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Alright everyone, welcome to this segment of our Phys 608 Laser 
Spectroscopy course. Today, we delve into a truly foundational topic, Chapter 
2.3, which covers "Absorption, Induced and Spontaneous Emission." These 
are the three fundamental ways light interacts with matter at the quantum 
level, and understanding them thoroughly is absolutely essential for 
everything that follows in laser physics and spectroscopy. This material was 
prepared by Distinguished Professor Doctor M. A. Gondal for the course here 
at KFUPM. Let’s begin. 
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So, we're starting with what we call the "Fundamental Light-Matter Interaction 
Processes." Our Scope here encompasses three distinct quantum 
processes. These are the mechanisms by which energy is exchanged between 
a radiation field – that is, light – and a molecule or an atom. And critically, this 

energy exchange happens in discrete packets, or quanta, where the energy 𝐸 

of a single quantum is given by the famous Planck-Einstein relation, 𝐸 = ℎ𝜈, 
where 'h' is Planck's constant and 'nu' (spelled n u) is the frequency of the 
radiation. 

Now, what is the Relevance of understanding these three processes? It's 
twofold and profound. First, these processes collectively determine the 
intensity balance in black-body radiation. As you'll recall, a black-body is an 
idealized object that absorbs all incident electromagnetic radiation and emits 
radiation based purely on its temperature. The spectrum of this emitted 
radiation, described by Planck's law, can only be understood by considering 
these quantum interactions. Second, and central to this course, manipulating 
the rates of these processes is what enables laser action. By cleverly 
controlling whether absorption or one type of emission dominates, we can 
achieve light amplification. 



So, what's our Strategy for today's derivations? We're going to build this 
understanding step-by-step: 

First, we will precisely define each of these three processes – absorption, 
spontaneous emission, and stimulated emission. We need to be crystal clear 
on what each one entails at the microscopic level. 

Second, we will introduce the Einstein coefficients, denoted as 𝐴21 (A twenty-

one), 𝐵12 (B twelve), and 𝐵21 (B twenty-one). These coefficients quantify the 

probability of each process occurring. We’ll see how Albert Einstein, in a 
stroke of genius, postulated these coefficients and their relationships. 
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Continuing with our strategy for today's derivations: Third, after defining the 
processes and their coefficients, we will enforce thermal-equilibrium 
conditions. What does this mean? We will consider a system of atoms or 
molecules interacting with a radiation field that is in thermal equilibrium, for 
example, like the radiation inside a heated cavity – a black-body. Under these 
equilibrium conditions, the rates of upward and downward transitions must 
balance, and this allows us to derive crucial algebraic relations between the 
Einstein coefficients. This is a classic physics approach: start with a well-
defined equilibrium situation to find fundamental relationships. 

Fourth, we will interpret photon statistics per single electromagnetic, or E M, 
mode. The radiation field isn't just a continuous wave; it's quantized into 
photons that occupy specific electromagnetic modes. We'll look at the 
average number of photons in a given mode at a certain temperature, which 
directly influences the rates of these interaction processes. 

Our overall Learning goal for this lecture is to move from somewhat 
qualitative, pictorial descriptions of light-matter interaction to fully 
quantitative formulas. These formulas are not just abstract; they are directly 



usable and essential in practical spectroscopy for analyzing experimental 
data, and critically, in laser design for predicting and optimizing laser 
performance. So, we're bridging the gap between fundamental quantum 
concepts and real-world applications. 
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Now, let’s look at a visual representation of these "Fundamental Light-Matter 
Interaction Processes." What we have here is a diagram depicting a two-level 
atom interacting with a radiation field, notionally inside a cavity, suggested by 
the grey vertical bars on either side representing cavity mirrors, which confine 

the radiation. The atom has two discrete energy levels, a lower energy level 𝐸1 

(E one) and a higher energy level 𝐸2 (E two). Photons, the quanta of the 

radiation field, are stylized as wavy lines labeled ℎ𝜈, representing their energy. 
Remember, 'h' is Planck's constant, and 'nu' is the frequency. For an 

interaction to occur, the photon energy ℎ𝜈 must precisely match the energy 

difference between the two levels, that is, 𝐸2 − 𝐸1. This is the Bohr frequency 
condition. 

Let's look at the three processes shown: 

1. Stimulated Absorption: On the left. Here, the atom is initially in the lower 

energy state, 𝐸1. An incident photon, with energy ℎ𝜈 (shown as a purple wavy 
arrow), comes along and interacts with the atom. If the photon energy 
matches the energy gap, the atom absorbs the photon and jumps to the 

higher energy state, 𝐸2. The photon is annihilated in this process; its energy is 

now stored in the atom. This process is labeled with a 'B', hinting at the 

Einstein B coefficient associated with it, specifically 𝐵12. 

2. Stimulated Emission: In the middle. For this process, the atom must 

already be in the excited upper state, 𝐸2. An incident photon, ℎ𝜈 (green wavy 
arrow), identical in properties (frequency, direction, polarization) to the 
photon that would be emitted if the atom decayed spontaneously, interacts 



with this excited atom. This interaction stimulates or induces the atom to 

drop to the lower energy state, 𝐸1, and in doing so, emit a second photon. 
Crucially, this newly emitted photon is a perfect clone of the incident photon – 

it has the same energy ℎ𝜈, the same direction, the same phase, and the same 

polarization. So, one photon comes in, and two identical photons go out. This 
is the process responsible for light amplification in lasers. This is also labeled 

with a 'B', hinting at 𝐵21. 

3. Spontaneous Emission: On the right. Here, the atom is again in the excited 

upper state, 𝐸2. However, unlike stimulated emission, this process can occur 
without any external photons triggering it. The atom spontaneously decides to 

relax to the lower energy state, 𝐸1, and emits a photon of energy ℎ𝜈 (orange 

wavy arrow with smaller divergent arrows). This emitted photon can go off in 
any random direction, and its phase is random relative to other 
spontaneously emitted photons. This process is labeled with an 'A', referring 

to the Einstein A coefficient, 𝐴21. 

These three processes – stimulated absorption, stimulated emission, and 
spontaneous emission – form the complete set of fundamental single-photon 
interactions for a two-level system. Their interplay governs how light and 
matter exchange energy. 
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Alright, let's do a quick review of the "Thermal Radiation Field." This is 
essential background for deriving the Einstein relations. 

The first point is that a thermal electromagnetic, or E M, field at an absolute 

temperature, 𝑇, is characterized solely by its spectral energy density. This 

quantity is denoted by the Greek letter 𝜌𝜈  as a function of frequency 𝜈 and 

temperature 𝑇, so 𝜌𝜈(𝜈, 𝑇). What does this mean physically? It's the amount 
of electromagnetic energy per unit volume, per unit frequency interval. 



So, imagine a box filled with thermal radiation at temperature 𝑇. 𝜌𝜈  tells us 
how much energy is contained in, say, one cubic meter of that space, within a 

narrow frequency band of, say, one Hertz, centered at frequency 𝜈. The units 

would therefore be Joules per meter cubed per Hertz, or equivalently, Joule-
seconds per meter cubed. 

The second point brings us to Planck's distribution. This is the famous 
formula, derived by Max Planck in 1900, which perfectly describes this 
spectral energy density. The slide correctly notes that this distribution arises 
from two key quantum ideas: first, the quantization of energy in the cavity 

modes – energy can only exist in discrete packets of ℎ𝜈 – and second, the 
application of Bose-Einstein statistics to these energy quanta, because 
photons are bosons. Remember, classical physics failed here, predicting the 
"ultraviolet catastrophe." Planck's quantum hypothesis resolved this. 

The formula for Planck's distribution is: 

𝜌𝜈(𝜈, 𝑇) =
8𝜋ℎ𝜈3

𝑐3 (𝑒
ℎ𝜈
𝑘𝑇 − 1)

 

Let's break down the terms: * ℎ is Planck's constant, given as 6.626 × 10−34 

Joule-seconds. It’s the fundamental constant scaling quantum effects. * 𝜈 is 

the frequency of the radiation in Hertz. * 𝑐 (which we'll see on the next slide) is 

the speed of light in vacuum. * 𝑘 (also on the next slide) is the Boltzmann 

constant, which relates temperature to energy. * 𝑇 is the absolute 
temperature in Kelvin. 

The term ℎ𝜈

𝑘𝑇
 is a crucial dimensionless ratio: the energy of a photon of 

frequency 𝜈 compared to the characteristic thermal energy 𝑘𝑇. The factor 

𝑒
ℎ𝜈

𝑘𝑇 − 1 in the denominator is characteristic of Bose-Einstein statistics for 
particles like photons. 



This Planck distribution is the bedrock of our understanding of thermal light. 
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Continuing our review of the thermal radiation field, let's list the constants 
involved in Planck's law: 

'c', the vacuum speed of light, is 2.998 × 108 meters per second (m s−1). 

'k', the Boltzmann constant, is 1.381 × 10−23 Joules per Kelvin (J K−1). 

Now, a very important concept derived from Planck's distribution concerns 
the individual electromagnetic modes. The idea is that the thermal radiation 
field can be thought of as being composed of many discrete electromagnetic 

modes, each characterized by a specific frequency 𝜈. 

The slide states: "Every discrete EM mode of frequency 𝜈 then contains on 

average..." and gives the formula for 𝑞̃, a variable often used to represent the 

mean photon occupancy per mode (though sometimes 𝑛‾  is used). Let's use 𝑞̃ 
as on the slide, it's q with a tilde above it. 

So, 𝑞̃, as a function of 𝜈 and 𝑇, equals 1 divided by the quantity ( exp (
ℎ𝜈

𝑘𝑇
) − 1 

). 

𝑞̃(𝜈, 𝑇) =
1

exp (
ℎ𝜈
𝑘𝑇

) − 1
 

This expression is precisely the Bose-Einstein distribution factor for photons. 
It tells us the average number of photons occupying a single electromagnetic 

mode of frequency 𝜈 when the radiation field is at thermal equilibrium at 

temperature 𝑇. 

Notice this is exactly the part of Planck's law that depends on temperature 
and involves the Bose-Einstein statistics. In fact, Planck's law can be written 



as 𝜌𝜈 = (the number of modes per unit volume per unit frequency) times (the 

energy per photon, ℎ𝜈) times (this average number of photons per mode, 𝑞̃). 

The slide correctly notes: "This mean occupancy, 𝑞̃, will later be compared 
with induced and spontaneous rates." This is a critical link. The strength of the 

radiation field, characterized by 𝑞̃, will directly determine the rate of 

stimulated absorption and stimulated emission. Understanding 𝑞̃ is key to 

understanding how thermal fields drive atomic transitions, and, by extension, 

how very non-thermal fields, like those in lasers where 𝑞̃ can be enormous, 
behave. 
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On this slide, we have a graph illustrating the "Spectral Energy Density of 
Thermal Radiation," which is, of course, Planck's Law. 

Let's examine the graph carefully. 

The vertical axis is labeled "𝜌𝜈" (using P here but it is 𝜌𝜈) and its units are given 

as "times 10−15 Joule seconds per meter cubed" (10−15 J s m−3). Remember, 

𝜌𝜈  itself has units of energy per unit volume per unit frequency, which is 
Joules per meter cubed per Hertz, or Joules seconds per meter cubed. So the 

scaling factor 10−15 is applied to the numerical values on the axis. The 

horizontal axis represents "Frequency 𝜈" in units of TeraHertz (THz), where 

1 THz is 1012 Hertz. The axis runs from 0 to 1100 TeraHertz. 

At the top, Planck's law is explicitly written: 

𝜌𝜈(𝜈, 𝑇) =
8𝜋ℎ𝜈3

𝑐3

1

𝑒
ℎ𝜈
𝑘𝑇 − 1

 

This is the equation being plotted. 

We see three distinct curves, each corresponding to a different absolute 

temperature: * The blue curve, the lowest one, is for 𝑇 = 1000 K. * The green 



curve, in the middle, is for 𝑇 = 3000 K. This is typical of, say, a filament in an 

incandescent light bulb. * The red curve, the highest one, is for 𝑇 = 6000 K. 

This is approximately the surface temperature of the Sun. 

Observe what happens as the temperature 𝑇 increases: First, the total energy 
density, which is the area under the curve, increases dramatically. The red 

curve (6000 K) encompasses a much larger area than the blue curve (1000 K). 
This is consistent with the Stefan-Boltzmann law, which states that the total 

power radiated by a black body is proportional to 𝑇4. 

Second, the peak of the distribution shifts to higher frequencies (shorter 

wavelengths) as the temperature increases. For 1000 K, the peak is well 

below 100 THz. For 3000 K, it's around, say, 180 THz. For 6000 K, the peak is 

around 350 THz. This is precisely what Wien's Displacement Law describes: 

𝜆max𝑇 = constant, meaning the wavelength of peak emission is inversely 
proportional to temperature. 

There's an important annotation on the graph, with an arrow pointing to the 

high-frequency tail of the 6000 K red curve. It says: "Low photon occupancy 

(𝑞𝜈 , 𝑇 ≪ 1) region (where ℎ𝜈 ≫ 𝑘𝑇)." 

Let's unpack this. In this region, the photon energy ℎ𝜈 is significantly larger 

than the characteristic thermal energy 𝑘𝑇. When ℎ𝜈 is much larger than 𝑘𝑇, 

the exponential term exp (
ℎ𝜈

𝑘𝑇
) becomes very large. Consequently, the minus 1 

in the denominator of Planck's law (and in the expression for 𝑞‾) becomes 
negligible. The distribution then approximates the Wien distribution, which 
has an exponential fall-off at high frequencies. 

And 𝑞‾, which is 1

exp(
ℎ𝜈

𝑘𝑇
)−1

, becomes approximately exp (−
ℎ𝜈

𝑘𝑇
), which is indeed 

much less than 1 in this regime. So, at high frequencies, the average number 
of photons per mode is very small. The energy is just not high enough at that 
temperature to significantly populate these high-energy modes. 



This graph beautifully visualizes how temperature shapes the spectrum of 
thermal radiation. 
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Now, we move to establish our theoretical framework with what we call the 
"Two-Level Atom/Molecule Model." While real atoms and molecules have 
many energy levels, this simplification to just two relevant levels is incredibly 
powerful for understanding the fundamental interaction processes, 
especially when the radiation frequency is tuned to resonate with a specific 
transition. 

First, let's define the Levels: We consider a lower state, which we label using 

the Dirac ket notation as |1⟩ (a vertical bar, the number 1, and an angle 

bracket). This state has an energy 𝐸1 (E one). And we have an upper state, 

labeled as |2⟩, with an energy 𝐸2 (E two). A key condition is that 𝐸2 > 𝐸1; that 

is, |2⟩ is the excited state and |1⟩ is the ground state (or at least, the lower of 

the two considered states). 

Next, the Transition frequency, which is governed by the Bohr frequency 

condition: The energy of a photon, ℎ𝜈, that can cause a transition between 
these two levels must precisely equal the energy difference between the 
levels. So, 

ℎ𝜈 = 𝐸2 − 𝐸1 

Here, ℎ is Planck's constant, and 𝜈 is the frequency of the radiation. This 
equation establishes the resonant nature of light-matter interactions: only 
photons with the correct energy (and thus frequency) can be absorbed or 
emitted by this two-level system. 

Finally, 𝜈 itself – this is the exact resonant frequency for the transition 

between state 1 and state 2. Its units are Hertz (Hz), or inverse seconds. For 
now, we consider this frequency to be perfectly sharp. In reality, atomic and 



molecular transitions have a finite linewidth due to various broadening 
mechanisms, which we will discuss later in the course, but the concept of an 
exact resonant frequency is the starting point. 
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Continuing with our Two-Level Atom/Molecule Model, let's define some 
Population symbols: 

We use capital 𝑁1 (N one) to denote the number density of atoms or 

molecules in the lower state, ket 1. "Number density" means the number of 

particles per unit volume, so its units are typically inverse meters cubed 
(𝑚−3). 

Similarly, capital 𝑁2 (N two) represents the number density of atoms or 

molecules in the upper state, ket 2, also in units of inverse meters cubed 
(𝑚−3). 

These populations, 𝑁1 and 𝑁2, will be crucial when we calculate the overall 

rates of absorption and emission in a macroscopic sample. 

Now, a very important point: the Assumptions for our derivations. The 
model we are building relies on certain simplifying assumptions. It's vital to be 
aware of these: 

1. We assume a homogeneous, isotropic radiation field. "Homogeneous" 
means the radiation field's energy density is the same at all points in space. 
"Isotropic" means the radiation field is the same in all directions. This greatly 
simplifies the mathematics, as we don't have to worry about spatial or 
directional variations in the field interacting with the atoms. This is a good 
approximation for, say, black-body radiation inside a cavity. 

2. We assume negligible collisions during the radiative event. This implies 
that we are considering a situation of complete radiative isolation for a 
single transition. What this means is that an atom, while it's in the process of 



absorbing or emitting a photon, is not significantly perturbed by collisions 
with other atoms or molecules. If collisions were frequent, they could 
interrupt the radiative process, or cause non-radiative transitions (i.e., energy 
exchange without photon emission/absorption), which would complicate our 
rate equations. So, we're focusing purely on the interaction with light. This 
assumption is often valid in low-pressure gases or for very fast radiative 
processes. 

These assumptions allow us to develop the fundamental relationships for the 
Einstein coefficients in their purest form. 
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Here we have a simple yet very clear diagram illustrating the "Two-Level 
System Model" that we've just been discussing. 

What you see are two horizontal dark grey lines, representing the two energy 

levels of our system. The lower line is labeled 𝐸1 (E one) on the right, and on 

the left, it's labeled with the Dirac notation |1⟩, representing the quantum 

state of the atom when it has energy 𝐸1. The upper line, situated above the 

lower line to indicate higher energy, is labeled 𝐸2 (E two) on the right, and |2⟩ 

on the left, representing the quantum state with energy 𝐸2. 

Connecting these two levels is a prominent red vertical arrow, pointing 

downwards from the upper level 𝐸2 to the lower level 𝐸1. This arrow signifies a 
transition between the two states. In this particular depiction, a downward 
arrow would represent an emission process, where the atom loses energy. An 
upward arrow would represent an absorption process. 

Crucially, next to this arrow, the fundamental Bohr frequency condition is 

written: ℎ𝜈 = 𝐸2 − 𝐸1. This reminds us that the energy of the photon (ℎ𝜈) 

involved in any transition between these two specific states must precisely 

match the energy difference (𝐸2 − 𝐸1) between them. 



This diagram is the quintessential representation of a quantum system 
interacting with a photon of a specific energy, forming the basis for virtually all 
of spectroscopy and laser physics. 
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Now we're going to dive into the first of our three fundamental processes. This 
is "Process 1 – Induced, or Stimulated, Absorption." The number 1 in a circle 
highlights that it's the first process we're detailing. 

Let's start with the Microscopic description: What happens at the level of a 
single atom and a single photon? 

The first point states: "An incident photon in a specific EM mode is 
annihilated." This means a photon from the surrounding radiation field, which 

has the correct resonant frequency 𝜈, approaches the atom. The atom 

absorbs this photon, and the photon ceases to exist. Its energy is transferred 
entirely to the atom. 

The second point describes the consequence for the atom: "Atom jumps from 
ket 1 to ket 2" (represented as ket 1 arrow ket 2). The atom, initially in the 
lower energy state (ket 1), uses the absorbed photon's energy to transition to 
the higher energy state (ket 2). 

Now, how do we quantify the likelihood of this happening? We look at the 
Probability per molecule, per second: This is the rate at which a single 
molecule (or atom) in state 1 will undergo stimulated absorption when bathed 
in a radiation field. The slide gives this rate as: 

𝑑𝑃12

𝑑𝑡
= 𝐵12 𝜌𝜈(𝜈) 

Let's break this down: 



• 
𝑑𝑃12

𝑑𝑡
 is the rate of change of probability, or the probability per unit time, for 

a transition from state 1 to state 2. So its units are per second (𝑠−1). 

• 𝐵12 is the Einstein coefficient for induced absorption. This is a 
proportionality constant that characterizes the intrinsic strength of this 
particular transition (1 to 2) in this specific atom or molecule. It depends on 
the nature of the states 1 and 2. We will discuss its units and origin shortly. 

• 𝜌𝜈(𝜈) is the spectral energy density of the radiation field at the resonant 

frequency 𝜈. This is critical. Only photons with the correct frequency 𝜈 

(matching 𝐸2−𝐸1

ℎ
) can efficiently cause this absorption. 𝜌𝜈, as we reviewed, has 

units of energy per unit volume per unit frequency (e.g., Joules seconds per 
meter cubed). 
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Continuing with our discussion of Process 1, Induced Absorption, let's clarify 

the terms in our rate equation: 𝑑𝑃12

𝑑𝑡
= 𝐵12𝜌𝜈(𝜈). 

The slide specifies: 

• Capital B subscript one two (𝐵12) is the Einstein coefficient for induced 
absorption. Its units are given here as meters cubed per Joule per second 
squared ($\text{m}^{3\,\text}{J}^{-1}\,\text{s}^{-2}$). Let's quickly see if this 

makes sense. The left side, 𝑑𝑃12

𝑑𝑡
, is a rate, so its units are 𝑠−1. Rho sub nu (𝜌𝜈), 

the spectral energy density, has units of Joules per meter cubed per Hertz 

(J m−3 Hz−1), which is J s m−3. So, for the equation to balance dimensionally, 

𝐵12 must have units of $\frac{s^{-1}}{J\,s\,m^{-3}} = \text{m}^{3\,\text}{J}^{-

1}\,\text{s}^{-2}$. Yes, the units are consistent. 

• rho sub nu of nu (𝜌𝜈(𝜈)) is the spectral energy density at the resonant 
frequency nu. We've already discussed this. 



Now, what's the Proportionality reason? Why is the absorption rate 
proportional to rho sub nu? The slide puts it intuitively: "stronger field intensity 
implies more incident photons, which in turn implies a higher absorption 
rate." This makes perfect sense. If there are more photons of the correct 
frequency available to be absorbed, then the chances of an absorption event 
occurring in a given time interval will naturally be higher. Rho sub nu is 
precisely the measure of this availability of resonant photons. 

Next, the Quantum origin of 𝐵12. Where does this coefficient come from 

fundamentally? The 𝐵12 coefficient is not just an empirical fitting parameter; 

it's determined by the quantum mechanical properties of the atom or 
molecule itself. Specifically, it is determined by the "squared transition dipole 

matrix element." The slide shows this proportionality: 𝐵12 ∝ |⟨2| 𝜇̂ ⋅ 𝑒 |1⟩|2. 

Let's break this down further: 

• ket 1 and ket 2 represent the wavefunctions of the initial (lower) and final 
(upper) states, respectively. 

• mu-hat (𝜇̂) is the electric-dipole operator. For a simple system like a 
hydrogen atom, it's related to the charge of the electron times its position 

vector (e.g., −𝑒 times r-vector). This operator describes how the charge 

distribution in the atom interacts with an electric field. 

• 'e' is the unit vector representing the polarization of the incident 
electromagnetic field's electric component. 

• The dot product 𝜇̂ ⋅ 𝑒 means that only the component of the atom's dipole 
moment that aligns with the electric field of the light contributes to the 
interaction strength. 

• The term ⟨2| 𝜇̂ ⋅ 𝑒 |1⟩ is called the transition dipole moment. It involves an 
integral of the final state wavefunction, the operator, and the initial state 
wavefunction over all space. If this integral is zero, the transition is "dipole 



forbidden." If it's non-zero, the transition is "dipole allowed," and its 
magnitude determines how strong the transition is. 

• The modulus squared of this complex-valued transition dipole moment 
gives a real number that is proportional to the transition probability. 

So, 𝐵12 is fundamentally rooted in the wavefunctions of the states involved 
and the nature of the electric dipole interaction. It's an intrinsic property of 
the specific atomic or molecular transition. 
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Let's delve deeper into this Einstein coefficient, 𝐵12. The slide poses the 

question: "What Sets Its Numeric Value?" 

The first key point is its Dependence only on internal structure: 

* 𝐵12 is determined by the Wavefunctions of the initial and final states, which 

we can denote as 𝜓1(𝑟) and 𝜓2(𝑟). These wavefunctions describe the spatial 
distribution of the electrons within the atom or molecule. As we saw, the 

transition dipole matrix element, which dictates 𝐵12, involves integrals of 
these wavefunctions with the dipole operator. So, the shape and symmetry of 
these wavefunctions are paramount. 

* This leads directly to Selection rules that arise from considerations of parity 

and angular momentum. For the transition dipole matrix element ⟨2|𝜇̂ ⋅ 𝑒|1⟩ to 
be non-zero, there are strict rules about how the parity of the wavefunctions 
(whether they are symmetric or anti-symmetric under inversion) and their 
angular momentum quantum numbers must change. For example, in electric 
dipole transitions, parity must change, and the change in the angular 

momentum quantum number (𝛥𝐽) is typically 0 or ±1 (with 𝐽 = 0 to 𝐽 = 0 

forbidden). If these rules are not met, 𝐵12 is zero (or very small, if higher-order 
multipole transitions are considered, but we're focused on electric dipole 
here). 



The second crucial point is its Independence from the external EM field, 
with an important proviso: this independence holds "provided the field is 
weak enough not to perturb the level energies." This is often referred to as the 
non-diabatic regime or perturbative regime. 

What does this mean? The 𝐵12 coefficient is an intrinsic property of the 
atom/molecule. The external field provides the photons for absorption, and 

its strength (𝜌𝜈) determines the rate of absorption, but it doesn't change 𝐵12 

itself. 

However, if the external field becomes extremely intense (like with some very 
powerful lasers), it can start to significantly distort the atomic/molecular 
wavefunctions and shift the energy levels (e.g., through the AC Stark effect). In 
such strong-field, non-perturbative regimes, the simple picture of a constant 

𝐵12 breaks down. For most conventional spectroscopy and many laser 
applications we first encounter, the weak-field approximation holds well. 

So, 𝐵12 is a characteristic constant for a given transition in a given species, 

dictated by its quantum mechanical makeup, as long as we're not hitting it 
with overwhelmingly strong light. 
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Let's continue our exploration of 𝐵12. 

First, let's re-examine its Units. We can think about the units from the 
fundamental definition of the absorption rate. The rate of absorption 

(probability per time) is 𝐵12 times the spectral energy density 𝜌𝜈. So, 𝐵12, or 

rather its dimensions, [𝐵12], must be equal to (probability/time) divided by 

energy density. Probability is dimensionless. Time has units of 𝑠. Spectral 

energy density 𝜌𝜈  has units of energy per volume per frequency, which is 

Joules per meter cubed per Hertz (𝐽 𝑚−3 𝐻𝑧−1), or 𝐽 𝑠 𝑚−3. 



[𝐵12] =
1/𝑠

𝐽 𝑠 𝑚−3
=

1

𝐽 𝑠2  𝑚−3
= 𝑚3 𝐽−1 𝑠−2. 

This is meters cubed per Joule per second squared, which perfectly matches 
what was stated earlier. It's always good practice to ensure dimensional 
consistency. 

Next, how is 𝐵12 determined Experimentally? One common method involves 

absorbance measurements. You shine light through a sample and measure 
how much of it is absorbed. This is quantified by the Beer-Lambert law, which 
states that absorbance is proportional to the concentration of the absorbing 
species and the path length of the light through the sample. The 
proportionality constant in the Beer-Lambert law (the molar absorptivity or 

absorption cross-section) is directly related to 𝑁1 (the population density of 

the lower state) and 𝐵12. 

So, by performing an absorbance measurement and fitting the data to the 

Beer-Lambert law, one can extract 𝐵12. This, of course, requires careful 

calibration of the incident light's spectral energy density, 𝜌𝜈, because the 
amount of absorption depends on it. 

Finally, there's a crucial theoretical link: the slide notes that we "Will later link 

𝐵12 to the measurable spontaneous coefficient 𝐴21." This refers to the 

Einstein relations, which we will derive. These relations connect 𝐵12 

(stimulated absorption), 𝐵21 (stimulated emission), and 𝐴21 (spontaneous 

emission). This is extremely powerful because sometimes 𝐴21 (which is 
related to the radiative lifetime of the excited state) is easier to measure 

accurately or to calculate from first principles quantum mechanics. Once 𝐴21 

is known, 𝐵12 and 𝐵21 can be readily determined using these relations. This 
interconnectivity is a cornerstone of our understanding of these processes. 
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This slide presents a table of "Typical Values for the Einstein 𝐵12 Coefficient" 
for a variety of atomic and molecular transitions. This gives us a feel for the 

magnitudes involved and how 𝐵12 can vary. 

The table has columns for: 1. TRANSITION / SYSTEM: The specific atom or 

molecule and the transition in question. 2. WAVELENGTH (𝛬): The 

wavelength 𝜆 of the light involved in the transition, typically given in 

nanometers (nm). 3. 𝐵12: The value of the Einstein coefficient for stimulated 

absorption, in its standard units of M cubed J to the minus 1 S to the minus 2 
(meters cubed per Joule per second squared). 4. NOTES: Additional relevant 
information, often including the ratio of degeneracies of the upper to lower 

states (𝑔2

𝑔1
) and the corresponding 𝐴21 coefficient. 

Let's look at a few representative examples: 

* Sodium (Na) D₂-line: This is the famous yellow line from sodium lamps. * 

Wavelength: 589 nanometers. * 𝐵12: A very large value, 1.51 × 1021. This 

indicates a very strong absorption. * Notes: 𝑔2

𝑔1
= 2.00. The 𝐴21 coefficient is 

approximately 6.16 × 107 per second, meaning a very short excited state 

lifetime of about 16 nanoseconds. 

* Helium-Neon (HeNe) Laser: The common red HeNe laser transition. * 

Wavelength: 632.8 nanometers. * 𝐵12: 8.62 × 1020. Also a large value. * 

Notes: 𝑔2

𝑔1
= 1.67. 𝐴21 is approximately 3.4 × 107 per second. 

* Hydrogen Lyman-α: The transition from 𝑛 = 2 to 𝑛 = 1 in hydrogen, in the 

ultraviolet. * Wavelength: 121.6 nanometers. * 𝐵12: 2.03 × 1020. * Notes: 𝑔2

𝑔1
=

3.00 (the 𝑛 = 2 level is more degenerate than 𝑛 = 1 if we consider orbital 

angular momentum; specifically the 2p to 1s part for Lyman-𝛼 if only counting 

orbital, but spin needs care). 𝐴21 is very large, approximately 6.27 × 108 per 
second, indicating an extremely rapid spontaneous decay. 



* Ruby Laser (Cr³⁺ in Al₂O₃): This is chromium ions (Cr three plus) doped into 
a sapphire crystal (Al two O three). * Wavelength: 694.3 nanometers (deep 

red). * 𝐵12: Noticeably smaller, 5.02 × 1015. This is orders of magnitude 

smaller than the atomic transitions above. Transitions in ions within a solid 

host often have different characteristics. * Notes: 𝑔2

𝑔1
= 1.00. The "Effective 

𝐴21" is much smaller, approximately 250 per second. This means the excited 
state is much longer-lived (metastable), which is crucial for achieving 
population inversion in this laser system. 

* CO₂ Laser (Vibrational-Rotational): A transition in the carbon dioxide 
molecule, in the far infrared. * Wavelength: 10600 nanometers, or 10.6 

micrometers. * 𝐵12: 3.58 × 1017. * Notes: 𝑔2

𝑔1
= 1.00. 𝐴21 is very small, 

approximately 5 per second. Vibrational transitions typically have much 
smaller dipole moments and thus smaller A and B coefficients compared to 
electronic transitions in atoms. This leads to very long radiative lifetimes. 

The note at the bottom is very important: "These are approximate values and 
can vary based on specific conditions, fine/hyperfine structure, and 

averaging. 𝐵12 is related to 𝐴21 by the formula: 

𝐵12 =
𝑐3

8𝜋ℎ𝜈3

𝑔2

𝑔1
𝐴21. 

This is one of the key Einstein relations that we are building towards. It 

explicitly shows how 𝐵12 depends on 𝐴21, the degeneracies, and fundamental 

constants, inversely proportional to frequency cubed." 
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We now turn to the second fundamental light-matter interaction: "Process 2 – 
Induced, or more commonly, Stimulated Emission." The number 2 in a circle 
designates it as our second process. 



First, the Starting condition is crucial: for stimulated emission to occur, the 
atom must already be in the excited state, which we've labeled ket 2. It has to 
have energy stored in it, ready to be released. 

Next, what triggers the emission? An Incident photon of the same mode 
triggers the downward transition (indicated by a downward arrow). What 
does "of the same mode" mean? It means the incoming photon must have the 
same characteristics – specifically frequency, direction, and polarization – as 
a photon that could be spontaneously emitted by the atom when it transitions 
from state ket 2 to ket 1. 

The most remarkable property of this process is that the photon created is 
coherent with the trigger photon. This is the absolute cornerstone of laser 
action. "Coherent" means the emitted photon is an exact replica of the 
incident photon: it has the same frequency, the same phase, the same 
direction of propagation, and the same polarization. So, if one photon comes 
in, it stimulates the atom to emit an identical photon, resulting in two 
identical photons leaving. This is amplification. 

Now, let's quantify the Probability per molecule, per second for this 
process: Similar to stimulated absorption, the rate of stimulated emission is 
given by: 

𝑑𝑃21
ind

𝑑𝑡
= 𝐵21 𝜌𝜈(𝜈) 

Let's break this down: 

• 
𝑑𝑃21

ind

𝑑𝑡
 is the probability per unit time for an atom in state 2 to be stimulated 

to emit a photon and transition to state 1. Units: s−1. 

• 𝐵21 is the Einstein coefficient for induced emission (or stimulated 

emission). Like 𝐵12, it's a constant that characterizes the intrinsic strength of 

this particular 2 to 1 transition. 



• 𝜌𝜈(𝜈) is, once again, the spectral energy density of the radiation field at 

the resonant frequency 𝜈. The presence of resonant photons in the 

environment is what drives this process. 

So, the rate of stimulated emission, just like stimulated absorption, is 

proportional to the density of resonant photons and an intrinsic 𝐵 coefficient 
specific to the downward transition. The fact that the created photon is a 
clone of the incident one is what makes lasers possible. 
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Let's continue with stimulated emission. A key Phase/Directionality 
property is reiterated here: the emitted photon duplicates the phase, 
direction, polarization, and frequency of the incident (triggering) photon. This 
duplication is precisely why stimulated emission is the key for optical 
amplification. Imagine a wave of photons; each time it passes an excited 
atom, it can generate another identical photon, adding constructively to the 
wave, making it more intense. 

Now, there's an important point about Microscopic symmetry: This 

symmetry suggests that the Einstein coefficients 𝐵12 (for stimulated 

absorption from 1 to 2) and 𝐵21 (for stimulated emission from 2 to 1) are 
closely related. The slide states this relationship "will be proven 
quantitatively later" when we derive the Einstein relations. This intuition 
comes from thinking about the fundamental time-reversal symmetry in 
quantum mechanics. The process of a photon stimulating an upward 
transition (1 to 2) should be, in some sense, the "reverse" of a photon 
stimulating a downward transition (2 to 1). This leads to an expectation that 
their intrinsic strengths (the B coefficients) are connected. 

The slide also mentions an "[IMAGE REQUIRED: Animation concept: incoming 
wave stimulates second photon, wavefront doubles amplitude.]" Let's 
visualize this, as it's so important. Imagine an electromagnetic wave, 



representing the incident photon, approaching an excited atom. As this wave 
interacts with the atom, it causes the atom to release its stored energy by 
emitting a new wave. This new wave is perfectly in phase with the incident 
wave, travels in the same direction, and has the same frequency and 
polarization. 

If you were to look at the combined electromagnetic field after the interaction, 
where there was one wave before, there are now two waves perfectly 
superimposed. If these are plane waves, the amplitude of the total electric 
field would effectively double at that point (assuming one photon interacting 
with one atom, and thinking about the field it generates). Since intensity is 
proportional to the square of the electric field amplitude, a doubling of 
amplitude would lead to a quadrupling of intensity if they were filling the same 
mode. More generally, one photon comes in, two photons come out, meaning 

the energy in that mode has increased by one quantum, ℎ𝜈. This amplification 

is the essence of how lasers work. 
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We now arrive at the third and final fundamental interaction: "Process 3 – 
Spontaneous Emission." The circled 3 identifies it. 

The first characteristic of spontaneous emission is that it Occurs without any 
external field; vacuum fluctuations provide the trigger. This is a 
remarkable and deeply quantum mechanical concept. An atom in an excited 
state ($\ket{2}$) can transition to a lower state ($\ket{1}$) and emit a photon, 
even if there are no external photons of the resonant frequency present. What 
causes this? According to Quantum Electrodynamics (QED), the vacuum is 
not truly empty. It's filled with "vacuum fluctuations" – fleeting 
electromagnetic fields that exist due to the zero-point energy of the quantum 
field. These vacuum fluctuations can be thought of as providing a tiny, ever-
present "perturbation" that can "nudge" an excited atom into emitting a 



photon. So, spontaneous emission is, in a sense, stimulated by the vacuum 
field itself. 

The Probability per molecule, per second for spontaneous emission is given 
as a field-independent constant: 

𝑑𝑃21
spon

𝑑𝑡
= 𝐴21 

Let's dissect this: * 𝑑𝑃21
spon

𝑑𝑡
 is the probability per unit time for an atom in state 2 

to spontaneously emit a photon and transition to state 1. Its units are 𝑠−1. * 

𝐴21 is the Einstein coefficient for spontaneous emission. 

Crucially, 𝐴21 is a constant that depends only on the properties of the atom 

and the specific transition (from state 2 to state 1). It does not depend on the 

external radiation field density 𝜌𝜈. This makes it fundamentally different from 

the B coefficients. The units of 𝐴21 are simply per second (𝑠−1), as it 

represents a rate of decay. 

Now, let's consider the Photon characteristics of the spontaneously emitted 
photon: 

1. Its Energy is fixed at ℎ𝜈, where ℎ𝜈 = 𝐸2 − 𝐸1. The photon carries away the 
exact energy difference between the upper and lower states. This is the same 
energy as in absorption or stimulated emission for this pair of levels. 
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Continuing with the characteristics of the photon in spontaneous emission: 2. 
The photon is Emitted into any mode with equal probability. This means 
that if there are no preferred directions or polarizations imposed by the 
environment (like a cavity or strong external fields), the spontaneously 
emitted photon can go off in any direction in space, and its polarization will be 



random (or an incoherent mixture if summed over many emission events). The 
slide notes this is "isotropic for non-preferred polarization/cavity." 

This randomness in direction and phase of spontaneously emitted photons is 
why spontaneous emission from many atoms typically produces incoherent 
light, like that from an ordinary light bulb, in stark contrast to the highly 
directional and coherent light from stimulated emission in a laser. 

From the 𝐴21 coefficient, we can define a very important quantity: the 
Radiative lifetime of level ket 2: This is denoted by the Greek letter tau 

subscript 2 (𝜏2), and it's simply the reciprocal of 𝐴21. 𝜏2 =
1

𝐴21
. If 𝐴21 is the 

probability per second that an atom in state 2 will spontaneously decay, then 

𝜏2 is the average time that an atom will spend in the excited state ket 2 before 
it spontaneously emits a photon and returns to a lower state (assuming this is 

the only decay path to state 1 or other states). So, if 𝐴21 is large, the lifetime 

𝜏2 is short, and the decay is fast. If 𝐴21 is small, 𝜏2 is long, and the state is said 

to be metastable. 

An important caveat is mentioned: this definition of radiative lifetime 𝜏2 is 
"ignoring non-radiative decay channels." In many real systems, an excited 
atom can also lose its energy through processes other than photon emission. 
For example, it might collide with another atom and transfer its energy 
(collisional quenching), or in a solid, it might transfer energy to lattice 
vibrations (phonons). These are non-radiative decay paths. If such paths 
exist, they also contribute to depopulating the excited state, and the total 

lifetime of the state will be shorter than the purely radiative lifetime 𝜏2. We will 

explore this more later, but for now, 𝐴21 and 𝜏2 refer specifically to the 

radiative process. 
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This slide provides a visual depiction of "Spontaneous Emission." In the 
center of the diagram, we see a blue circle labeled "(Excited Atom)". This 

represents our atom, initially in the upper energy state 𝐸2. Radiating outwards 
from this central excited atom are numerous yellow arrows of varying lengths, 
all pointing in different directions. These arrows symbolize the photons being 
spontaneously emitted by the atom as it decays to a lower energy state. The 
fact that they are pointing in all directions illustrates the isotropic nature of 
spontaneous emission in free space – there's no preferred direction for the 
emitted photon. A dashed grey circle is drawn around the excited atom, 
encompassing the pattern of emitted photons, further emphasizing this idea 

of emission occurring into a wide range of angles. 

Below the diagram, there's a crucial piece of text: "Rate governed by 𝐴21". This 
reinforces that the fundamental rate at which this spontaneous emission 
process occurs for a single atom is determined by the Einstein A coefficient, 

𝐴21. This 𝐴21 value is an intrinsic property of the atom and the specific 
transition involved. 

So, this image captures the essence of spontaneous emission: an excited 

atom releasing a photon in a random direction, at a rate determined by 𝐴21. 

This contrasts sharply with stimulated emission, where the emitted photon's 
direction and phase are dictated by the triggering photon. 
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Now, we need to discuss an important concept that affects these transition 
rates: "Statistical Weights and Degeneracy." This is denoted as Slide 8. 

The first point states: "Angular momentum 𝐽i of level i implies 𝑔i = 2 𝐽i + 1 
degenerate Zeeman sub-levels (without an external field)." Let's break this 
down. Atomic and molecular energy levels are often characterized by a total 

angular momentum quantum number, 𝐽. For a given 𝐽i, there are (2 𝐽i + 1) 
possible projections of this angular momentum onto an arbitrary axis. These 



projections are described by the magnetic quantum number, 𝑚J, which can 

take values from −𝐽i to +𝐽i in integer steps. 

In the absence of any external fields (like a magnetic field that would cause 
Zeeman splitting, or an electric field that would cause Stark splitting), these 
(2 𝐽i + 1) sub-levels, corresponding to different 𝑚J values, all have exactly the 
same energy. They are said to be "degenerate." 

The quantity 𝑔i = 2 𝐽i + 1 is called the degeneracy or statistical weight of the 

level i. It counts how many distinct quantum states have the same energy 𝐸i. 

For example, if 𝐽i = 1, then 𝑚J can be −1, 0, or +1, so 𝑔i = 3. 

Why is degeneracy important? "Degeneracy enters both population statistics 
and transition probabilities because dipole coupling may occur between 
multiple sublevel pairs." 

* Population statistics: When we consider a collection of atoms in thermal 
equilibrium, more degenerate levels tend to hold a larger fraction of the total 
population, simply because there are more "slots" available at that energy. 
This will be reflected in the Boltzmann distribution. 

* Transition probabilities: A transition we label as "i to j" is actually a 
collection of possible transitions between the sublevels of i and the sublevels 

of j. The electric dipole operator can couple different pairs of (𝐽i, 𝑚𝐽i) and 

(𝐽j,𝑚𝐽j) sublevels. The overall observed strength of a transition (like the B 

coefficient) will be an average or sum over all these allowed sublevel-to-

sublevel transitions, and the degeneracy factors 𝑔i and 𝑔j naturally come into 

play. 

The final point on this slide is: "In the absence of external magnetic/electric 
fields, all sublevels [within a given degenerate level i] are equally populated in 
thermal equilibrium." This is a fundamental postulate of statistical 
mechanics. If multiple states (sublevels) have the same energy, each of those 



states has an equal probability of being occupied when the system is in 
thermal equilibrium. 

So, degeneracy is not just a detail; it's a crucial factor in accurately describing 
both how atoms populate energy levels and the rates at which they transition 
between them. 
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This slide continues our discussion on Statistical Weights and Degeneracy. 

There's a single, very important statement here, foreshadowing a key result: 

"Will explicitly see 𝑔1 and 𝑔2 in the relation 𝐵12 equals 𝑔2

𝑔1
 times 𝐵21." That is, 

𝐵12 (the Einstein coefficient for stimulated absorption from lower level 1 to 

upper level 2) is related to 𝐵21 (the Einstein coefficient for stimulated 
emission from upper level 2 to lower level 1) by the ratio of the degeneracies 

of these levels. Specifically, 𝐵12 =
𝑔2

𝑔1
𝐵21, where 𝑔1 is the degeneracy of the 

lower level (2 𝐽1 + 1) and 𝑔2 is the degeneracy of the upper level (2 𝐽2 + 1). 

This is one of the fundamental Einstein relations that we will derive shortly by 
considering the system in thermal equilibrium with a black-body radiation 
field. 

What this relation implies is that if the upper level (level 2) is more degenerate 

than the lower level (level 1) – meaning 𝑔2 > 𝑔1 – then the coefficient 𝐵12 for 

absorption will be larger than 𝐵21 for stimulated emission. This makes 
intuitive sense: if there are more available states to transition into in the upper 
level, absorption is enhanced. Conversely, if the lower level is more 

degenerate (𝑔1 > 𝑔2), then 𝐵12 will be smaller than 𝐵21. 

If the levels happen to have the same degeneracy (𝑔1 = 𝑔2), then 𝐵12 simply 

equals 𝐵21. 



This relation highlights how the statistical weights of the energy levels directly 
influence the probabilities of stimulated absorption and emission between 
those levels. 
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Now we come to "Boltzmann Population Distribution in Equilibrium," labeled 
as Slide 9. This describes how atoms or molecules distribute themselves 
among their available energy levels when they are in thermal equilibrium at a 
given temperature. 

First, the Total molecular number density: This is denoted by a capital 𝑁. It's 

simply the sum of the number densities in each individual level 𝑖. So, 𝑁 = ∑i

𝑁i (sum over all levels 𝑖 of 𝑁i), where 𝑁i is the number of molecules per unit 

volume in energy level 𝑖. 

Next, the crucial formula for the Population of level i: The number density of 

molecules in a specific energy level 𝑖, 𝑁i, is given by: 

𝑁i = 𝑁 ⋅
𝑔i exp (−

𝐸i
𝑘𝑇

)

𝑍
 

Let's break this down: * 𝑁 is the total number density we just defined. * 𝑔i is 

the degeneracy (or statistical weight) of level 𝑖, which we discussed on the 

previous slide (𝑔i = 2 𝐽i + 1). * exp (−
𝐸i

𝑘𝑇
) is the famous Boltzmann factor.  * 

𝐸i is the energy of level 𝑖.  * 𝑘 is the Boltzmann constant (1.381 × 10−23 J/K).  

* 𝑇 is the absolute temperature in Kelvin.  This exponential factor tells us 

that levels with higher energy (larger 𝐸i) are exponentially less populated than 

levels with lower energy. The "𝑘𝑇" term represents the characteristic thermal 

energy available at temperature 𝑇. * 𝑍 is the partition function. The slide 

notes "where partition function," implying 𝑍 will be defined more fully, likely 

on the next page. The partition function is essentially a sum over all possible 



states that normalizes the distribution, ensuring that if you sum up all the 𝑁i, 

you get back the total 𝑁. 

This Boltzmann distribution is a cornerstone of statistical mechanics and is 
fundamental to understanding how populations are distributed in systems at 
thermal equilibrium, which is the starting point for Einstein's derivation of the 
relations between his coefficients. 
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Continuing with the Boltzmann Population Distribution, this slide clarifies the 

partition function, 𝑍, and then applies the distribution to our two-level 
system. 

First, the Partition function, 𝑍: 

Z is defined as the sum over all possible energy levels 𝑖, of the term 

(𝑔i × exp (−
𝐸i

𝑘𝑇
)). So, 

𝑍 = ∑ [𝑔i ⋅ exp (−
𝐸i

𝑘𝑇
)]

i

 

The role of the partition function is to normalize probabilities. When you 

divide 𝑔i × exp(−
𝐸i

𝑘𝑇
) by 𝑍, you get the fraction of molecules that are in level 𝑖. 

Summing this fraction over all 𝑖 gives 1. The partition function effectively 
measures the total number of thermally accessible states in the system. 

Now, let's apply this to a For two-level subset: We are interested in the ratio 

of populations in our upper state (ket 2, energy 𝐸2) and lower state (ket 1, 

energy 𝐸1). The population 𝑁2 is 

𝑁2 = 𝑁 ×
𝑔2 ⋅ exp (−

𝐸2

𝑘𝑇
)

𝑍
 

The population 𝑁1 is 



𝑁1 = 𝑁 ×
𝑔1 ⋅ exp (−

𝐸1

𝑘𝑇
)

𝑍
 

So, the ratio 𝑁2

𝑁1
 is: 

𝑁2

𝑁1
=

𝑁 ×
𝑔2 ⋅ exp (−

𝐸2

𝑘𝑇
)

𝑍

𝑁 ×
𝑔1 ⋅ exp (−

𝐸1

𝑘𝑇
)

𝑍

 

The total population 𝑁 and the partition function 𝑍 cancel out, leaving: 

𝑁2

𝑁1
=

𝑔2

𝑔1
×

exp (−
𝐸2

𝑘𝑇
)

exp (−
𝐸1

𝑘𝑇
)

 

𝑁2

𝑁1
=

𝑔2

𝑔1
× exp(−

𝐸2 − 𝐸1

𝑘𝑇
) 

And since we know from the Bohr condition that 𝐸2 − 𝐸1 = ℎ𝜈 (where 𝜈 is the 

resonant frequency), we can write: 

𝑁2

𝑁1
=

𝑔2

𝑔1
× exp (−

ℎ𝜈

𝑘𝑇
) 

This ratio is extremely important. The slide emphasizes that this is a "crucial 

ratio used in Einstein-coefficient derivation." To connect the microscopic 𝐴 

and 𝐵 coefficients to the macroscopic properties of thermal radiation 

(Planck's Law), Einstein needed to know how the populations 𝑁1 and 𝑁2 are 
related at thermal equilibrium, and this Boltzmann ratio provides exactly that. 

Note that since 𝐸2 > 𝐸1, the exponential term exp (−
ℎ𝜈

𝑘𝑇
) is always less than 1 

(for 𝑇 > 0). This means that in thermal equilibrium, 𝑁2 is always less than 𝑁1 

(assuming 𝑔2 = 𝑔1, or more generally 𝑁2

𝑔2
<

𝑁1

𝑔1
). To achieve 𝑁2 > 𝑁1, as 



required for laser action, we need to move away from thermal equilibrium via 
a pumping mechanism. 

Finally, the slide mentions: "Bar charts showing relative Boltzmann 
populations for different T..." which we expect to see on the next page, 
illustrating this temperature dependence. 
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This slide presents four bar charts, each illustrating the "Boltzmann 
Population Distribution" for different temperatures, specifically for rotational 
energy levels of a molecule. 

Let's look at the common features of these charts: 

• The vertical axis of each chart is labeled "Fractional Population (𝑁J

𝑁
)". This 

is the fraction of the total number of molecules (𝑁) that are found in a specific 

rotational quantum state 𝐽 (𝑁J). 

• The horizontal axis is "Rotational Quantum Number (𝐽)". Rotational levels 

are labeled by 𝐽, starting from 𝐽 = 0, 𝐽 = 1, 𝐽 = 2, and so on. In these charts, 𝐽 

goes up to 14. 

• Remember that rotational energy 𝐸J is typically proportional to 𝐽(𝐽 + 1), 

and the degeneracy 𝑔J of a rotational level is (2 𝐽 + 1). The population 𝑁J is 

proportional to 𝑔J × exp(−
𝐸J

𝑘𝑇
). 

Now let's examine each chart: 

1. Top Left: Boltzmann Population Distribution at 𝑇 = 99 K. At this low 
temperature, only the lowest rotational levels are significantly populated. The 

distribution peaks around 𝐽 = 3 or 𝐽 = 4, and then falls off rapidly for higher 𝐽 

values. The fractional population in any single 𝐽 state is relatively high for 

these low 𝐽 values compared to higher temperatures. 



2. Top Right: Boltzmann Population Distribution at 𝑇 = 200 K. As the 

temperature increases to 𝑇 = 200 K, more thermal energy is available. We 

see that the peak of the distribution has shifted to higher 𝐽 values, now around 

𝐽 = 5 or 𝐽 = 6. The distribution has also become broader, meaning a wider 

range of 𝐽 states are populated. 

3. Bottom Left: Boltzmann Population Distribution at 𝑇 = 600 K. At 𝑇 =

600 K, the trend continues. The peak in the population distribution shifts 

significantly further to higher 𝐽 values, now around 𝐽 = 9 or 𝐽 = 10. The 

distribution is much broader, with a substantial fraction of molecules 
occupying higher rotational states. 

4. Bottom Right: Boltzmann Population Distribution at 𝑇 = 1000 K. At this 

even higher temperature of 𝑇 = 1000 K, the population is spread over an even 

wider range of 𝐽 states, and the peak is shifted to 𝐽 values around 𝐽 = 12 or 

𝐽 = 13. The maximum fractional population in any single state is lower than at 
cooler temperatures because the molecules are distributed over many more 
states. 

Overall Trend: 

• As temperature (𝑇) increases, the population distribution shifts towards 

higher energy levels (higher 𝐽 in this case). 

• The distribution also becomes broader, meaning more energy levels 
become significantly populated. 

This is a direct consequence of the interplay between the (2 𝐽 + 1) 

degeneracy factor, which increases with 𝐽 (favoring higher 𝐽 states), and the 

exp (−
𝐸J

𝑘𝑇
) Boltzmann factor, which decreases with 𝐽 (disfavoring higher 𝐽 

states). The peak of the distribution occurs at the 𝐽 value that optimally 
balances these two opposing trends for a given temperature. Understanding 



this behavior is crucial for interpreting molecular spectra at different 
temperatures. 
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Now we arrive at a pivotal point in our derivation: 

Slide 10: Imposing Detailed Balance: Photon Gain = Loss. 

This principle will allow us to find the relationships between the Einstein 
coefficients. 

The fundamental premise is stated: "At strict thermal equilibrium: energy 

density 𝜌𝜈(𝜈) is time-independent." 

This is the definition of thermal equilibrium. If the system is truly in 

equilibrium, its macroscopic properties, such as the spectral energy density 
of the radiation field, do not change over time. 

"Therefore, per unit volume: absorption rate = total emission rate in the 
same mode." 

This is an application of the principle of detailed balance. In equilibrium, for 
every process that occurs, its reverse process must occur at the same rate. 
Here, we're considering a specific electromagnetic mode (i.e., photons of a 

particular frequency 𝜈, direction, and polarization). The rate at which photons 
are removed from this mode by absorption must be exactly balanced by the 
rate at which photons are added to this mode by emission processes. 

Let's look at the rates: 

1. Photon loss (due to absorption): 

The rate of absorption events per unit volume is given by 𝑅abs. 

𝑅abs = 𝑁1𝐵12𝜌𝜈(𝜈) 



Here: * 𝑁1 is the number density of atoms in the lower state (ket 1). * 𝐵12 is the 

Einstein coefficient for stimulated absorption. * 𝜌𝜈(𝜈) is the spectral energy 

density of the radiation field at the resonant frequency 𝜈. Each absorption 

event removes one photon of frequency 𝜈 from the field. 

2. Photon gain (due to stimulated emission): 

The rate of stimulated emission events per unit volume is given by 𝑅ind.em (for 

induced emission). 

𝑅ind.em = 𝑁2𝐵21𝜌𝜈(𝜈) 

Here: * 𝑁2 is the number density of atoms in the upper state (ket 2). * 𝐵21 is 

the Einstein coefficient for stimulated emission. * 𝜌𝜈(𝜈) is again the spectral 
energy density. Each stimulated emission event adds one photon of 

frequency 𝜈 to the field, and this photon is coherent with the stimulating field 

(i.e., it goes into the same mode). 

Now, we also need to consider spontaneous emission, which also 
contributes to transitions, and this will be on the next part of the slide. The key 
here is that in equilibrium, the flow of atoms upward must balance the flow of 
atoms downward. 
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Continuing with "Imposing Detailed Balance": 

3. Photon gain (spontaneous emission into all directions including the 
considered mode): 

The slide gives the rate of spontaneous emission events per unit volume as 
R_spon.em. 

𝑅spon.em = 𝑁2𝐴21 



Here: * 𝑁2 is the number density of atoms in the upper state. * 𝐴21 is the 
Einstein A coefficient for spontaneous emission. 

Now, a subtlety: 𝐴21 represents the total rate of spontaneous emission from 

state 2 to state 1, with photons being emitted isotropically into all available 
modes. The principle of detailed balance, as Einstein originally formulated it 
for deriving the coefficients, focused on the equilibrium of the atomic 

populations 𝑁1 and 𝑁2 under the influence of the radiation field 𝜌𝜈(𝜈) and 
spontaneous decay. The balance equation for the populations is that the rate 
of upward transitions (1 → 2) must equal the rate of downward transitions (2 → 
1). 

Upward rate (per unit volume) = 𝑁1𝐵12𝜌𝜈(𝜈) 

Downward rate (per unit volume) = 𝑁2𝐵21𝜌𝜈(𝜈) + 𝑁2𝐴21 

The 𝑁2𝐴21 term accounts for atoms leaving state 2 via spontaneous emission, 
irrespective of which mode the photon enters. These atoms then arrive in 
state 1. 

The slide formulates the Detailed balance condition as: 

𝑅𝑎𝑏𝑠 = 𝑅𝑖𝑛𝑑.𝑒𝑚 + 𝑅spon.em 

Substituting the expressions: 

𝑁1𝐵12𝜌𝜈(𝜈) = 𝑁2𝐵21𝜌𝜈(𝜈) + 𝑁2𝐴21 

This is indeed the standard equation expressing that in thermal equilibrium, 
the rate at which atoms are excited from state 1 to state 2 by absorption is 
equal to the total rate at which atoms return from state 2 to state 1 by both 
stimulated and spontaneous emission. 

The slide further states this condition is "ensuring no net change in photon 
number for that mode." 



This is true in the sense that if the atomic populations 𝑁1 and 𝑁2 are stable, 

and if 𝜌𝜈(𝜈) itself is the stable black-body distribution, then this equilibrium 

must hold. The absorption term removes photons from the mode defined by 

𝜌𝜈(𝜈), while the stimulated emission term adds photons coherently back into 

that same mode. The spontaneous emission term 𝐴21, while contributing to 
the population balance, emits photons into all modes. However, for the 
overall system (matter + radiation) to be in equilibrium, this population 

balance equation, which implicitly involves 𝜌𝜈(𝜈), must lead to the Planck 

distribution for 𝜌𝜈(𝜈) itself. This self-consistency is what Einstein exploited. 

So, the core equation we will work with is: 

𝑁1𝐵12𝜌𝜈(𝜈) = 𝑁2(𝐵21𝜌𝜈(𝜈) + 𝐴21) 
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Slide 11: Algebraic Solution for 𝜌𝜈(𝜈) 

Now we move to "Slide 11: Algebraic Solution for 𝜌𝜈(𝜈)." We will use the 

detailed balance equation we just established and solve for the spectral 

energy density, 𝜌𝜈(𝜈). 

First, we Substitute explicit rates into our detailed balance condition: 

𝑁1𝐵12 𝜌𝜈 = 𝑁2(𝐵21 𝜌𝜈 + 𝐴21) 

(Here, 𝜌𝜈  is understood to be 𝜌𝜈(𝜈)). This equation states that the rate of 
atoms leaving state 1 for state 2 equals the rate of atoms leaving state 2 for 
state 1. 

Next, we need to Isolate 𝜌𝜈: 

Let's rearrange the equation to gather all terms containing 𝜌𝜈  on one side: 

𝑁1𝐵12 𝜌𝜈 − 𝑁2𝐵21 𝜌𝜈 = 𝑁2𝐴21 

Now, factor out 𝜌𝜈  from the terms on the left-hand side: 



𝜌𝜈(𝑁1𝐵12 − 𝑁2𝐵21) = 𝑁2𝐴21 

Finally, divide by the term in the parenthesis to solve for 𝜌𝜈: 

𝜌𝜈 =
𝑁2𝐴21

𝑁1𝐵12 − 𝑁2𝐵21
 

To get this into the form shown on the slide, we can divide both the numerator 

and the denominator by 𝑁2𝐵21: 

𝜌𝜈 =

𝑁2𝐴21

𝑁2𝐵21

𝑁1𝐵12

𝑁2𝐵21
−

𝑁2𝐵21

𝑁2𝐵21

 

This simplifies to: 

𝜌𝜈 =

𝐴21

𝐵21

𝑁1

𝑁2
⋅
𝐵12

𝐵21
− 1

 

This expression for 𝜌𝜈  is exactly what's presented on the slide. It gives the 
spectral energy density in terms of the Einstein coefficients and the ratio of 

the populations 𝑁1

𝑁2
. 

The next step, as indicated, is to "Replace population ratio using Boltzmann 

formula." We know that in thermal equilibrium, the ratio 𝑁1

𝑁2
 (or 𝑁2

𝑁1
) is given by 

the Boltzmann distribution, which includes the temperature 𝑇 and the 

degeneracies 𝑔1 and 𝑔2. 
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Continuing with our algebraic solution for 𝜌𝜈(𝜈), we need to substitute the 
Boltzmann formula for the population ratio. 

Recall from Page 24, for a two-level system in thermal equilibrium at 

temperature 𝑇: 



𝑁2

𝑁1
=

𝑔2

𝑔1
exp (−

ℎ𝜈

𝑘𝑇
) 

Therefore, the ratio 𝑁1

𝑁2
, which appears in our denominator, is the reciprocal of 

this: 

𝑁1

𝑁2
=

𝑔1

𝑔2
exp (

ℎ𝜈

𝑘𝑇
) 

The slide restates this relationship. 

Now, we substitute this expression for 𝑁1

𝑁2
 into our formula for 𝜌𝜈(𝜈) from the 

previous page: 

𝜌𝜈(𝜈) =
𝐴21

𝐵21
/ [

𝑁1

𝑁2
⋅
𝐵12

𝐵21
− 1] 

becomes: 

𝜌𝜈(𝜈) =
𝐴21

𝐵21
/ [

𝑔1

𝑔2
exp (

ℎ𝜈

𝑘𝑇
) ⋅

𝐵12

𝐵21
− 1] 

This can be slightly rearranged in the denominator to group the coefficients: 

𝜌𝜈(𝜈) =
𝐴21

𝐵21
/ [

𝑔1𝐵12

𝑔2𝐵21
exp (

ℎ𝜈

𝑘𝑇
) − 1] 

This is the Final expression for the spectral energy density 𝜌𝜈(𝜈) as derived 

from the balance of absorption, stimulated emission, and spontaneous 
emission, assuming thermal equilibrium populations. 

The slide makes an important Note: at this stage, there are "still unknown 

ratios 𝐵12

𝐵21
 and 𝐴21

𝐵21
 hiding inside." 

Indeed, this formula for 𝜌𝜈(𝜈) contains these ratios of Einstein coefficients. 
Our next crucial step, pioneered by Einstein, is to compare this derived 

expression for 𝜌𝜈(𝜈) with the independently known formula for black-body 



radiation, namely Planck's Law. By forcing these two expressions for 𝜌𝜈(𝜈) to 
be identical (since they both must describe the same physical reality of 
thermal radiation in equilibrium), we will be able to determine these ratios of 
coefficients. 
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Slide 12: Comparing with Planck Law to Extract Coefficient Relations 

This brings us to "Slide 12: Comparing with Planck Law to Extract Coefficient 
Relations." This is where Einstein's genius truly shines. 

The strategy is straightforward: "Set our derived 𝜌𝜈  equal to Planck's 𝜌𝜈
Planck 

for every 𝜈 and every 𝑇." 

We have two expressions for the spectral energy density of thermal radiation: 

1. Our derived expression (from the previous slide): 

𝜌𝜈(𝜈) =
𝐴21

𝐵21
/ [

𝑔1𝐵12

𝑔2𝐵21
exp (

ℎ𝜈

𝑘𝑇
) − 1] 

2. Planck's Law (from our review on Page 5): 

𝜌𝜈
Planck(𝜈, 𝑇) =

8𝜋ℎ𝜈3

𝑐3
/ [exp (

ℎ𝜈

𝑘𝑇
) − 1] 

The crucial insight is: "Two functions are equal only if their denominators 
and numerators match identically." Because this equality must hold for all 

frequencies 𝜈 and all temperatures 𝑇, the functional forms must be identical. 

This powerful requirement will yield two independent algebraic conditions, 
allowing us to solve for the ratios of the Einstein coefficients. 

Let's start by comparing the denominators: 

* Denominator of our derived 𝜌𝜈: 



[
𝑔1𝐵12

𝑔2𝐵21
exp (

ℎ𝜈

𝑘𝑇
) − 1] 

* Denominator of Planck's 𝜌𝜈: 

[exp (
ℎ𝜈

𝑘𝑇
) − 1] 

For these denominators to be identical, the factor multiplying the exp (
ℎ𝜈

𝑘𝑇
) 

term in our derived expression must be equal to 1. 

Therefore, Matching denominator exponential factors demands: 

𝑔1𝐵12

𝑔2𝐵21
= 1 

Rearranging this gives us our first Einstein relation: 

𝐵12 =
𝑔2

𝑔1
 𝐵21 

This is shown in the box on the slide. It states that the Einstein B coefficient 

for stimulated absorption (𝐵12) is equal to the Einstein B coefficient for 

stimulated emission (𝐵21) multiplied by the ratio of the degeneracies of the 

upper state (𝑔2) to the lower state (𝑔1). If the degeneracies are equal (𝑔1 =

𝑔2), then 𝐵12 = 𝐵21. 

This is a profound result, obtained by requiring consistency between the 
microscopic processes and the macroscopic law of black-body radiation. 

Page 31: 

Continuing our comparison with Planck's Law to extract the coefficient 
relations: 

We've just established from matching the denominators that 𝑔1𝐵12

𝑔2𝐵21
= 1. 

Now, let's substitute this back into our derived expression for 𝜌𝜈(𝜈): 



𝜌𝜈(𝜈) =

𝐴21

𝐵21

[(
𝑔1𝐵12

𝑔2𝐵21
) exp (

ℎ𝜈
𝑘𝑇

) − 1]
 

If 𝑔1𝐵12

𝑔2𝐵21
= 1, then the expression simplifies to: 

𝜌𝜈(𝜈) =

𝐴21

𝐵21

[exp (
ℎ𝜈
𝑘𝑇

) − 1]
 

Now, we compare the numerators of this simplified derived 𝜌𝜈(𝜈) with the 

numerator of Planck's Law: 

* Numerator of our (now simplified) derived 𝜌𝜈: 𝐴21

𝐵21
 * Numerator of Planck's 𝜌𝜈: 

8𝜋ℎ𝜈3

𝑐3
 

For our simplified 𝜌𝜈(𝜈) to be identical to Planck's 𝜌𝜈
Planck(𝜈, 𝑇), these 

numerators must be equal. 

So, Matching numerators gives: 

𝐴21

𝐵21
=

8𝜋ℎ𝜈3

𝑐3
 

This can be rewritten, as shown in the box on the slide, to express 𝐴21 in terms 

of 𝐵21: 

𝐴21 =
8𝜋ℎ𝜈3

𝑐3
 𝐵21 

This is our second fundamental Einstein relation. It connects the coefficient 

for spontaneous emission 𝐴21 to the coefficient for stimulated emission 𝐵21. 

Notice that this relation involves fundamental constants (Planck's constant ℎ, 

speed of light 𝑐) and, very significantly, the cube of the transition frequency 

(𝜈3). This 𝜈3 dependence means that spontaneous emission becomes 



dramatically more probable at higher frequencies (e.g., for X-ray transitions 
compared to radio frequency transitions). 

The slide makes a critical concluding statement: "These two boxed 
statements are Einstein relations; no approximation made besides 
thermal equilibrium." 

The two relations are: 

1. 𝐵12 =
𝑔2

𝑔1
 𝐵21 

2. 𝐴21 =
8𝜋ℎ𝜈3

𝑐3
 𝐵21 

Although we derived these relations by considering a system in thermal 
equilibrium, the relations themselves express fundamental properties of the 
atom or molecule and the way it interacts with electromagnetic radiation. 

Therefore, these relations between the coefficients 𝐴21, 𝐵12, and 𝐵21 hold true 
regardless of whether the system is actually in thermal equilibrium or not, and 

irrespective of the actual form of the radiation field 𝜌𝜈(𝜈). The thermal 
equilibrium argument was a scaffold to uncover these intrinsic atomic 
properties. This universality is what makes them so powerful. 
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Now let's explore the "Slide 13: Physical Interpretation of 𝐵12 = 𝐵21 (
𝑔2

𝑔1
)." This 

is the first Einstein relation we derived. 

The first point considers the simple case: "If 𝑔1 = 𝑔2: induced absorption and 

induced emission have identical probability coefficients." If the degeneracy of 

the lower state (𝑔1) is equal to the degeneracy of the upper state (𝑔2), then the 

ratio 𝑔2

𝑔1
 is 1. In this situation, 𝐵12 = 𝐵21. This means that the intrinsic 

probability (per unit energy density) for a photon to stimulate an upward 
transition (absorption) is exactly the same as the intrinsic probability for it to 



stimulate a downward transition (emission), assuming the atom is in the 
appropriate initial state. This often holds for transitions between non-
degenerate levels, or when we consider transitions between specific 

individual sublevels (where 𝑔 = 1 for each sublevel). 

What if there is Unequal degeneracy? 

The slide states: "higher 𝑔2 (more final states for absorption) naturally 

increases absorption probability." If the upper level (level 2) has a higher 

degeneracy than the lower level (level 1), so 𝑔2 > 𝑔1, then 𝐵12 = (
𝑔2

𝑔1
)𝐵21 will 

be greater than 𝐵21. This means that absorption is inherently more probable 

(per 𝐵 coefficient definition) than stimulated emission from the upper level 

when comparing 𝐵12 to 𝐵21 for the overall levels. 

Why? Imagine the transition from a single state in level 1 to one of 𝑔2 states in 

level 2 for absorption. And for emission, from one of 𝑔2 states in level 2 to a 

single state in level 1. The factor 𝑔2

𝑔1
 accounts for the number of available 

"pathways" or final states when we define 𝐵12 and 𝐵21 as coefficients for the 
overall levels 1 and 2, rather than for specific sublevel-to-sublevel transitions. 
If we were to consider transitions between individual non-degenerate 

sublevels 𝑚1 of level 1 and 𝑚2 of level 2, the corresponding 𝐵(𝑚1 → 𝑚2) and 

𝐵(𝑚2 → 𝑚1) coefficients would be equal. The 𝑔 factors appear when we 

average over initial sublevels and sum over final sublevels to define the 𝐵 
coefficients for the entire levels. 

What is the deeper reason for this equality (𝐵(𝑚1 → 𝑚2) = 𝐵(𝑚2 → 𝑚1))? 

The slide points to the "Reciprocity principle backend: time reversal 
symmetry of QED matrix elements underlies equality." This is a profound 
statement rooted in Quantum Electrodynamics (QED). The fundamental 
Hamiltonian describing the interaction between light and matter is Hermitian. 
This property, related to time-reversal symmetry, implies that the squared 



magnitude of the matrix element for a transition from an initial state to a final 

state (e.g., |⟨final|𝐻interaction|initial⟩|2) is the same as that for the time-reversed 
process (from final to initial, mediated by the same interaction). This 
underlying symmetry at the level of individual quantum states is what 

ultimately leads to the relationship between 𝐵12 and 𝐵21 involving the 
degeneracies when we consider transitions between entire degenerate levels. 
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Continuing with the physical interpretation and consequences of the Einstein 

relations, particularly 𝐵12 =
𝑔2

𝑔1
𝐵21. 

A very Useful consequence of this relationship is that: "measuring either 
absorption cross-section or gain cross-section suffices to know the 
other." 

Let's understand why. The Einstein B coefficients are directly related to the 
concepts of absorption and gain cross-sections, often denoted by the Greek 

letter sigma (𝜎). 

* The absorption cross-section, 𝜎abs (or 𝜎12), quantifies how effectively an 

atom in the lower state absorbs a photon. It's proportional to 𝐵12 (and also to 

a lineshape function, 𝑔(𝜈), that describes the frequency profile of the 
transition). 

* Similarly, the stimulated emission (or gain) cross-section, 𝜎gain (or 𝜎21), 

quantifies how effectively an excited atom is stimulated to emit a photon. It's 

proportional to 𝐵21 (and the same lineshape function 𝑔(𝜈)). 

Since 𝐵12 =
𝑔2

𝑔1
𝐵21, it follows directly that the cross-sections are related by: 

𝜎abs(𝜈) =
𝑔2

𝑔1
𝜎gain(𝜈) 

(assuming the same lineshape). 



This is incredibly practical in laser physics and spectroscopy. If you can 
measure, for example, the absorption spectrum of a material (which gives you 

𝜎abs(𝜈)), and you know the degeneracies 𝑔1 and 𝑔2 of the levels involved, you 

can then immediately calculate the gain cross-section 𝜎gain(𝜈) for that same 

transition. The gain cross-section is a critical parameter for predicting 
whether a material can act as a laser medium and how much amplification it 
can provide. 

So, this theoretical link between 𝐵12 and 𝐵21 translates into a direct, 
experimentally verifiable, and highly useful relationship between measurable 
spectroscopic quantities. 
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Slide 14: Spontaneous vs. Induced Emission into a Single Mode 

Now we turn to "Slide 14: Spontaneous vs. Induced Emission into a Single 
Mode." This will give us a very deep insight into the relative importance of 
these two emission processes. 

First, let's recall the concept of the Density of EM modes per unit volume, 

per unit frequency interval. This is often denoted by 𝑛(𝜈) (or sometimes 

𝜌modes(𝜈) or 𝐷(𝜈) to avoid confusion with photon number). 

The slide gives: 

𝑛(𝜈) =
8𝜋𝜈2

𝑐3
 

This expression tells us how many distinct electromagnetic modes 
(essentially, available "slots" for photons) exist per unit volume of space, 

within a unit frequency interval centered at frequency 𝜈. It arises from 

counting the possible standing wave solutions for electromagnetic waves in a 
cavity and then extending to free space. The factor includes contributions 



from two independent polarizations for each spatial mode. The units are 

number of modes per (meter cubed times Hertz), which is seconds per m−3. 

Next, we take our second Einstein relation: 

𝐴21 =
8𝜋ℎ𝜈3

𝑐3
𝐵21 

And we Divide this equation by 𝑛(𝜈): 

𝐴21

𝑛(𝜈)
=

8𝜋ℎ𝜈3

𝑐3 𝐵21

8𝜋𝜈2

𝑐3

 

Let's see what cancels: * The 8𝜋 in the numerator and denominator cancels. * 

The 𝑐3 in the numerator and denominator cancels. * 𝜈3 in the numerator 

divided by 𝜈2 in the denominator leaves 𝜈. 

So, the expression simplifies beautifully to: 

𝐴21

𝑛(𝜈)
= 𝐵21ℎ𝜈 

This equation, 𝐴21

𝑛(𝜈)
= 𝐵21ℎ𝜈, is profoundly important. It relates the total 

spontaneous emission rate 𝐴21, the density of modes 𝑛(𝜈), the stimulated 

emission coefficient 𝐵21, and the energy of a single photon ℎ𝜈. Let's interpret 
this on the next page. 
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Let's delve into the Interpretations of the remarkable equation we just 

derived: 𝐴21

𝑛(𝜈)
= 𝐵21ℎ𝜈. 

Left side = spontaneous per-mode probability, denoted \(A_{21}^\) (A 
twenty-one star). 



𝐴21 is the total spontaneous emission rate from an atom in state 2, emitting 
into all possible modes. 

𝑛(𝜈) is the number of modes per unit volume per unit frequency interval. 

So, 𝐴21

𝑛(𝜈)
 can be interpreted as the spontaneous emission rate per mode 

(strictly, per unit volume per unit frequency, which needs careful handling if 
we want rate into one specific discrete mode, but this ratio is proportional to 

it). Let's call 𝐴21
∗  the spontaneous emission probability (or rate) into a single, 

specific mode. 

Then, 𝐴21
∗ = 𝐵21ℎ𝜈. 

Right side = induced probability when exactly one* photon is already 
present. 

The term 𝐵21ℎ𝜈 is indeed the stimulated emission probability (per atom, per 

second) if the energy density 𝜌v(𝜈) happens to be exactly that corresponding 

to one photon of energy ℎ𝜈 within the "volume and bandwidth of that mode." 

More simply, we know the stimulated emission rate per atom is 𝐵21𝜌v(𝜈). If 

we say that one photon in the mode contributes an energy density equivalent 

to "ℎ𝜈" (this is a slight conceptual simplification from 𝜌v, but leads to the right 

idea for q), then the rate due to one photon is 𝐵21 times "hν-equivalent-

energy-density". The relation 𝐴21
∗ = 𝐵21ℎ𝜈 is more direct. 

Therefore, the profound conclusion is: "Therefore, one photon in a mode 
causes stimulated emission at the same rate as vacuum causes 
spontaneous emission into that same single mode." 

This is a cornerstone statement in quantum optics. Think about it: 

The vacuum itself, through its fluctuations, causes spontaneous emission 

into a given mode at a rate 𝐴21
∗ . 



If, instead of just vacuum, there is one real photon already occupying that 

mode, it will cause stimulated emission into that same mode at a rate 𝐵21 * 
"hν-equivalent-density". Our equation shows these two rates are equal. 

So, spontaneous emission into a mode can be thought of as the "zeroth order" 
of stimulated emission – it's like being stimulated by the zero-point energy of 
the vacuum field, which is equivalent in effect to one photon being present for 
stimulation. 

This explains why spontaneous emission into the lasing mode is often called 
the "seed" for laser action. Once that first photon is spontaneously emitted 
into the mode, it can then stimulate further emission, and the process can 

build up if there's gain. This also highlights that spontaneous emission is the 
fundamental source of quantum noise in lasers, as it's an unavoidable 
random process that initiates amplification. 
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This brings us to "Slide 15: General Relation — Induced/Spontaneous Ratio = 

Photon Number 𝑞." We're now going to generalize the insight from the 
previous slide to understand how the ratio of stimulated to spontaneous 

emission rates depends on the number of photons, 𝑞, present in a specific 
mode. 

First, let's consider the Energy density in a single mode: 

The slide states: 

𝜌𝜈(𝜈) = 𝑞 ℎ𝜈 

This is a crucial conceptual link. It's saying that the effective spectral energy 

density 𝜌𝜈(𝜈) that drives transitions within a particular mode is proportional 

to ' 𝑞 ', the number of photons in that mode, times the energy per photon, ' ℎ𝜈 

'. More precisely, if a single mode has a certain effective volume 𝑉mode and 



frequency bandwidth 𝛥𝜈mode, and it contains 𝑞 photons, then the total energy 
in that mode is 

𝑈mode = 𝑞 ℎ𝜈. 

The spectral energy density would then be 

𝑈mode

𝑉mode 𝛥𝜈mode
. 

Here, for simplicity, 𝜌𝜈(𝜈) is being directly associated with 𝑞 ℎ𝜈. This 

interpretation assumes that the B coefficient correctly links this 𝑞 ℎ𝜈 to the 
transition rate. It captures the essential idea that the "strength" of the field in 
the mode, for the purpose of driving stimulated emission, scales with the 

number of photons 𝑞. 

where 𝑞 = instantaneous photon count in that mode. 

Now, let's look at the Induced emission rate per excited molecule: 

This is the probability per second that a single molecule in the excited state 

(ket 2) will undergo stimulated emission. We'll call this 𝑅ind. 

𝑅ind = 𝐵21 𝜌𝜈(𝜈) 

Substituting our expression for 𝜌𝜈(𝜈) in terms of 𝑞: 

𝑅ind = 𝐵21 𝑞 ℎ𝜈 

So, the stimulated emission rate per molecule is directly proportional to 𝐵21, 

the photon energy ℎ𝜈, and, most importantly, the number of photons 𝑞 

already present in that mode. This linear dependence on 𝑞 is key to 
amplification. 
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Continuing with "Slide 15: General Relation — Induced/Spontaneous Ratio." 



We have the induced emission rate per excited molecule as 𝑅ind = 𝐵21 𝑞 ℎ𝜈. 

Now, let's consider the Ratio to the spontaneous rate: 

Specifically, we want the ratio of the stimulated emission rate into a particular 
mode to the spontaneous emission rate into that same mode. 

Let \(R_{\text{spon}}^\) be the spontaneous emission rate per excited 
molecule into that single mode. From Slide 35, we identified \(A_{21}^ = 

B_{21}\, h\nu\) as this per-mode spontaneous rate (where 𝐴21
∗  was the 

notation on that slide for 𝐴21/𝑛(𝜈)). 

The slide writes the denominator as 𝐴21
∗ , implying this single-mode 

spontaneous rate. 

So, the ratio is: 

\[\frac{R_{\text{ind}}}{R_{\text{spon}}^} = \frac{B_{21}\, q\, h\nu}{A_{21}^}\] 

Since 𝐴21
∗ = 𝐵21 ℎ𝜈, we substitute this into the denominator: 

𝑅ind

𝑅spon
∗

=
𝐵21 𝑞 ℎ𝜈

𝐵21 ℎ𝜈
 

The terms 𝐵21 and ℎ𝜈 cancel out, leaving: 

𝑅ind

𝑅spon
∗

= 𝑞 

This is an extremely elegant and powerful result! 

The ratio of the stimulated emission rate (into a specific mode) to the 
spontaneous emission rate (into that same specific mode) is simply equal 

to 𝑞, the number of photons already present in that mode. 

The Key takeaway is clearly stated: "each additional photon multiplies the 
induced rate linearly; the spontaneous rate (into that mode) is constant." 



So, if there's 1 photon in the mode (𝑞 = 1), stimulated emission occurs at the 
same rate as spontaneous emission into that mode. 

If there are 10 photons (𝑞 = 10), stimulated emission is 10 times stronger. 

If there are a million photons (𝑞 = 106), stimulated emission is a million times 
stronger! 

This is why lasers work. By confining photons in a resonant cavity, 𝑞 can 
become very large for specific lasing modes. Consequently, stimulated 
emission in these modes overwhelmingly dominates spontaneous emission, 
leading to coherent amplification and the highly monochromatic, directional, 
and intense beams characteristic of lasers. In contrast, for thermal light 

sources where 𝑞 is typically much less than 1 for any given mode, 
spontaneous emission dominates. 
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Slide 16: Practical Numbers — Thermal Field vs. Laser Cavity 

Now let's look at "Slide 16: Practical Numbers — Thermal Field vs. Laser 

Cavity." This slide will really drive home the difference in photon occupancy 𝑞 

between these types of light sources. 

First, consider Visible light at 𝑇 = 3000 Kelvin (approx. tungsten bulb): This is 
like the filament of an ordinary incandescent light bulb. 

The slide states that for visible light photons, the ratio of photon energy to 

thermal energy, ℎ𝜈

𝑘𝑇
, is approximately 5. (For example, if 𝜈 is for green light ∼

5.5 × 1014 Hz, ℎ𝜈 ∼ 2.28 eV. At 𝑇 = 3000 K, 𝑘𝑇 ∼ 0.258 eV. So ℎ𝜈

𝑘𝑇
∼ 8.8. If ℎ𝜈

𝑘𝑇
=

5, then ℎ𝜈 ∼ 1.29 eV, which is in the near infrared, about 960 nm. So "visible" 

is used a bit broadly here, or it's an average value. Let's proceed with ℎ𝜈

𝑘𝑇
≈ 5 

as given). 



With ℎ𝜈

𝑘𝑇
≈ 5, the average photon number per mode, 𝑞‾  (which we previously 

defined as 1

exp(
ℎ𝜈

𝑘𝑇
)−1

), becomes: 

𝑞‾ ≈
1

exp(5) − 1
=

1

148.4 − 1
≈

1

147.4
≈ 0.0067. 

The slide approximates this as 𝑞‾ ≈ 10−2 (one one-hundredth). 

So, for a thermal source like a light bulb, the average number of photons in 
any given mode in the visible/near-IR range is very small, much less than one 
photon per mode. 

Consequently, Induced emission is much, much less than spontaneous 

emission per mode. Since the stimulated rate is 𝑞 times the spontaneous 

rate (into the same mode), if 𝑞 is 10−2, then stimulated emission is only 1% of 
spontaneous emission. Thermal sources are overwhelmingly dominated by 
spontaneous emission. 

Now, consider the Same bulb but observed 10 centimeters away: The 

actual photon number per mode 𝑞 that would be "seen" by an atom at this 

distance is even smaller, around 𝑞 ∼ 10−8. 

Why this drastic reduction? Because the intensity of light from the bulb (and 

thus the energy density) decreases as 1

𝑟2
 due to geometric dilution (as per the 

4𝜋𝑟2 factor for spherical spreading). While 𝑞‾ ≈ 10−2 characterizes the photon 
occupancy at the temperature of the filament, the radiation field experienced 

by a target 10 cm away is much weaker. The effective 𝑞 driving transitions in a 
molecule at that distance is significantly diminished. This huge drop from 

10−2 to 10−8 (a factor of a million) reflects this dilution over 10 cm for a small 
filament. 

This illustrates just how "photon-starved" individual modes are in typical 
thermal radiation fields, especially at a distance from the source. 
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Continuing with "Practical Numbers — Thermal Field vs. Laser Cavity": 

Next, consider a High-pressure Mercury (Hg) lamp center, at a wavelength 

𝜆 = 253.6 nm: This wavelength is in the ultraviolet. The slide states that for 
this source, the average photon number per mode, q-bar, is approximately 

10−2. This value, similar to the tungsten bulb at its source, suggests that even 
for this intense discharge lamp, which can appear very bright (though this line 
is UV), the photon occupancy per mode is still very low. (If we assumed a 

blackbody at, say, 7000 K, for 𝜆 = 253.6 nm, ℎ𝜈

𝑘𝑇
≈ 8.1, giving q-bar ≈ 3 × 10−4. 

The 10−2 value might reflect non-blackbody characteristics or conditions right 
at the arc kernel where brightness is extremely high for that specific line). The 

key point remains: 𝑞‾ ≪ 1. Thus, such lamps are also dominated by 

spontaneous emission. 

Now, for a stark contrast, let's look at a Helium-Neon (He-Ne) laser single-

mode cavity. Typical parameters given are an output power of 1 mW and a 

mirror transmission of 1% for the output coupler. Under these conditions, the 
slide states: 

• Stored photon number 𝑞 ∼ 107 (ten million photons in the lasing mode 

within the cavity!).   This is an astronomically larger number than the q-

values for thermal sources (10−2 or 10−8).   (As a side note: from our 

previous calculation on page 48/49, 1 mW output with 1% transmission and 

𝐿 = 0.3 m led to 𝑃cav = 0.1 W, 𝑈 = 1 × 10−10 J, and my calculated 𝑞 was ∼

3.18 × 108. So, 107 is a conservative estimate here, but the order of 
magnitude is the key). 

• What's the consequence of such a high 𝑞?   Stimulated emission is ∼

107 times spontaneous emission per same mode.   This follows directly 

from our relation:    



Rate (stimulated)
Rate (spontaneous per mode)

= 𝑞 

  If 𝑞 is 107, then stimulated emission in the lasing mode is ten million 
times more probable than spontaneous emission into that same mode. This 
is why laser light is so different: it's an avalanche of coherent photons 
generated by stimulated emission, completely overwhelming the random 
spontaneous emissions within that lasing mode. 

The comparison is dramatic: q values of 10−2 for bright thermal sources 

versus 107 or more for a modest laser. This difference of many orders of 

magnitude is fundamental to what makes a laser a laser. 
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This slide presents a bar chart providing a "Comparison of Photon Number (q) 
per Mode" for the different light sources we've just discussed. This visual 
makes the differences strikingly clear. 

The vertical axis of the chart displays "Photon Number (q) per mode" on a 

logarithmic scale, ranging from 10−8 (one hundred-millionth) at the bottom up 

to 108 (one hundred million) at the top. Each major tick mark represents a 

factor of 100 increase (10−8,  10−6,  10−4, 10−2,  1, 102, 104, 106, 108). 

The horizontal axis simply labels the "Light Source." 

There are three bars: 

1. Tungsten Bulb (10cm): This is the first bar, colored blue. Its height 

corresponds to 𝑞 ≈ 10−8 on the logarithmic scale. It's a very, very short bar, 
emphasizing the extremely low photon occupancy per mode from a typical 
thermal source at a modest distance. 

2. Hg Lamp (center): This is the middle bar, colored green. Its height 

corresponds to 𝑞 ≈ 10−2 on the scale. While significantly higher than the 



distant tungsten bulb (by a factor of a million), it's still far below 𝑞 = 1. This 
means that even at the core of a bright discharge lamp, photon occupancy 
per mode is low. 

3. He-Ne Laser (cavity): This is the rightmost bar, colored red. Its height 

dramatically shoots up to 𝑞 ≈ 107 (ten million) on the scale. This bar is vastly 

taller than the other two. 

The Visual Impact: 

The chart powerfully illustrates the enormous disparity in photon occupancy 
per mode. 

* Thermal sources (tungsten bulb, Hg lamp) have 𝑞 ≪ 1. * The laser cavity has 

𝑞 ≫ 1, by many orders of magnitude (in this case, about 9 orders of 
magnitude, or a billion times more photons per mode than the tungsten bulb 
at 10cm, and about 9 orders of magnitude, or a billion times more, than the 

Hg lamp... no, wait, 107 vs 10−2, that's 9 orders of magnitude higher for the 
laser vs Hg lamp). 

This incredibly high photon number 'q' concentrated in a single (or few) modes 
within the laser cavity is precisely what enables stimulated emission to 
dominate and produce coherent, intense laser light. The chart serves as an 
excellent summary of the practical numbers discussed. 
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We now revisit a crucial conceptual point on "Slide 17: Independence of 
Einstein Coefficients from Radiation Field." 

The slide emphasizes that the Einstein coefficients – 𝐴21, 𝐵12, and 𝐵21 – 
depend only on intrinsic properties of the atom or molecule itself, not on the 
external radiation field it might be immersed in. Specifically, they depend on: 



• Transition frequency 𝜈: As we saw, 𝐴21 is proportional to 𝜈3 through the 
8𝜋ℎ𝜈3

𝑐3
 factor. Since 𝐵12 and 𝐵21 are related to 𝐴21, they also inherently depend 

on the frequency that characterizes the energy difference 𝐸2 − 𝐸1. 

• Dipole matrix elements (intrinsic to molecule/atom): This is the 

fundamental quantum mechanical quantity ⟨2|𝜇̂ ⋅ 𝑒|1⟩ that determines the 
strength of the coupling between the light and the matter for a specific 
transition. This matrix element depends on the wavefunctions of the initial 

and final states (𝜓1 and 𝜓2) and the electric dipole operator. 

The slide then clarifies what is affected by the external field: 

"External field strength (i.e., 𝜌𝜈), direction, spectrum influence populations 

𝑁1 and 𝑁2 but not the coefficients, provided the field does not Stark-shift 
levels." 

This is a critical distinction. The radiation field (its intensity 𝜌𝜈, its spectral 
distribution, its polarization) determines the rates of stimulated absorption 

and stimulated emission, and thereby it drives changes in the populations 𝑁1 

and 𝑁2. However, the proportionality constants in those rate equations – the 

𝐴 and 𝐵 coefficients – remain fixed values for that specific atomic/molecular 
transition. 

The important caveat "provided field does not Stark-shift levels" means we 
are operating in the weak-field, perturbative regime. If the external field is 

extremely strong, it can significantly alter the energy levels 𝐸1 and 𝐸2 (this is 

the Stark effect for electric fields), which would then change 𝜈 and potentially 

the wavefunctions themselves, thereby modifying the 𝐴 and 𝐵 coefficients. 
But for the conditions under which these coefficients are typically defined and 
used, they are considered constants of the material. 



So, think of 𝐴21, 𝐵12, and 𝐵21 as fingerprints of the specific transition within an 
atom or molecule. The light field determines how often these transitions 
happen, but not the intrinsic capacity for them to happen. 
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Continuing from the previous point about the independence of Einstein 
coefficients from the radiation field: 

The profound consequence is stated here: "Hence Einstein relations (slides 

12-14 referenced) remain valid for any 𝜌𝜈(𝜈): thermal, laser, incoherent 

lamp, or even vacuum." 

The Einstein relations we derived are: 

1. 𝐵12 = (
𝑔2

𝑔1
)𝐵21 

2. 𝐴21 = (
8𝜋ℎ𝜈3

𝑐3 )𝐵21   (And by implication, 𝐴21 = (
8𝜋ℎ𝜈3

𝑐3 ) (
𝑔1

𝑔2
)𝐵12) 

These relationships, which connect the three coefficients, were derived by 
considering a specific scenario: matter in thermal equilibrium with a black-
body (thermal) radiation field. However, because the A and B coefficients 
themselves are intrinsic properties of the atom/molecule and do not depend 
on the nature of the external field (in the weak-field limit), the relationships 
between these coefficients must also be universally valid. 

So, whether the radiation field 𝜌𝜈(𝜈) is: 

• Thermal (like black-body radiation), 

• Laser light (highly monochromatic, directional, and intense, very non-
thermal), 

• From an incoherent lamp (like a discharge lamp, also non-thermal in its 
detailed spectrum), 



• Or even in vacuum (where 𝜌𝜈(𝜈) = 0 for external fields, though vacuum 

fluctuations still exist to drive spontaneous emission via 𝐴21), 

these Einstein relations hold true. They are fundamental constants that 
describe how that particular two-level system interacts with photons of 

frequency 𝜈. 

This universality is what makes the Einstein A and B coefficients, and the 
relations between them, so incredibly powerful and fundamental in all areas 
of spectroscopy, quantum electronics, and laser physics. They provide a 
universal language for describing light-matter interactions at the single-
photon level. 
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Slide 18: Reformulating with Angular Frequency 𝜔 (omega) 

Sometimes, particularly in theoretical treatments, it's more convenient to 

work with angular frequency 𝜔 instead of cyclic frequency 𝜈. 

The Definition is straightforward: 

𝜔 = 2𝜋𝜈 (omega equals two pi nu) 

Angular frequency 𝜔 has units of radians per second, while 𝜈 has units of 
Hertz (cycles per second). 

Let's look at how some quantities change form: 

* Mode density per unit 𝜔: This is the number of electromagnetic modes per 

unit volume, per unit angular frequency interval. Let's call this 𝑛(𝜔). The slide 
gives: 

𝑛(𝜔) =
𝜔2

𝜋2𝑐3
 

(omega squared, divided by pi squared times cee cubed). We previously had 



𝑛(𝜈) =
8𝜋𝜈2

𝑐3
. 

Since the number of modes in an interval must be the same, 

𝑛(𝜔) 𝑑𝜔 = 𝑛(𝜈) 𝑑𝜈. 

As 

𝑑𝜔 = 2𝜋 𝑑𝜈, 

we get 

𝑛(𝜔) =
𝑛(𝜈)

2𝜋
. 

Substituting 

𝜈 =
𝜔

2𝜋
 

into 𝑛
(𝜈)

2𝜋
 gives 

8𝜋 (
𝜔
2𝜋)

2
/𝑐3

2𝜋
=

8𝜋𝜔2/(4𝜋2𝑐3)

2𝜋
=

2𝜔2/(𝜋𝑐3)

2𝜋
=

𝜔2

𝜋2𝑐3
. 

This matches the slide. 

* Spectral energy density per 𝜔: This is denoted 𝜌𝜔(𝜔) (rho sub omega of 
omega) and represents energy per unit volume per unit angular frequency 
interval. The slide states: 

𝜌𝜔(𝜔) = 𝑛(𝜔) ℏ𝜔  [
1

exp (
ℏ𝜔
𝑘𝑇

) − 1
] 

Which can be written as: 



𝜌𝜔(𝜔) =
𝜔2

𝜋2𝑐3
 ℏ𝜔  [

1

exp (
ℏ𝜔
𝑘𝑇

) − 1
] 

So, 

𝜌𝜔(𝜔) =
ℏ𝜔3

𝜋2𝑐3 (exp (
ℏ𝜔
𝑘𝑇

) − 1)
. 

Here, ℏ (h-bar) is the reduced Planck constant, ℏ =
ℎ

2𝜋
. So ℎ𝜈 = ℏ𝜔. 

These reformulations are primarily for mathematical convenience, often 

simplifying expressions by absorbing factors of 2𝜋 into ℏ and 𝜔. The 
underlying physics, of course, remains the same. 
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Continuing with the reformulation in terms of angular frequency 𝜔: 

The slide now considers how the Coefficient ratio A₂₁/B₂₁ becomes: 

𝐴21

𝐵21
=

ℏ𝜔3

𝜋𝑐3
 

(A twenty-one divided by B twenty-one equals h-bar omega cubed, all divided 
by pi cee cubed). 

And it reminds us that ℏ =
ℎ

2𝜋
. 

Let's quickly verify this transformation. We had 

𝐴21

𝐵21(𝜈)
=

8𝜋ℎ𝜈3

𝑐3
 

When we switch from 𝜈 to 𝜔, the definition of the B coefficient itself can 

change depending on whether it's defined with respect to 𝜌𝜈(𝜈) (energy 

density per unit cyclic frequency) or 𝜌𝜔(𝜔) (energy density per unit angular 



frequency). If the rate of transition is 𝐵21(𝜈)𝜌𝜈(𝜈) and also 𝐵21(𝜔)𝜌𝜔(𝜔), and 
since 

𝜌𝜔(𝜔) =
𝜌𝜈(𝜈)

𝑑𝜔
𝑑𝜈

=
𝜌𝜈(𝜈)

2𝜋
, 

it implies that 𝐵21(𝜔) = 2𝜋𝐵21(𝜈) for the rate to be the same. 

So, 

𝐴21

𝐵21(𝜔)
=

𝐴21

2𝜋𝐵21(𝜈)
=

1

2𝜋
⋅
8𝜋ℎ𝜈3

𝑐3
=

4 ℎ𝜈3

𝑐3
. 

Now, substitute ℎ = 2𝜋ℏ and 𝜈 =
𝜔

2𝜋
: 

𝐴21

𝐵21(𝜔)
=

4(2𝜋ℏ) (
𝜔
2𝜋)

3

𝑐3
=

8𝜋ℏ  (
𝜔3

8𝜋3)

𝑐3
=

ℏ𝜔3

𝜋2𝑐3
. 

My derivation consistently yields ℏ𝜔3

𝜋2𝑐3
. The slide has ℏ𝜔3

𝜋𝑐3
, which differs by a 

factor of 𝜋 in the denominator. Such discrepancies often arise from different 

conventions in defining 𝐵(𝜔) or the spectral energy density used (e.g., some 

definitions of 𝜌𝜔  might already include a factor of 2𝜋 relative to 𝜌𝜈). For the 
purpose of this lecture, we will adhere to the formula given on the slide: 

𝐴21

𝐵21
=

ℏ𝜔3

𝜋𝑐3
. 

It's important to be aware that when consulting different textbooks, one might 

encounter variations in these factors of 𝜋 depending on the precise 
definitions employed for the B coefficients in the angular frequency domain. 

The slide then makes an important clarifying point: 

"Factor 2𝜋 distinction arises solely from change of variable 𝜈 ↔ 𝜔; physical 

predictions unchanged." 



This is a key reassurance. While the mathematical forms of coefficients or 

densities might pick up or lose factors of 2𝜋 when switching between 𝜈 and 𝜔, 
any physically measurable quantity (like a transition rate in atoms per second, 
or an emitted power in Watts) must remain the same regardless of which 

frequency variable (𝜈 or 𝜔) was used in the intermediate calculations. The 

choice is one of mathematical convenience. 
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Slide 19: Example 1 — 100 W Tungsten Light Bulb. 

This will help us apply the concepts and see the magnitudes involved for a 
common thermal source. 

First, the Parameters given for this example: 

* Filament Temperature: 𝑇 ≈ 2800 Kelvin. This is a typical operating 
temperature for a tungsten filament in an incandescent bulb. * Observation 

point distance: 𝑟 = 0.10 meters (which is 10 centimeters). We are interested 

in the radiation field at this distance from the bulb. * Wavelength of interest: 

𝜆 = 500 nanometers. This is green light, near the peak of human eye 
sensitivity. 

The goal is to perform a Step-by-step photon number per mode (q) 
calculation: 

The slide outlines the general steps: 

1. Energy density at bulb surface from Stefan-Boltzmann law and 
geometric dilution. First, we'd estimate the total power radiated by the 
filament using the Stefan-Boltzmann law (Power = emissivity × Stefan-

Boltzmann constant × Area × 𝑇4). Then, from this power, we'd find the 
intensity at the filament's surface. The energy density at the surface is roughly 

this intensity divided by 𝑐. 



Crucially, this energy density then gets geometrically diluted as it spreads 

out. At a distance '𝑟' from a small source, the intensity (and thus energy 

density) falls off as 1/𝑟2 (or more precisely, related to the filament area and 

the 4𝜋𝑟2 area at distance 𝑟). So the energy density at the 0.10 m observation 
point will be much lower than at the filament surface. 

2. Convert to 𝜌𝜈  at 𝜆 (or corresponding 𝜈) using Planck formula. Once we 

have the (diluted) total energy density at the observation point corresponding 

to the filament temperature 𝑇, we need the spectral energy density 𝜌𝜈(𝜈) at 

our target frequency 𝜈 = 𝑐/𝜆. This means using Planck's law, 

𝜌𝜈(𝜈, 𝑇) =
8𝜋ℎ𝜈3

𝑐3 (exp (
ℎ𝜈
𝑘𝑇

) − 1)
 

and then applying the geometric dilution factor to this spectral quantity. 

Effectively, we're calculating 𝜌𝜈(𝜈, 𝑇) at the source and then scaling it down 

for the observation point. 

3. Divide by ℎ𝜈. If we have 𝜌𝜈(𝜈) (the spectral energy density at the 

observation point in J s m⁻³), dividing it by the energy of a single photon, ℎ𝜈 (in 
J), gives us the number of photons per unit volume per unit frequency interval 

(units: s m⁻³ or photons m⁻³ Hz⁻¹). 

The fourth step will be on the next slide, which involves dividing by the mode 

density to get 𝑞. 
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Continuing with Example 1, the 100 W Tungsten Light Bulb, and our step-by-

step calculation of the photon number per mode, 𝑞. We had just calculated 
(conceptually) the number of photons per unit volume per unit frequency at 
the observation point. 

The fourth and final step is: 



4. Divide by mode density 𝑛(𝜈). Recall that 𝑛(𝜈) =
8𝜋𝜈2

𝑐3
 is the number of 

electromagnetic modes per unit volume per unit frequency. The photon 

number per mode, 𝑞, is then: 

𝑞 =
𝜌𝜈(𝜈)/(ℎ𝜈)

𝑛(𝜈)
 

Substituting the Planck formula for 𝜌𝜈(𝜈, 𝑇) at the source and then applying 

the dilution factor, or recognizing that this whole expression for 𝑞 (if 𝜌𝜈(𝜈) is 

taken at the source temperature without dilution yet) simplifies to 𝑞source =
1

exp(ℎ𝜈/𝑘𝑇)−1
. The crucial part is that the 𝜌𝜈(𝜈) used here must be the diluted 

spectral energy density at the observation point (𝑟 = 0.10 m). If 𝑞source is the 

photon occupancy per mode at the filament temperature, then the effective 𝑞 

at the observation distance 𝑟 will be 𝑞source multiplied by the same geometric 
dilution factor that reduced the energy density. 

Now, for the Numerical outcome: 

The slide states that after performing these calculations, the result is 𝑞 ≈

10−8. Let's quickly check the source 𝑞 value: For 𝑇 = 2800 K and 𝜆 = 500 nm 

(𝜈 = 6 × 1014 Hz), ℎ𝜈

𝑘𝑇
≈ 10.28. So, 𝑞source =

1

exp(10.28)−1
≈

1

29215−1
≈ 3.4 ×

10−5. To get from 𝑞source ≈ 3.4 × 10−5 down to 𝑞observed ≈ 10−8 requires a 

dilution factor of about 3.4×10−5

10−8
= 3400. This factor reflects the geometric 

spread of light from the filament to the 10 cm observation point. This 𝑞 ≈ 10−8 
is an extremely small number. 

What is the Consequence of such a low 𝑞? "Stimulated processes in a 
molecular probe [placed at the observation point] are essentially zero; 
fluorescence remains spontaneous." If an incident photon from the bulb 
happens to excite a molecule at the observation point, that molecule will 
almost certainly de-excite via spontaneous emission (fluorescence). The 



probability of stimulated emission, which is proportional to 𝑞, is negligible 

when 𝑞 is 10−8 compared to the 1 associated with spontaneous emission into 
a mode. This example underscores how weak thermal light fields are in terms 
of photon occupancy per mode, especially at everyday distances from the 
source. 
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Slide 20: Example 2 — High-Pressure Hg (Mercury) Lamp. 

This is another common type of thermal (or quasi-thermal) light source, often 
used in spectroscopy for its strong emission lines. 

The parameters given: 

* Mercury arc kernel 𝑇 ∼ 7000 Kelvin. This is the very hot central part of the 

arc discharge. * Strongest line (relevant here) 𝜆 = 253.6 nanometers. This is 
a well-known, intense UV emission line of mercury. * Similar four-step 

evaluation (as for the tungsten bulb, presumably evaluating 𝑞 at or very 

near the arc kernel) gives 𝑞 ∼ 10−2. 

Let's compare with a blackbody calculation: 𝑇 = 7000 K, 𝜆 = 253.6 nm (𝜈 =

1.183 × 1015 Hz). 

ℎ𝜈

𝑘𝑇
≈ 8.11 

𝑞blackbody =
1

exp(8.11) − 1
≈

1

3327 − 1
≈ 3.0 × 10−4 

The slide's value of 𝑞 ∼ 10−2 is about 33 times higher than this blackbody 
estimate. This difference likely arises because an arc discharge is not a 

perfect blackbody; it can have very high brightness concentrated in its 
emission lines, leading to a higher effective photon occupancy per mode for 
those specific lines than what a pure thermal equilibrium blackbody at that 



temperature would suggest across all modes. For our purposes, we accept 

the slide's value of 𝑞 ∼ 10−2 for this source at this line. 

The key consequence, even with this relatively "high" 𝑞 for a non-laser source: 

"Although the lamp appears extremely bright to the human eye (or would, 
if 253.6nm were visible; other visible Hg lines contribute to perceived 
brightness), induced emission is much, much less than spontaneous 
emission per mode." 

Since 𝑞 ∼ 10−2, which is still much less than 1, the rate of stimulated 

emission (proportional to 𝑞) is only about 1% of the rate of spontaneous 

emission into a given mode (proportional to 1). So, even for very bright, high-
temperature discharge lamps, the light emission mechanism at the level of 
individual modes is overwhelmingly dominated by spontaneous emission. 
They are not like lasers. 
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Now we turn to "Slide 21: Example 3 — Single-Mode HeNe Laser Cavity." This 
will provide a stark contrast to the thermal sources. 

The parameters for a typical small Helium-Neon laser: 

• Output power: 𝑃out = 1 mW, which is 10−3 W. This is the power of the 
laser beam that actually comes out of the laser. 

• Mirror transmission: 𝑇 = 0.01 (or 1%). This is the transmittance of the 
output coupler mirror, the partially transparent mirror from which the beam 
emerges. 

From these, we can calculate the Intracavity power, 𝑃cav: 

The power circulating inside the laser cavity is much higher than the output 
power. If the output coupler transmits only 1% of the light incident upon it 



from inside, then to get 1 mW out, the power inside hitting that mirror must be 
𝑃out

𝑇
. 

𝑃cav =
𝑃out

𝑇
=

1 mW
0.01

= 100 mW = 0.1 W. 

So, there's 0.1 W of power continuously bouncing back and forth inside the 
laser cavity. 

Next, the Energy stored in the lasing mode within the cavity: 

The total energy 𝑈 stored in the resonant mode of length 𝐿 is related to the 

intracavity power 𝑃cav and the speed of light 𝑐 by the formula: 

𝑈 =
𝑃cav ⋅ 𝐿

𝑐
. 

This formula arises because 𝑃cav is the energy flowing per unit time, and 𝐿/𝑐 is 

the time it takes for light to traverse the cavity length 𝐿 once. So, 𝑈 is roughly 

the energy "in flight" within the cavity. 

Taking a typical cavity length for a small HeNe laser as 𝐿 = 0.3 m: 

𝑈 ≈
(0.1 W) ⋅ (0.3 m)

3 × 108 m/s
. 

𝑈 ≈
(0.03 J/s ⋅ m)

3 × 108 m/s
. 

𝑈 ≈ 1.0 × 10−10 J. 

This is a very small amount of energy in absolute terms, but as we'll see, it 
corresponds to a very large number of photons. 

The slide will continue with the Photon count on the next page. 
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Continuing with Example 3, the Single-Mode HeNe Laser Cavity. We just 

found the energy stored in the mode, 𝑈 ≈ 1.0 × 10−10 Joules. 

Now, let's calculate the Photon count, 𝑞: The number of photons, 𝑞, in the 

mode is simply the total energy stored in the mode, 𝑈, divided by the energy of 

a single photon, ℎ𝜈. 

𝑞 =
𝑈

ℎ𝜈
 

For a HeNe laser, the wavelength 𝜆 is 632.8 nanometers (632.8 × 10−9 
meters). 

The frequency 𝜈 =
𝑐

𝜆
=

3×108 m/s

632.8×10−9 m
≈ 4.74 × 1014 Hz. 

The energy per photon ℎ𝜈 = (6.626 × 10−34 J s) × (4.74 × 1014 s−1) ≈

3.139 × 10−19 J. 

So, 

𝑞 =
1.0 × 10−10 J

3.139 × 10−19 J/photon
≈ 3.185 × 108 photons. 

That's approximately 318 million photons! 

The slide states that 𝑞 is approximately 107 (ten million) photons. Our 

calculation based on the 𝑈 value from the previous slide gave a higher 

number, around 3.2 × 108. The exact number can depend on precise 

parameters like mode volume and exact definition of 𝑃cav, but the crucial 

point is the order of magnitude. Both 107 and 3 × 108 are vastly larger than 

the 𝑞 values for thermal sources. Let's use the slide's 𝑞 ≈ 107 for consistency 
with its typical representation. 

Now, the critical implication: 

"Stimulated emission overwhelms spontaneous emission (since 𝑞 ≫ 1)." 



With 𝑞 ≈ 107 (or even higher), meaning millions of photons are already in the 

lasing mode, the rate of stimulated emission (which is 𝑞 times the 

spontaneous rate into that mode) is enormous compared to the spontaneous 
emission into that same mode. This is the hallmark of laser action. 

"Nevertheless, spontaneous emission into all other modes still supplies the 
primary noise seed." 

Even though stimulated emission dominates in the lasing mode, atoms in the 
gain medium are still spontaneously emitting photons in all directions and 
into all other non-lasing modes. A tiny fraction of this spontaneous emission 
happens to go into the lasing mode itself. These spontaneously emitted 
photons that get "caught" by the lasing mode are then amplified by stimulated 
emission. They are, in essence, the "seeds" from which the laser light grows. 
They are also the fundamental source of quantum noise in the laser output, 
for instance, determining the ultimate linewidth of the laser. 

This example beautifully illustrates the conditions inside an operating laser. 
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This slide presents a "Sketch: Fabry-Pérot Cavity (HeNe Laser)," which 
visually summarizes the HeNe laser example we've just discussed. 

Let's describe the components shown in this diagram: 

• We see two mirrors facing each other, forming the optical resonator, also 
known as a Fabry-Pérot cavity.   • The mirror on the left is labeled "HR 
Mirror," which stands for High Reflector. This mirror would typically have a 
reflectivity very close to 100% at the laser wavelength.   • The mirror on 
the right is labeled "Output Coupler (OC)." This mirror is partially transparent, 

and the diagram indicates its transmission 𝑇 = 0.01, meaning 1% of the light 
incident on it from inside the cavity is transmitted out to form the laser beam. 



• The space between the mirrors is filled with the "HeNe Gain Medium," 
depicted as a pink shaded region. This is where the helium-neon gas mixture 
is located, and where the electrical discharge creates the population 
inversion necessary for lasing. 

• Inside the cavity, a red sinusoidal wave pattern is drawn, representing the 
standing electromagnetic wave of the resonant lasing mode. The light 
bounces back and forth between the mirrors, being amplified by the gain 
medium on each pass. 

• The length of the cavity is labeled as 𝐿 = 0.3 m. 

• Associated with the light inside, it's noted that the intracavity power, 

𝑃cav = 0.1 W. 

• A red arrow is shown emerging from the Output Coupler, representing the 

output laser beam, labeled 𝑃out = 1 mW. 

Below the cavity, key numbers summarizing the state of the light mode are 
given: 

• 𝑞 ≈ 107 photons – the number of photons in the lasing mode. 

• 𝑈 ≈ 1.0 × 10−10 J – the total energy stored in that mode. 

• And in parentheses, (𝑞 ≫ 1) – emphasizing that the photon number is 

much greater than one, the condition for stimulated emission to dominate. 

(As we noted, there's a slight inconsistency between 𝑈 = 1.0 × 10−10 J and 

𝑞 ≈ 107 photons for HeNe photons where ℎ𝜈 ≈ 3.14 × 10−19 J. 𝑈 =

1.0 × 10−10 J actually corresponds to 𝑞 ≈ 3.18 × 108 photons. Conversely, 

𝑞 = 107 photons would correspond to 𝑈 ≈ 3.14 × 10−12 J. However, the 
diagram presents these values together, so we acknowledge them as given in 
this illustrative sketch, representing typical orders of magnitude involved). 



This diagram provides a clear, concise visual summary of the physical setup 
and key parameters inside a common HeNe laser. 
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Slide 22: Conceptual Bridge to Lasers 

Now we're at "Slide 22: Conceptual Bridge to Lasers." This slide synthesizes 
what we've learned about the Einstein coefficients and photon occupancy to 
explain the fundamental principles of laser operation. 

The first crucial point is: "Laser gain medium engineered to invert 

populations (𝑁2 > 𝑁1)." This is the absolute prerequisite for laser action. In 

thermal equilibrium, the lower state 𝑁1 is always more populated than the 

upper state 𝑁2 (or 𝑁1

𝑔1
>

𝑁2

𝑔2
 more generally). A laser requires a "population 

inversion," where there are more atoms or molecules in the upper energy 

state of the lasing transition than in the lower state (or more precisely 𝑁2

𝑔2
>

𝑁1

𝑔1
 

for net gain). This non-equilibrium condition must be actively created by an 

external energy source, a process called "pumping." When 𝑁2

𝑔2
>

𝑁1

𝑔1
, then 

stimulated emission (𝑁2𝐵21) can overcome absorption (𝑁1𝐵12), leading to net 

amplification, because 𝑔1

𝑔2
𝐵12 = 𝐵21. 

Second: "Large 𝑞 accumulated in resonator → induced emission dominates → 
exponential amplification." 

* The "resonator" (the optical cavity formed by mirrors) plays a vital role by 
trapping photons of specific resonant frequencies. This allows the number of 

photons 𝑞 in these preferred modes to build up to very large values. 

* As we know, when 𝑞 is large, stimulated emission (whose rate is 

proportional to 𝑞) vastly outweighs spontaneous emission (whose rate into 

that mode is like 𝑞 = 1 stimulation). 



* This dominance of stimulated emission leads to exponential amplification 
of light within the cavity. If light makes a round trip through the gain medium 
and experiences a net gain greater than 1, its intensity will grow exponentially 
with each pass, until other limiting factors (like saturation of the gain) come 
into play. 

Third: "Selective feedback (mirrors) confines energy to very few modes → 

increases 𝑞 further without raising spontaneous emission." 

* The mirrors provide "selective feedback" because they are only highly 
reflective for light that is traveling along the axis of the cavity and has a 
wavelength that satisfies the standing wave condition (an integer number of 

half-wavelengths must fit between the mirrors). This means energy is 
channeled primarily into a very small number of specific spatial and 
frequency modes. 

* By confining the stimulated emission to these few modes, 𝑞 (the photon 
number per mode) for these modes becomes extremely high. 

Importantly, this buildup of 𝑞 in specific modes does not* increase the 

fundamental spontaneous emission rate 𝐴21 of the atoms themselves. 

Spontaneous emission still occurs isotropically into all 4𝜋 steradians, and 
most of it is lost from the cavity and does not contribute to the lasing mode. 

Finally: "Einstein-coefficient framework remains valid; only 𝑁1, 𝑁2 deviate 
from Boltzmann distribution." 

The A and B coefficients are intrinsic properties of the atoms/molecules. They 
are the same whether the system is in thermal equilibrium or in a highly non-
equilibrium state like a population inversion. What changes in a laser is that 

the populations 𝑁1 and 𝑁2 are driven far from the Boltzmann distribution that 

would characterize them at thermal equilibrium. It's this engineered, non-



thermal population distribution that allows for light amplification via 
stimulated emission. 
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We've reached "Slide 23: Key Take-Home Messages." This slide summarizes 
the core concepts from this entire lecture segment on absorption and 
emission processes. 

First: "Three elementary processes fully characterize linear light-matter 
interaction for a single transition." 

These are, of course: 1. Stimulated Absorption (rate proportional to 𝑁1 𝐵12 𝜌𝜈) 

2. Stimulated Emission (rate proportional to 𝑁2 𝐵21 𝜌𝜈) 3. Spontaneous 

Emission (rate proportional to 𝑁2 𝐴21) 

The term "linear" here refers to the fact that the stimulated rates are linearly 

proportional to the radiation energy density 𝜌𝜈  (or photon number 𝑞). This 
holds when the field is not so strong as to cause non-linear optical effects. 

"Single transition" reminds us we've primarily used a two-level atom model. 

Second: "Einstein relations enforce self-consistency with black-body 
radiation; no additional adjustable parameters." 

The relationships 𝐵12 = (
𝑔2

𝑔1
)𝐵21 and 𝐴21 =

8𝜋ℎ𝜈3

𝑐3
𝐵21 are fundamental. They 

were derived by requiring that the microscopic quantum processes, when in 
thermal equilibrium, must reproduce the empirically and theoretically known 
Planck distribution for black-body radiation. This means the A and B 
coefficients are not independent adjustable parameters; once one is known 
(along with degeneracies and frequency), the others are determined. This 
interconnectivity ensures a self-consistent framework. 

Third: "Spontaneous emission sets fundamental noise floor; stimulated 

term scales with photon occupancy 𝑞." 



Spontaneous emission is an inherent quantum process, occurring even in 
vacuum. The portion of spontaneous emission that goes into a particular 
mode (e.g., a lasing mode) acts as the ultimate irreducible "seed" or "noise 
floor" for that mode. From this seed, amplification can occur. 

The stimulated emission rate, on the other hand, scales directly with 𝑞, the 
number of photons already present in the mode. This is what allows for 

massive amplification when 𝑞 becomes large, as in a laser. The ratio of 

stimulated to spontaneous emission (into the same mode) is simply 𝑞. 
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Continuing with our "Key Take-Home Messages": 

Fourth: "Real-world bright thermal sources rarely reach 𝑞 ∼ 1; laser 

cavities routinely reach 𝑞 ≫ 1, enabling coherent amplification." This is a 

crucial practical distinction. As we saw in our examples, for thermal sources 
like incandescent bulbs or even bright discharge lamps, the average photon 

occupancy per mode (𝑞) is typically much less than 1 (e.g., 10−2 to 10−8). This 
means spontaneous emission dominates. 

In contrast, laser cavities are designed to build up an extremely high photon 

occupancy (𝑞 can be 107, 108, or even much higher) in one or a few modes. 

When 𝑞 ≫ 1, stimulated emission overwhelmingly dominates spontaneous 
emission within those modes, leading to the highly coherent and amplified 

light characteristic of lasers. The threshold 𝑞 ∼ 1 is where stimulated 
emission becomes comparable to spontaneous emission (into the same 

mode). 

Fifth, and critically important for your future studies: "Mastery of 𝐴21, 𝐵12, 𝐵21 
is prerequisite for quantitative laser-rate modeling, saturation spectroscopy, 
and fluorescence lifetime analysis." Understanding these Einstein 



coefficients and their interrelations is not just an academic exercise. It's 
absolutely fundamental for: 

* Quantitative laser-rate modeling: The equations that describe how laser 
light builds up and how populations in the gain medium evolve over time (the 
laser rate equations) are built directly upon the A and B coefficients. 

* Saturation spectroscopy: This is a powerful high-resolution spectroscopic 
technique that involves using a strong laser beam to significantly alter the 

populations 𝑁1 and 𝑁2 (e.g., depleting 𝑁1). Understanding how the absorption 
or gain "saturates" depends directly on the B coefficients and the intensity of 
the laser field. 

* Fluorescence lifetime analysis: The radiative lifetime of an excited state 

(𝜏𝑟𝑎𝑑 = 1/𝐴21) is a fundamental spectroscopic parameter that can provide 
rich information about molecular structure and dynamics. Measuring 

fluorescence decay curves allows experimental determination of 𝐴21. 

So, the concepts we've covered today form the essential toolkit for analyzing 
and understanding a vast range of phenomena in laser spectroscopy and 
quantum electronics. 

This concludes our detailed exploration of Chapter 2.3: Absorption, Induced, 
and Spontaneous Emission. I trust this has provided you with a solid 
foundation for these vital concepts. Thank you. 

  


