\ket{b}$) and downwards (stimulated emission from $\ket{b}$ to $\ket{a}$). 

Now, critically, we see decay channels depicted by green curvy arrows: 



From the upper level $\ket{b}$, there's a green curvy arrow pointing 

downwards and outwards, labeled with 𝛾. This represents the total decay rate 
out of state $\ket{b}$ due to all incoherent processes (like spontaneous 

emission to any level, collisional quenching, etc.), which we denoted 𝛾b on 

the previous slide. This arrow leads "out" of the two-level system or back to 
lower levels in an incoherent way. 

Similarly, from the lower level $\ket{a}$, there's another green curvy arrow 

pointing downwards and outwards, also labeled with 𝛾. This represents the 

total incoherent decay rate out of state $\ket{a}$, which we denoted 𝛾a. (The 

diagram uses a generic 𝛾; we should remember they can be different: 𝛾a and 

𝛾b). This implies that even state $\ket{a}$ might not be perfectly stable and 
can lose population. 

This diagram visually summarizes the physics we've just described with the 

modified amplitude equations. We have a coherent drive (𝛺) trying to move 
population between $\ket{a}$ and $\ket{b}$, and simultaneously, we have 

incoherent decay processes (𝛾a, 𝛾b) trying to remove population from these 

levels or relax them. The interplay between 𝛺 and these gammas determines 
the dynamics and steady-state behavior of the system. For example, if the 
gammas are very large, it might be difficult to build up significant population 

in state $\ket{b}$ even with a strong 𝛺, as the population leaks out too 
quickly. 

At the bottom right, it notes "KFUPM (Term 251)," which is course information. 
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We've reached Slide 20, which provides a Summary and Outlook for this 
chapter or section on transition probabilities and the two-level atom model. 

The opening statement encapsulates the overarching theme: 



Transition probabilities extend spectroscopy from qualitative fingerprints 
to quantitative diagnostics*. 

The asterisk likely refers back to earlier discussions about how knowing 𝐴-
values allows us to determine temperatures, abundances, etc. Without these 
quantitative measures of how likely transitions are, spectra would just be 
patterns. With them, they become powerful tools for measuring physical 
conditions. 

The first main bullet point summarizes a key connection: 

* Spontaneous lifetime, 𝜏 (lowercase Greek tau), connects directly to the 

Einstein 𝐴 coefficient; measurement of 𝜏 is experimentally straightforward 
(e.g., using time-resolved fluorescence). 

We learned that the total spontaneous decay rate from an excited state 𝑖, 𝐴i, 

is the sum of 𝐴𝑖𝑘  to all lower states 𝑘. The lifetime 𝜏i is simply 1
𝐴i

. So, if you can 

measure the lifetime of an excited state (for example, by exciting it with a 
short pulse of light and then observing how the fluorescence intensity decays 

over time), you directly determine 𝐴i. This is a very common experimental 

method for obtaining 𝐴 coefficients or, more precisely, total decay rates from 

which 𝐴𝑖𝑘  values can sometimes be extracted if branching ratios are known. 

This first point emphasizes the experimental accessibility and fundamental 

importance of lifetimes and their relation to 𝐴 coefficients, which are a 
specific type of transition probability. 
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Continuing with the Summary and Outlook: 

The second bullet point summarizes the insights gained from our 

semi‐classical two‐level model: * The Semiclassical two‐level model 
reveals how external fields drive transitions; the Rabi frequency, Capital 



Omega 𝛺, quantifies the coupling strength; and the weak‐field versus 

strong‐field regimes are distinguished. 

This is a concise recap of a large part of what we've covered. We saw how a 

classical electric field interacts with a quantum two‐level atom via the dipole 
interaction. The strength of this coherent interaction is characterized by the 

Rabi frequency 𝛺, which depends on the field amplitude and the dipole matrix 

element. We also saw that if the interaction is weak or short (𝛺𝑡

2
≪ 1), we are 

in a perturbative (weak‐field) regime leading to a sinc‐squared transition 

probability. If the interaction is strong or long, we enter the strong‐field regime 

characterized by Rabi oscillations, requiring a non‐perturbative solution. This 

distinction is fundamental to understanding light‐matter interactions. 

The third bullet point highlights the outcome of broadband excitation: * 
Broadband excitation yields a constant absorption rate, proportional to 

the absolute square of the dipole matrix element |𝐷𝑎𝑏|
2, which leads 

naturally to the Einstein 𝐵 coefficient. 

When we considered excitation by a field with a broad spectrum (where 𝜌(𝜔) 
is slowly varying compared to the atomic response width), we found that the 
transition probability grows linearly with time, meaning the transition rate is 

constant. This rate is proportional to |𝐷𝑎𝑏|
2 and 𝜌(𝜔atomic), and this directly 

allowed us to define and derive an expression for the Einstein 𝐵 coefficient for 

absorption. This contrasts with the 𝑡2 growth for coherent monochromatic 
excitation. 

Finally, the last bullet point gives an Outlook towards more advanced topics 
that build upon what we've learned (though explicitly stating they are not 
covered here in this particular lecture segment): * Next steps (not covered 
here): full density-matrix treatment (Bloch equations), interaction with 
pulsed lasers, coherent phenomena (Rabi flopping, Ramsey fringes, 
Autler-Townes splitting). 



This is a roadmap for further study in laser spectroscopy and quantum optics: 
- Full density-matrix treatment (Bloch equations): While we introduced 

phenomenological decay rates 𝛾a, 𝛾b into the amplitude equations, a more 
rigorous and general way to handle open quantum systems, including 
relaxation and dephasing processes, is through the density matrix formalism. 
The optical Bloch equations are the equations of motion for the density matrix 
elements of a two-level atom interacting with a light field and coupled to a 
reservoir. - Interaction with pulsed lasers: We touched upon finite 

interaction time 𝑡. A more detailed study would involve considering the 

specific temporal shape of laser pulses and how that affects the atomic 
evolution. - Coherent phenomena: - Rabi flopping: We mentioned this – the 
periodic oscillation of population between two levels driven by a strong 
resonant field. - Ramsey fringes: A technique involving interaction with two 
separated oscillatory fields, used for ultra-high precision spectroscopy by 
effectively increasing the coherent interaction time. - Autler-Townes 
splitting: When a strong driving field is applied to a transition, it can split the 
energy levels involved, and this splitting can be probed by a second, weaker 
laser. 

This summary beautifully ties together the concepts we've discussed – from 
the fundamental Einstein coefficients and their importance in diagnostics, to 
the detailed dynamics of a two-level atom interacting with light, and finally 
pointing towards the rich landscape of more advanced topics in the field. It 
underscores that a solid understanding of transition probabilities and basic 
light-matter interaction models is the bedrock for much of modern laser 
spectroscopy. 

  


