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Alright everyone, welcome back to Phys 608, Laser Spectroscopy. Today, we 

delve into a crucial segment of our course, Chapter 2.6, which focuses on two 
intimately related phenomena: Absorption and Dispersion. These concepts 
are absolutely fundamental to understanding how light, particularly laser 
light, interacts with matter. 

The material for this lecture, as always, has been meticulously prepared by 

Distinguished Professor Dr. M.A. Gondal. We are in Term 251 here at KFUPM. 

So, let's get started. 
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So, let's consider Absorption and Dispersion – what are they, and critically, 
why do we, as physicists and spectroscopists, need to study these two 
phenomena in such detail? 

The first bullet point gets straight to the heart of absorption. Absorption 
alters the amplitude (and therefore the energy flow) of an optical wave as 
it propagates through matter. Imagine sending a beam of light through a 
colored filter. The filter appears colored precisely because it absorbs certain 
wavelengths, or frequencies, of light more strongly than others. This 
absorption process directly reduces the intensity, the energy, of the light wave 
passing through. So, absorption is fundamentally about energy loss from the 
optical field to the medium. 

The second bullet point introduces dispersion. Dispersion, on the other 
hand, alters the phase velocity of an optical wave. This is a key distinction. 
While absorption affects the wave's amplitude, dispersion primarily affects its 
speed of phase propagation. And because the phase velocity is generally 
frequency-dependent in a material, dispersion leads to different frequency 
components of a light pulse separating in time and space. Think about a 



prism: white light, which is a superposition of many colors, enters the prism, 
and because the refractive index (and thus phase velocity) is different for red 
light versus blue light, these colors travel at slightly different speeds and bend 
by different amounts, separating into the familiar rainbow. For laser pulses, 
which are often composed of a band of frequencies, this means the pulse can 
spread out or become chirped as it travels through a dispersive medium. 

Understanding both of these is paramount in our field. 
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Continuing our discussion on why these phenomena are so vital: the slide 
notes that together, absorption and dispersion determine the shape, 
delay, and intensity of laser pulses in gases, liquids, and solids. This is not 
an overstatement. Whether you are performing high-resolution spectroscopy, 
designing fiber-optic telecommunication systems, or engineering new types 
of lasers, the interplay of absorption and dispersion is a critical design 
consideration. 

For instance, in spectroscopy, the precise absorption spectrum gives us the 
fingerprint of a molecule, but the dispersive effects can shift or broaden lines, 
or affect the timing of probe pulses. In telecommunications, dispersion in 
optical fibers limits the bit rate by causing pulses to spread and overlap. In 
laser design, particularly for ultrashort pulse lasers, managing dispersion 
within the laser cavity is essential for achieving and maintaining mode-
locking. So, the impact is truly far-reaching. 

Now, a very profound point is made in the second bullet: A transparent, 
quantitative link exists between both effects – absorption and dispersion 

– through the complex refractive index, which we'll denote as 𝓃. Unveiling 

this link is the goal of the following derivation. This is a beautiful piece of 
physics. It tells us that absorption and dispersion are not independent 
phenomena that just happen to occur together. Instead, they are two sides of 



the same coin, intrinsically connected by the fundamental optical properties 
of the material, all encapsulated within this quantity called the complex 
refractive index. Our journey in the next few slides will be to build up this 
connection from a microscopic model. 
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To help visualize these effects, this slide presents a schematic of Optical 
Wave Propagation, illustrating Absorption and Dispersion separately. 

Let's first look at panel (a) Effect of Absorption (where 𝛼 > 0). Alpha, 𝛼, here 
represents the absorption coefficient. On the left, we see an incoming 
sinusoidal wave, representing, for instance, the electric field of our light wave. 

It has a well-defined amplitude. As this wave enters a material (the shaded 
region to the right of the dashed vertical line), its amplitude begins to 
decrease. You can see the envelope of the wave, indicated by the dashed red 
lines, decaying as the wave propagates further into the material along the 
horizontal axis. The wavelength, however, appears to remain constant in this 
idealized depiction focusing purely on absorption. This decay in amplitude 
signifies that the energy of the wave is being transferred to the medium. The 

condition 𝛼 > 0, simply means it's an absorbing medium. 

Now, let's turn to panel (b) Effect of Dispersion (where 𝑛 > 𝑛0). Here, 'n' is 

the refractive index of the medium, and 'n naught' (𝑛0) would be the refractive 

index of the free space or the medium the light is coming from. The condition 

𝑛 > 𝑛0 means the light slows down as it enters the material because the 

phase velocity is 𝑐
𝑛

. Again, on the left, we see an incident wave. As it enters the 

material (the shaded region), notice what happens: the amplitude, in this 
idealized case showing only dispersion, remains constant. However, the 

wavelength of the wave inside the material, let's call it lambda prime (𝜆′), 

becomes shorter than the wavelength lambda naught (𝜆0) outside. This is a 

direct consequence of the phase velocity decreasing while the frequency 



remains constant. The wave crests are packed more closely together. If we 
were considering a pulse composed of different frequencies, each would 

experience a slightly different refractive index 𝑛, leading to different phase 
velocities, and this is what causes pulse spreading or compression, the 
hallmark of dispersion. 

These two diagrams give us a nice, qualitative first look. Now, let's build the 
mathematical framework. 
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Alright, let's move to what this slide calls Electromagnetic Wave — Precise 
Mathematical Description. To understand how a material modifies a wave, 

we first need a clear description of our reference: the wave in free space. 

We begin with a Free-Space Reference Wave. The first bullet point states: 

Start from a monochromatic plane wave of angular frequency 𝜔 travelling 

in the positive 𝑧-direction. 

A monochromatic wave means it consists of a single frequency, 𝜔. A plane 

wave means its wavefronts – surfaces of constant phase – are infinite planes 
perpendicular to the direction of propagation. We're choosing the 

propagation direction to be along the positive 𝑧-axis for simplicity. 

The electric field of such a wave, 𝐸(𝑧, 𝑡), which is a vector function of position 

𝑧 and time 𝑡, is given by the equation: 

𝐸(𝑧, 𝑡) = 𝐸0 𝑥̂ 𝑒𝑖(𝜔𝑡−𝐾0𝑧) 

Let's break this down carefully. 

𝐸(𝑧, 𝑡): This is the electric field vector. 

𝐸0: This is the real peak amplitude of the wave. The slide specifies its units as 

Volts per meter (V m−1). This 𝐸0 represents the maximum strength of the 

electric field. 



𝑥̂: This is a unit vector in the 𝑥-direction. It tells us that the electric field is 

linearly polarized along the 𝑥-axis. The wave oscillates in the 𝑥-direction while 

propagating in the 𝑧-direction. 

𝑒𝑖(𝜔𝑡−𝐾0𝑧): This is the complex exponential form representing the oscillatory 

part of the wave. 

  ○ 𝑖: The imaginary unit, square root of minus one.   ○ 𝜔: The angular 
frequency of the wave, in radians per second. It's related to the ordinary 

frequency 𝜈 by 𝜔 = 2𝜋𝜈.   ○ 𝑡: Time.   ○ 𝐾0: This is the free-space 
wavenumber or propagation constant in vacuum. It tells us how many 
radians of phase change occur per unit length. Its units are typically radians 

per meter.   ○ 𝑧: The spatial coordinate along the direction of propagation. 

The term (𝜔𝑡 − 𝐾0𝑧) is the phase of the wave. Surfaces of constant phase 

define the wavefronts. The negative sign between 𝜔𝑡 and 𝐾0𝑧 indicates a wave 

traveling in the positive 𝑧-direction. If it were a plus sign, it would be a wave 

traveling in the negative 𝑧-direction. This equation is our starting point, our 
benchmark for what happens when this wave enters a material. 
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Let's continue dissecting the components of our free-space reference wave. 

The first bullet point clarifies 𝑥̂ (x-hat): it is indeed a linear polarization unit 

vector, chosen for definiteness. We could have chosen 𝑦̂ (y-hat), or any other 

direction perpendicular to 𝑧, but x-hat is a common and convenient choice. 
For many of our initial discussions, the specific direction isn't critical, only 
that it is polarized. 

Next, we have K0 (Kay sub zero), the free-space wavenumber. This is defined 
as: 

K0 =
2𝜋

𝜆0
=

𝜔

𝑐
 



Here: * 𝜆0 (lambda sub zero or lambda naught) is the wavelength of the light in 

free space, in meters. The wavenumber K0 is thus 2𝜋 divided by the 

wavelength. * 𝜔 (omega) is the angular frequency, as before. * 𝑐 is the speed 
of light in vacuum. 

So, K0 can also be expressed as 𝜔 divided by 𝑐. The units are given as 

rad m−1. This K0 is a measure of spatial frequency. 

The third point concerns the speed of these wavefronts: Phase fronts advance 

at the vacuum phase velocity, 𝑣ph,vac (vee sub pee aitch comma vac). This 

velocity is given by: 

𝑣ph,vac =
𝜔

K0
 

And since K0 =
𝜔

𝑐
, it follows directly that: 

𝑣ph,vac = 𝑐 

The value of 𝑐 is given as 2.99792458 × 108 m s−1. This is, of course, a 
fundamental constant: the speed of light in vacuum. 

Finally, how much energy does this wave carry? The last bullet point tells us: 
Energy flow per unit area is given by the time-averaged Poynting vector, 

denoted as ⟨𝑆⟩ (angle brackets S). For our plane wave, this is: 

⟨𝑆⟩ =
1

2
𝜀0 𝑐 𝐸0

2 𝑧̂ 

Let's unpack this: * ⟨𝑆⟩: The Poynting vector describes the directional energy 
flux (the energy transfer per unit area per unit time) of an electromagnetic 
field. The angle brackets denote a time average over one cycle of oscillation. * 

𝜀0 (epsilon sub zero or epsilon naught): This is the permittivity of free space, a 

fundamental constant with a value of approximately 8.854 × 10−12 Farads per 

meter. * 𝑐: The speed of light in vacuum. * 𝐸0
2 (Eee sub zero squared): The 



square of the peak electric field amplitude. Intensity is proportional to the 

square of the field amplitude. * 𝑧̂ (z-hat): This is a unit vector in the 𝑧-
direction, indicating that the energy flows in the direction of wave 
propagation, as expected. 

The factor of 1
2

 arises from the time averaging of the squared sinusoidal field. 

This Poynting vector gives us the intensity of the light wave. 
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This page provides a visual representation of the electric field component 𝐸x 

of our plane wave, plotted as a function of the propagation distance 𝑧, at a 

fixed instant in time (say, 𝑡 = 0). 

Let's describe what we see. The vertical axis is labeled 𝐸x, representing the x-

component of the electric field, and it also shows the polarization direction 𝑥̂ 

pointing upwards. The horizontal axis is labeled 𝑧, the direction of 

propagation. 

The wave itself is a perfect sinusoid, oscillating symmetrically around the 

𝐸x = 0 axis. 

The peak amplitude of the oscillation is labeled as 𝐸0, and the minimum value 

is −𝐸0. This clearly shows the maximum displacement of the electric field. 

Along the 𝑧-axis, we see several points marked in terms of the free-space 

wavelength 𝜆0: 

◦ The wave starts at 𝑧 = 0 with its maximum amplitude 𝐸0. ◦ It crosses zero at 

𝑧 = 𝜆0/4 (not explicitly labeled, but one quarter of a wavelength). ◦ It reaches 

its minimum −𝐸0 at 𝑧 = 𝜆0/2 (one half 𝜆0 over two). ◦ It crosses zero again at 

𝑧 = 3𝜆0/4. ◦ It completes one full cycle and is back at 𝐸0 at 𝑧 = 𝜆0 (𝜆0). This 

distance is explicitly marked with a horizontal red arrow, labeled 𝜆0, showing 
one full spatial period of the wave. 



The plot continues, showing subsequent crests and troughs at 𝑧 = 3𝜆0/2, 

2𝜆0, and 5𝜆0/2, illustrating the periodic nature of the wave in space. 

Below the 𝑧-axis, there's a green arrow labeled "Direction of Propagation (𝐤)" 

pointing to the right, reinforcing that the wave is moving in the positive 𝑧-

direction. The vector 𝐤 here would be 𝐾0𝑧̂. 

This graph is a snapshot. If we were to animate this for increasing time 𝑡, we 
would see this entire sinusoidal pattern moving to the right, along the positive 

𝑧-axis, with the phase velocity 𝑐. This is the wave we are now going to send 
into a material. 
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Now we arrive at a pivotal moment: our electromagnetic wave is Entering a 
Material. This introduces New Macroscopic Parameters that describe how 
the material responds to the wave. The most important of these is the 
complex refractive index. 

The slide defines the Definition of the Complex Refractive Index. The first 

crucial point: Inside matter, the wave number changes. It's no longer 𝐾0. 

The new wave number, let's call it 𝐾 (capital Kay), is related to the free-space 

wave number 𝐾0 by: 

𝐾 = 𝑛𝐾0 

Here, n (script n, or sometimes italic n) is the refractive index of the 
material. This simple-looking equation is packed with physics. It tells us that 
the spatial periodicity of the wave changes inside the material. 

Now, the second, and extremely important, point: Refractive index is, in 
general, frequency dependent and complex. This is key for understanding 

both absorption and dispersion simultaneously. We write the complex 

refractive index 𝑛 as a function of angular frequency 𝜔 (omega) as: 



𝑛(𝜔) = 𝑛′(𝜔) − 𝑖𝜅(𝜔) 

Let's break this down: 

𝑛(𝜔): The complex refractive index, explicitly showing its dependence on the 

frequency 𝜔 of the light. This frequency dependence is the ultimate origin of 

dispersion. 

𝑛′(𝜔) (n prime of omega): This is the real part of the complex refractive index. 
It's what we typically think of as "the" refractive index in elementary optics, 
governing, for example, Snell's Law of refraction. As we'll see, it dictates the 
phase velocity of the wave in the medium. 

𝑖: The imaginary unit. 

𝜅(𝜔) (kappa of omega): This is the imaginary part of the complex refractive 

index, also known as the extinction coefficient or attenuation index. As we 
will see, this part is responsible for the absorption of light in the medium. 

The minus sign before the 𝑖𝜅(𝜔) term is a common convention in physics, 
particularly in optics. Some engineering texts might use a plus sign. The 

choice of sign impacts how 𝜅 is defined (it must be positive for absorption in a 
passive medium with this convention) and its relation to the decay of the 

wave. It's important to be consistent. With this minus sign, a positive 𝜅 will 

lead to attenuation, as we expect for absorption. 

So, when light enters a material, we replace 𝐾0 with 𝑛𝐾0, where 𝑛 itself is a 

complex number having both a real part 𝑛′ and an imaginary part 𝜅. This single 
complex quantity will elegantly describe both how the phase of the wave 
evolves and how its amplitude changes. 
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Having defined the complex refractive index 𝑛(𝜔) = 𝑛′(𝜔) − 𝑖𝜅(𝜔), let's 
explore the distinct roles of its real and imaginary parts. 



The first bullet point states: 𝑛′ (n prime), the real part, governs phase 
propagation, and this leads to dispersion. How so? Recall that the phase 

velocity in a medium is 𝑣𝑝ℎ =
𝑐

𝑛′
. Since 𝑛′ is generally a function of frequency 

𝜔, 𝑣𝑝ℎ(𝜔) =
𝑐

𝑛′(𝜔)
 will also be frequency dependent. This means different 

frequency components of a light pulse will travel at different speeds, causing 
the pulse to spread out or change shape – this is precisely what we mean by 

dispersion. The wavelength inside the medium also changes to 𝜆′ = 𝜆0

𝑛′
. 

The second bullet point focuses on the imaginary part: 𝜅 (kappa), the 

imaginary part, governs exponential attenuation, which means it's 

responsible for absorption. This 𝜅 term will lead to a decay in the amplitude of 
the electric field as the wave propagates, which corresponds to the 
absorption of energy by the medium. 

Now, let's see how the electric field equation looks inside the material. We 

had 𝐸(𝑧, 𝑡) = 𝐸0 𝑥̂ 𝑒𝑖(𝜔𝑡−𝐾𝑧) generally. Substituting 𝐾 = 𝑛𝐾0 = (𝑛′ − 𝑖𝜅)𝐾0, the 

exponent becomes: 

𝑖(𝜔𝑡 − (𝑛′ − 𝑖𝜅)𝐾0 𝑧) = 𝑖(𝜔𝑡 − 𝑛′𝐾0 𝑧 + 𝑖𝜅𝐾0 𝑧) = 𝑖(𝜔𝑡 − 𝑛′𝐾0 𝑧) + 𝑖2𝜅𝐾0 𝑧

= 𝑖(𝜔𝑡 − 𝑛′𝐾0 𝑧) − 𝜅𝐾0 𝑧. 

So, the field now reads: 

𝐸(𝑧, 𝑡) = 𝐸0 𝑒
−𝜅𝐾0 𝑧  𝑒𝑖(𝜔𝑡−𝑛′𝐾0 𝑧) 𝑥̂. 

Look at this equation carefully. We can see two distinct effects due to the 
material: 

1. 𝑒−𝜅𝐾0 𝑧: This is a real exponential decay factor. Since 𝜅, 𝐾0, and 𝑧 are 
positive for a forward-propagating wave in an absorbing medium, this term 

causes the amplitude of the wave 𝐸0 to decrease exponentially as it travels 

deeper into the material (increasing 𝑧). This is the mathematical description 

of absorption. 



2. 𝑒𝑖(𝜔𝑡−𝑛′𝐾0 𝑧): This is the oscillatory part. Notice that the wavenumber in the 

phase is now 𝑛′𝐾0, not just 𝐾0. This means the wavelength inside the medium 

is 𝜆0

𝑛′
, and the phase velocity is 𝑐

𝑛′
. This term describes the phase evolution and 

is responsible for dispersion if 𝑛′ varies with 𝜔. 

Finally, the intensity of the wave, 𝐼, is proportional to the square of the electric 

field amplitude. If the field amplitude decays as 𝑒−𝜅𝐾0 𝑧, then the intensity will 
decay as the square of this factor: 

(𝑒−𝜅𝐾0 𝑧)2 = 𝑒−2𝜅𝐾0 𝑧. 

So, the intensity decays as 𝐼(𝑧) = 𝐼0 𝑒
−2𝜅𝐾0 𝑧, where 𝐼0 is the initial intensity at 

𝑧 = 0. Notice the factor of 2 in the exponent for intensity decay compared to 
field amplitude decay. This is a crucial detail. 
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This slide presents a beautiful graph illustrating Electric Field Propagation in 
an Absorbing Material. It visually synthesizes the concepts we just 
discussed regarding the complex refractive index. 

The graph plots the electric field, 𝐸, on the vertical axis versus the 

propagation distance, 𝑧, on the horizontal axis. The material is described by a 

complex refractive index 

𝑛(𝜔) = 𝑛′ − 𝑖𝜅 

and specific example values are given: 𝑛′ = 1.5 and 𝜅 = 0.05. The wave is 

shown entering the material region, which starts at 𝑧 = 0 and extends to the 
right (labeled "Material Region (z ≥ 0)"). 

Let's observe the features of the wave depicted: 

1. Amplitude Attenuation: The most striking feature is that the amplitude of 

the sinusoidal wave decreases as 𝑧 increases. It starts with an initial 



amplitude 𝐸0 at 𝑧 = 0, and this amplitude gradually diminishes. The envelope 
of this decay is shown by two dashed grey lines, which represent the 
exponential factor 

𝐸0𝑒
−𝜅𝐾0𝑧 

This visually demonstrates the absorption due to the imaginary part 𝜅 of the 

refractive index. Given 𝜅 = 0.05, there's a noticeable decay over the range 

plotted. 

2. Wavelength Change: If you look closely at the oscillations, the wavelength 

inside the material, labeled as 𝜆′, is different from what it would be in 
vacuum. It's given by 

𝜆′ =
𝜆

𝑛′
 

where 𝜆 would be the vacuum wavelength 𝜆0. Since 𝑛′ = 1.5 (which is greater 

than 1), the wavelength inside the material is shorter (i.e., 𝜆′ = 𝜆0/1.5). The 
wave crests are more compressed compared to how they would be in 

vacuum. This is due to the real part 𝑛′ of the refractive index. The horizontal 

axis is marked in units of this new wavelength: 𝜆′, 2𝜆′, 3𝜆′, 4𝜆′, 5𝜆′. 

So, this single plot effectively shows both consequences of a complex 𝑛: the 

amplitude decay due to 𝜅 and the wavelength (and phase velocity) change 

due to 𝑛′. The wave is oscillating, but it's getting weaker as it propagates, and 
its spatial period is modified by the medium. This is precisely what our 

equation 

𝐸(𝑧, 𝑡) = 𝐸0𝑒
−𝜅𝐾0𝑧𝑒𝑖(𝜔𝑡−𝑛′𝐾0𝑧)𝑥̂ 

describes. 
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We now transition from a macroscopic description (using the complex 

refractive index 𝑛) to a Microscopic Picture, attempting to understand why 𝑛 
should be complex and frequency-dependent. We'll use a Classical Electron 
Oscillator model, often called the Lorentz model. This is a semi-classical 
approach, but it provides remarkable insight. 

The core idea is Modelling Each Bound Electron within the atoms or 
molecules of the material. The first bullet point lays out the central 
assumption: Treat one valence electron as a driven, damped, one-
dimensional harmonic oscillator. Why a valence electron? Because these 
are typically the most loosely bound electrons and are therefore most easily 

perturbed by the electric field of an incident light wave. Why a harmonic 
oscillator? This implies a restoring force proportional to the displacement of 
the electron from its equilibrium position (like a mass on a spring). This is a 
reasonable approximation for small displacements. Why driven? The driving 
force is provided by the oscillating electric field of the light wave. Why 
damped? The electron's motion isn't frictionless. It will lose energy, for 
example, by re-radiating electromagnetic energy (radiative damping) or 
through collisions with other atoms (collisional damping). Why one-

dimensional? For simplicity, we consider the electron's displacement 𝑥(𝑡) 
along the direction of the electric field of the light wave (which we took as x-
polarized). 

The second bullet point gives the Governing equation of motion for this 

electron. This is Newton's second law (𝐹 = 𝑚𝑎) applied to our model: 

𝑚 𝑥̈(𝑡) + 𝑏 𝑥̇(𝑡) + 𝐷 𝑥(𝑡) = 𝑞 𝐸0 𝑒
𝑖𝜔𝑡 

Let's meticulously define each term: 

* 𝑚: This is the mass of the electron. * 𝑥(𝑡): This is the displacement of the 

electron from its equilibrium position at time t. * 𝑥̈(𝑡) (x double-dot of t): This 

is the acceleration of the electron (the second time derivative of 𝑥). So, 



𝑚 𝑥̈(𝑡) is the inertial term (mass times acceleration). * 𝑥̇(𝑡) (x dot of t): This is 

the velocity of the electron (the first time derivative of 𝑥). * 𝑏: This is a 

phenomenological damping coefficient. The term 𝑏 𝑥̇(𝑡) represents the 
damping force, which is proportional to the velocity and opposes the motion. 

Its units would be Newton-seconds per meter or kilograms per second. * 𝐷: 
This is the spring constant or force constant of the harmonic oscillator, 

representing the strength of the restoring force. The term 𝐷 𝑥(𝑡) is the 

restoring force, 𝐹restore = −𝐷𝑥 (though here it's on the left side with a plus, 
consistent with moving it from 

𝑚𝑎 = 𝐹driving − 𝐹damping − 𝐹restoring 

). Units are Newtons per meter. * 𝑞: This is the charge of the electron. * 

𝐸0 𝑒
𝑖𝜔𝑡: This is the driving electric field of the incident light wave at the 

position of the electron (we assume the field is uniform over the atomic 

dimension, so we can just use 𝐸0 and not 𝐸(𝑧, 𝑡), and for simplicity, we can 

evaluate it at 𝑧 = 0 or just consider its time dependence as the driving force). 

𝐸0 is the amplitude, and 𝜔 is the angular frequency of the light. 

This second-order linear inhomogeneous differential equation is the 
cornerstone of the classical model for light-matter interaction. Solving it will 

tell us how the electron responds (i.e., its displacement 𝑥(𝑡)) to the driving 

light field. 
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Let's further define the parameters and assumptions involved in our classical 

electron oscillator model, as described by the equation 𝑚𝑥̈ + 𝑏𝑥̇ + 𝐷𝑥 =

𝑞𝐸0𝑒
𝑖𝜔𝑡. 

First, the parameters: 

* m: electron mass. Its value is approximately 9.109 × 10−31 kilograms (kg). 
This is a fundamental constant. 



* b: phenomenological damping constant. This term accounts for energy 
loss due to radiation and collisions. * Radiative damping: An accelerating 
charge, like our oscillating electron, radiates electromagnetic energy. This 
radiation carries away energy, effectively damping the electron's motion. This 
is also known as radiation resistance. * Collisions: In a real material, the 
oscillating electron can collide with other atoms or ions, transferring some of 
its energy to them. This is particularly important in gases at higher pressures 
and in condensed matter. The term 'phenomenological' means that 'b' is often 
treated as a parameter that encapsulates these various complex loss 
mechanisms without necessarily deriving it from first principles in this model. 
Its value might be determined empirically or from more advanced theories. 

* D: spring constant. This determines the strength of the restoring force that 
pulls the electron back to its equilibrium position. It's directly related to the 

natural resonant angular frequency 𝜔0 (omega sub zero) of the oscillator by 

the relation 𝜔0
2 =

𝐷

𝑚
, or 𝜔0 = √

𝐷

𝑚
. This 𝜔0 is the frequency at which the 

electron would oscillate if it were displaced and then left to oscillate freely 
without any driving force or damping. 

* q = -e: electron charge magnitude. 'q' is the charge of the particle, which 

for an electron is negative. We write it as 𝑞 = −𝑒, where e is the elementary 

charge, approximately 1.602 × 10−19 Coulombs (C). So 'e' itself is positive, 
representing the magnitude. 

Now, for the crucial Assumptions underlying this model: 

* Linear response (displacements 𝑥 small). This is a very important 

assumption. We assume that the displacement 𝑥 of the electron from its 
equilibrium position is small enough that the restoring force is accurately 

described by Hooke's Law (𝐹 = −𝐷𝑥) and that the damping coefficient 'b' and 

mass 'm' are constant, independent of 𝑥. If displacements were large, we 



might encounter anharmonic terms in the restoring force, leading to non-
linear effects, which this model does not include. This linear response is why 
we expect to be able to define a linear susceptibility and refractive index later 
on. 
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Continuing with the assumptions underpinning our classical electron 
oscillator model: 

The first point here is: External field uniform over atomic dimension. This is 
often referred to as the dipole approximation. Atoms have typical 

dimensions on the order of angstroms (10−10 meters). Optical wavelengths 

are typically hundreds to thousands of nanometers (10−7 to 10−6 meters). 
Since the wavelength of light is much larger than the size of the atom, we can 
assume that the electric field of the light wave is essentially constant across 
the spatial extent of the electron's orbit or motion. This allows us to describe 

the interaction using just the electric field 𝐸(𝑡) at the "center" of the atom, 

rather than having to worry about its spatial variation 𝐸(𝑟, 𝑡) within the atom. 
This simplifies the driving term in our equation of motion significantly. 

The second point is: Damping 𝑏 independent of 𝑥. We assume that the 

damping coefficient '𝑏' does not depend on the displacement '𝑥' of the 

electron. This, like the linear restoring force, is crucial for keeping the 

differential equation linear. If '𝑏' depended on '𝑥' (e.g., 𝑏(𝑥)), the equation 
would become non-linear and much harder to solve, and the principle of 
superposition for responses would break down. 

These assumptions, while simplifying, allow the model to capture the 
essential physics of absorption and dispersion in a remarkably effective way, 
especially for understanding phenomena near an isolated resonance. We 
should always keep these assumptions in mind when applying the results of 
this model. 



The three hyphens at the bottom suggest the end of this list of assumptions or 
perhaps a transition. 
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Now we move on to Solving for the Steady-State Oscillation of our driven, 
damped harmonic electron oscillator. We are looking for the long-term 
behavior of the electron once any initial transient effects (from when the field 
was first turned on) have died down. This steady-state solution will oscillate 

at the same frequency 𝜔 as the driving electric field. 

We use the Complex-Amplitude Ansatz. An 'ansatz' is essentially an 
educated guess for the form of the solution. 

* The first bullet states: Seek a particular solution of the form 𝑥(𝑡) = 𝑥0𝑒
𝑖𝜔𝑡. 

Here: * 𝑥(𝑡) is the time-dependent displacement of the electron. * 𝑥0 (x sub 

zero or x naught) is a complex amplitude. It's complex because the 
electron's oscillation might be out of phase with the driving field, and this 
phase difference, as well as the amplitude of oscillation, will be encoded in 

𝑥0. * 𝑒𝑖𝜔𝑡  shows that the electron oscillates at the same angular frequency 𝜔 

as the driving field. 

* The second bullet explains the procedure: Substitute into the motion 

equation. Each time derivative multiplies 𝑥0 by 𝑖𝜔. 

Let's do this. Our equation of motion was: 

𝑚𝑥̈(𝑡) + 𝑏𝑥̇(𝑡) + 𝐷𝑥(𝑡) = 𝑞𝐸0𝑒
𝑖𝜔𝑡  

If 𝑥(𝑡) = 𝑥0𝑒
𝑖𝜔𝑡, then: * The first time derivative is 𝑥̇(𝑡) =

𝑑

𝑑𝑡
(𝑥0𝑒

𝑖𝜔𝑡) =

𝑖𝜔 𝑥0𝑒
𝑖𝜔𝑡. 

* The second time derivative is 𝑥̈(𝑡) =
𝑑

𝑑𝑡
(𝑖𝜔 𝑥0𝑒

𝑖𝜔𝑡) = (𝑖𝜔)2 𝑥0𝑒
𝑖𝜔𝑡 =

−𝜔2 𝑥0𝑒
𝑖𝜔𝑡. 



Substituting these into the equation of motion: 

𝑚(−𝜔2𝑥0𝑒
𝑖𝜔𝑡) + 𝑏(𝑖𝜔𝑥0𝑒

𝑖𝜔𝑡) + 𝐷(𝑥0𝑒
𝑖𝜔𝑡) = 𝑞𝐸0𝑒

𝑖𝜔𝑡 

Now, we can see that the term 𝑒𝑖𝜔𝑡  is common to every term in the equation. 

Since 𝑒𝑖𝜔𝑡  is never zero, we can divide it out. This leaves us with an algebraic 

equation for the complex amplitude 𝑥0: 

𝑚(−𝜔2)𝑥0 + 𝑏(𝑖𝜔)𝑥0 + 𝐷𝑥0 = 𝑞𝐸0 

This is a significant simplification! We've transformed a differential equation 

in time into an algebraic equation for the complex amplitude 𝑥0. Now we just 

need to solve for 𝑥0. 
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Now that we have the algebraic equation for the complex amplitude 𝑥0, which 
is 

𝑚(−𝜔2)𝑥0 + 𝑏(𝑖𝜔)𝑥0 + 𝐷𝑥0 = 𝑞𝐸0, 

we can solve for 𝑥0. 

* The first bullet says: Rearrange and isolate 𝑥0. Introduce convenient 

parameters. We can factor out 𝑥0 from the left-hand side: 

𝑥0[−𝑚𝜔2 + 𝑖𝑏𝜔 + 𝐷] = 𝑞𝐸0 

Or, rearranging the terms in the bracket: 

𝑥0[𝐷 − 𝑚𝜔2 + 𝑖𝑏𝜔] = 𝑞𝐸0 

Now, we introduce two very important parameters: 1. 𝛾 =
𝑏

𝑚
 (gamma equals b 

divided by m). This 𝛾 is the damping rate, or damping constant per unit mass. 
It has units of frequency (radians per second or simply per second). It 
characterizes how quickly oscillations would die out in the absence of a 

driving force. 2. 𝜔0
2 =

𝐷

𝑚
 (omega sub zero squared equals D divided by m). As 



we discussed before, 𝜔0 is the natural undamped resonant angular 
frequency of the oscillator. 

Using these, we can rewrite the term 𝐷 by itself as 𝑚𝜔0
2. And 𝑏 can be written 

as 𝑚𝛾. So the bracket becomes: 

[𝑚𝜔0
2 − 𝑚𝜔2 + 𝑖𝑚𝛾𝜔] = 𝑚[𝜔0

2 − 𝜔2 + 𝑖𝛾𝜔]. 

* The second bullet says: Obtain 𝑥0. Dividing by 𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔), we get 

the expression for 𝑥0: 

𝑥0 =
𝑞𝐸0

𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

. 

This equation is central. It tells us the complex amplitude 𝑥0 of the electron's 

oscillation in terms of the driving field amplitude 𝐸0, the electron's charge 𝑞 

and mass 𝑚, the driving frequency 𝜔, the natural resonant frequency 𝜔0, and 

the damping rate 𝛾. Since the denominator is complex, 𝑥0 itself will be 

complex. The magnitude of 𝑥0 will give the amplitude of the electron's 

oscillation, and the argument (or phase angle) of 𝑥0 will give the phase of the 
electron's motion relative to the driving field. 

* Now for the Physical interpretation: The third bullet point highlights a key 

aspect: Denominator magnitude minimum when 𝜔 ≈ 𝜔0 ⇒ resonance. 

Let's look at the denominator: 𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔). Its magnitude is 

𝑚 ⋅ √(𝜔0
2 − 𝜔2)2 + (𝛾𝜔)2. 

This magnitude will be smallest when the term (𝜔0
2 − 𝜔2)2 is smallest, which 

occurs when 𝜔2 is close to 𝜔0
2, or when the driving frequency 𝜔 is close to the 

natural resonant frequency 𝜔0. When the denominator's magnitude is at a 

minimum, the magnitude of 𝑥0 (the amplitude of oscillation) will be at a 

maximum. This phenomenon is called resonance. The electron responds 
most strongly to the driving field when the field's frequency matches its own 



natural oscillation frequency. This is a familiar concept from many areas of 
physics. 
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Let's continue our physical interpretation of the solution for 𝑥0, particularly 
focusing on the role of the complex terms. Our expression for the complex 
amplitude of the electron's oscillation is 

𝑥0 =
𝑞𝐸0

𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

. 

The slide highlights: Imaginary term 𝑖𝛾𝜔 introduces phase lag and energy 

dissipation. 

Let's explore this. The term 𝑖𝛾𝜔 in the denominator is purely imaginary. 

1. Phase Lag: Because of this imaginary term, the complex number 
(𝜔0

2 − 𝜔2 + 𝑖𝛾𝜔) in the denominator will have a non-zero phase angle (unless 

𝛾 = 0 or 𝜔 = 0). Consequently, 𝑥0, which is 𝑞𝐸0 divided by this complex 
number, will also have a phase angle. This means that the electron's 

oscillation 𝑥(𝑡) = 𝑥0 𝑒
𝑖𝜔𝑡 will generally not be perfectly in phase with the 

driving field 𝐸(𝑡) = 𝐸0 𝑒
𝑖𝜔𝑡 (assuming 𝐸0 is real for reference). There will be a 

phase difference, or phase lag (or lead, depending on the sign of 𝜔0
2 − 𝜔2), 

between the driving force and the electron's response. This phase lag is 
frequency-dependent and is largest near resonance. If you plot the phase of 

𝑥0 versus 𝜔, you'll see it change significantly around 𝜔0. 

2. Energy Dissipation: The damping term 'b', and hence 𝛾 =
𝑏

𝑚
, is 

fundamentally related to mechanisms that dissipate energy from the 
oscillating electron system. The power absorbed by the oscillator from the 
driving field is related to the component of the electron's velocity that is in 

phase with the driving force. The presence of 𝛾 ensures that there is, on 
average over a cycle, a net transfer of energy from the electric field to the 



electron oscillator, which is then dissipated through the damping 

mechanisms (radiation, collisions). If 𝛾 were zero (no damping), then at 

steady state for 𝜔 ≠ 𝜔0, there would be no continuous energy absorption; the 

electron would oscillate without loss. On resonance (𝜔 = 𝜔0) with 𝛾 = 0, the 

amplitude 𝑥0 would theoretically go to infinity, which is unphysical and 
highlights the necessity of damping in any real system. 

So, this 𝑖𝛾𝜔 term is not just a mathematical artifact; it's crucial for capturing 

two vital physical effects: the phase relationship between the response and 
the drive, and the mechanism by which energy is transferred from the field to 
the material (which is the heart of absorption). The three hyphens suggest this 
line of thought concludes for now. 
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We've successfully modeled the behavior of a single bound electron. Now, 
the crucial step is to connect this microscopic picture to a macroscopic 
quantity that describes the material's overall response. This is From Single 
Electron to Macroscopic Polarization. We are Building the Polarization 
Vector P. 

• First, let's consider the Instantaneous dipole moment for one oscillator. 
An electric dipole moment arises when there's a separation of positive and 

negative charge. Our electron, with charge 𝑞, is displaced by 𝑥(𝑡) from its 
equilibrium position (which we can think of as the location of the positive 
nucleus). So, the induced dipole moment for this single electron, let's call it 

𝑝𝑒𝑙(𝑡) (p sub e l of t), is given by: 

𝑝𝑒𝑙(𝑡) = 𝑞 𝑥(𝑡) 

Since we found 𝑥(𝑡) = 𝑥0 𝑒
𝑖𝜔𝑡, we can write: 

𝑝𝑒𝑙(𝑡) = 𝑞 𝑥0 𝑒
𝑖𝜔𝑡 



This 𝑝𝑒𝑙(𝑡) is a vector, and if 𝑥(𝑡) is along the x-direction, then 𝑝𝑒𝑙(𝑡) is also 
along the x-direction. Its units would be Coulomb-meters. 

• Next, we need to consider that a material contains many such oscillators. 

The slide introduces the Number density of identical oscillators: 𝑁 (capital 

N). This 𝑁 represents the number of these active, oscillating electrons per 

unit volume. Its units are 𝑚−3 (inverse cubic meters). We are assuming for 

now that all these oscillators are identical (same 𝑞, 𝑚, 𝜔0, 𝛾) and that they 
respond independently to the field. 

• With these, we can define the Macroscopic polarization 𝑃(𝑡) (capital P of 

t). This is defined as the dipole moment per unit volume. So, if we have 𝑁 

identical oscillators per unit volume, each with dipole moment 𝑝𝑒𝑙(𝑡), then 

the macroscopic polarization is simply 𝑁 times 𝑝𝑒𝑙(𝑡): 

𝑃(𝑡) = 𝑁 𝑝𝑒𝑙(𝑡) = 𝑁 𝑞 𝑥0 𝑒
𝑖𝜔𝑡  

If the electric field 𝐸 was polarized along 𝑥̂ (x-hat), causing a displacement 𝑥0 

along 𝑥̂, then 𝑃 will also be a vector along 𝑥̂. The slide writes this as: 

𝑃(𝑡) = 𝑁 𝑞 𝑥0 𝑒
𝑖𝜔𝑡  𝑥̂ 

This implies that 𝑥0 here is the scalar complex amplitude of the x-component 

of displacement. 𝑃(𝑡) is a vector quantity, and its units are Coulomb per 
square meter (C/m²), which is dipole moment (C·m) per volume (m³). 

This 𝑃(𝑡) is a crucial macroscopic field. It represents the collective response 
of all the microscopic electron oscillators in the material to the incident 

electric field. Our next step will be to link this 𝑃(𝑡) back to the electric field 

𝐸(𝑡) that created it, and then to the refractive index. 
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Now that we have an expression for the macroscopic polarization 𝑃(𝑡) arising 
from our microscopic model, we need to connect it to standard 
electromagnetic theory. 

The first bullet point introduces the Linear-response definition links 𝑃 to the 

field 𝐸: 

𝑃 = 𝜀0𝜒(𝜔)𝐸 

Here: 

𝑃 is the macroscopic polarization vector (we're using complex amplitudes 

now, so 𝑃 and 𝐸 are complex vector amplitudes, 𝑃(𝜔) and 𝐸(𝜔)). 

𝜀0 (epsilon naught) is the permittivity of free space. 

𝜒(𝜔) (chi of omega) is the electric susceptibility of the material. It's a 
dimensionless complex quantity that measures how easily the material 
becomes polarized in response to an applied electric field. Crucially, it's 
frequency-dependent. This equation assumes a linear, isotropic medium. 

The second bullet defines 𝜒(𝜔) further: 𝜒(𝜔) = 𝜀r − 1: 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦. 

The third bullet defines 𝜀r =
𝜀

𝜀0
: relative dielectric constant. 

Finally, the fourth bullet point reminds us of a fundamental relationship from 
electromagnetism: Recall relation between refractive index and dielectric 

constant (in non-magnetic media, where 𝜇r ≈ 1 (mu sub r is approximately 
1, meaning the relative permeability is close to that of vacuum)): 

𝑛2(𝜔) = 𝜀r(𝜔) = 1 + 𝜒(𝜔) 

This equation states that the square of the complex refractive index 𝑛(𝜔) is 

equal to the complex relative permittivity 𝜀r(𝜔), which in turn is equal to 1 

plus the complex electric susceptibility 𝜒(𝜔). 

Our goal is now clear: 



1. We have 𝑃 from our microscopic model: 𝑃 = 𝑁𝑞 𝑥0 𝑒
𝑖𝜔𝑡𝑥̂. 

2. We have 𝐸, the driving field: 𝐸 = 𝐸0 𝑒
𝑖𝜔𝑡𝑥̂ (using 𝐸0 as the complex 

amplitude of 𝐸). 

3. We can use 𝑃 = 𝜀0𝜒𝐸 to find 𝜒 in terms of our microscopic parameters (𝑁, 

𝑞, 𝑥0

𝐸0
). 

4. Then, we can use 𝑛2 = 1 + 𝜒 to find the complex refractive index 𝑛 in terms 
of these microscopic parameters. This will be the grand link! 

The three hyphens at the bottom of the slide suggest we are about to embark 
on this derivation. 
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This slide is titled Deriving the Complex Refractive Index, and it describes 
the Algebraic Connection to Oscillator Parameters. We're about to connect 
all the pieces. 

* The first bullet point instructs us to: Combine previous expressions, 

substitute 𝑃 and 𝑥0. 

Let's recall: 

1. From the microscopic model, the polarization is 

𝑃(𝑡) = 𝑁𝑞𝑥0  𝑒
𝑖𝜔𝑡𝑥̂. 

If 

𝐸(𝑡) = 𝐸0_field𝑒
𝑖𝜔𝑡𝑥̂ 

(where 𝐸0_field is the amplitude of the E-field driving the oscillator), then the 

complex amplitude of polarization is 

𝑃amp = 𝑁𝑞𝑥0. 



2. The relation between polarization and field is 

𝑃amp = 𝜀0𝜒(𝜔)𝐸0_field. 

3. So, 

𝜒(𝜔) =
𝑃amp

𝜀0 𝐸0_field
=

𝑁𝑞𝑥0

𝜀0 𝐸0_field
. 

4. And we found 

𝑥0 =
𝑞𝐸0_field

𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

. 

(Here, 𝐸0_field is the amplitude of the E field in the expression for 𝑥0). 

Substituting 𝑥0 into the expression for 𝜒(𝜔): 

𝜒(𝜔) =
𝑁𝑞

𝜀0 𝐸0_field
⋅

𝑞𝐸0_field

𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

. 

The 𝐸0_field cancels out, as it should, because 𝜒 is a material property. 

𝜒(𝜔) =
𝑁𝑞2

𝜀0 𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

. 

Now, we use the relation 

𝑛2(𝜔) = 1 + 𝜒(𝜔). 

Substituting our 𝜒(𝜔): 

𝑛2(𝜔) = 1 +
𝑁𝑞2

𝜀0 𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

. 

This is the equation presented on the slide. It's a monumental result! It gives 

us the square of the complex refractive index, 𝑛2, directly in terms of: * 𝑁: 

number density of oscillators * 𝑞: charge of the electron * 𝜀0: permittivity of 

free space * 𝑚: mass of the electron * 𝜔0: natural resonant frequency of the 



oscillators * 𝜔: frequency of the incident light * 𝛾: damping rate of the 
oscillators 

* The second bullet point draws a crucial conclusion: Note the complex 

denominator → 𝑛 is complex. 

Indeed, the term 

(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔) 

in the denominator is complex due to the presence of 𝑖𝛾𝜔. Therefore, the 

entire second term on the right-hand side is complex. Adding 1 to it means 

that 𝑛2(𝜔) is complex. If 𝑛2 is complex, then 𝑛 itself must be complex. 

And we re-state its form: Explicitly write 𝑛(𝜔) = 𝑛′(𝜔) − 𝑖𝜅(𝜔). 

This equation for 𝑛2(𝜔) is the heart of the classical Lorentz model for optical 

properties. From it, we can extract the real part 𝑛′(𝜔) (related to dispersion) 

and the imaginary part 𝜅(𝜔) (related to absorption). 
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Now that we have the expression for 𝑛2(𝜔) = 1 +
𝑁𝑞2

𝜀0𝑚(𝜔0
2−𝜔2+𝑖𝛾𝜔)

, let's make 

some important observations about the behavior of its real and imaginary 

parts, 𝑛′(𝜔) and 𝜅(𝜔), particularly concerning their symmetry with respect to 

the resonant frequency 𝜔0. 

The slide points out: 

* Important observation: 

* Real part 𝑛′(𝜔) ↔ even function of 𝜔 − 𝜔0. This statement describes the 

symmetry of the dispersive part of the refractive index around the resonance. 

If we plot 𝑛′(𝜔) versus 𝜔, the characteristic "anomalous dispersion" shape it 

takes around 𝜔0 is such that if you consider the deviation from some 

background value, it looks somewhat like an odd function of (𝜔 − 𝜔0). 



However, the actual mathematical function for 𝑛′(𝜔) when extracted from 𝑛2 

has a term (𝜔0
2 − 𝜔2) in its numerator (as we'll see soon). This term (𝜔0

2 − 𝜔2) 

is an even function of 𝜔 if centered at 𝜔 = 0, but it's not immediately obvious 

it's an even function of (𝜔 − 𝜔0). 

Let's think about the shape of anomalous dispersion. It typically goes up, then 
sharply down through resonance, then back up. This shape itself is odd-

symmetric around 𝜔0 if we subtract the value at 𝜔0 (or far from resonance). 

The slide says "even function of 𝜔 − 𝜔0". This might be referring to specific 
approximations or a different way of looking at it. For instance, the 
denominator magnitude is 

(𝜔0
2 − 𝜔2)2 + (𝛾𝜔)2, 

where the (𝜔0
2 − 𝜔2) part is symmetric in its deviation from resonance in a 

particular way. 

Often, the absorption profile 𝜅(𝜔) is an even function (Lorentzian peak) 

centered at 𝜔0. The real part 𝑛′(𝜔) is related to 𝜅(𝜔) by the Kramers–Kronig 
relations, which connect an even function to an odd function (and vice versa 

through Hilbert transforms). So, if 𝜅(𝜔) is an even function of (𝜔 − 𝜔0), then 

𝑛′(𝜔) minus its value at infinity will be an odd function of (𝜔 − 𝜔0). 

The slide states 𝑛′ is an even function of 𝜔 − 𝜔0. This is a bit unusual for the 
standard dispersive lineshape. A typical dispersive lineshape is odd around 

𝜔0. Perhaps "even" refers to the fact that the effect is similar for 𝜔0 + 𝛥𝜔 and 

𝜔0 − 𝛥𝜔 in terms of magnitude of change but opposite in sign. Let me 

proceed with what the slide says and we might clarify this with the explicit 
forms. 

* Imaginary part 𝜅(𝜔) ↔ odd around 𝜔0 and controls absorption strength. 

Similarly, 𝜅(𝜔) is typically a Lorentzian function, which is an even function of 
(𝜔 − 𝜔0), peaking at 𝜔 = 𝜔0. The slide says 𝜅 is odd around 𝜔0. This is also 



contrary to the typical Lorentzian absorption profile. Let me reconsider. 
Perhaps the slide is referring to the numerators before full separation: The 

term added to 1 to get 𝑛2 is proportional to 

1

(𝜔0
2 − 𝜔2) + 𝑖𝛾𝜔

. 

To get 𝑛 = √1 + 𝜒, if 𝜒 is small, then 𝑛 ≈ 1 +
𝜒

2
. So 𝑛′(𝜔) − 1 ≈ Re (

𝜒

2
) and 

−𝜅(𝜔) ≈ Im (
𝜒

2
). 𝜒 is proportional to 

(𝜔0
2 − 𝜔2) − 𝑖𝛾𝜔

(𝜔0
2 − 𝜔2)2 + (𝛾𝜔)2

. 

So, Re(𝜒) has (𝜔0
2 − 𝜔2) in the numerator. This IS an even function of 𝜔 if 

𝜔0 = 0, but an odd function of (𝜔 − 𝜔0) under the near-resonance 

approximation (𝜔0
2 − 𝜔2 ≈ 2𝜔0(𝜔0 − 𝜔)). And Im(𝜒) has −𝛾𝜔 in the 

numerator. This is an odd function of 𝜔. But the absorption coefficient 𝛼 (and 

𝜅) is positive. This slide's statement about even/odd symmetry seems to be 

non-standard or refers to a specific context not immediately apparent from 

the general formula of 𝑛2. I will proceed by describing the typical shapes and 
will highlight that these are obtained especially in the near-resonance 

approximation. Standardly, 𝜅(𝜔) (absorption) is symmetric (even-like) around 

𝜔0, forming a peak. And 𝑛′(𝜔) (dispersion) has an antisymmetric (odd-like) 

shape around 𝜔0. 

This point about symmetry is critical for lineshape analysis, and we'll see it 

more clearly when we derive the explicit forms for 𝑛′(𝜔) and 𝜅(𝜔), especially 
under the near-resonance approximation. It's possible the slide intends to 
point towards a symmetry in the mathematical terms rather than the final 

plotted shape directly, or it is using (𝜔 − 𝜔0) in a specific way for the 
expansion of the denominator terms. We will revisit this when we have the 
explicit functions. 



Let's assume for a moment the slide is correct and there's a nuance I'm 
missing in this general form. The statement "controls absorption strength" for 

𝜅 is absolutely correct – a larger 𝜅 means stronger absorption. 
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This slide provides a simple yet effective visual: the Complex Refractive 

Index: 𝑛(𝜔) = 𝑛′(𝜔) − 𝑖𝜅(𝜔) plotted in the complex plane. 

Let's break down the diagram: 

* It's an Argand diagram. The horizontal axis is the real axis, labeled Re[𝑛(𝜔)] 

or 𝑛′(𝜔) (Real part of 𝑛(𝜔) or 𝑛′(𝜔)). * The vertical axis is the imaginary axis, 

labeled Im[𝑛(𝜔)] (Imaginary part of 𝑛(𝜔)). The origin (0,0) is marked. * The 

complex refractive index 𝑛(𝜔) is represented as a blue vector starting from 
the origin and ending at a point in the fourth quadrant. * The real part of this 

vector, its projection onto the horizontal axis, is 𝑛′(𝜔). This is shown as a 

green horizontal vector from the origin to the point (𝑛′, 0). * The imaginary part 

of 𝑛(𝜔) is −𝜅(𝜔) (minus kappa of 𝜔), consistent with our definition 𝑛 = 𝑛′ −

𝑖𝜅. This is shown as a red vertical vector pointing downwards from the point 
(𝑛′, 0) to the tip of the 𝑛(𝜔) vector. Its length is 𝜅(𝜔), and it's directed along 

the negative imaginary axis. The label −𝜅(𝜔) is placed on the vertical axis, 

indicating a point below the origin if 𝑛′ were zero. 

This diagram neatly visualizes how the complex refractive index 𝑛(𝜔) is 

composed of its real part 𝑛′(𝜔) and its imaginary part −𝜅(𝜔). The length of 

the blue vector would be the magnitude |𝑛(𝜔)| = √𝑛′2 + 𝜅2, and its angle 

with the positive real axis would be the argument or phase of 𝑛(𝜔). As the 

frequency 𝜔 changes, both 𝑛′ and 𝜅 change, so the tip of this blue vector 𝑛(𝜔) 

would trace out a path in the complex plane, which is characteristic of the 
material's resonant behavior. 
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This slide is titled Wave Propagation with a Complex 𝑛, and it focuses on 
Separating Phase and Amplitude Evolution. This is essentially a recap and 
emphasis of what we derived on page 9. 

* The first bullet point says: Write the field again emphasizing individual 
factors: 

The electric field 𝐸(𝑧, 𝑡) inside the medium is given as: 

𝐸(𝑧, 𝑡) = 𝐸0𝑒
−𝜅𝐾0𝑧exp[𝑖(𝜔𝑡 − 𝑛′𝐾0𝑧)]𝑥̂ 

Let's re-emphasize the parts: * 𝐸0𝑥̂: This represents the initial vector 

amplitude and polarization of the wave at 𝑧 = 0. * 𝑒−𝜅𝐾0𝑧: This is the 

amplitude attenuation factor. It's a real, decaying exponential. 𝜅 (kappa) is 

the extinction coefficient (imaginary part of 𝑛), 𝐾0 is the free-space 
wavenumber. This term shows how the wave's amplitude diminishes as it 

propagates through the absorbing medium. * exp[𝑖(𝜔𝑡 − 𝑛′𝐾0𝑧)]: This is the 
phase evolution factor. It's a complex exponential representing the 

oscillation. * 𝑛′𝐾0: This is the effective wavenumber inside the medium for the 

phase. 𝑛′ (n prime) is the real part of the refractive index. This term dictates 

the wavelength in the medium 𝜆med =
2𝜋

𝑛′𝐾0
=

𝜆0

𝑛′
 and the phase velocity. 

* The second bullet point gives the Phase velocity inside the medium, 𝑣𝑝ℎ  

(vee sub pee aitch): 

𝑣𝑝ℎ =
𝜔

𝑛′𝐾0
 Since 𝐾0 =

𝜔

𝑐
 (omega over 𝑐, the speed of light in vacuum), we can 

substitute this: 

𝑣𝑝ℎ =
𝜔

𝑛′ (
𝜔
𝑐 )

=
𝑐

𝑛′
 

So, 𝑣𝑝ℎ =
𝑐

𝑛′
. This is a fundamental result: the phase velocity of light inside a 

medium is the speed of light in vacuum divided by the real part of the 



refractive index of the medium. If 𝑛′ > 1 (as is common for most materials at 

optical frequencies), then 𝑣𝑝ℎ < 𝑐, meaning light (phase) travels slower in the 

medium. Since 𝑛′ can be frequency dependent (𝑛′(𝜔)), the phase velocity is 

also frequency dependent, which is the root of dispersion. 

* The third bullet point simply says: Always 1. This appears to be an 
incomplete or mistyped fragment, possibly intended to state a condition like 

𝑛′ ≥ 1 (n prime is greater than or equal to 1) for typical passive media, or 𝜅 ≥

0 (kappa is greater than or equal to 0) for absorption (not gain). Given the 

context of phase velocity 𝑐

𝑛′
, if it meant 𝑛′ is always 1, then there would be no 

change in phase velocity, which is generally not true for materials. If it refers 

to 𝜅, 𝜅 is usually positive for absorption. For our purposes, we'll assume 𝑛′ is 

generally different from 1, and 𝜅 is positive for absorbing media. The 

backslash before (1) suggests it might be a remnant of LaTeX formatting. 

This slide neatly summarizes how the complex 𝑛 elegantly separates the 

description of amplitude decay (absorption via 𝜅) and phase propagation 

(dispersion via 𝑛′). 
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Continuing our discussion of wave propagation with a complex refractive 
index, this page introduces the concept of the Intensity attenuation length 

𝐿1/𝑒 (L sub one over e). 

The first bullet point defines the Intensity attenuation length 𝐿1/𝑒 (L sub one 

over e). It is defined by the condition where the electric field amplitude* 𝐸 has 

decayed to 1/𝑒 of its initial value 𝐸0. 

So, at 𝑧 = 𝐿1/𝑒, we have 

𝐸(𝑧 = 𝐿1/𝑒) =
𝐸0

𝑒
. 



We know the field amplitude decays as 

𝐸0𝑒
−𝜅𝐾0𝑧. 

Therefore, 

𝐸0𝑒
−𝜅𝐾0𝐿1/𝑒 =

𝐸0

𝑒
. 

This implies 

𝑒−𝜅𝐾0𝐿1/𝑒 = 𝑒−1. 

Taking the natural logarithm of both sides (or just comparing exponents): 

−𝜅𝐾0𝐿1/𝑒 = −1. 

Solving for 𝐿1/𝑒, we get: 

𝐿1/𝑒 =
1

𝜅𝐾0
. 

This is the distance over which the electric field amplitude drops to 1/𝑒 (about 
37%) of its initial value. 

The slide further expresses this in terms of the free-space wavelength 𝜆0. 
Since 

𝐾0 =
2𝜋

𝜆0
, 

we can substitute this: 

𝐿1/𝑒 =
1

𝜅 (
2𝜋
𝜆0

)
=

𝜆0

2𝜋𝜅
. 

It's very important to note that this 𝐿1/𝑒  is for the field amplitude. Often in 

spectroscopy, one refers to the absorption length for intensity. Since intensity 

𝐼 is proportional to 𝐸2, the intensity decays as 



𝑒−2𝜅𝐾0𝑧. 

So, the intensity attenuation length, where intensity drops to 𝐼0/𝑒, would be 

1

2𝜅𝐾0
, 

which is half the length defined here for the field. The definition on the slide is 

explicitly for the field amplitude 𝐸. 

* The second bullet point makes a profound statement: Power loss is 
intrinsically tied to the same microscopic parameters that set dispersion; 
this reciprocity becomes clearer on next slides. 

This is a reiteration of the deep connection between absorption 𝜅 (related to 

power loss) and dispersion 𝑛′ (related to phase velocity). Both 𝑛′ and 𝜅 arise 
from the same denominator 

(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔) 

in our expression for 𝑛2(𝜔), which contains the microscopic parameters 𝜔0 

and 𝛾. This common origin means that if you know the absorption spectrum 

𝜅(𝜔) over a wide range of frequencies, you can, in principle, calculate the 

dispersion spectrum 𝑛′(𝜔), and vice-versa. This is formalized by the Kramers-

Kronig relations, which we'll likely encounter later. 

The three hyphens suggest the end of this section before moving to a new 
idea. 
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We now consider a useful simplification. This slide is titled: Simplification for 

Dilute Gases, where 𝑛 − 1 is much, much less than 1. This condition means 
the refractive index 'n' is very close to unity. 

The subtitle is Linearizing 𝑛2 around Unity. 



* The first bullet point gives a practical context: For most gases at low 

pressure, 𝑛′ (the real part of n) is approximately 1.000 – 1.005. This means 𝑛′ 

is indeed very close to 1. For example, air at STP has 𝑛′ ≈ 1.00029. In such 

cases, (𝑛′ − 1) is a very small number. We also assume 𝜅 is small. 

* The second bullet point shows how to Expand 𝑛2 − 1 when 𝑛 is close to 1: 

We know that 

𝑛2 − 1 = (𝑛 + 1)(𝑛 − 1) 

Since 𝑛 ≈ 1, the term 

(𝑛 + 1) ≈ (1 + 1) = 2 

So, we can approximate: 

𝑛2 − 1 ≈ 2(𝑛 − 1) 

This is a very handy linearization. 

* The third bullet point says: Drop terms of order (𝑛 − 1)2. The refractive 
index becomes... This implies that if we were to do a Taylor expansion, we are 

keeping only the first-order term in (𝑛 − 1). From 

𝑛2 − 1 ≈ 2(𝑛 − 1) 

we can solve for 𝑛: 

𝑛 − 1 ≈
𝑛2 − 1

2
 

So, 

𝑛 ≈ 1 +
𝑛2 − 1

2
 

Recall our full expression for 𝑛2 from page 19: 



𝑛2(𝜔) = 1 +
𝑁𝑞2

𝜖0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

 

Therefore, 

𝑛2(𝜔) − 1 =
𝑁𝑞2

𝜖0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

 

Using our approximation 𝑛 ≈ 1 +
𝑛2−1

2
, we can substitute the expression for 

𝑛2(𝜔) − 1: 

𝑛(𝜔) ≈ 1 +
1

2
⋅

𝑁𝑞2

𝜖0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

 

𝑛(𝜔) ≈ 1 +
𝑁𝑞2

2𝜖0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

 

This simplified expression for 𝑛(𝜔) itself (not 𝑛2(𝜔)) is extremely useful for 

dilute gases where 𝑛 is close to 1. It makes extracting the real part 𝑛′(𝜔) and 

imaginary part 𝜅(𝜔) much more straightforward because 𝑛(𝜔) − 1 is directly 
given by a single complex fraction. 
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This page presents the result of the simplification for dilute gases that we just 
derived. 

The equation for the complex refractive index 𝑛(𝜔) under this approximation 

(𝑛 − 1 ≪ 1) is: 

𝑛(𝜔) = 1 +
1

2𝜖0𝑚
⋅

𝑁𝑞2

𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔

 

This can be written more compactly as: 

𝑛(𝜔) = 1 +
𝑁𝑞2

2𝜖0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

 



This equation directly gives 𝑛(𝜔). Since 𝑛(𝜔) = 𝑛′(𝜔) − 𝑖𝜅(𝜔), we can also 
write this as: 

𝑛′(𝜔) − 𝑖𝜅(𝜔) − 1 =
𝑁𝑞2

2𝜖0𝑚(𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔)

 

So, 𝑛′(𝜔) − 1 is the real part of the fraction on the right, and −𝜅(𝜔) is the 
imaginary part of the fraction on the right. 

* The bullet point highlights the Advantage of this form: real and imaginary 
parts now follow directly by multiplying numerator and denominator with 
the complex conjugate of the denominator. 

The complex denominator is 𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔. 

Its complex conjugate is 𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔. 

To rationalize the fraction (i.e., make the denominator real), we multiply both 
the numerator and the denominator by this complex conjugate. 

The numerator will become 𝑁𝑞2(𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔). 

The denominator will become 

2𝜖0𝑚[(𝜔0
2 − 𝜔2)2 − (𝑖𝛾𝜔)2] = 2𝜖0𝑚[(𝜔0

2 − 𝜔2)2 + (𝛾𝜔)2]. 

This denominator is now purely real. 

So, the fraction becomes: 

𝑁𝑞2(𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔)

2𝜖0𝑚[(𝜔0
2 − 𝜔2)2 + (𝛾𝜔)2]

 

From this, we can easily pick out the real and imaginary parts: 

𝑛′(𝜔) − 1 = Real part =
𝑁𝑞2(𝜔0

2 − 𝜔2)

2𝜖0𝑚[(𝜔0
2 − 𝜔2)2 + (𝛾𝜔)2]

 



−𝜅(𝜔) = Imaginary part =
𝑁𝑞2(−𝛾𝜔)

2𝜖0𝑚[(𝜔0
2 − 𝜔2)2 + (𝛾𝜔)2]

 

So, 𝜅(𝜔) =
𝑁𝑞2𝛾𝜔

2𝜖0𝑚[(𝜔0
2−𝜔2)

2
+(𝛾𝜔)2]

. 

These explicit expressions are what we will see on the next slide. This 
approximation makes the algebra much cleaner than trying to take the square 

root of the full complex 𝑛2(𝜔) expression. The three hyphens signal the end of 
this thought. 
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This slide, titled Explicit Expressions — Dispersion Relations, gives us the 
fruits of our labor from the previous page, specifically the results of Isolating 

𝜅(𝜔) (kappa of omega) and 𝑛′(𝜔) (n prime of omega) for the case of dilute 

gases (where 𝑛 ≈ 1). 

* The first bullet point reminds us of the procedure: Multiply by the complex 

conjugate 𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔 in numerator & denominator. We conceptually did 

this on the last slide. 

Now, for the explicit expressions: 

First, for 𝜅(𝜔), the imaginary part of 𝑛 (remember 𝑛 = 𝑛′ − 𝑖𝜅, so 𝜅 is defined 

positively for absorption here): 

𝜅(𝜔) =
𝑁𝑞2

2𝜀0 𝑚
⋅

𝛾𝜔

(𝜔0
2 − 𝜔2)2 + 𝛾2𝜔2

 

Let's verify the terms: 

* 𝑁𝑞2

2𝜀0 𝑚
: This is a prefactor containing the number density 𝑁, charge 𝑞 squared, 

vacuum permittivity 𝜀0, and electron mass 𝑚. * The second fraction has: * 𝛾𝜔 

(gamma omega) in the numerator. 𝛾 is the damping rate, 𝜔 is the driving 



frequency. * (𝜔0
2 − 𝜔2)2 + 𝛾2𝜔2 in the denominator. This is the square of the 

magnitude of 𝜔0
2 − 𝜔2 + 𝑖𝛾𝜔. This term is always positive. 

This 𝜅(𝜔) will be positive if 𝛾 and 𝜔 are positive, which corresponds to 

absorption. The shape of 𝜅(𝜔) as a function of 𝜔 will be a resonant peak, a 

Lorentzian lineshape, centered near 𝜔0. 

Next, for 𝑛′(𝜔), the real part of 𝑛: 

𝑛′(𝜔) = 1 +
𝑁𝑞2

2𝜀0 𝑚
⋅

𝜔0
2 − 𝜔2

(𝜔0
2 − 𝜔2)2 + 𝛾2𝜔2

 

* It starts with 1 + ..., because we derived 𝑛(𝜔) − 1. * The prefactor 𝑁𝑞2

2𝜀0 𝑚
 is the 

same as for 𝜅(𝜔). * The second fraction has: * 𝜔0
2 − 𝜔2 (omega sub zero 

squared minus omega squared) in the numerator. This term changes sign as 

𝜔 passes through 𝜔0. It's positive if 𝜔 < 𝜔0, zero if 𝜔 = 𝜔0, and negative if 

𝜔 > 𝜔0. * The denominator (𝜔0
2 − 𝜔2)2 + 𝛾2𝜔2 is the same as for 𝜅(𝜔). 

The shape of (𝑛′(𝜔) − 1) as a function of 𝜔 will be the characteristic 

"anomalous dispersion" curve, passing through zero at 𝜔 = 𝜔0 (since the 

numerator 𝜔0
2 − 𝜔2 becomes zero there, assuming 𝜔0 ≠ 0). 

These two equations for 𝜅(𝜔) and 𝑛′(𝜔) are fundamental results from the 

classical Lorentz model in the 𝑛 ≈ 1 approximation. They explicitly show how 

absorption (via 𝜅) and dispersion (via 𝑛′) depend on frequency and the 
microscopic parameters of the material. 
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Having derived the explicit expressions for 𝜅(𝜔) and 𝑛′(𝜔), let's reflect on 
their significance. 

• The first bullet point states: These two coupled formulas are called the 

(classical) dispersion relations. Indeed, 𝜅(𝜔) and 𝑛′(𝜔) are not 

independent. They arise from the real and imaginary parts of the same 



underlying complex susceptibility 𝜒(𝜔) (or complex refractive index 𝑛(𝜔)). 
The term "dispersion relations" more generally refers to the Kramers-Kronig 
relations, which are integral relationships connecting the real and imaginary 
parts of any causal linear response function. What we have here are the 
specific algebraic forms derived from our particular classical oscillator 
model. They embody that interconnectedness. 

• The second bullet point highlights a Key insight: same denominator ⇒ 

absorption peak and dispersion inflection share identical spectral width 

𝛾. Let's look back at the expressions for 𝜅(𝜔) and (𝑛′(𝜔) − 1) from the 

previous page. Both have the exact same denominator: (𝜔0
2 − 𝜔2)2 + 𝛾2𝜔2. 

  ○ For 𝜅(𝜔), this denominator, along with the 𝛾𝜔 term in the numerator, 
gives rise to a Lorentzian absorption peak. The width of this peak (e.g., Full 

Width at Half Maximum, FWHM) is determined by the damping constant 𝛾. 

  ○ For (𝑛′(𝜔) − 1), this same denominator governs how rapidly 𝑛′ 

changes with frequency around the resonance 𝜔0. The region where 𝑛′ 
changes most dramatically (the "inflection" region of the S-shaped curve) also 

has a spectral width characterized by 𝛾. 

This is a profound consequence: the physical process that causes damping 

and gives a certain width to the absorption line (𝛾) is the exact same process 

that determines the spectral range over which the refractive index changes 
rapidly (dispersion). They are intrinsically linked. You cannot have sharp 
absorption without associated rapid dispersion over a similar frequency 
range, and vice-versa. This is a manifestation of causality in the system's 
response. 

This shared denominator and the role of 𝛾 in dictating the spectral features of 
both absorption and dispersion is a central takeaway from this model. 
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This slide presents a graph visualizing the Classical Dispersion Relations – 

that is, plots of 𝜅(𝜔) and 𝑛′(𝜔) − 1 versus frequency, based on the formulas 
we derived. 

Let's describe the graph: 

* The horizontal axis is normalized frequency, 𝜔/𝜔0 (omega over omega sub 

zero). The resonance occurs at 𝜔/𝜔0 = 1. The axis ranges roughly from 0.5 to 
1.5. 

* The vertical axis serves for both 𝜅(𝜔) and 𝑛′(𝜔) − 1. The scale ranges from 
approximately -1.20 to +1.20. A horizontal line at zero is clearly visible. 

* The center of the graph, where 𝜔/𝜔0 = 1, is marked with a vertical dashed 

line, indicating the resonant frequency. 

There are two curves plotted: 

1. The red curve is labeled 𝜅(𝜔) (kappa of omega). * This curve represents the 
absorption. It has a characteristic Lorentzian shape: a symmetric bell-

shaped peak. * It is centered precisely at 𝜔/𝜔0 = 1, meaning absorption is 

strongest when the driving frequency 𝜔 matches the natural resonant 

frequency 𝜔0 of the electron oscillators. * The peak value is positive, as 
expected for absorption. * The width of this peak (the Full Width at Half 

Maximum, or FWHM) is related to the damping parameter 𝛾. A larger 𝛾 would 

result in a broader, flatter peak, while a smaller 𝛾 would give a taller, sharper 

peak. 

2. The blue curve is labeled 𝑛′(𝜔) − 1 (n prime of omega minus one). * This 
curve represents the dispersive part of the refractive index (relative to 
vacuum). It has the characteristic S-shape of anomalous dispersion around 

the resonance. * Far below resonance (𝜔/𝜔0 ≪ 1), 𝑛′(𝜔) − 1 is small and 

positive, meaning 𝑛′ > 1 (normal dispersion region, though this plot doesn't 

go far enough to fully show that asymptotic behavior). * As 𝜔 approaches 𝜔0 



from below, 𝑛′(𝜔) − 1 increases. * Precisely at resonance (𝜔/𝜔0 = 1), 

𝑛′(𝜔) − 1 passes through zero, meaning 𝑛′(𝜔0) = 1 (in this simplified model 

for 𝑛 ≈ 1, and assuming 𝜔0 itself isn't zero). This occurs because the 

numerator term (𝜔0
2 − 𝜔2) in the expression for 𝑛′(𝜔) − 1 becomes zero at 

𝜔 = 𝜔0. * As 𝜔 increases beyond 𝜔0, 𝑛′(𝜔) − 1 becomes negative, meaning 

𝑛′ < 1 in this region. It reaches a minimum value. * Far above resonance 

(𝜔/𝜔0 ≫ 1), 𝑛′(𝜔) − 1 approaches zero again from the negative side. The 

region where 𝑛′ decreases* with increasing frequency (around 𝜔/𝜔0 = 1) is 

termed "anomalous dispersion." The slope 𝑑𝑛′

𝑑𝜔
 is negative here. * The points of 

maximum positive and negative slope of 𝑛′(𝜔) occur roughly at the half-

maximum points of the 𝜅(𝜔) curve. 

This graph beautifully illustrates the coupled nature of absorption (𝜅(𝜔)) and 

dispersion (𝑛′(𝜔)). Where absorption is strong and changing rapidly, 
dispersion is also strong and changing rapidly. The characteristic shapes are 
a direct consequence of the underlying physics of a damped, driven 
oscillator. 

The number "251)" at the bottom right seems to be a stray part of a reference 
or term indicator. 
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Now we consider another important approximation: the Near-Resonance 

Approximation. This applies when the driving frequency 𝜔 is very close to the 

resonant frequency 𝜔0, specifically when the magnitude of their difference, 
|𝜔 − 𝜔0|, is much, much less than 𝜔0 itself. This allows for further 

simplification of our expressions for 𝜅(𝜔) and 𝑛′(𝜔), leading to what are often 

called Lorentzian Absorption and Derivative-Like Dispersion forms. 

• The first step is to Expand 𝜔0
2 − 𝜔2 under this near-resonance condition: 

  𝜔0
2 − 𝜔2 = (𝜔0 − 𝜔)(𝜔0 + 𝜔) 



  Since 𝜔 ≈ 𝜔0, we can approximate 𝜔0 + 𝜔 ≈ 𝜔0 + 𝜔0 = 2𝜔0. 

  So, 𝜔0
2 − 𝜔2 ≈ (𝜔0 − 𝜔)(2𝜔0) = 2𝜔0(𝜔0 − 𝜔). 

  The slide has written this as approximately 2𝜔(𝜔0 − 𝜔), which is also 

valid since 𝜔 ≈ 𝜔0. This form is convenient. 

  Also, in the term 𝛾𝜔 that appears, we can approximate 𝜔 ≈ 𝜔0, so 𝛾𝜔 ≈

𝛾𝜔0. 

• The second bullet instructs us to: Insert into previous relations; obtain 
compact Lorentzian forms. 

  Let's use the expressions for 𝜅(𝜔) and 𝑛′(𝜔) from page 26: 

  𝜅(𝜔) =
𝑁𝑞2

2𝜖0 𝑚
⋅

𝛾𝜔

(𝜔0
2−𝜔2)

2
+𝛾2𝜔2

 

  𝑛′(𝜔) = 1 +
𝑁𝑞2

2𝜖0  𝑚
⋅

𝜔0
2−𝜔2

(𝜔0
2−𝜔2)

2
+𝛾2𝜔2

 

  Let's work on the denominator first: 

  (𝜔0
2 − 𝜔2)2 + 𝛾2𝜔2 

  Using 𝜔0
2 − 𝜔2 ≈ 2𝜔0(𝜔0 − 𝜔) and 𝛾𝜔 ≈ 𝛾𝜔0: 

   

Denom ≈ (2𝜔0(𝜔0 − 𝜔))2 + (𝛾𝜔0)
2 = 4𝜔0

2(𝜔0 − 𝜔)2 + 𝛾2𝜔0
2

= 𝜔0
2[4(𝜔0 − 𝜔)2 + 𝛾2] 

  This can be rewritten as: 

  𝜔0
2 ⋅ 4 ⋅ [(𝜔0 − 𝜔)2 + (

𝛾

2
)
2

] or 𝜔0
2 ⋅ 4 ⋅ [(𝜔 − 𝜔0)

2 + (
𝛾

2
)
2

] since 

(𝜔0 − 𝜔)2 = (𝜔 − 𝜔0)
2. 

  Now for 𝜅(𝜔): 



  Numerator term: 𝛾𝜔 ≈ 𝛾𝜔0. 

  So, 

  𝜅(𝜔) ≈
𝑁𝑞2

2𝜖0 𝑚
⋅

𝛾𝜔0

𝜔0
2⋅4⋅[(𝜔−𝜔0)

2+(
𝛾

2
)
2
]
 

  𝜅(𝜔) ≈
𝑁𝑞2𝛾𝜔0

8𝜖0 𝑚𝜔0
2 ⋅

1

(𝜔−𝜔0)
2+(

𝛾

2
)
2 

  𝜅(𝜔) ≈
𝑁𝑞2𝛾

8𝜖0 𝑚𝜔0
⋅

1

(𝜔−𝜔0)
2+(

𝛾

2
)
2 

  To match the standard Lorentzian form which often has 𝛤/2 or 𝛾/2 in the 

numerator (where 𝛤 or 𝛾 is FWHM), the slide presents: 

  𝜅(𝜔) =
𝑁𝑞2

8𝜖0 𝑚𝜔0
⋅

𝛾

(𝜔−𝜔0)
2+(

𝛾

2
)
2 

  This form implies that 𝛾 here is indeed the FWHM of the Lorentzian peak 

for 𝜅(𝜔) when plotted against 𝜔. The (𝛾

2
) is the Half Width at Half Maximum 

(HWHM). 

  Now for 𝑛′(𝜔): 

  Numerator term: 𝜔0
2 − 𝜔2 ≈ 2𝜔0(𝜔0 − 𝜔). 

  𝑛′(𝜔) − 1 ≈
𝑁𝑞2

2𝜖0 𝑚
⋅

2𝜔0(𝜔0−𝜔)

𝜔0
2⋅4⋅[(𝜔−𝜔0)

2+(
𝛾

2
)
2
]
 

  𝑛′(𝜔) − 1 ≈
𝑁𝑞2⋅2𝜔0(𝜔0−𝜔)

8𝜖0 𝑚𝜔0
2 ⋅

1

(𝜔−𝜔0)
2+(

𝛾

2
)
2 

  𝑛′(𝜔) − 1 ≈
𝑁𝑞2(𝜔0−𝜔)

4𝜖0 𝑚𝜔0
⋅

1

(𝜔−𝜔0)
2+(

𝛾

2
)
2 

  So, the slide gives: 



  𝑛′(𝜔) = 1 +
𝑁𝑞2

4𝜖0  𝑚𝜔0
⋅

(𝜔0−𝜔)

(𝜔−𝜔0)
2+(

𝛾

2
)
2 

  This can also be written as: 

  𝑛′(𝜔) = 1 −
𝑁𝑞2

4𝜖0  𝑚𝜔0
⋅

(𝜔−𝜔0)

(𝜔−𝜔0)
2+(

𝛾

2
)
2 

  This form for 𝑛′(𝜔) − 1 is proportional to 

  
(𝜔−𝜔0)

(𝜔−𝜔0)
2+(

𝛾

2
)
2, 

  which has the shape of the derivative of a Lorentzian function, hence 
"derivative-like dispersion." 

These near-resonance forms are extremely common in spectroscopy 
because many experiments probe frequencies very close to an atomic or 

molecular resonance. The parameter 𝛾 is the linewidth (FWHM) of the 
absorption. 
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Let's make some Observations based on these near-resonance expressions 

for 𝜅(𝜔) and 𝑛′(𝜔) that we just derived: 

𝜅(𝜔) = [Constant1] ⋅
𝛾

(𝜔 − 𝜔0)
2 + (𝛾/2)2

 

𝑛′(𝜔) = 1 + [Constant2] ⋅
𝜔0 − 𝜔

(𝜔 − 𝜔0)
2 + (𝛾/2)2

 

* First observation: 𝜅(𝜔) is symmetric, peaks at 𝜔0. Looking at the expression 

for 𝜅(𝜔), the frequency dependence is in the term (𝜔 − 𝜔0)
2 in the 

denominator. Since it's squared, 𝜅(𝜔) will have the same value for a detuning 

𝜔 − 𝜔0 = +𝛥𝜔 as for 𝜔 − 𝜔0 = −𝛥𝜔. Thus, the lineshape is symmetric 

around 𝜔0. 



The denominator is minimized when (𝜔 − 𝜔0)
2 = 0, i.e., when 𝜔 = 𝜔0. At this 

point, 𝜅(𝜔) reaches its maximum value. So, the absorption peak is centered 

at the resonant frequency 𝜔0. This is the standard Lorentzian profile. 

* Second observation: 𝑛′(𝜔) is antisymmetric, crosses 𝑛′ = 1 at 𝜔0. Let's look 
at 

𝑛′(𝜔) − 1 = [Constant2] ⋅
𝜔0 − 𝜔

(𝜔 − 𝜔0)
2 + (𝛾/2)2

. 

The denominator 

(𝜔 − 𝜔0)
2 + (𝛾/2)2 

is symmetric around 𝜔0. 

The numerator term 𝜔0 − 𝜔 changes sign as 𝜔 passes through 𝜔0. 

If 𝜔 < 𝜔0, then 𝜔0 − 𝜔 is positive. 

If 𝜔 > 𝜔0, then 𝜔0 − 𝜔 is negative. 

If 𝜔 = 𝜔0, then 𝜔0 − 𝜔 is zero. 

Therefore, 𝑛′(𝜔) − 1 is an antisymmetric function of 𝜔 − 𝜔0. 

When 𝜔 = 𝜔0, the numerator 𝜔0 − 𝜔 becomes zero, so 𝑛′(𝜔0) − 1 = 0. This 

means 𝑛′(𝜔0) = 1. 

This behavior corresponds to the anomalous dispersion shape we saw in the 
graph on page 28. 

* Third observation: Extremal dispersion slopes at 𝜔m = 𝜔0 ± 𝛾/2. The 

"dispersion slope" refers to 𝑑𝑛′

𝑑𝜔
. If you take the derivative of 𝑛′(𝜔) with respect 

to 𝜔 and set it to zero to find the extrema of the slope (i.e., points of inflection 

of 𝑛′(𝜔) itself, or where 𝑑𝑛′

𝑑𝜔
 is max/min), you'll find these points occur at 𝜔 =

𝜔0 + 𝛾/2 and 𝜔 = 𝜔0 − 𝛾/2. 



These frequencies, 𝜔0 ± 𝛾/2, are precisely where the absorption profile 

κ(ω)𝜅(𝜔) drops to half of its maximum value (the Half Width at Half Maximum 

points). This again underscores the intimate connection between the features 
of the absorption and dispersion curves. The region of steepest change in 
refractive index coincides with the shoulders of the absorption peak. 

These observations are fundamental characteristics of the interaction of light 
with a resonant medium under this classical model. The three hyphens signal 
the end of these observations. 
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We now shift our focus to practically relating what we've learned about 𝜅 
(kappa), the imaginary part of the refractive index, to the commonly measured 

absorption coefficient 𝛼 (alpha). This slide is titled Connecting Absorption 

Coefficient 𝛼 to 𝜅. 

The subtitle is Intensity Versus Field Amplitude. 

• The first bullet point reminds us of the definition of Time-averaged 
intensity for a plane wave: 

  𝐼 =
1

2
𝜖0𝑐|𝐸|2 

  Where 𝐼 is the intensity (Power/Area), 𝜖0 is the permittivity of free space, 

𝑐 is the speed of light in vacuum, and |𝐸| is the magnitude of the electric field 
amplitude. We saw this on page 6. For a wave propagating in a medium where 

the real part of 𝑛 is 𝑛′, the speed of light is 𝑐

𝑛′
, and the permittivity can be 

effectively 𝑛′2𝜖0 if we are careful with magnetic properties (or use Poynting 

vector 𝐸 × 𝐻). More simply, 𝐼 is proportional to |𝐸|2. 

• The second bullet point states: Propagating field contains factor 𝑒−2𝜅𝐾0𝑧 
for intensity (square of amplitude). 

  We found that the electric field amplitude 𝐸(𝑧) decays as 



  𝐸amp(𝑧) = 𝐸amp(0) 𝑒−𝜅𝐾0𝑧  (from page 9). 

  Since intensity 𝐼 is proportional to the square of the field amplitude (i.e., 

𝐼 ∝ |𝐸amp|
2), the intensity will decay as: 

   

𝐼(𝑧) ∝ [𝐸amp(0) 𝑒
−𝜅𝐾0𝑧]

2
= [𝐸amp(0)]

2
 𝑒−2𝜅𝐾0𝑧 

  So, 

   

𝐼(𝑧) = 𝐼(0) 𝑒−2𝜅𝐾0𝑧 

  The factor in the exponent for intensity decay is indeed −2𝜅𝐾0𝑧. This 
factor of 2 is critical. 

• The third bullet point then says: Define absorption coefficient 𝛼 [m−1]: 

  The absorption coefficient 𝛼 is typically defined via the differential 
equation for intensity decay: 

   

𝑑𝐼

𝑑𝑧
= −𝛼𝐼 

  This equation states that the rate of decrease of intensity with 

propagation distance 𝑧 is proportional to the intensity 𝐼 itself, with 𝛼 being the 

proportionality constant. The units of 𝛼 are inverse length, commonly m−1 

(inverse meters). Integrating this definition gives the Beer-Lambert law: 

   

𝐼(𝑧) = 𝐼(0) 𝑒−𝛼𝑧 

Our task now is to compare this standard definition 



   

𝐼(𝑧) = 𝐼(0) 𝑒−𝛼𝑧 

with the form we derived from the complex refractive index, 

   

𝐼(𝑧) = 𝐼(0) 𝑒−2𝜅𝐾0𝑧 

to find the direct relationship between 𝛼 and 𝜅. 
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Continuing from the definition of the absorption coefficient 𝛼, we have the 

Beer-Lambert law: If 𝑑𝐼

𝑑𝑧
= −𝛼𝐼, then integrating this gives 𝐼(𝑧) = 𝐼0𝑒

−𝛼𝑧, where 

𝐼0 is the intensity at 𝑧 = 0. 

Now, the slide says: Direct comparison yields... We have two expressions 

for 𝐼(𝑧): 

1. From the definition of 𝛼: 𝐼(𝑧) = 𝐼0𝑒
−𝛼𝑧 2. From the complex refractive index 

𝑛 = 𝑛′ − 𝑖𝜅: 𝐼(𝑧) = 𝐼0𝑒
−2𝜅𝐾0𝑧 (as shown on page 31) 

Comparing the exponents of these two expressions, we must have: −𝛼𝑧 =

−2𝜅𝐾0𝑧 

Dividing by −𝑧 (assuming 𝑧 ≠ 0), we get: 𝛼(𝜔) = 2 𝐾0𝜅(𝜔) 

This is the fundamental relationship between the absorption coefficient 𝛼(𝜔) 

and the extinction coefficient 𝜅(𝜔) (the imaginary part of 𝑛). Remember 𝐾0 is 

the free-space wavenumber. 

Since 𝐾0 =
2𝜋

𝜆0
 (where 𝜆0 is the free-space wavelength), we can also write this 

as: 𝛼(𝜔) = 2 × (
2𝜋

𝜆0
) × 𝜅(𝜔) So, 𝛼(𝜔) =

4𝜋

𝜆0
𝜅(𝜔). 



This is a very important result. It provides a direct way to calculate the 

measurable absorption coefficient 𝛼 if we know 𝜅 from our model, or vice-
versa. 

* The final bullet point states: Therefore 𝛼(𝜔) inherits the Lorentzian profile 

of 𝜅(𝜔). Since 𝛼(𝜔) is just 𝜅(𝜔) multiplied by a factor (2 𝐾0 or 4𝜋

𝜆0
) which is 

positive and, for a given 𝜆0, constant (or slowly varying if 𝜆0 in 𝐾0 is taken as 

wavelength in medium, but here 𝐾0 is free space), the spectral shape of 𝛼(𝜔) 

will be identical to the spectral shape of 𝜅(𝜔). If 𝜅(𝜔) has a Lorentzian 

lineshape (as predicted by our near-resonance model), then 𝛼(𝜔) will also 

have a Lorentzian lineshape, with the same resonant frequency 𝜔0 and the 

same linewidth 𝛾. 

The three hyphens indicate the end of this derivation. This connection is 

essential for experimental spectroscopy, as 𝛼 is often what is directly 

measured. 
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Now we arrive at the Beer-Lambert Law, which is a cornerstone for practical 
measurement of absorption in spectroscopy. This slide discusses 

Implementing 𝛼 in Experiments. 

The first bullet point sets up the scenario: Given a sample length 𝐿: 

Imagine we have a sample of material (e.g., a cuvette filled with a solution, or 

a gas cell) of a known thickness or path length 𝐿. We shine light through it. Let 

𝐼inc(𝜔) be the incident intensity of light at a particular angular frequency 𝜔, 

just before it enters the sample. Let 𝐼trans(𝜔) be the transmitted intensity of 

light at that same frequency 𝜔, after it has passed through the length 𝐿 of the 

sample. According to the Beer-Lambert law (𝐼(𝑧) = 𝐼0𝑒
−𝛼𝑧), the relationship 

between these is: 

𝐼trans(𝜔) = 𝐼inc(𝜔)𝑒−𝛼(𝜔)𝐿  



Here, 𝛼(𝜔) is the absorption coefficient of the sample material at frequency 

𝜔. 

The second bullet point describes a common method for data analysis: 
Taking natural logarithm gives linear relation for data fitting: 

Let's rearrange the Beer-Lambert equation: 

𝐼trans(𝜔)

𝐼inc(𝜔)
= 𝑒−𝛼(𝜔)𝐿  

Or, 

𝐼inc(𝜔)

𝐼trans(𝜔)
= 𝑒+𝛼(𝜔)𝐿  

Now, take the natural logarithm (ln) of both sides: 

ln [
𝐼inc(𝜔)

𝐼trans(𝜔)
] = 𝛼(𝜔)𝐿 

This quantity ln [
𝐼inc

𝐼trans
] is often called the absorbance (or optical density, 

though absorbance is more common in this form). This equation is extremely 

useful. If we measure 𝐼inc(𝜔) and 𝐼trans(𝜔) at a given frequency 𝜔, and we 

know the sample length 𝐿, we can directly calculate 𝛼(𝜔). Alternatively, if we 

vary 𝐿 and measure the corresponding 𝐼trans for a fixed 𝜔, a plot of ln [
𝐼inc

𝐼trans
] 

versus 𝐿 should yield a straight line passing through the origin, with a slope 

equal to 𝛼(𝜔). 

The third bullet point mentions Advantages: (which will likely be detailed on 
the next page). 

This logarithmic form is highly advantageous for experimental determination 

of 𝛼(𝜔). 
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Continuing with the advantages and limitations of using the Beer-Lambert law 

for measuring the absorption coefficient 𝛼(𝜔). 

• The first advantage: Directly extract 𝛼(𝜔) from slope.   As mentioned, 

if you plot the absorbance, ln [
𝐼𝑖𝑛𝑐(𝜔)

𝐼𝑡𝑟𝑎𝑛𝑠(𝜔)
], versus the path length 𝐿 (by using 

samples of different thicknesses, for instance), the slope of the resulting 

straight line is 𝛼(𝜔). More commonly, if 𝐿 is fixed and known, and you 

measure 𝐼𝑖𝑛𝑐  and 𝐼𝑡𝑟𝑎𝑛𝑠, you can calculate 𝛼(𝜔) =
1

𝐿
ln [

𝐼𝑖𝑛𝑐

𝐼𝑡𝑟𝑎𝑛𝑠
]. If you do this as 

a function of frequency 𝜔 (e.g., by tuning your laser or using a spectrometer), 

you can obtain the entire absorption spectrum 𝛼(𝜔). 

• The second advantage: Works for broadband or tunable-laser 
measurements.   This technique is versatile. 

   • With a tunable laser, you can measure 𝐼𝑖𝑛𝑐(𝜔) and 𝐼𝑡𝑟𝑎𝑛𝑠(𝜔) point-

by-point at different frequencies 𝜔 to map out 𝛼(𝜔). 

   • With a broadband source (like a lamp) and a spectrometer, you 

can measure the entire 𝐼𝑖𝑛𝑐(𝜔) and 𝐼𝑡𝑟𝑎𝑛𝑠(𝜔) spectra simultaneously and 

then calculate 𝛼(𝜔) across that spectral range. 

• Now, a crucial Limitation: assumes linear absorption ⇒ valid only at low 
intensities (no saturation).   The Beer-Lambert law, and our derivation of 

𝛼(𝜔) from the classical oscillator model, fundamentally assumes that the 

absorption coefficient 𝛼(𝜔) is a property of the material and the frequency of 
light, but independent of the intensity of the light. This is the regime of linear 
absorption. However, if the light intensity becomes very high (e.g., with 
powerful lasers), this assumption can break down. 

   • Saturation: At high intensities, a significant fraction of the 
absorbing atoms or molecules can be excited to their upper energy state. If 
the upper state becomes heavily populated, there are fewer ground-state 
absorbers available, and the material becomes more transparent. The 



absorption coefficient 𝛼 effectively decreases with increasing intensity. This 
is called saturation of the absorption. 

  The Beer-Lambert law in its simple form (𝛼 independent of 𝐼) is therefore 

only valid at low light intensities where saturation effects are negligible. We 
will explore non-linear optics and saturation in later parts of the course. 

The three hyphens signal the end of this discussion. It's vital to remember this 
limitation when applying Beer-Lambert law in experiments. 
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This slide, titled Power Absorbed in a Finite Volume Element, moves from 

the coefficient 𝛼 to considering the actual Energy Dissipation within the 
material. 

* The first bullet point asks us to: Consider small slab 𝛥𝑧 of cross-section 

area 𝐴. The volume of this slab is then 𝛥𝑉 = 𝐴𝛥𝑧. 

Imagine a beam of light propagating through this small elementary volume of 
material. 

* The second bullet point quantifies the Power removed from the beam 

within 𝛥𝑉: 

Let 𝐼(𝜔) be the intensity of the light at frequency 𝜔 incident on this slab. The 

change in intensity 𝑑𝐼 as light passes through a thickness 𝑑𝑧 is given by 

𝑑𝐼 = −𝛼(𝜔)𝐼(𝜔)𝑑𝑧. 

The power incident on the face of the slab is 

𝑃𝑖𝑛 = 𝐼(𝜔)𝐴. 

The power exiting the slab is 

𝑃𝑜𝑢𝑡 = (𝐼(𝜔) + 𝑑𝐼)𝐴 = (𝐼(𝜔) − 𝛼(𝜔)𝐼(𝜔)𝛥𝑧)𝐴. 



The power absorbed within the slab 𝛥𝑉, let's call it 𝛥𝑃abs(𝜔), is the difference 

𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡: 

𝛥𝑃abs(𝜔) = 𝐼(𝜔)𝐴 − [𝐼(𝜔)𝐴 − 𝛼(𝜔)𝐼(𝜔)𝐴𝛥𝑧]. 

𝛥𝑃abs(𝜔) = 𝛼(𝜔)𝐼(𝜔)𝐴𝛥𝑧. 

Since 𝛥𝑉 = 𝐴𝛥𝑧, we can write this as: 

𝛥𝑃(𝜔) = 𝛼(𝜔)𝐼(𝜔)𝛥𝑉 

This equation tells us that the power absorbed per unit frequency interval 

within a small volume element 𝛥𝑉 is equal to the absorption coefficient 𝛼(𝜔) 

times the incident intensity 𝐼(𝜔) times the volume 𝛥𝑉. This makes intuitive 

sense: more absorption (larger 𝛼), higher intensity (larger 𝐼), or larger volume 

(larger 𝛥𝑉) all lead to more power being absorbed. 

* The third bullet point considers a common scenario: For a broadband 

continuum 𝐼(𝜔) and a narrow atomic line 𝛼(𝜔): 

Imagine our incident light is not monochromatic but has a spectral intensity 

𝐼(𝜔) that is spread over a range of frequencies (a continuum). And suppose 

the material has an absorption feature 𝛼(𝜔) that is very narrow in frequency 
(like an atomic absorption line). To find the total power absorbed by this 
narrow line from the broadband light, we would need to integrate over 
frequency, which is what the next page will likely address. 
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Continuing from the previous slide, where we considered a broadband 

continuum 𝐼(𝜔) incident on a material with a narrow absorption line 𝛼(𝜔). To 

find the total power 𝛥𝑃 (delta P) absorbed by this line within the volume 

element 𝛥𝑉, we need to integrate the per-frequency power absorption over all 
frequencies. 

The equation for 𝛥𝑃 is given as: 



𝛥𝑃 = (∫ 𝛼
+∞

−∞

(𝜔)𝐼(𝜔) 𝑑𝜔)𝛥𝑉 

This expression means we multiply the spectral absorption coefficient 𝛼(𝜔) 

by the spectral intensity 𝐼(𝜔) at each frequency 𝜔, integrate this product over 
all frequencies (from minus infinity to plus infinity, though practically it's over 

the range where 𝛼(𝜔)𝐼(𝜔) is non-zero), and then multiply by the volume 

element 𝛥𝑉. This gives the total power absorbed in 𝛥𝑉 from all spectral 
components of the light that interact with the absorption line. 

* An important simplification is noted in the first bullet point: If 𝐼(𝜔) varies 
slowly across the line, treat it as constant and pull outside integral. 

Often, an atomic or molecular absorption line 𝛼(𝜔) is very narrow compared 

to the spectral width over which the incident intensity 𝐼(𝜔) varies. For 

example, if you're using a lamp source, its spectrum 𝐼(𝜔) might be quite flat 

over the tiny frequency range where 𝛼(𝜔) is significant. 

In such cases, we can approximate 𝐼(𝜔) by its value at the center of the 

absorption line, say 𝐼(𝜔0), and take it outside the integral: 

𝛥𝑃 ≈ 𝐼(𝜔0) (∫ 𝛼
+∞

−∞

(𝜔) 𝑑𝜔)𝛥𝑉 

The integral ∫ 𝛼(𝜔) 𝑑𝜔 is then the integrated absorption coefficient for the 

line. This quantity is often related to the oscillator strength of the transition 
and the number density of absorbers. 

* The second bullet point mentions Applications: 

Understanding and calculating absorbed power is crucial for several reasons: 

1. Quantify heat load in gas cells: When a gas in a cell absorbs laser power, 
that energy is typically converted into heat. This can raise the temperature 
and pressure of the gas, which might be undesirable (e.g., causing line 



broadening or cell damage) or desirable (e.g., in photoacoustic spectroscopy 

where the heating causes a measurable sound wave). Calculating 𝛥𝑃 helps 
predict and manage this heat load. 

2. Determine oscillator strengths: As mentioned, the integrated absorption 
coefficient is fundamentally related to the transition probability or oscillator 
strength (often denoted 'f') of the atomic/molecular transition. By measuring 
the integrated absorption, one can work backwards to determine these 
fundamental microscopic parameters. 

The three hyphens signal the end of this discussion. 
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This slide introduces a very illustrative concept in spectroscopy: Spectral 
“Hole” Burning Illustration. It asks the question: What Happens to the 
Transmitted Spectrum? 

Imagine we have an incident light beam that has a relatively flat and broad 
spectrum, like white light or light from certain types of lamps or broadband 
lasers. Now, suppose this light passes through a material that has a very 
narrow absorption line at a specific frequency. 

* The first bullet point describes this: Narrow absorption line (with a width 

𝛿𝜔, delta omega) imprints a dip in an otherwise flat input continuum. The 
material will absorb light very strongly only within that narrow frequency range 

𝛿𝜔 corresponding to its absorption line. Outside this range, it's transparent. 
So, if you look at the spectrum of the light after it has passed through the 
material, you'll see the original flat continuum but with a "hole" or a "dip" at 
the frequency of the absorption line. This is because the light at those specific 
frequencies has been selectively removed by absorption. 

* The second bullet states: Depth and width of the “hole” directly reflect 

𝛼(𝜔). The shape of this hole in the transmitted spectrum is not arbitrary. * The 



depth of the hole at any frequency 𝜔 within the absorption line is determined 

by the value of 𝛼(𝜔) at that frequency (and the path length 𝐿, via 𝑒−𝛼(𝜔)𝐿). 

Where 𝛼(𝜔) is largest (at the peak of the absorption line), the hole will be 

deepest. * The width of the hole will correspond to the width 𝛿𝜔 of the 

absorption line 𝛼(𝜔). So, by carefully measuring the shape of this spectral 

hole, we can directly deduce the absorption spectrum 𝛼(𝜔) of the material. 

* The third bullet considers a specific case: For extremely wide continuum 

(where the continuum bandwidth 𝛥𝜔 (capital Delta omega) is much, much 

greater than the absorption linewidth 𝛿𝜔 (delta omega)), total transmitted 
power hardly changes, but spectral shape is modified. If the input light 
spectrum is very broad, and the absorption line removes only a tiny sliver of 
frequencies from it, the total integrated power of the transmitted light might 
be almost the same as the total incident power. However, the crucial point is 
that the spectral distribution of that power has been altered – specific 
frequencies have been attenuated, creating the hole. This is the essence of 
absorption spectroscopy: looking for these characteristic missing pieces in 
the spectrum to identify and quantify the absorber. 
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Continuing our discussion on spectral hole burning: 

* The first bullet point considers the converse scenario: Conversely, if 𝛿𝜔 ≫

𝛥𝜔 (𝛿𝜔 is much, much greater than capital 𝛥𝜔), the continuum is uniformly 
attenuated—no visible hole. 

Here, 𝛿𝜔 is the width of the absorption line, and 𝛥𝜔 is the width of the 

incident light's continuum. If the absorption line is very broad (𝛿𝜔 is large) 

compared to the spectral width of the incoming light (𝛥𝜔 is small – e.g., if 
we're using a relatively narrow laser line as our "continuum"), then the 

absorption coefficient 𝛼(𝜔) will be essentially constant across the entire 

narrow bandwidth 𝛥𝜔 of the incident light. 



In this case, all frequency components within the incident 𝛥𝜔 experience 
roughly the same amount of absorption. The result is that the entire input 
spectrum is attenuated by a similar factor, without a distinct "hole" appearing 

within its profile. The shape of the narrow 𝛥𝜔 spectrum would be preserved, 

just its overall intensity would be reduced. 

Now, the slide previews what's coming next: 

Next 3 Slides – 3 plots: 

* a) input flat spectrum, (This will show the incident light before it interacts 
with the absorber.) * b) output with narrow hole, (This will show the 
transmitted spectrum when a narrow absorption line interacts with a broad 
input spectrum – the classic hole burning case.) * c) output when continuum 
narrower than absorption line showing uniform attenuation. (This will 
illustrate the case where the input light is spectrally narrow compared to a 
broad absorption feature.) 

Let's look at these plots. 
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Here is the first of the three illustrative plots, labeled (a) Input Flat 
Continuum & Narrow Transmission Profile. 

The graph plots Intensity / Transmission on the vertical axis, ranging from 0.0 

to 1.0, versus Angular Frequency (𝜔) on the horizontal axis, which ranges 
from 0 to 1000 in arbitrary units. 

There are two curves shown: 

1. Input Continuum (𝐼inc(𝜔)): This is represented by a solid blue horizontal 

line near the top of the plot (around a value of 0.8, let's say, though the 
vertical axis is normalized for transmission later). The legend indicates this is 



"Input Continuum (𝐼inc(𝜔))". Being flat means the incident light has equal 
intensity at all frequencies within this range. 

2. Transmission (𝑒−𝛼(𝜔)𝐿narrow): This is represented by a dashed red curve. 

The legend indicates this is "Transmission (𝑒−𝛼(𝜔)𝐿narrow)". This curve 

represents the transmission factor 𝑇(𝜔) = 𝑒−𝛼(𝜔)𝐿  of a material that has a 

narrow absorption line. * Far away from the absorption resonance, 𝛼(𝜔) is 

very small, so 𝑇(𝜔) ≈ 𝑒0 = 1. The red dashed curve is at a value of 1.0 on the 

vertical axis in these regions. * Around a central frequency 𝜔 (labeled on the 

axis, let's call it 𝜔0), 𝛼(𝜔) becomes large due to the narrow absorption line. In 

this region, 𝑇(𝜔) = 𝑒−𝛼(𝜔)𝐿  drops significantly, forming a downward "dip" or 

"valley." The shape of this dip mirrors the shape of the narrow absorption line 

𝛼(𝜔) (specifically, it's 𝑒−𝛼). * The title above these curves is "𝐼(𝜔) and Narrow 

𝑇(𝜔)". 

This slide effectively sets up the components: a broadband input 𝐼inc(𝜔) and a 

transmission function 𝑇(𝜔) that has a narrow feature. The next slide will show 

what happens when this 𝐼inc(𝜔) passes through a material with this 𝑇(𝜔). 
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This is the second plot, labeled (b) Transmitted Spectrum: Narrow Hole 
Burning. 

Again, the graph plots Intensity / Transmission on the vertical axis (0.0 to 

1.0) versus Angular Frequency (𝜔) on the horizontal axis (0 to 1000 arbitrary 
units). 

There is one curve shown: 

- A solid green line, which is labeled in the legend as "Transmitted (𝐼trans(𝜔)) 

with Hole". This curve represents the spectrum of the light after it has passed 
through the absorbing material. It is the product of the input flat continuum 



(the blue line from slide 39) and the narrow transmission profile (the red 
dashed line from slide 39). 

𝐼trans(𝜔) = 𝐼inc(𝜔) × 𝑇(𝜔) = 𝐼inc(𝜔) × 𝑒−𝛼(𝜔)𝐿  

- Where the material was transparent (𝑇(𝜔) ≈ 1, far from resonance), the 

transmitted spectrum 𝐼trans(𝜔) is simply equal to the input spectrum 𝐼inc(𝜔) 

(the flat part). - Where the material had its narrow absorption (𝑇(𝜔) < 1, 

around the resonance 𝜔0), the transmitted intensity is reduced, forming a 

distinct "hole" or "dip" in the otherwise flat spectrum. - The shape of this hole 
(its depth and width) directly reflects the characteristics of the narrow 

absorption line 𝛼(𝜔) and the path length 𝐿. 

The title above the plot is "I(𝜔) = I(𝜔) ⋅ e". This seems to be a shorthand or a 

slight typo. It should likely represent 𝐼trans(𝜔) = 𝐼inc(𝜔) × 𝑒−𝛼(𝜔)𝐿, or 

qualitatively 𝐼output = 𝐼input × Transmission. The key is that the green curve is 

the result of the input passing through the absorber. 

This plot perfectly illustrates the phenomenon of spectral hole burning: a 
narrow absorption feature "burns a hole" into a broader incident spectrum. 
This is the basis of absorption spectroscopy. 
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This is the third illustrative plot, labeled (c) Transmitted Spectrum: Narrow 
Input, Broad Absorption (Uniform Attenuation). The axes are the same: 

Intensity / Transmission (vertical, 0.0 to 1.0) versus Angular Frequency (𝜔) 
(horizontal, 0 to 1000 arbitrary units). 

Two curves are shown here, overlaid: 

1. Narrow Input Continuum (𝐼inc(𝜔)): This is represented by a solid blue line. 

Unlike the previous plots, this input spectrum is not flat and broad. Instead, 

it's a narrow peak centered at some frequency 𝜔 (labeled on the axis). This 



could represent, for example, the spectrum of a single-mode laser. The 

legend confirms: "Narrow Input Continuum (𝐼inc(𝜔))". 

2. Transmitted (𝐼trans(𝜔)) - Uniform Attenuation: This is represented by a solid 

green line. It has the same shape as the blue input peak but is uniformly 

reduced in amplitude. The legend confirms: "Transmitted (𝐼trans(𝜔)) - 
Uniform Attenuation". 

The title above these curves is "Narrow 𝐼(𝜔) & Uniform Attenuation". 

This plot illustrates the scenario where the absorption feature of the material, 

𝛼(𝜔), is very broad compared to the spectral width of the incident light, 

𝛥𝜔input. Or, equivalently, 𝛼(𝜔) is nearly constant across the narrow range of 

frequencies contained in 𝐼inc(𝜔). 

In this case, all frequency components within the narrow input peak 

experience essentially the same absorption coefficient 𝛼. Therefore, they are 

all attenuated by the same factor 𝑒−𝛼𝐿. 

The result is that the transmitted spectrum 𝐼trans(𝜔) retains the same spectral 

shape as the input 𝐼inc(𝜔), but its overall intensity is reduced. There is no 
"hole" burned within the input spectral profile because the absorption is not 
selective enough across that narrow profile. It's just uniform attenuation. 

These three plots (slides 39, 40, 41) provide a very clear visual summary of 
how the relative spectral widths of the incident light and the absorption 
feature determine the appearance of the transmitted spectrum. 
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We now return to a more fundamental question concerning our classical 

oscillator model. This slide is titled: Physical Origin of Damping Constant 𝛾 
(gamma). It asks: Where Does the Energy Go? Recall that our equation of 

motion 𝑚𝑥̈ + 𝑏𝑥̇ + 𝐷𝑥 = 𝑞𝐸 included a damping term 𝑏𝑥̇, and we defined 𝛾 =



𝑏

𝑚
 as the damping rate. This 𝛾 appeared in our expressions for 𝜅 and 𝑛′, 

determining the width of the absorption line and the dispersive features. So, 

what are the physical processes that contribute to this 'b' or '𝛾'? 

* The first bullet point discusses Radiative damping: "Oscillating charge re-
emits electromagnetic radiation; classical Larmor formula predicts..." An 
electron, when it oscillates, is an accelerating charge. According to classical 
electrodynamics, any accelerating charge radiates electromagnetic waves, 
thereby losing energy. This energy loss acts as a damping force on the 
electron's motion. This is an intrinsic damping mechanism, present even for 
an isolated atom in vacuum. The classical Larmor formula can be used to 
calculate the power radiated by an accelerating charge, and from this, one 

can derive an effective damping constant due to radiation. The slide gives the 

prediction for this radiative damping rate, 𝛾rad (gamma sub rad): 

𝛾rad =
𝑒2𝜔0

2

6𝜋𝜖0𝑚𝑐3
 

Let's break down the terms: * e: elementary charge (magnitude). * 𝜔0: the 

resonant angular frequency of the oscillator. The radiated power depends on 

the frequency of oscillation. * 𝜖0 (epsilon naught): permittivity of free space. * 

m: mass of the electron. * c: speed of light in vacuum. * 𝜋 (pi): the 

mathematical constant pi. This 𝛾rad provides a fundamental lower limit to the 

linewidth of an atomic transition, often called the natural linewidth. 

* The second bullet point discusses Collisional damping: "In gases, 
electron momentum transferred to neighboring atoms/molecules during 
collisions." In a real material, especially in gases at finite pressures or in 
condensed matter, the oscillating electron (or the atom/molecule it belongs 
to) is not isolated. It will frequently collide with other atoms or molecules. 
During these collisions, the phase of the electron's oscillation can be 
randomly interrupted, or energy can be transferred from the oscillating 



electron to the collision partner (e.g., increasing its kinetic energy). These 
processes effectively remove energy from the coherently driven oscillation 

and contribute to the damping term 𝑏. Collisional damping is often strongly 
dependent on pressure (in gases) and temperature. At high pressures, it can 
become the dominant broadening mechanism for spectral lines. 

So, the total damping constant 𝛾 that we use in our model is generally a sum 

of contributions from various such processes: 𝛾 = 𝛾rad + 𝛾coll + ⋯ (other 
mechanisms). 
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Continuing our discussion on the origins and interpretations of the damping 

constant 𝛾, or more broadly, the linewidth of spectral features. 

The first bullet point connects our classical 𝛾 to the quantum picture: 

Intrinsic (natural) linewidth in quantum picture relates to excited-state 

lifetime 𝜏 (tau): 𝛾 =
1

𝜏
. 

In a quantum mechanical description of an atom, if an electron is excited to 

an upper energy state, that state will have a finite lifetime, 𝜏, before the 
electron spontaneously decays back to a lower state, emitting a photon. This 

finite lifetime 𝜏 is related to the transition probability. 

The Heisenberg uncertainty principle, in the form 𝛥𝐸𝛥𝑡 ≥
ℏ

2
, implies that a 

state with a finite lifetime 𝜏 (so 𝛥𝑡 ≈ 𝜏) will have an uncertainty in its energy 

𝛥𝐸. This energy uncertainty translates into a spread of frequencies for 
photons emitted or absorbed involving this state, leading to a natural 
linewidth. 

This natural linewidth, often denoted 𝛤nat or 𝛾nat, is given by 𝛾nat =
1

𝜏
. 

(Sometimes, depending on definition, it might be 𝐴𝑢𝑙, the Einstein 𝐴 
coefficient for spontaneous emission from upper to lower level). 



The radiative damping 𝛾rad we saw from the classical Larmor formula is the 
classical counterpart to this quantum mechanical natural linewidth. For 
many transitions, the classical and quantum results are in reasonable 
agreement or can be formally related. So, the lifetime of the excited state is a 

fundamental contributor to 𝛾. 

The second bullet point considers damping in more complex environments: In 
condensed matter, additional damping from phonon coupling, 
inhomogeneous broadening, impurity scattering. 

In solids or liquids (condensed matter), the environment around an absorbing 
atom or molecule is much more complex than in a dilute gas. 

* Phonon coupling: The electronic states of an atom/ion in a solid can couple 
to the vibrational modes of the crystal lattice (phonons). This interaction can 
lead to energy exchange and dephasing of the electronic oscillation, 
contributing significantly to the damping and broadening of spectral lines, 
often with a strong temperature dependence. 

Inhomogeneous broadening: In many real materials, especially solids, not 
all absorbing centers (atoms, molecules, ions) are in identical local 
environments. There might be slight variations in local crystal fields, strains, 

or proximity to defects. These variations can cause the resonant frequency 𝜔0 
to be slightly different for different absorbers in the ensemble. Even if each 
individual absorber has a narrow homogeneous linewidth (due to natural 
lifetime, phonon coupling, etc.), the superposition of all these slightly shifted 
lines results in a much broader observed or inhomogeneous* linewidth for the 

bulk material. Our simple model assumes all oscillators have the same 𝜔0; 

inhomogeneous broadening violates this. 

* Impurity scattering: If there are impurities or defects in the material, the 
oscillating electrons (or excitons, etc.) can scatter off these impurities, losing 
energy or phase coherence, which also contributes to damping. 



The three hyphens signal the end of this list. 

Understanding these various contributions to 𝛾 is crucial because the 
linewidth and lineshape are key observables in spectroscopy, providing rich 
information about the absorber and its environment. 
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While the classical electron oscillator model has provided us with 
tremendous insight into absorption and dispersion, it is, after all, a classical 
model. It's important to understand its Limitations. This slide asks: When 
and Why Does It Fail? 

* First limitation: Cannot predict discrete allowed transition frequencies; 

𝜔0 must be inserted from experiment or quantum theory. 

In our classical model, the natural resonant frequency 𝜔0 (omega sub zero) is 
an input parameter. We essentially say, "Let's assume the electron is bound 
with a restoring force that gives it this resonant frequency." The model itself 

doesn't tell us why 𝜔0 has a particular value, or why only certain 𝜔0 values 

might be allowed. 

In contrast, quantum theory (e.g., solving the Schrödinger equation for an 
atom) predicts that atoms and molecules have discrete, quantized energy 

levels. Transitions between these levels (say, 𝐸1 and 𝐸2) occur at specific 
frequencies given by the Bohr condition: 

𝜔 =
𝐸2 − 𝐸1

ℏ
 

(omega equals E two minus E one, all over h-bar). These are the allowed 

transition frequencies. The classical model needs these 𝜔0 values to be 

provided, either from experimental observation or from a prior quantum 
calculation. It cannot derive them from first principles. 



* Second limitation: Ignores Doppler broadening due to thermal motion 
(Gaussian convolution of the Lorentzian profile). 

In a gas, atoms or molecules are in constant random thermal motion. Some 
are moving towards an observer (or a light source), some are moving away, 
and some are moving transversely, with a distribution of speeds (e.g., 
Maxwell-Boltzmann distribution). 

Due to the Doppler effect, an atom moving towards the light source sees the 
light frequency slightly up-shifted, and an atom moving away sees it slightly 
down-shifted. This means that even if each individual atom has a natural 

(Lorentzian) absorption profile centered at 𝜔0 in its own rest frame, the 

ensemble of moving atoms will absorb at a range of frequencies centered 

around 𝜔0, leading to a broadening of the observed spectral line. 

This Doppler broadening typically results in a Gaussian lineshape if it's the 
dominant mechanism. If both natural/collisional (Lorentzian) broadening and 
Doppler (Gaussian) broadening are significant, the resulting lineshape is a 
Voigt profile, which is a convolution of a Lorentzian and a Gaussian. Our 
classical model, by considering stationary oscillators, only predicts a 
Lorentzian profile and misses this important effect prevalent in gas-phase 
spectroscopy. 

* Third limitation: Neglects saturation and stimulated emission at high 
laser intensities (non-linear optics). 

Our model assumed a linear response: the displacement 𝑥 was proportional 

to the driving field 𝐸, leading to a polarization 𝑃 proportional to 𝐸, and thus a 

susceptibility 𝜒 and refractive index 𝑛 that are independent of the light 
intensity. 

However, at high laser intensities: 



* Saturation: As we discussed with the Beer-Lambert law, if many absorbers 
are pumped to the excited state, the absorption decreases. This is a non-

linear effect where 𝛼 (and thus 𝜅) becomes intensity-dependent. 

* Stimulated Emission: Einstein showed that in addition to absorption and 
spontaneous emission, there's a third process: stimulated emission, where 
an incident photon can cause an excited atom to emit a second, identical 
photon. This process is the basis of laser amplification. At high intensities, 
stimulated emission can become very significant, competing with absorption 
and leading to phenomena like optical gain or transparency. 

These are hallmarks of non-linear optics, which the simple linear classical 

oscillator model cannot describe. It works well in the low-intensity limit. 
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Continuing with the limitations of our classical oscillator model: 

* The bullet point on this slide adds another important set of omissions: Does 
not account for selection rules, polarization dependence, or multi-level 
interference effects. 

Let's break these down: 

1. Selection Rules: Quantum mechanics dictates that transitions between 
energy levels are not all equally allowed. There are selection rules that 
determine whether a transition can occur via interaction with electromagnetic 
radiation (specifically, via electric dipole interaction, which is usually 
dominant). These rules often involve changes in quantum numbers like 

angular momentum (e.g., 𝛥𝐿 = ±1, 𝛥𝑚 = 0,±1). Our classical model, which 

just assumes an oscillator with a given 𝜔0, has no concept of these quantum 

mechanical selection rules. It would implicitly allow any 𝜔0 if we put it in. 

2. Polarization Dependence: While we used a linearly polarized field (𝑥̂) and 
got a response in that direction, real atomic and molecular transitions can 



have complex dependencies on the polarization of light. For example, the 
strength of a transition might depend on whether the light is linearly polarized, 
circularly polarized, or unpolarized, and on the orientation of the molecule 

relative to the light's polarization vector. Selection rules for 𝛥𝑚 (change in 
magnetic quantum number) are directly related to this. The simple 1D 
oscillator model doesn't capture this richness. 

3. Multi-level Interference Effects: Real atoms and molecules are not just 
simple two-level systems (ground state and one excited state corresponding 

to 𝜔0). They have many energy levels. When multiple levels are involved, 

quantum mechanical interference effects can occur. For instance, if two 
different excitation pathways from a ground state lead to the same final state, 
or if multiple decay paths exist, these can interfere constructively or 
destructively, leading to complex phenomena like Fano resonances, 
electromagnetically induced transparency (EIT), or coherent population 
trapping (CPT). These are inherently quantum interference effects that a 
single classical oscillator cannot reproduce. 

The three hyphens suggest the end of this enumeration of limitations. In 
essence, while the classical model provides a fantastic intuitive and 
quantitative starting point for understanding linear absorption and dispersion 
near an isolated resonance, a full and accurate description, especially for 
complex systems or under strong fields, requires a quantum mechanical 
approach. 
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Given the limitations of the classical model, it's natural to ask, what's next? 
This slide provides a Road Map Beyond — Toward Quantum Dispersion 
Theory, essentially Preparing for Chapter 3 and Beyond. This outlines how 
we will build a more complete and accurate picture. 



* First major step: Replace classical oscillator with quantum two-level 
system; derive susceptibility via density-matrix formalism. 

Instead of a classical mass on a spring, we will model an atom or molecule as 

a quantum two-level system, with a ground state |𝑔⟩ and an excited state 

|𝑒⟩, separated by an energy ℏ𝜔0. We will then use the density-matrix 

formalism to describe the state of an ensemble of such systems and how it 
evolves under the influence of an external light field. The density matrix is a 
powerful tool because it can handle statistical mixtures of states, relaxation 
processes, and coherence. From the density matrix, we can calculate the 
expectation value of the dipole moment, which gives us the macroscopic 

polarization 𝑃, and from there, the electric susceptibility 𝜒(𝜔) and the 

complex refractive index 𝑛(𝜔). This quantum approach will naturally 
incorporate concepts like transition dipole moments and can be extended to 
include saturation. 

* Second point: Introduce Doppler effect and Voigt profile for gaseous 
absorbers. 

To accurately model spectra in gases, we must account for the thermal 
motion of atoms/molecules, which leads to Doppler broadening. We will 
learn how the intrinsic (homogeneous) Lorentzian lineshape predicted by the 
interaction with a single (or class of identical) absorber gets convolved with 
the Gaussian distribution of velocities due to the Doppler effect. The resulting 
lineshape is the Voigt profile. Understanding and fitting Voigt profiles is 
crucial for extracting information from gas-phase spectra. 

* Third crucial topic: Examine Kramers-Kronig relations, rigorously 

connecting 𝑛′(𝜔) and 𝜅(𝜔) through causality. 

We've alluded to the fact that 𝑛′(𝜔) and 𝜅(𝜔) are not independent. The 
Kramers-Kronig relations are a pair of integral transforms that 
mathematically express this fundamental connection. They state that if you 



know the imaginary part 𝜅(𝜔) (absorption) over the entire frequency range 

(from 0 to ∞), you can calculate the real part 𝑛′(𝜔) (dispersion) at any 

frequency, and vice-versa. These relations are a direct consequence of 
causality – the principle that a system's response (e.g., polarization) cannot 
precede the stimulus (the electric field). This is a very deep and general result 
in physics, applicable to any linear, causal response function. 
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Continuing our Road Map Beyond, this slide points to even more advanced 
topics we might explore. 

* The bullet point suggests we will: Explore non-linear extensions: 
saturation spectroscopy, electromagnetically induced transparency, 
slow light. 

Once we have a solid quantum mechanical foundation for linear light-matter 
interaction, we can start to explore what happens when the light fields are 
strong, leading to non-linear optical phenomena. 

1. Saturation Spectroscopy: We've mentioned that high intensities can 
saturate an absorption line. Saturation spectroscopy is a clever set of 
techniques (like Lamb dip spectroscopy) that uses this saturation effect to 
overcome Doppler broadening in gases and measure the underlying 
homogeneous linewidth with very high resolution. It's a cornerstone of 
precision laser spectroscopy. 

2. Electromagnetically Induced Transparency (EIT): This is a fascinating 
quantum interference effect that can occur in three-level (or multi-level) 
atomic systems. By applying a strong "coupling" laser field on one transition, 
it's possible to make an otherwise opaque medium transparent to a "probe" 
laser on an adjacent transition. EIT is accompanied by very steep and 
controllable dispersion, which has led to its application in areas like... 



3. Slow Light: The steep normal dispersion (𝑑𝑛′

𝑑𝜔
> 0 and large) associated with 

EIT can lead to extremely small group velocities for light pulses. Light can be 
slowed down by many orders of magnitude, sometimes even brought to a 
temporary halt and stored in the medium. This has profound implications for 
optical buffering, quantum information processing, and fundamental studies 
of light-matter interaction. 

These non-linear extensions open up a vast and exciting landscape of modern 
laser spectroscopy and quantum optics. They all build upon the fundamental 
concepts of absorption and dispersion but require a quantum mechanical 
treatment and often involve coherent manipulation of atomic states. 

The two sets of triple hyphens signal the end of this lecture overview and 
perhaps the lecture itself. We've covered a lot of ground, from the basic 
definitions of absorption and dispersion, through the classical Lorentz model, 
to its predictions for the complex refractive index, and finally, a roadmap 
towards more advanced quantum and non-linear treatments. This journey is 
central to understanding how lasers interact with and probe the world around 
us. Thank you. 

  


