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Preface to the Fifth Edition

Since the 4th edition 2008, many new achievements in Laser Spectroscopy have
been successfully realized. as for example the expansion of optical comb spec-
troscopy into the extreme UV and its applications to metrology and astronomy, the
progress in high harmonics generation and in attosecond spectroscopy, the exper-
imental realization of entangled atoms in traps, the improvement of optical para-
metric oscillators with extended tuning ranges and of fibre lasers in a wide spectral
range. In particular the manifold of applications of laser spectroscopy in chemistry,
biology medicine and for solving technical problems has considerably increased.

The relevance of these developments has been underlined by awarding 3 times
in the last 12 years Nobel prizes to researchers in the field of laser spectroscopy,
namely 2001 to E. Cornell, W. Ketterle and C.E. Wieman for realizing Bose–
Einstein Condensation, 2005 to J.L. Hall, Th.W. Hänsch for the development of
the optical frequency comb and to R. Glauber for his outstanding contributions to
the quantum theory of coherence and 2012 to S. Haroche and D. Wineland for
their groundbreaking experimental methods applied to single trapped atoms and
ions which they investigated with ultrahigh precision laser spectroscopy.

Some of these new developments are included in this new edition. The short
representation of lasers and the discussion of the experimental tools indispensible
for laser spectroscopy have been improved and extended and the references to the
relevant literature have been supplemented by recent publications. However, also
references to older papers or books are still kept, because they are often authentic for
the development of new techniques and instrumentation and should not be forgotten.

As in the 4th edition the textbook is divided into two volumes. In the first volume
the basic foundations of laser spectroscopy and the necessary experimental equip-
ment is covered, while in Vol. 2 the different techniques of laser spectroscopy and
various applications are outlined.

The author thanks many colleagues who gave permission to reproduce figures
from their work or who supplied the author with papers on new developments.
Many thanks go to Dr. Schneider and Ute Heuser at Springer Heidelberg, who sup-
ported this new edition and last but not least to my wife Harriet for her continuous
encouragement and support.
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vi Preface to the Fifth Edition

The author hopes that this new edition will find a similar friendly acceptance as
the former editions. He will appreciate any comments regarding mistakes, possible
improvements of the representation or the inclusion of subjects not covered in this
book. Any mail will be answered as soon as possible.

Wolfgang Demtröder Kaiserslautern, December 2013



Preface to the Fourth Edition

About 50 years after the realization of the first laser in 1960, laser spectroscopy is
still a very intense field of research which has expanded with remarkable progress
into many areas of science, medicine and technology, and has provided an ever-
increasing number of applications. The importance of laser spectroscopy and its
appreciation by many people is, for instance, proved by the fact that over the last
ten years three Nobel Prizes have been awarded to nine scientists in the field of laser
spectroscopy and quantum optics.

This positive development is partly based on new experimental techniques, such
as improvements of existing lasers and the invention of new laser types, the realiza-
tion of optical parametric oscillators and amplifiers in the femtosecond range, the
generation of attosecond pulses, the revolution in the measurements of absolute op-
tical frequencies and phases of optical waves using the optical frequency comb, or
the different methods developed for the generation of Bose–Einstein condensates of
atoms and molecules and the demonstration of atom lasers as a particle equivalent
to photon lasers.

These technical developments have stimulated numerous applications in chem-
istry, biology, medicine, atmospheric research, materials science, metrology, optical
communication networks, and many other industrial areas.

In order to cover at least some of these new developments, a single volume
would need too many pages. Therefore the author has decided to split the book
into two parts. The first part contains the foundations of laser spectroscopy, i.e., the
basic physics of spectroscopy, optical instruments and techniques. It furthermore
provides a short introduction to the physics of lasers, and discusses the role of opti-
cal resonators and techniques for realizing tunable narrowband lasers, the working
horses of laser spectroscopy. It gives a survey on the different types of tunable lasers
and represents essentially the updated and enlarged edition of the first six chapters
of the third edition. In order to improve its value as a textbook for students, the
number of problems has been increased and their solutions are given at the end of
Vol. 1. The second volume discusses the different techniques of laser spectroscopy.
Compared to the third edition, it adds many new developments and tries to bring
the reader up to speed on the present state of laser spectroscopy.
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viii Preface to the Fourth Edition

The author wishes to thank all of the people who have contributed to this new
edition. There is Dr. Th. Schneider at Springer-Verlag, who has always supported
the author and has shown patience when deadlines were not kept. Claudia Rau
from LE-TeX has taken care of the layout, and many colleagues have given their
permission to use figures from their research. Several readers have sent me their
comments on errors or possible improvements. I thank them very much.

The author hopes that this new edition will find a similar friendly approval to
the former editions and that it will enhance interest in the fascinating field of laser
spectroscopy. He would appreciate any suggestions for improvement or hints about
possible errors, and he will try to answer every question as soon as possible.

Kaiserslautern, February 2008 Wolfgang Demtröder



Preface to the Third Edition

Laser Spectroscopy continues to develop and expand rapidly. Many new ideas and
recent realizations of new techniques based on old ideas have contributed to the
progress in this field since the last edition of this textbook appeared. In order to
keep up with these developments it was therefore necessary to include at least some
of these new techniques in the third edition.

There are, firstly, the improvement of frequency-doubling techniques in external
cavities, the realization of more reliable cw-parametric oscillators with large out-
put power, and the development of tunable narrow-band UV sources, which have
expanded the possible applications of coherent light sources in molecular spec-
troscopy. Furthermore, new sensitive detection techniques for the analysis of small
molecular concentrations or for the measurement of weak transitions, such as over-
tone transitions in molecules, could be realized. Examples are Cavity Ringdown
Spectroscopy, which allows the measurement of absolute absorption coefficients
with great sensitivity or specific modulation techniques that push the minimum de-
tectable absorption coefficient down to 10�14 cm�1!

The most impressive progress has been achieved in the development of tunable
femtosecond and subfemtosecond lasers, which can be amplified to achieve suffi-
ciently high output powers for the generation of high harmonics with wavelengths
down into the X-ray region and with pulsewidths in the attosecond range. Con-
trolled pulse shaping by liquid crystal arrays allows coherent control of atomic and
molecular excitations and in some favorable cases chemical reactions can already
be influenced and controlled using these shaped pulses.

In the field of metrology a big step forward was the use of frequency combs
from cw mode-locked femtosecond lasers. It is now possible to directly compare
the microwave frequency of the cesium clock with optical frequencies, and it turns
out that the stability and the absolute accuracy of frequency measurements in the
optical range using frequency-stabilized lasers greatly surpasses that of the cesium
clock. Such frequency combs also allow the synchronization of two independent
femtosecond lasers.

The increasing research on laser cooling of atoms and molecules and many ex-
periments with Bose–Einstein condensates have brought about some remarkable
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x Preface to the Third Edition

results and have considerably increased our knowledge about the interaction of
light with matter on a microscopic scale and the interatomic interactions at very
low temperatures. Also the realization of coherent matter waves (atom lasers) and
investigations of interference effects between matter waves have proved fundamen-
tal aspects of quantum mechanics.

The largest expansion of laser spectroscopy can be seen in its possible and
already realized applications to chemical and biological problems and its use in
medicine as a diagnostic tool and for therapy. Also, for the solution of techni-
cal problems, such as surface inspections, purity checks of samples or the analysis
of the chemical composition of samples, laser spectroscopy has offered new tech-
niques.

In spite of these many new developments the representation of established fun-
damental aspects of laser spectroscopy and the explanation of the basic techniques
are not changed in this new edition. The new developments mentioned above and
also new references have been added. This, unfortunately, increases the number of
pages. Since this textbook addresses beginners in this field as well as researchers
who are familiar with special aspects of laser spectroscopy but want to have an
overview on the whole field, the author did not want to change the concept of the
textbook.

Many readers have contributed to the elimination of errors in the former edition
or have made suggestions for improvements. I want to thank all of them. The author
would be grateful if he receives such suggestions also for this new edition.

Many thanks go to all colleagues who gave their permission to use figures and
results from their research. I thank Dr. H. Becker and T. Wilbourn for critical read-
ing of the manuscript, Dr. H.J. Koelsch and C.-D. Bachem of Springer-Verlag for
their valuable assistance during the editing process, and LE-TeX Jelonek, Schmidt
and Vöckler for the setting and layout. I appreciate, that Dr. H. Lotsch, who has
taken care for the foregoing editions, has supplied his computer files for this new
edition. Last, but not least, I would like to thank my wife Harriet who made many
efforts in order to give me the necessary time for writing this new edition.

Kaiserslautern, April 2002 Wolfgang Demtröder



Preface to the Second Edition

During the past 14 years since the first edition of this book was published, the field
of laser spectroscopy has shown a remarkable expansion. Many new spectroscopic
techniques have been developed. The time resolution has reached the femtosecond
scale and the frequency stability of lasers is now in the millihertz range.

In particular, the various applications of laser spectroscopy in physics, chemistry,
biology, and medicine, and its contributions to the solutions of technical and envi-
ronmental problems are remarkable. Therefore, a new edition of the book seemed
necessary to account for at least part of these novel developments. Although it ad-
heres to the concept of the first edition, several new spectroscopic techniques such
as optothermal spectroscopy or velocity-modulation spectroscopy are added.

A whole chapter is devoted to time-resolved spectroscopy including the gen-
eration and detection of ultrashort light pulses. The principles of coherent spec-
troscopy, which have found widespread applications, are covered in a separate
chapter. The combination of laser spectroscopy and collision physics, which has
given new impetus to the study and control of chemical reactions, has deserved an
extra chapter. In addition, more space has been given to optical cooling and trapping
of atoms and ions.

I hope that the new edition will find a similar friendly acceptance as the first
one. Of course, a texbook never is perfect but can always be improved. I, there-
fore, appreciate any hint to possible errors or comments concerning corrections and
improvements. I will be happy if this book helps to support teaching courses on
laser spectroscopy and to transfer some of the delight I have experienced during my
research in this fascinating field over the last 30 years.

Many people have helped to complete this new edition. I am grateful to col-
leagues and friends, who have supplied figures and reprints of their work. I thank
the graduate students in my group, who provided many of the examples used to
illustrate the different techniques. Mrs. Wollscheid who has drawn many figures,
and Mrs. Heider who typed part of the corrections. Particular thanks go to Helmut
Lotsch of Springer-Verlag, who worked very hard for this book and who showed
much patience with me when I often did not keep the deadlines.
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xii Preface to the Second Edition

Last but not least, I thank my wife Harriet who had much understanding for the
many weekends lost for the family and who helped me to have sufficient time to
write this extensive book.

Kaiserslautern, June 1995 Wolfgang Demtröder



Preface to the First Edition

The impact of lasers on spectroscopy can hardly be overestimated. Lasers repre-
sent intense light sources with spectral energy densities which may exceed those of
incoherent sources by several orders of magnitude. Furthermore, because of their
extremely small bandwidth, single-mode lasers allow a spectral resolution which
far exceeds that of conventional spectrometers. Many experiments which could not
be done before the application of lasers, because of lack of intensity or insufficient
resolution, are readily performed with lasers.

Now several thousands of laser lines are known which span the whole spectral
range from the vacuum-ultraviolet to the far-infrared region. Of particular interst
are the continuously tunable lasers which may in many cases replace wavelength-
selecting elements, such as spectrometers or interferometers. In combination with
optical frequency-mixing techniques such continuously tunable monochromatic co-
herent light sources are available at nearly any desired wavelength above 100 nm.

The high intensity and spectral monochromasy of lasers have opened a new class
of spectroscopic techniques which allow investigation of the structure of atoms and
molecules in much more detail. Stimulated by the variety of new experimental
possibilities that lasers give to spectroscopists, very lively research activities have
developed in this field, as manifested by an avalanche of publications. A good
survey about recent progress in laser spectroscopy is given by the proceedings of
various conferences on laser spectroscopy (see “Springer Series in Optical Sci-
ences”), on picosecond phenomena (see “Springer Series in Chemical Physics”),
and by several quasi-mongraphs on laser spectroscopy published in “Topics in Ap-
plied Physics”.

For nonspecialists, however, or for people who are just starting in this field, it is
often difficult to find from the many articles scattered over many journals a coherent
representation of the basic principles of laser spectroscopy. This textbook intends
to close this gap between the advanced research papers and the representation of
fundamental principles and experimental techniques. It is addressed to physicists
and chemists who want to study laser spectroscopy in more detail. Students who
have some knowledge of atomic and molecular physics, electrodynamics, and optics
should be able to follow the presentation.
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xiv Preface to the First Edition

The fundamental principles of lasers are covered only very briefly because many
excellent textbooks on lasers already exist.

On the other hand, those characteristics of the laser that are important for its ap-
plications in spectroscopy are treated in more detail. Examples are the frequency
spectrum of different types of lasers, their linewidths, amplitude and frequency
stability, tunability, and tuning ranges. The optical components such as mirrors,
prisms, and gratings, and the experimental equipment of spectroscopy, for example,
monochromators, interferometers, photon detectors, etc., are discussed extensively
because detailed knowledge of modern spectroscopic equipment may be crucial for
the successful performance of an experiment.

Each chapter gives several examples to illustrate the subject discussed. Problems
at the end of each chapter may serve as a test of the reader’s understanding. The
literature cited for each chapter is, of course, not complete but should inspire fur-
ther studies. Many subjects that could be covered only briefly in this book can be
found in the references in a more detailed and often more advanced treatment. The
literature selection does not represent any priority list but has didactical purposes
and is intended to illustrate the subject of each chapter more thoroughly.

The spectroscopic applications of lasers covered in this book are restricted to the
spectroscopy of free atoms, molecules, or ions. There exists, of course, a wide range
of applications in plasma physics, solid-state physics, or fluid dynamics which are
not discussed because they are beyond the scope of this book. It is hoped that
this book may be of help to students and researchers. Although it is meant as
an introduction to laser spectroscopy, it may also facilitate the understanding of
advanced papers on special subjects in laser spectroscopy. Since laser spectroscopy
is a very fascinating field of research, I would be happy if this book can transfer to
the reader some of my excitement and pleasure experienced in the laboratory while
looking for new lines or unexpected results.

I want to thank many people who have helped to complete this book. In particular
the students in my research group who by their experimental work have contributed
to many of the examples given for illustration and who have spent their time reading
the galley proofs. I am grateful to colleages from many laboratories who have
supplied me with figures from their publications. Special thanks go to Mrs. Keck
and Mrs. Ofiiara who typed the manuscript and to Mrs. Wollscheid and Mrs. Ullmer
who made the drawings. Last but not least, I would like to thank Dr. U. Hebgen, Dr.
H. Lotsch, Mr. K.-H. Winter, and other coworkers of Springer-Verlag who showed
much patience with a dilatory author and who tried hard to complete the book in
a short time.

Kaiserslautern, March 1981 Wolfgang Demtröder
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Chapter 1
Introduction

Most of our knowledge about the structure of atoms and molecules is based on spec-
troscopic investigations. Thus spectroscopy has made an outstanding contribution
to the present state of atomic and molecular physics, to chemistry, and to molecular
biology. Information on molecular structure and on the interaction of molecules
with their surroundings may be derived in various ways from the absorption or
emission spectra generated when electromagnetic radiation interacts with matter.

Wavelength measurements of spectral lines allow the determination of energy
levels of the atomic or molecular system. The line intensity is proportional to the
transition probability, which measures how strongly the two levels of a molecular
transition are coupled. Since the transition probability depends on the wave func-
tions of both levels, intensity measurements are useful to verify the spatial charge
distribution of excited electrons, which can only be roughly calculated from approx-
imate solutions of the Schrödinger equation. The natural linewidth of a spectral line
may be resolved by special techniques, allowing mean lifetimes of excited molecu-
lar states to be determined. Measurements of the Doppler width yield the velocity
distribution of the emitting or absorbing molecules and with it the temperature of
the sample. From pressure broadening and pressure shifts of spectral lines, in-
formation about collision processes and interatomic potentials can be extracted.
Zeemann and Stark splittings by external magnetic or electric fields are important
means of measuring magnetic or electric moments and elucidating the coupling of
the different angular momenta in atoms or molecules, even with complex electron
configurations. The hyperfine structure of spectral lines yields information about
the interaction between the nuclei and the electron cloud and allows nuclear mag-
netic dipole moments, electric quadrupole moments or even higher moments, such
as octupole moments to be determined. Time-resolved measurements allow the
spectroscopist to follow up dynamical processes in ground-state and excited-state
molecules, to investigate details of collision processes and various energy transfer
mechanisms. The combination of optical excitation with femto-to attosecond laser
pulses and X-ray diffraction on the same time scale allows time-resolved snapshots
of molecular structure in electronically excited states not washed out by vibrations
of the excited molecule, because the X-ray diffraction pattern is measured within a

1W. Demtröder, Laser Spectroscopy 1, DOI 10.1007/978-3-642-53859-9_1,
© Springer-Verlag Berlin Heidelberg 2014
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time interval, which is short compared to the vibrational period. Laser spectroscopic
studies of the interaction of single atoms with a radiation field provide stringent
tests of quantum electrodynamics and the realization of high-precision frequency
standards allows one to check whether fundamental physical constants show small
changes with time.

These examples represent only a small selection of the many possible ways
by which spectroscopy provides tools to explore the microworld of atoms and
molecules. However, the amount of information that can be extracted from a spec-
trum depends essentially on the attainable spectral or time resolution and on the
detection sensitivity that can be achieved.

The application of new technologies to optical instrumentation (for instance, the
production of larger and better ruled gratings in spectrographs, the use of highly re-
flecting dielectric coatings in interferometers, and the development of optical multi-
channel analyzers, CCD cameras, and image intensifiers) has certainly significantly
extended the sensitivity limits. Considerable progress was furthermore achieved
through the introduction of new spectroscopic techniques, such as Fourier spec-
troscopy, optical pumping, level-crossing techniques, and various kinds of double-
resonance methods and molecular beam spectroscopy.

Although these new techniques have proved to be very fruitful, the really stim-
ulating impetus to the whole field of spectroscopy was given by the introduction
of lasers. In many cases these new spectroscopic light sources may increase spec-
tral resolution and sensitivity by several orders of magnitude. Combined with new
spectroscopic techniques, lasers are able to surpass basic limitations of classical
spectroscopy. Many experiments that could not be performed with incoherent light
sources are now feasible or have already been successfully completed recently. This
book deals with such new techniques of laser spectroscopy and explains the neces-
sary instrumentation. It is divided into two volumes.

The first volume contains the basic physical foundations of laser spectroscopy
and the most important experimental equipment in a spectroscopic laboratory. It
begins with a discussion of the fundamental definitions and concepts of classical
spectroscopy, such as thermal radiation, induced and spontaneous emission, radi-
ation power, intensity and polarization, transition probabilities, and the interaction
of weak and strong electromagnetic (EM) fields with atoms. Since the coherence
properties of lasers are important for several spectroscopic techniques, the basic def-
initions of coherent radiation fields are outlined and the description of coherently
excited atomic levels is briefly discussed.

In order to understand the theoretical limitations of spectral resolution in classi-
cal spectroscopy, Chap. 3 treats the different causes of the broadening of spectral
lines and the information drawn from measurements of line profiles. Numerical ex-
amples at the end of each section illustrate the order of magnitude of the different
effects.

The contents of Chap. 4, which covers spectroscopic instrumentation and its
application to wavelength and intensity measurements, are essential for the exper-
imental realization of laser spectroscopy. Although spectrographs and monochro-
mators, which played a major rule in classical spectroscopy, may be abandoned for
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many experiments in laser spectroscopy, there are still numerous applications where
these instruments are indispensible. Of major importance for laser spectroscopists
are the different kinds of interferometers. They are used not only in laser resonators
to realize single-mode operation, but also for line-profile measurements of spectral
lines and for very precise wavelength measurements. Since the determination of
wavelength is a central problem in spectroscopy, a whole section discusses some
modern techniques for precise wavelength measurements and their accuracy.

Lack of intensity is one of the major limitations in many spectroscopic investi-
gations. It is therefore often vital for the experimentalist to choose the proper light
detector. Section 4.5 surveys several light detectors and sensitive techniques such
as photon counting, which is becoming more commonly used. While Chaps. 2–4
cover subjects that are not restricted to laser spectroscopy (they are general spec-
troscopy concepts), Chap. 5 deals with the “working horse” of laser spectroscopy:
the different kinds of lasers and their design. It treats the basic properties of lasers as
spectroscopic radiation sources and starts with a short recapitulation of the funda-
mentals of lasers, such as threshold conditions, optical resonators, and laser modes.
Only those laser characteristics that are important in laser spectroscopy are dis-
cussed here. For a more detailed treatment the reader is referred to the extensive
laser literature cited in Chap. 5. Those properties and experimental techniqes that
make the laser such an attractive spectroscopic light source are discussed more
thoroughly. For instance, the important questions of wavelength stabilization and
continuous wavelength tuning are treated, and experimental realizations of single-
mode tunable lasers and limitations of laser linewidths are presented. The last part
of this chapter gives a survey of the various types of tunable lasers that have been
developed for different spectral ranges. Advantages and limitations of these lasers
are discussed. The available spectral range could be greatly extended by optical
frequency doubling and mixing processes. This interesting field of nonlinear optics
is presented in Chap. 5 as far as it is relevant to spectroscopy.

The second volume presents various applications of lasers in spectroscopy and
discusses the different methods that have been developed recently. The presentation
relies on the general principles and the instrumentation of spectroscopy outlined in
the first volume. It starts with different techniques of laser spectroscopy and also
covers recent developments and the various applications of laser spectroscopy in
science, technology, medicine and environmental studies.

The exciting development ot ultra-short pulses in the femtosecond and attosec-
ond range emitted by tunable lasers has opened many interesting new fields of
molecular dynamics, where the forming and dissociation of molecules can be fol-
lowed up in real time. This enables a basic understanding of many fast processes in
Chemistry and Biology.

The vastly increasing number of applications of laser spectroscopy in basic sci-
ences such as metrology, Chemistry, Biology, Medicine, and for the solution of
technical problems will be illustrated by several examples. Even in astronomy
lasers have brought about new techniques such as adaptive optics which increase
the angular resolution of optical telescopes by several orders of magnitude or the
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exact determination of the Doppler-shift of astronomical objects, using the optical
comb spectroscopy.

This book is intended as an introduction to the basic methods and instrumen-
tation of spectroscopy, with special emphasis placed on laser spectroscopy. The
examples in each chapter illustrate the text and may suggest other possible ap-
plications. They are mainly concerned with the spectroscopy of free atoms and
molecules and are, of course, not complete, but have been selected from the litera-
ture or from our own laboratory work for didactic purposes and may not represent
the priorities of publication dates. For a far more extensive survey of the latest
publications in the broad field of laser spectroscopy, the reader is referred to the
proceedings of various conferences on laser spectroscopy [1–11] and to textbooks
or collections of articles on modern aspects of laser spectroscopy [12–32]. Since
scientific achievements in laser physics have been pushed forward by a few pio-
neers, it is interesting to look back to the historical development and to the people
who influenced it. Such a personal view can be found in [33, 34]. The reference
list at the end of the book might be helpful in finding more details of a special ex-
periment or to dig deeper into theoretical and experimental aspects of each chapter.
A useful “Encyclopedia of spectroscopy” [35, 36] gives a good survey on different
aspects of laser spectroscopy.



Chapter 2
Absorption and Emission of Light

This chapter deals with basic considerations about absorption and emission of elec-
tromagnetic waves interacting with matter. Especially emphasized are those aspects
that are important for the spectroscopy of gaseous media. The discussion starts with
thermal radiation fields and the concept of cavity modes in order to elucidate differ-
ences and connections between spontaneous and induced emission and absorption.
This leads to the definition of the Einstein coefficients and their mutual relations.
The next section explains some definitions used in photometry such as radiation
power, intensity, spectral power density and polarization of electromagnetic waves.

It is possible to understand many phenomena in optics and spectroscopy in terms
of classical models based on concepts of classical electrodynamics. For example,
the absorption and emission of electromagnetic waves in matter can be described
using the model of damped oscillators for the atomic electrons. In most cases, it is
not too difficult to give a quantum-mechanical formulation of the classical results.
The semiclassical approach will be outlined briefly in Sect. 2.8.

Many experiments in laser spectroscopy depend on the coherence properties of
the radiation and on the coherent excitation of atomic or molecular levels. Some
basic ideas about temporal and spatial coherence of optical fields and the density-
matrix formalism for the description of coherence in atoms are therefore discussed
at the end of this chapter.

Throughout this text the term “light” is frequently used for electromagnetic ra-
diation in all spectral regions. Likewise, the term “molecule” in general statements
includes atoms as well. We shall, however, restrict the discussion and most of the
examples to gaseous media, which means essentially free atoms or molecules.

For more detailed or more advanced presentations of the subjects summarized in
this chapter, the reader is referred to the extensive literature on spectroscopy [37–
47]. Those interested in light scattering from solids are directed to the sequence of
Topics volumes edited by Cardona and coworkers [48].

5W. Demtröder, Laser Spectroscopy 1, DOI 10.1007/978-3-642-53859-9_2,
© Springer-Verlag Berlin Heidelberg 2014
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Figure 2.1 Modes of a stationary EM field in a cavity: a Standing waves in a cubic cavity;
b superposition of possible k vectors to form standing waves, illustrated in a two-dimensional
coordinate system; c illustration of the polarization of cavity modes

2.1 Cavity Modes

Consider a cubic cavity with the sides L at the temperature T . The walls of the cav-
ity absorb and emit electromagnetic radiation. At thermal equilibrium the absorbed
power Pa.!/ has to be equal to the emitted power Pe.!/ for all frequencies !. In-
side the cavity there is a stationary radiation field E , which can be described at the
point r by a superposition of plane waves with the amplitudes Ap, the wave vectors
kp, and the angular frequencies !p as

E D
X

p

Ap expŒi.!pt � kp � r/�C compl. conj. (2.1)

The waves are reflected at the walls of the cavity. For each wave vector k D
.kx; ky; kz/, this leads to eight possible combinations ki D .˙kx;˙ky;˙kz/ that
interfere with each other. A stationary-field configuration only occurs if these super-
positions result in standing waves (Fig. 2.1a,b). This imposes boundary conditions
for the wave vector, namely

kx D �

L
n1 I ky D �

L
n2 I kz D �

L
n3 ; ni D integer ; (2.2a)

which means that, for all three components, the side-length L of the cavity must be
an integer multiple of 1=2 of the wavelength � D 2�=k.

The wave vector of the electromagnetic wave is then:

k D �

L
.n1; n2; n3/ ; (2.2b)

where n1, n2, n3 are positive integers.
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Figure 2.2 Illustration of
the maximum number of
possible k vectors with
jkj � kmax in momentum
space .kx ; ky ; kz/

The magnitudes of the wave vectors allowed by the boundary conditions are

jkj D �

L

q
n21 C n22 C n23 ; (2.3)

which can be written in terms of the wavelength � D 2�=jkj or the frequency
! D cjkj.

� D 2L=
q
n21 C n22 C n23 or ! D �c

L

q
n21 C n22 C n23 : (2.4)

These standing waves are called cavity modes (Fig. 2.1b).
Since the amplitude vector A of a transverse wave E is always perpendicular to

the wave vector k, it can be composed of two components a1 and a2 with the unit
vectors Oe1 and Oe2

A D a1 Oe1 C a2 Oe2 . Oe1 � Oe2 D ı12 I Oe1; Oe2 ? k/ : (2.5)

The complex numbers a1 and a2 define the polarization of the standing wave. Equa-
tion (2.5) states that any arbitrary polarization can always be expressed by a linear
combination of two mutually orthogonal linear polarizations. To each cavity mode
defined by the wave vector kp therefore belong two possible polarization states.
This means that each triple of integers .n1; n2; n3/ represents two cavity modes.
Any arbitrary stationary field configuration can be expressed as a linear combina-
tion of cavity modes.

We shall now investigate how many modes with frequencies ! � !m are pos-
sible. Because of the boundary condition (2.4), this number is equal to the number
of all integer triples .n1; n2; n3/ that fulfil the condition

c2k2 D !2 � !2m :

In a system with the coordinates .�=L/.n1; n2; n3/ (see Fig. 2.2), each triple
.n1; n2; n3/ represents a point in a three-dimensional lattice with the lattice constant
�=L. In this system, (2.4) describes all possible frequencies within a sphere of
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radius !m=c. If this radius is large compared to �=L, which means that 2L� �m,
the number of lattice points .n1; n2; n3/ with !2 � !2m is roughly given by the
volume of the octant of the sphere shown in Fig. 2.2 with k D jkj D !=c. This
volume is

Vk D 1

8

4�

3

�
kmax

�=L

�3
: (2.6a)

With the two possible polarization states of each mode, one therefore obtains for
the number of allowed modes with frequencies between ! D 0 and ! D !m in
a cubic cavity of volume L3 with L� �

N.!m/ D 21
8

4�

3

�
L!m

�c

�3
D 1

3

L3!3m
�2c3

: (2.6b)

The spatial mode density (the number of modes per unit volume) is then

n.!m/ D N.!m/=L3 D 1

3

!3m
�2c3

: (2.6c)

It is often interesting to know the number n.!/d! of modes per unit volume within
a certain frequency interval d!, for instance, within the width of a spectral line. The
spectral mode density n.!/ can be obtained directly from (2.6a–2.6c) by differen-
tiating N.!/=L3 with respect to !. N.!/ is assumed to be a continuous function
of !, which is, strictly speaking, only the case for L!1. We get

n.!/d! D !2

�2c3
d! : (2.7a)

In spectroscopy the frequency � D !=2� is often used instead of the angular fre-
quency !. With d! D 2�d�, the number of modes per unit volume within the
frequency interval d� is then

n.�/d� D 8��2

c3
d� : (2.7b)

In Fig. 2.3 the spectral mode density n.�/ is plotted against the frequency � on
a double-logarithmic scale. This illustrates, that the spectral mode density (number
of modes within the frequency interval d� D 1 s�1) in the visible range is about
n.�/ D 105 m�3, which gives inside the Doppler widths of a spectral line d� D
109 s�1 the large number of 1014 modes=m3.
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Figure 2.3 Spectral mode
density n.�/ D N.�/=L3 as
a function of the frequency �

spectral mode density

in the visible range

visible
range

Example 2.1
1. In the visible part of the spectrum (� D 500 nm; � D 6 � 1014 Hz),

(2.7b) yields for the number of modes per m3 within the Doppler width
of a spectral line (d� D 109 Hz)

n.�/d� D 3 � 1014 m�3 :

2. In the microwave region (� D 1 cm; � D 3 � 1010 Hz), the number of
modes per m3 within the typical Doppler width d� D 105 Hz is only
n.�/d� D 102 m�3.

3. In the X-ray region (� D 1 nm; � D 3 � 1017 Hz), one finds n.�/d� D
8:4 � 1021 m�3 within the typical natural linewidth d� D 1011 Hz of an
X-ray transition.

2.2 Thermal Radiation and Planck’s Law

In classical thermodynamics each degree of freedom of a system in thermal equi-
librium at a temperature T has the mean energy kT=2, where k is the Boltzmann
constant. Since classical oscillators have kinetic as well as potential energies, their



10 2 Absorption and Emission of Light

mean energy is kT . If this classical concept is applied to the electromagnetic field
discussed in Sect. 2.1, each mode would represent a classical oscillator with the
mean energy kT . According to (2.7b), the spectral energy density of the radiation
field would therefore be

�.�/d� D n.�/kT d� D 8��2k

c3
T d� : (2.8)

This Rayleigh–Jeans law matches the experimental results fairly well at low fre-
quencies (in the infrared region), but is in strong disagreement with experiment
at higher frequencies (in the ultraviolet region). The energy density �.�/ actually
diverges for � !1.

In order to explain this discrepancy, Max Planck suggested in 1900 that each
mode of the radiation field can only emit or absorb energy in discrete amounts qh�,
which are integer multiples q of a minimum energy quantum h�. These energy
quanta h� are called photons. Planck’s constant h can be determined from experi-
ments. A mode with q photons therefore contains the energy qh�.

In thermal equilibrium the partition of the total energy into the different modes
is governed by the Maxwell–Boltzmann distribution, so that the probability p.q/
that a mode contains the energy qh� is

p.q/ D .1=Z/e�qh�=kT ; (2.9)

where k is the Boltzmann constant and

Z D
X

q

e�qh�=kT (2.10)

is the partition function summed over all modes containing q photons h � �. Z acts
as a normalization factor which makes

P
q p.q/ D 1, as can be seen immediately

by inserting (2.10) into (2.9). This means that a mode has to contain with certainty
(p D 1) some number (q D 0; 1; 2; : : :) of photons.

The mean energy per mode is therefore

W D
1X

qD0
p.q/qh� D 1

Z

1X

qD0
qh�e�qh�=kT D

P
qh�e�qh�=kT
P

e�qh�=kT : (2.11)

The evaluation of the sum yields [42] (see Problem 2.1)

W D h�

eh�=kT � 1 : (2.12)

The thermal radiation field has the energy density �.�/d� within the frequency in-
terval � to �C d�, which is equal to the number n.�/d� of modes in the interval d�
times the mean energy W per mode. Using (2.7b, 2.12) one obtains

�.�/d� D 8��2

c3
h�

eh�=kT � 1d� : (2.13)
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Figure 2.4 Spectral dis-
tribution of the energy
density ��.�/ for different
temperatures

This is Planck’s famous radiation law (Fig. 2.4), which predicts a spectral en-
ergy density of the thermal radiation that is fully consistent with experiments. The
expression “thermal radiation” comes from the fact that the spectral energy distri-
bution (2.13) is characteristic of a radiation field that is in thermal equilibrium with
its surroundings (in Sect. 2.1 the surroundings are determined by the cavity walls).

The thermal radiation field described by its energy density �.�/ is isotropic.
This means that through any transparent surface element dA of a sphere containing
a thermal radiation field, the same power flux dP is emitted into the solid angle d˝
at an angle � to the surface normal On (Fig. 2.5)

dP D c

4�
�.�/dAd˝d� cos � : (2.14)

It is therefore possible to determine �.�/ experimentally by measuring the spectral
distribution of the radiation penetrating through a small hole in the walls of the
cavity. If the hole is sufficiently small, the energy loss through this hole is negligibly
small and does not disturb the thermal equilibrium inside the cavity.

Figure 2.5 Illustration of (2.14)
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Figure 2.6 Schematic dia-
gram of the interaction of
a two-level system with a ra-
diation field

Example 2.2
1. Examples of real radiation sources with spectral energy distributions close

to the Planck distribution (2.13) are the sun, the bright tungsten wire of
a light bulb, flash lamps, and high-pressure discharge lamps.

2. Spectral lamps that emit discrete spectra are examples of nonthermal ra-
diation sources. In these gas-discharge lamps, the light-emitting atoms
or molecules may be in thermal equilibrium with respect to their transla-
tional energy, which means that their velocity distribution is Maxwellian.
However, the population of the different excited atomic levels may not
necessarily follow a Boltzmann distribution. There is generally no ther-
mal equilibrium between the atoms and the radiation field. The radiation
may nevertheless be isotropic.

3. Lasers are examples of nonthermal and anisotropic radiation sources
(Chap. 5). The radiation field is concentrated in a few modes, and most of
the radiation energy is emitted into a small solid angle. This means that
the laser represents an extreme anisotropic nonthermal radiation source.

2.3 Absorption, Induced, and Spontaneous Emission

Assume that molecules with the energy levels E1 and E2 have been brought into
the thermal radiation field of Sect. 2.2. If a molecule absorbs a photon of energy
h� D E2 � E1, it is excited from the lower energy level E1 into the higher level
E2 (Fig. 2.6) and the radiation field looses one photon. This process is called in-
duced absorption. The probability per second that a molecule will absorb a photon,
dP12=dt , is proportional to the number of photons of energy h� per unit volume
and can be expressed in terms of the spectral energy density ��.�/ of the radiation
field as

d

dt
P12 D B12�.�/ : (2.15)

The constant factor B12 is the Einstein coefficient of induced absorption. It depends
on the electronic structure of the atom, i.e. on its electronic wave functions in the
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two levels j1i and j2i. Each absorbed photon of energy h� decreases the number of
photons in one mode of the radiation field by one.

The radiation field can also induce molecules in the excited state E2 to make
a transition to the lower state E1 with simultaneous emission of a photon of en-
ergy h�. This process is called induced (or stimulated) emission. The induced
photon of energy h� is emitted into the same mode that caused the emission. This
means that the number of photons in this mode is increased by one. The probabil-
ity dP21=dt that one molecule emits one induced photon per second is in analogy
to (2.15)

d

dt
P21 D B21�.�/ : (2.16)

The constant factor B21 is the Einstein coefficient of induced emission.
An excited molecule in the state E2 may also spontaneously convert its excita-

tion energy into an emitted photon h�. This spontaneous radiation can be emitted
in the arbitrary direction k and increases the number of photons in the mode with
frequency � and wave vector k by one. In the case of isotropic emission, the
probability of gaining a spontaneous photon is equal for all modes with the same
frequency � but different directions k.

The probability per second dPspont
21 =dt that a photon h� D E2 � E1 is sponta-

neously emitted by a molecule, depends on the structure of the molecule and the
selected transition j2i ! j1i, but it is independent of the external radiation field,

d

dt
Pspont
21 D A21 : (2.17)

A21 is the Einstein coefficient of spontaneous emission and is often called the spon-
taneous transition probability.

Let us now look for relations between the three Einstein coefficients B12, B21,
and A21. The total numberN of all molecules per unit volume is distributed among
the various energy levels Ei of population density Ni such that

P
i Ni D N . At

thermal equilibrium the population distribution Ni.Ei / is given by the Boltzmann
distribution

Ni.Ei / D N gi
Z

e�Ei =kT : (2.18)

The statistical weight gi D 2Ji C 1 gives the number of degenerate sublevels of the
level jii with total angular momentum Ji and the partition function

Z D
X

i

gie
�Ei =kT ;

acts again as a normalization factor which ensures that
P

i Ni D N .
In a stationary field the total absorption rateN1B12�.�/, which gives the number

of photons absorbed per unit volume per second, has to equal the total emission rate
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Figure 2.7 Average num-
ber of photons per mode in
a thermal radiation field as
a function of temperature T
and frequency �

N2B21�.�/ C N2A21 (otherwise the spectral energy density �.�/ of the radiation
field would change). This gives

ŒB21�.�/C A21�N2 D B12N1�.�/ : (2.19)

Using the relation

N2=N1 D .g2=g1/e�.E2�E1/=kT D .g2=g1/e�h�=kT ;

deduced from (2.18), and solving (2.19) for �.�/ yields

�.�/ D A21=B21
g1

g2

B12

B21
eh�=kT � 1 : (2.20)

In Sect. 2.2 we derived Planck’s law (2.13) for the spectral energy density �.�/ of
the thermal radiation field. Since both (2.13) and (2.20) must be valid for an arbi-
trary temperature T and all frequencies �, comparison of the constant coefficients
yields the relations

B12 D g2

g1
B21 ; (2.21)

A21 D 8�h�3

c3
B21 : (2.22)

Equation (2.21) states that for levels j1i, j2i with equal statistical weights g2 D g1,
the probability of induced emission is equal to that of induced absorption.

From (2.22) the following illustrative result can be extracted: since n.�/ D
8��2=c3 gives the number of modes per unit volume and frequency interval d� D
1Hz, (see (2.7b)), (2.22) can be written as

A21

n.�/
D B21h� ; (2.23a)
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which means that the spontaneous emission per mode A�
21 D A21=n.�/ equals the

induced emission that is triggered by one photon. This can be generalized to: the
ratio of the induced- to the spontaneous-emission rate in an arbitrary mode is equal
to the number q of photons in this mode.

B21�.�/

A�
21

D q with �.�/ D q h � in 1 mode: (2.23b)

In Fig. 2.7 the mean number of photons per mode in a thermal radiation field at
different absolute temperatures is plotted as a function of frequency �. The graphs
illustrate that in the visible spectrum this number is small compared to unity at tem-
peratures that can be realized in a laboratory. This implies that in thermal radiation
fields, the spontaneous emission per mode exceeds by far the induced emission. If it
is possible, however, to concentrate most of the radiation energy into a few modes,
the number of photons in these modes may become exceedingly large and the in-
duced emission in these modes dominates, although the total spontaneous emission
into all modes may still be larger than the induced rate. Such a selection of a few
modes is realized in a laser (Chap. 5).

Comment Note that the relations (2.21, 2.22) are valid for all kinds of radiation
fields. Although they have been derived for stationary fields at thermal equilibrium,
the Einstein coefficients are constants that depend only on the molecular properties
and not on external fields as far as these fields do not alter the molecular properties.
These equations therefore hold for arbitrary ��.�/.

Using the angular frequency ! D 2�� instead of �, the unit frequency interval
d! D 1 s�1 corresponds to d� D 1=2� s�1. The spectral energy density �!.!/ D
n.!/„! is then, according to (2.7a),

�!.!/ D !2

�2c3
„!

e„!=kT � 1 ; (2.24)

where „ is Planck’s constant h divided by 2� . The ratio of the Einstein coefficients

A21=B21 D „!
3

�2c3
; (2.25a)

now contains „ instead of h, and is smaller by a factor of 2� . However, the ratio
A21=ŒB21�!.!/�, which gives the ratio of the spontaneous to the induced transition
probabilities, remains the same:

A21=
h
B
.�/
21 ��.�/

i
D A21=

h
B
.!/
21 �!.!/

i
: (2.25b)
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Example 2.3
1. In the thermal radiation field of a 100W light bulb, 10 cm away from the

tungsten wire, the number of photons per mode at � D 500 nm is about
10�8. If a molecular probe is placed in this field, the induced emission is
therefore completely negligible.

2. In the center spot of a high-current mercury discharge lamp with very
high pressure, the number of photons per mode is about 10�2 at the center
frequency of the strongest emission line at � D 253:6mm. This shows
that, even in this very bright light source, the induced emission only plays
a minor role.

3. Inside the cavity of a HeNe laser (output power 1mW with mirror trans-
mittance T D 1%) that oscillates in a single mode, the number of photons
in this mode is about 107. In this example the spontaneous emission
into this mode is completely negligible. Note, however, that the total
spontaneous emission power at � D 632:2 nm, which is emitted into all
directions, is much larger than the induced emission. This spontaneous
emission is more or less uniformly distributed among all modes. Assum-
ing a volume of 1 cm3 for the gas discharge, the number of modes within
the Doppler width of the neon transition is about 108, which means that
the total spontaneous rate is about 10 times the induced rate.

2.4 Basic Photometric Quantities

In spectroscopic applications of light sources, it is very useful to define some char-
acteristic quantities of the emitted and absorbed radiation. This allows a proper
comparison of different light sources and detectors and enables one to make an
appropriate choice of apparatus for a particular experiment.

2.4.1 Definitions

The radiant energy W (measured in joules) refers to the total amount of energy
emitted by a light source, transferred through a surface, or collected by a detector.
The radiant power P D dW=dt (often called radiant flux ˚ ŒW�) is the radiant
energy per second. The radiant energy density � ŒJ=m3� is the radiant energy per
unit volume of space.

Consider a surface element dA of a light source (Fig. 2.8a). The radiant power
emitted from dA into the solid angle d˝, around the angle � against the surface
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a b

Figure 2.8 a Definition of solid angle d˝; b definition of radiance L.�/

normal On is

dP D L.�/dAd˝ ; (2.26a)

where the radiance L [W=m2 sr�1] is the power emitted per unit surface element
dA D 1m2 into the unit solid angle d˝ D 1 sr which depends on the angle � of the
radiation direction against the surface normal.

If we assume L.�/ D L.0/ cos � (Lambert’s law), where L.0/ D L.� D 0/ we
obtain with d˝ D sin � � d� � d' the total power emitted into the half-sphere above
the surface element dA

P D L.0/ dA

�=2Z

�D0

2�Z

'D0
cos � sin � d� d' D �L.0/ dA (2.26b)

The above three quantities refer to the total radiation integrated over the entire
spectrum. Their spectral versions W�.�/, P�.�/, ��.�/, and L�.�/ are called the
spectral densities, and are defined as the amounts ofW , P , �, and L within the unit
frequency interval d� D 1 s�1 around the frequency �:

W D
1Z

0

W�.�/d� I P D
1Z

0

P�.�/d� I � D
1Z

0

��.�/d� I L D
1Z

0

L�.�/d� :

(2.27)
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Figure 2.9 Radiance and
irradiance of source and de-
tector

Example 2.4
For a spherical isotropic radiation source of radiusR (e.g., a star) with a spec-
tral energy density �� , the spectral radianceL�.�/ is independent of � and can
be expressed by

L�.�/ D ��.�/c=4� D 2h�3

c2
1

eh�=kT � 1 ! P� D 8�R2h�3

c2
1

eh�=kT � 1 :
(2.28)

A surface element dA0 of a detector at distance r from the source element dA
covers a solid angle d˝ D dA0 cos � 0=r2 as seen from the source (Fig. 2.9). With
r2 � dA and dA0, the radiant flux ˚ received by dA0 is

d˚ D L.�/dA cos �d˝ D L.�/ cos �dA cos � 0dA0=r2 ; (2.29a)

The total flux ˚ received by the surface A0 and emitted by A is then

˚ D
Z

A

Z

A0

1

r2
L.�/ cos � cos � 0 dA dA0 : (2.29b)

The same flux ˚ is received by A if A0 is the emitter. For isotropic sources (2.29a,
2.29b) is symmetric with regard to � and � 0 or dA and dA0. The positions of detector
and source may be interchanged without altering (2.29a, 2.29b). Because of this
reciprocity, L may be interpreted either as the radiance of the source at the angle �
to the surface normal or, equally well, as the radiance incident onto the detector at
the angle � 0.

For isotropic sources, where L is independent of � , (2.29a, 2.29b) demonstrates
that the radiant flux emitted into the unit solid angle is proportional to cos � (Lam-
bert’s law). An example for such a source is a hole with the area dA in a blackbody
radiation cavity (Fig. 2.5).

The radiant flux incident on the unit detector area is called irradiance I , while in
the spectroscopic literature it is often termed intensity. The flux density or intensity
I ŒW=m2� of a plane wave E D E0 cos.!t � kz/ traveling in vacuum in the z-
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Figure 2.10 Flux densities
of detectors with extended
area

direction is given by

I D c
Z
�.!/d! D c�0E2 D c�0E2

0 cos2.!t � kz/ : (2.30a)

With the complex notation

E D A0e
i.!t�kz/ CA�

0 e�i.!t�kz/ .jA0j D 1
2
E 0/ ; (2.30b)

the intensity becomes

I D c�0E2 D 4c�0A20 cos2.!t � kz/ : (2.30c)

Most detectors cannot follow the rapid oscillations of light waves with the an-
gular frequencies ! � 1013–1015 Hz in the visible and near-infrared region. With
a time constant T � 1=! they measure, at a fixed position z, the time-averaged
intensity

hI i D c�0E
2
0

T

TZ

0

cos2.!t � kz/dt D 1
2
c�0E

2
0 D 2c�0A20 : (2.31)

2.4.2 Illumination of Extended Areas

In the case of extended detector areas, the total power received by the detector is
obtained by integration over all detector elements dA0 (Fig. 2.10). The detector
receives all the radiation that is emitted from the source element dA within the
angles �u � � � Cu. The same radiation passes an imaginary spherical surface
in front of the detector. We choose as elements of this spherical surface circular
rings with dA0 D 2�rdr D 2�R2 sin � cos �d� because r D R sin � ) dr D
R cos � d� . From (2.29a, 2.29b) one obtains for the total flux ˚ impinging onto the
detector with cos � 0 D 1

˚.u/ D 2�
uZ

0

LdA cos � sin �d� : (2.32)
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Figure 2.11 The radiance of
a source cannot be increased
by optical imaging

If the source radiation is isotropic, L does not depend on � and (2.32) yields

˚ D �L sin2 udA : (2.33)

Comment Note that it is impossible to increase the radiance of a source by any so-
phisticated imaging optics. This means that the image dA� of a radiation source dA
never has a larger radiance than the source itself. It is true that the flux density can
be increased by focussing the radiation. The solid angle, however, into which radia-
tion from the image dA� is emitted is also increased by the same factor. Therefore,
the radiance does not increase. In fact, because of inevitable reflection, scattering,
and absorption losses of the imaging optics, the radiance of the image dA� is, in
practice, always less than that of the source (Fig. 2.11).

A strictly parallel light beam would be emitted into the solid angle d˝ D 0.
With a finite radiant power this would imply an infinite radiance L, which is im-
possible. This illustrates that such a light beam cannot be realized. The radiation
source for a strictly parallel beam anyway has to be a point source in the focal plane
of a lens. Such a point source with zero surface cannot emit any power.

For more extensive treatments of photometry see [49, 50].

Example 2.5
1. Radiance of the sun. An area equal to 1m2 of the earth’s surface receives

at normal incidence without reflection or absorption through the atmo-
sphere an incident radiant flux Ie of about 1:35 kW=m2 (solar constant).
Because of the symmetry of (2.32) we may regard dA0 as emitter and dA
as receiver. The sun is seen from the earth under an angle of 2u D 32min-
utes of arc. This yields sinu D 4:7 � 10�3. Inserting this number into
(2.33), one obtains Ls D 2 � 107 W=.m2 sr/ for the radiance of the sun’s
surface. The total radiant power ˚ of the sun can be obtained from (2.32)
or from the relation ˚ D 4�R2Ie, where R D 1:5�1011 m is the distance
from the earth to the sun. These numbers give ˚ D 4 � 1026 W.

2. Radiance of a HeNe laser. We assume that the output power of 1mW is
emitted from 1mm2 of the mirror surface into an angle of 4 minutes of
arc, which is equivalent to a solid angle of 1 � 10�6 sr. The maximum
radiance in the direction of the laser beam is then L D 10�3=.10�6 �
10�6/ D 109 W=.m2 sr/. This is about 50 times larger than the radiance
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of the sun. For the spectral density of the radiance the comparison is
even more dramatic. Since the emission of a stabilized single-mode laser
is restricted to a spectral range of about 1 MHz, the laser has a spectral
radiance density L� D 1 � 103 W � s=.m2 sr/, whereas the sun, which
emits within a mean spectral range of � 1015 Hz, only reaches L� D
2 � 10�8 W � s=.m2 sr/.

3. Looking directly into the sun, the retina receives a radiant flux of 1mW
if the diameter of the iris is 1mm. This is just the same flux the retina
receives staring into the laser beam of Example 2.5b. There is, however,
a big difference regarding the irradiance of the retina. The image of the
sun on the retina is about 100 times as large as the focal area of the laser
beam. This means that the power density incident on single retina cells is
about 100 times larger in the case of the laser radiation.

2.5 Polarization of Light

The complex amplitude vector A0 of the plane wave

E D A0 � ei.!t�kz/ (2.34)

can be written in its component representation

A0 D
�
A0xei	x

A0yei	y

�
: (2.35)

For unpolarized light the phases 	x and 	y are uncorrelated and their difference
fluctuates statistically. For linearly polarized light with its electric vector in x-
direction A0y D 0. When E points into a direction ˛ against the x axis, 	x D 	y
and tan ˛ D A0y=A0x . For circular polarization A0x D A0y and 	x D 	y ˙ �=2.

The different states of polarization can be characterized by their Jones vectors,
which are defined as follows:

E D
�
Ex
Ey

�
D jE j �

�
a

b

�
ei.!t�kz/ (2.36)

where the normalized vector fa; bg is the Jones vector. In Table 2.1 the Jones
vectors are listed for the different polarization states. For linearly polarized light
with ˛ D 45ı, for example, the amplitude A0 can be written as

A0 D
q
A20x C A20y

1p
2

�
1

1

�
D jA0j 1p

2

�
1

1

�
; (2.37)
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Table 2.1 Jones vectors for light traveling in the z-direction and Jones matrices for polarizers

Jones vectors Jones matrices

Linear polarization Linear polarizers

x-direction

$

 
1

0

!

y-direction

l

 
0

1

!

x

 
cos ˛

sin˛

!

$ C l
 
1

1

!

˛ D 45ı:
1p
2

 
1

1

!

˛ D �45ı:
1p
2

 
1

�1

!

$ 
1 0

0 0

! l 
0 0

0 1

! %. 45ı

1

2

 
1 1

1 1

! -& �45ı

1

2

 
1 �1

�1 1

!

y

x
θ

angle �

against x-axis

 
cos2 � sin � cos �

sin � cos � sin2 �

!

�=4-plates with fast axis in the direction of

x y

MH �=4 D ei�=4

 
1 0

0 i

!

D 1p
2

 
1C i 0

0 i � 1

!

MV �=4 D ei�=4

 
1 0

0 �i

!

D 1p
2

 
1C i 0

0 1� i

!

�=2-plates with fast axis in the direction of

x y

MH �=2 D e�i�=2

 
1 0

0 �1

!

D
 �i 0

0 i

!

MV �=2 D ei�=2

 
1 0

0 �1

!

D
 

i 0

0 �i

!

Wave plate with phaseshift '=2 in x-direction
and �'=2 in y-direction

M�' D
 

ei'=2 0

0 e�i'=2

!

D ei'=2

 
1 0

0 e�i'

!

Circular polarization Rotator (device which turns the polarization vector
by an angle �)


C:
1p
2

 
1

i

!


�:
1p
2

 
1

�i

!


C C 
�:
p
2

 
1

0

!

Mrot.�/ D
 

cos � sin �

� sin � cos �

!

A polarizing element rotated by an angle �

M.�/ D Mrot.��/M.0/Mrot.�/

�=2-plate rotated by an angle �

M�=2.�/ D
 

cos 2� sin2�

sin2� � cos 2�

!

Polarizing wave plate rotated by an angle �

M.�/ D
 

cos '=2C i sin'=2 cos 2� i sin'=2 sin 2�

i sin'=2 sin 2� cos '=2� i sin'=2 cos 2�

!
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Figure 2.12 A polar-
izing element changes
the input electric vector
E 0 D fEx0; Ey0g of an
electromagnetic wave trav-
elling in the z-direction into
the transmitted electric vector
E t D fEx t; Ey tg

E0

Ey0

y

x

Ex0

input polarizing
element

output

Eyt

Ext

k

while for circular polarization (
C or 
� light), we obtain

A
.
C/
0 D 1p

2
jA0j

�
1

i

�
I A

.
�/
0 D 1p

2
jA0j

�
1

�i

�
(2.38)

because exp.�i�=2/ D �i.
The Jones representation shows its advantages when we consider the transmis-

sion of light through optical elements such as polarizers, �=4 plates, or beamsplit-
ters (Fig. 2.12). These elements can be described by 2�2matrices (Jones matrices),
which are compiled for some elements in Table 2.1. The polarization state of the
transmitted light is then obtained by multiplication of the Jones vector of the inci-
dent wave by the Jones matrix of the optical element.

E t D
�
Ext

Eyt

�
D
�
a b

c d

�
�
�
Ex0
Ey0

�
; (2.39)

If the light wave passes through several polarizing elements their Jones matrices are
multiplied, where the first matrix in the product represents the last element. We will
illustrate this by some examples:

1. If a polarizer which rotates the polarisation plane of the incident wave is placed
between two crossed linear polarizers (Fig. 2.13) the electric vector of the input
beam will be turned and the crossed polarizer transmits only a fraction of the
input intensity which depends on the turning angle � of the rotating polarizer.
The Jones formalism yields the output electric vector as

�
Ext
Eyt

�
D
�
0 0

0 1

��
cos � sin �
� sin � cos �

��
1 0

0 0

��
Ex0
Ey0

�
D
�

0

� sin �Ex0

�
:

In Fig. 2.14 the transmitted intensity is plotted as a function of the angle � . For
� D n� (n D 0; 1; 2; : : :) the transmitted intensity is zero because for these
angles the E -vector points into the x-direction and the wave is blocked by the
polarizer in y-direction.
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linear horizontal
polarizer

rotating
polarizer

linear vertical
polarizer

output

beam

input

beam

q

x

y

Figure 2.13 Rotating polarizer between two crossed linear polarizers

Figure 2.14 Transmitted
intensity as a function of the
tilting angle �

It /I0

1

0
0 π/4 π/2 ¾π π q

2. Incident light linearly polarized in the x-direction (˛ D 0ı) becomes, after trans-
mission through a �=4 polarizer with its slow axis in the x-direction

E t D ei�=4

�
1 0

0 �i

�
�
�
1

0

�
jE 0j D ei�=4

�
1

�i

�
jE0j

D e�i�=4

�
Ex0
�iEy0

�
; (2.40)

a right circular polarized 
�-wave.
3. A 
C-wave passes through a �=2-wave plate with its fast axis in y-direction.

The transmitted light is then

E t D 1p
2

�
i 0

0 �i

��
1

�i

�
jE 0j D 1p

2

�
i
1

�
jE 0j D 1p

2
ei�=2

�
1

�i

�
jE0j :

The transmitted light is 
�-light, where the phase factor of �=2 does not affect
the state of polarization.
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4. The Jones MatrixM.�/ for any polarizing element, turned by an angle � against
its original position M.0/ is obtained by the product

M.�/ DMrot.��/M.0/Mrot.�/ :

For example a linear horizontal polarizer turned by an angle � is described by
the Jones matrix

M lin.�/ D
�

cos2 � sin � cos �
sin � cos � sin2 �

�

which converts for � D 0 to

M lin.0/ D
�
1 0

0 0

�

and for � D 45ı to

M lin.45ı/ D
�
1=2 1=2

1=2 1=2

�
D 1

2

�
1 1

1 1

�
:

A �=2-plate with its fast axis in the x-direction is rotated by an angle � around
the z-axis (direction of light propagation). If linear horizontal polarized light
passes through the device the output light is

�
Ex t

Ey t

�
D
�

cos 2� sin 2�
sin 2� � cos 2�

��
0

1

�
D
�

cos 2�
sin 2�

�
:

For � D 45ı this becomes
�
Ex t

Ey t

�
D
�
0

1

�

which is the Jones vector for linear vertical polarized light.
For � D 180ı we obtain linear horizontal polarized light

�
Ex t

Ey t

�
D
��1
0

�
;

where the E -vector has been turned by 180ı.

More examples can be found in [51–53].

2.6 Absorption and Dispersion

When an electromagnetic wave E D E0 � ei.!t�Kz/ with wavelength � D 2�=K

passes through an absorbing medium with refractive index n.�/, the phase velocity
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vPh changes from the vacuum value c to vPh D c=n (dispersion) and the ampli-
tude decreases due to absorption. On the macroscopic scale these phenomena can
be well described by a classical model which treats the atomic electrons as classi-
cal harmonic oscillators, which are forced by the electromagnetic field to damped
harmonic oscillations. This model gives an illustrative picture of the relation be-
tween absorption and dispersion, leading to the dispersion relations. It relates the
macroscopic quantities „refractive index n“ and „absorption coefficient ˛“ to the
microscopic properties of the atomic electron shell. The classical results can be
readily transferred to the real conditions described by quantum mechanical models.

2.6.1 Classical Model

The forced oscillation x.t/ of a damped harmonic oscillator with mass m is de-
scribed by the equation

m Rx C b Px CDx D q � E0 � ei!t : (2.41)

Inserting the ansatz x D x0 exp.i!t/ into (2.41) gives with the abbreviations � D
b=m and !20 D D=m for the amplitude x0 the solution

x0 D q �E0
m.!20 � !2 C i�!/

: (2.42)

These forced oscillations of a charge q produces an induced dipole moment

pel D q � x D
q2 �E0 � ei!t

m.!20 � !2 C i�!/
: (2.43)

ForN oscillators per unit volume the macroscopic polarization (sum of the induced
dipole moments per unit volume induced by the light wave) becomes

P D N � q � x : (2.44)

Classical electrodynamics proves that this polarization is related to the electric field
E as

P D "0." � 1/E : (2.45)

The relative dielectric constant is related to the refractive index n by

n D p" : (2.46)

From (2.43) to (2.46) we obtain for the refractive index n the relation

n2 D 1C Nq2

"0m.!
2
0 � !2 C i�!/

(2.47)
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which shows that n is a complex quantity which can be written as

n D n0 � i� .n0 and � are real quantities/ : (2.48)

An electromagnetic wave with frequency ! D 2�� travelling in the z-direction
through a medium with refractive index n can be written as

E D E0ei.!t�Kz/ : (2.49a)

The wavenumber K D 2�=� is K D K0 in vacuum and Kn D nK0 in the medium
which implies �n D �0=n. Inserting this into (2.49a) gives with (2.48)

E D E0e�K0�z � ei.!t�n0K0z/ D E0e�2��z=� � eiK0n
0z � ei!t : (2.49b)

This illustrates that the imaginary part � of the komplex refractive index de-
scribes the absorption of the electromagnetic wave. After a penetration depth

z D �=.2��/ the amplitude E0 has decreased to E0=e. The real part n0.!/ of the
refractive index represents the dispersion, i.e. the dependence of the phase velocity
vPh.!/ on the frequency ! of the electromagnetic wave.

For gaseous media at not too high pressures the refractive index n is nearly 1.
For example for air at 1 atmosphere n D 1:0003. In this case we can use the
approximation

n2 � 1 D .nC 1/.n � 1/ � 2.n � 1/

and obtain instead of (2.47) the approximate expression

n D 1C 1

2

Nq2

"0m.!
2
0 � !2 C i�!/

: (2.50)

Using (2.48) we can separate real and imaginary part of n and obtain:

� D Nq2

2"0m

�!

.!20 � !2/2 C �2!2
; (2.51a)

n0 D 1C Nq2

2"0m

!20 � !2
.!20 � !2/2 C �2!2

: (2.51b)

These equations are called dispersion relations. They link absorption and dispersion
through the complex refractive index. They are valid for classical oscillators at rest
and at sufficiently small densities to guarantee that .n � 1/	 1.

Note, that the thermal motion of atoms in a gas results in an additional Doppler
broadening which will be treated in Chap. 3.
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Figure 2.15 Absorption and
Dispersion profiles around an
atomic absorption transition
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In the vicinity of an eigenfrequency !0, where j! � !0j 	 !0) .!20 � !2/ �
2!0.!0 � !/ (2.51a, 2.51b) simplifies to

� D Nq2

8"0m!0

�

.!0 � !/2 C .�=2/2 ; (2.52a)

n0 D 1C Nq2

4"0m!0

!0 � !
.!0 � !/2 C .�=2/2 : (2.52b)

In Fig. 2.15 the absorption profile �.!/ and the dispersion profile n0.!/ are plotted
in the vicinity of an eigenfrequency !0. The extrema of n0 appear at !m D !0˙ � .

Generally the absorption of light is described by its intensity attenuation rather
than its amplitude decrease since it is the intensity not the amplitude which is meas-
ured in most experiments. A plane wave with the intensity I.!/ travelling into the
z-direction through an absorbing medium suffers after a pathlength dz the intensity
attenuation

dI D �˛I dz : (2.53)

The absorption coefficient ˛.!/ [cm�1] gives the relative intensity decrease dI=I
along the absorption pathlength dz D 1 cm. If ˛ is independent of the incident
intensity I (linear absorption) the integration of (2.53) yields Beer’s absorption
law

I.!/ D I0e�˛.!/z : (2.54)
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A = 1 cm2

I0 I

Z Z

dz
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ω0 ω
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a b c

Figure 2.16 a Absorption of a parallel light wave with cross section A travelling into the z-
direction. b Exponential decrease of the transmitted intensity I.z/. c Absorption profile of in
incident spectral continuum with an intensity hole around the centrefrequency !0

Since the intensity I D "0cE2 is proportional to the square of the amplitude E the
comparison of (2.54) with (2.49b) gives the relation

˛ D 4��=� D 2K� with K D 2�=� : (2.55)

In summary:
The absorption coefficient ˛.!/ is proportional to the imaginary part � of

the refractive index n D n0 � i�. In the vicinity of an oscillator eigenfrequency
!0 the absorption coefficient ˛.!/ � �.!/ has a Lorentzian profile (2.52a).
The real part n0.!/ of n.!/ describes the dispersion. For j! � !0j � !0 its
profile is proportional to the derivative d˛=d!.

The power absorbed in the volume element 
V D A �
z on the path length
z
from the incident monochromatic wave with cross section F and intensity I is


P.!/ D ˛.!/I.!/
V : (2.56a)

If the incident radiation has a spectral continuum with bandwidth 
! and the ab-
sorption coefficient in the vicinity of an absorption line has the bandwidth ı! 	

! the absorbed power is


P D
Z
˛.!/I.!/ d!
V : (2.56b)

The transmitted intensity It (!) shows a hole with width •! around the centre fre-
quency !0 of the absorption profile (Fig. 2.16). For •! > 
! the integral extends
from !0 � 
!=2 to !0 C 
!=2, where !0 is the centre frequency of the absorb-
ing atomic transition and ˛.!/ does not change much within this interval. It can
be therefore extracted from the integral. The total transmitted intensity decreases
without a hole in the spectral distribution.

In the next section we will check how the classical model can be modified for its
application to real atoms or molecules.
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2.7 Absorption and Emission Spectra

The spectral distribution of the radiant flux from a source is called its emission
spectrum. The thermal radiation discussed in Sect. 2.2 has a continuous spectral dis-
tribution described by its spectral energy density (2.13). Discrete emission spectra,
where the radiant flux has distinct maxima at certain frequencies �ik , are generated
by transitions of atoms or molecules between two bound states, a higher energy
state Ek and a lower state Ei , with the relation

h�ik D Ek � Ei : (2.57)

In a spectrograph (see Sect. 4.1 for a detailed description) the entrance slit S is im-
aged into the focal plane B of the camera lens. Because of dispersive elements in
the spectrograph, the position of this image depends on the wavelength of the in-
cident radiation. In a discrete spectrum each wavelength �ik produces a separate
line in the imaging plane, provided the spectrograph has a sufficiently high resolv-
ing power (Fig. 2.17). Discrete spectra are therefore also called line spectra, as
opposed to continuous spectra where the slit images form a continuous band in the
focal plane, even for spectrographs with infinite resolving power.

If radiation with a continuous spectrum passes through a gaseous molecular
sample, molecules in the lower state Ei may absorb radiant power at the eigenfre-
quencies �ik D .Ek � Ei/=h, which is thus missing in the transmitted power. The
difference in the spectral distributions of incident minus transmitted power is the ab-
sorption spectrum of the sample. The absorbed energy h�ik brings a molecule into
the higher energy level Ek . If these levels are bound levels, the resulting spectrum
is a discrete absorption spectrum. If Ek is above the dissociation limit or above the
ionization energy, the absorption spectrum becomes continuous. In Fig. 2.18 both
cases are schematically illustrated for atoms (a) and molecules (b).

Examples of discrete absorption lines are the Fraunhofer lines in the spectrum of
the sun, which appear as dark lines in the bright continuous spectrum (Fig. 2.19).

Figure 2.17 Spectral lines in a discrete spectrum as images of the entrance slit of a spectrograph
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Figure 2.18 Schematic diagram to illustrate the origin of discrete and continuous absorption and
emission spectra for atoms (a) and molecules (b)

Figure 2.19 Prominent
Fraunhofer absorption lines
within the visible and near-
UV spectral range

They are produced by atoms in the sun’s atmosphere that absorb at their specific
eigenfrequencies the continuous blackbody radiation from the sun’s photosphere.

2.7.1 Absorption Cross Section and Einstein Coefficients

A measure of the absorption strength is the absorption cross section 
ik. Each
photon passing through the circular area 
ik D �r2ik around the atom is absorbed
on the transition jii ! jki.
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The power

dPik.!/d! D I0
�
Ni � gi

gk
Nk

�

ik.!/A
zd! D I0˛ik.!/
V d! ; (2.58)

absorbed within the spectral interval d! at the angular frequency ! on the tran-
sition jii ! jki within the volume 
V D A
z is proportional to the product
of incident spectral intensity I0 [Ws=m2], absorption cross section 
ik , the differ-
ence (Ni �Nk) of the population densities of absorbing molecules in the upper and
lower levels, weighted with their statistical weights gi , gk , and the absorption path
length 
z. A comparison with (2.15) and (2.21) yields the total power absorbed
per volume 
V on the transition jii ! jki:

Pik D I0 �
V �
Z
˛ik.!/d! D „!

c
I0Bik

�
Ni � gi

gk
Nk

�

V ; (2.59)

where the integration extends over the absorption profile. This gives the relation

Bik D c

„!
Z

ik.!/d! ; (2.60)

between the Einstein coefficient Bik and the absorption cross section 
ik.
At thermal equilibrium the population follows a Boltzmann distribution. Insert-

ing (2.18) yields the power absorbed within the volume 
V D A
z by a sample
with molecular densityN and temperature T out of an incident beam with the cross
section A and intensity I

Pik D .N=Z/gi.e�Ei =kT � e�Ek=kT /A
z

Z
I0
ikd! ;

D I0
ik.!0/.N=Z/gi.e�Ei =kT � e�Ek=kT /
V ;

(2.60a)

for a monochromatic laser with I0.!/ D I0ı.! � !0/.
In the far-infrared region is
E D .Ek�Ei/	 kT . In this case the exponential

function can be approximated by exp.�x/ � 1 � x. This converts (2.60a) into

Pik � I0
ik.!0/gi .N=Z/ � .
E=kT /
V : (2.60b)

In case of a collimated laser beam passing through the absorbing sample the volume
element 
V D A � 
z is the product of the laser beam cross section A and the
absorption path length 
z.

The absorption lines are only measurable if the absorbed power is sufficiently
high, which means that the density N or the absorption path length 
z must be
large enough. Furthermore, the difference in the two Boltzmann factors in (2.60a)
should be sufficiently large, which means Ei should be not much larger than kT ,
but Ek � kT . Absorption lines in gases at thermal equilibrium are therefore only
intense for transitions from low-lying levels Ei that are thermally populated.
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Figure 2.20 Discrete and continuous emission spectrum and the corresponding level diagram,
which also shows radiationless transitions induced by inelastic collisions (wavy lines)

It is, however, possible to pump molecules into higher energy states by various
excitation mechanisms such as optical pumping or electron excitation. This allows
the measurement of absorption spectra for transition from these states to even higher
molecular levels (Vol. 2, Sect. 5.3).

2.7.2 Fluorescence Spectra

The excited molecules release their energy either by spontaneous or induced emis-
sion or by collisional deactivation (Fig. 2.20). The spatial distribution of spon-
taneous emission depends on the orientation of the excited molecules and on the
symmetry properties of the excited state Ek . If the molecules are randomly ori-
ented, the spontaneous emission (often called fluorescence) is isotropic.

The fluorescence spectrum (emission spectrum) emitted from a discrete upper
levelEk consists of discrete lines if the terminating lower levelsEi are bound states.
A continuum is emitted if Ei belongs to a repulsive state of a molecule that disso-
ciates. As an example, the fluorescence spectrum of the 3˘ ! 3˙ transition of the
NaK molecule is shown in Fig. 2.21. It is emitted from a selectively excited bound
vibrational level of the 3˘ state that has been populated by optical pumping with
an argon laser. The fluorescence terminates into a repulsive 3˙ state, which has
a shallow van der Waals minimum. Transitions terminating to energies Ek above
the dissociation energy form the continuous part of the spectrum, whereas transi-
tions to lower bound levels in the van der Waals potential well produce discrete
lines. The modulation of the continuum reflects the modulation of the transmission
probability due to the maxima and nodes of the vibrational wave function  vib.R/

in the upper bound level [54].
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Figure 2.21 Continuous “bound–free” and discrete “bound–bound” fluorescence transitions of
the NaK molecule observed upon laser excitation at � D 488 nm: a part of the spectrum; b en-
largement of three discrete vibrational bands; c level scheme [54]

2.7.3 Oscillator Strength

In contrast to the harmonic oscillator of our classical model for absorption, real
atoms or molecules have many energy levels and therefore also many possible tran-
sitions from lower thermally populated levels. This means that there are many
absorption lines at different frequencies !i . The magnitude of the absorption co-
efficient ˛ depends on the population density of the absorbing level and on the
transition probabilities for the different transitions. These transition probabilities
can be only calculated by using quantum mechanical methods, but there are several
experimental techniques for their determination (see next section).

The transition probability can be vividly described by the concept of oscillator
strength f which relates the classical model with a more realistic approach. It can
be explained as follows:

An atom with an electron in an outer shell („Leucht-Electron“) which can be ex-
cited by absorption of a photon from a lower state Ei into higher electronic states
Ek can be treated as classical oscillator with the oscillator strength f D 1. How-
ever, the total absorption of the atom in level Ei is due to the sum of all transitions
into the levels Ek . Each of these transitions contribute only a fraction fik < 1 to the
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total absorption, which is called the oscillator strength of this transition. With other
words: N atoms absorb on a transition ji i ! jki as much as fik � N classical
oscillators.

Since the sum of all transitions from levelEi should have the absorption strength
of a classical oscillator we obtain the relation

X

k

fik D 1 : (2.61)

The summation extends to all upper levels Ek which can be reached by allowed
transitions from level Ei including the ionization or dissociation continuum.

When an excited level Ek is populated, also induced emission can take place
which reduces the total absorption. The corresponding oscillator strengths fki for
induced emission are therefore negative.

Example 2.6
1. For the transitions of the resonance lines in the sodium atom is f .3 S1=2 !
P3=2/ D 0:33 and f .3 S1=2 ! 3P3=2/ D 0:66. This illustrates that the
two fine-structure components of the yellow sodium line contribute al-
ready nearly 99 % ot the total absorption from the ground state 3 S1=2. All
other possible transitions carry only 1 % of the total absorption.

2. For the hydrogen Atom H is f .1 S1=2 ! 2 p/ D 0:4162. The transition

probability is Aik D 4:7 � 108 s�1.

Taking into account the oscillator strengths the equations (2.51a, 2.51b) are mod-
ified to

�i D Nie
2

2"0m

X

k

!fik�ik

.!2ik � !2/2 C �2ik!2
; (2.62a)

n0
i D 1C

Nie
2

2"0m

.!2ik � !2/fik
.!2ik � !2/2 C �2ik!2

; (2.62b)

where Ni is the number density of atoms per volume in level jii and �i is the full
spectral width (FWHM) of the absorbing transition jii ! jki. In the vicinity of an
absorption line (j!0�!j 	 !0) the equations simplify according to (2.52a, 2.52b).
The equations (2.62a, 2.62b) are valid for atoms or molecules at rest. The thermal
motion of atoms broadens the spectral width �ik of the transition (Doppler broad-
ening, see Sect. 3.2).

The oscillator strengths can be measured by several experimental techniques.
One of them uses the measurement of absorption profiles or dispersion profiles.
Lifetime measurement (see Sect. 2.10), which give direct values of transition prob-
abilities and therefore information on the natural line width of a transition (see
Sect. 3.1) are a valuable source for the determination of oscillator strengths.
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2.7.4 Relation Between Absorption Cross Section
and Einstein Coefficients

At a density Ni of molecules in level jii and a negligible population Nk in the
upper level of a transition the power absorbed from the incident light wave within
the volume element
V is

dWik

dt
D Ni � Bik � �.!/ � „! �
V : (2.63)

The comparison with (2.56a, 2.56b) gives with I.!/ D c � �.!/ for a plane incident
light wave

Bik D 2�c

Ni„!ik

!0C
!=2Z

!0�
!=2
˛ik.!/ d! � 2�c

Ni„!ik

C1Z

0

˛ik.!/ d! : (2.64)

The integration limits can be extended from 0 to˙1, because the absorption coef-
ficient outside the absorption profile is zero.

The Einstein coefficient for absorption Bik is proportional to the absorption
coefficient ˛ik integrated over the absorption profile.

Inserting for ˛ D .2!=c/� the expression (2.62a) one obtains in the vicinity of
the absorption centre frequency the relation between Einstein coefficient Bik and
oscillator strength fik

B
.!/

ik D
e2fik

4„!2ik"0m

1Z

0

!�ik d!

.!2ik � !/2 C .�ik=2/2
: (2.65)

The integral is readily solved and has the value 2�!ik. This gives finally the relation

B
.!/

ik D
�e2

2m"0„!ik fik ; B
.�/

ik D
e2

4m"0h�ik
fik : (2.66)

Note, that �.�/ is the energy density within the spectral interval d� D 1 s�1 )
d! D 2� d� D 2� s�1. Since the transition probability B.�/

ik �.�/ D B
.!/

ik �.!/ is
independent of the choice of � or ! it follows that �.�/ D 2��.!/ and therefore
B
.�/

ik D .1=2�/B
.!/

ik . One has to pay attention to this difference when comparing
formulas expressed in � or in !.

2.7.5 Integrated Absorption and Line Strength

If the Einstein coefficients are known, the oscillator strength can be derived and the
absorption coefficient and the dispersion are obtained, or, vice versa, from measured
oscillator strengths the Einstein coefficients can be determined.
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The optical absorption coefficient 
ik for a transition jii ! jki in a gas with Ni
absorbing atoms per cm3 is related to the absorption coefficient ˛ik by

˛ik D Ni � 
ik : (2.67)

Inserting this into (2.64) yields

B
.!/

ik D
2�c

„!
Z

ik.!/ d! ; B

.�/

ik D
c

h�

Z

ik.�/ d� : (2.68)

The integral

Sik D
Z

ik.!/ d! D

Z

ik.�/ d� (2.69)

is called the line strength of the transition jii ! jki.
Defining a mean absorption cross section

N
ik D 1


�

Z

ik.�/ d� ; (2.70)

where 
� is the full width (HWHM) of the absorption line (see Sect. 3.1), we can
write the line strength as the product

Sik D 
� � 
ik (2.71)

of linewidth
� and mean absorption cross section 
ik (averaged over the linewidth).
From (2.22) and (2.68) we obtain the relation

N
ik D �2Aik

8�
�
(2.72)

between mean absorption cross section 
ik and Einstein Coefficient Aik for spon-
taneous emission. If 
� is the natural linewidth 
�n it follows (see Sect. 3.1)


�n D Aik=2�

and we get the interesting result for the mean absorption cross section

N
ik D .�=2/2 : (2.73)

The mean absorption cross section for the absorption within the natural
linewidth of a transition with oscillator strength fik is about fik � �2=4 and
depends therefore only on the wavelength � and the oscillator strength.



38 2 Absorption and Emission of Light

Example 2.7
The mean absorption cross section of the Na D-line at � D 589 nm is
according to (2.73) about 
ik D 9 � 10�10 cm2 (the measured value is
10 � 10�10 cm2). At a vapour pressure of 10�6 mb the atom density is
Ni D 2:5�1010 cm�3. The absorption coefficient is then ˛ik D 2 cm�1. This
means that the intensity I0 of a laser beam, tuned to the centre wavelength
of the Na transition has decreased already to .1=e/I0 after 0.5 cm absorption
path length.

2.8 Transition Probabilities

The intensities of spectral lines depend not only on the population density of the
molecules in the absorbing or emitting level but also on the transition probabili-
ties of the corresponding molecular transitions. If these probabilities are known,
the population density can be obtained from measurements of line intensities. This
is very important, for example, in astrophysics, where spectral lines represent the
main source of information from the extraterrestrial world. Intensity measurements
of absorption and emission lines allow the concentration of the elements in stellar
atmospheres or in interstellar space to be determined. Comparing the intensities of
different lines of the same element (e.g., on the transitions Ei ! Ek and Ee ! Ek
from different upper levels Ei , Ee to the same lower level Ek) furthermore enables
us to derive the temperature of the radiation source from the relative population den-
sities Ni , Ne in the levels Ei and Ee at thermal equilibrium according to (2.18). All
these experiments, however, demand a knowledge of the corresponding transition
probabilities.

There is another aspect that makes measurements of transition probabilities very
attractive with regard to a more detailed knowledge of molecular structure. Transi-
tion probabilities derived from computed wave functions of upper and lower states
are much more sensitive to approximation errors in these functions than are the ener-
gies of these states. Experimentally determined transition probabilities are therefore
well suited to test the validity of calculated approximate wave functions. A com-
parison with computed probabilities allows theoretical models of electronic charge
distributions in excited molecular states to be improved [55, 56].

2.8.1 Lifetimes, Spontaneous and Radiationless Transitions

The probability Pik that an excited molecule in the level Ei makes a transition
to a lower level Ek by spontaneous emission of a fluorescence quantum h�ik D
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Figure 2.22 Radiative decay of the level jii: a Level scheme; b decay curve Ni .t/

Ei � Ek is, according to (2.17), related to the Einstein coefficient Aik by

dPik=dt D Aik :

When several transition paths from Ei to different lower levels Ek are possible
(Fig. 2.22), the total transition probability is given by

Ai D
X

k

Aik : (2.74)

The decrease dNi of the population density Ni during the time interval dt due to
radiative decay is then

dNi D �AiNidt : (2.75)

Integration of (2.75) yields

Ni.t/ D Ni0e�Ai t ; (2.76)

where Ni0 is the population density at t D 0.
After the time �i D 1=Ai the population density Ni has decreased to 1=e of its

initial value at t D 0. The time �i represents the mean spontaneous lifetime of the
level Ei as can be seen immediately from the definition of the mean time

ti D
1Z

0

tPi .t/dt D
1Z

0

tAie
�Ai tdt D 1

Ai
D �i ; (2.77)

where Pi .t/dt is the probability that one atom in the level Ei makes a spontaneous
transition within the time interval between t and t C dt .
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Figure 2.23 Fluorescence-
and collision-induced de-
cay channels of an excited
level jii

The radiant power emitted from Ni molecules on the transition Ei ! Ek is

Pik D Nih�ikAik : (2.78)

If several transitions Ei ! Ek from the same upper level Ei to different lower
levels Ek are possible, the radiant powers of the corresponding spectral lines are
proportional to the product of the Einstein coefficient Aik and the photon energy
h�ik . The relative radiation intensities in a certain direction may also depend on
the spatial distribution of the fluorescence, which can be different for the different
transitions.

The level Ei of the molecule A can be depopulated not only by spontaneous
emission but also by collision-induced radiationless transitions (Fig. 2.23). The
probability dPcoll

ik =dt of such a transition depends on the density NB of the collision
partner B, on the mean relative velocity v between A and B, and on the collision
cross section 
 coll

ik for an inelastic collision that induces the transition Ei ! Ek in
the molecule A

dPcoll
ik =dt D vNB


coll
ik : (2.79)

When the excited molecule A.Ei / is exposed to an intense radiation field, the in-
duced emission may become noticeable. It contributes to the depopulation of level
Ei in a transition jii ! jki with the probability

dPind
ik =dt D �.�ik/Bik : (2.80)

The total transition probability that determines the effective lifetime of a level Ei is
then the sum of spontaneous, induced, and collisional contributions, and the mean
lifetime � eff

i becomes

1

� eff
i

D
X

k

�
Aik C �.�ik/Bik CNB
ikv

�
: (2.81)
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Figure 2.24 Two-level
system with open decay
channels into other levels
interacting with an EM field

Measuring the effective lifetime � eff
i as a function of the exciting radiation intensity

and also its dependence on the density NB of collision partners (Stern–Vollmer
plot) allows one to determine the three transition probabilities separately (Vol. 2,
Sect. 8.3).

2.8.2 Semiclassical Description: Basic Equations

In the semiclassical description, the radiation incident upon an atom is described by
a classical electromagnetic (EM) plane wave

E D E 0 cos.!t � kz/ : (2.82a)

The atom, on the other hand, is treated quantum-mechanically. In order to simplify
the equations, we restrict ourselves to a two-level system with the eigenstates Ea
and Eb (Fig. 2.24).

Until now laser spectroscopy was performed in spectral regions where the wave-
length � was large compared to the diameter d of an atom (e.g., in the visible
spectrum � is 500 nm, but d is only about 0:5 nm). For � � d , the phase of
the EM wave does not change much within the volume of an atom because kz D
.2�=�/z 	 1 for z � d . We can therefore neglect the spatial derivatives of the
field amplitude (dipole approximation). In a coordinate system with its origin in
the center of the atom, we can assume kz ' 0 within the atomic volume, and write
(2.82a) in the form

E D E 0 cos!t D A0.e
i!t C e�i!t / with jA0j D 1

2
E 0 : (2.82b)

The Hamiltonian operator

H DH0 CV ; (2.83)

of the atom interacting with the light field can be written as a sum of the unper-
turbed HamiltonianH0 of the free atom without the light field plus the perturbation
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operator V , which describes the interaction of the atom with the field and which
reduces in the dipole approximation to

V D p �E D p �E 0 cos!t ; (2.84)

where V is the scalar product of the dipole operator p D �e � r and the electric
field E of the electromagnetic wave.

The radiation field causes transitions in the atom. This means that the eigen-
functions of the atom become time-dependent. The general solution  .r; t/ of the
time-dependent Schrödinger equation

H D i„@ 
@t

(2.85)

can be expressed as a linear superposition

 .r; t/ D
1X

nD1
cn.t/un.r/e

�iEn t=„ ; (2.86)

of the eigenfunctions of the unperturbed atom

	n.r; t/ D un.r/e�iEn t=„ : (2.87)

The spatial parts un.r/ of these eigenfunctions are solutions of the time-
independent Schrödinger equation

H0un.r/ D Enun.r/ ; (2.88)

and satisfy the orthogonality relations1

Z
u�
i ukd� D ıik : (2.89)

For our two-level system with the eigenstates jai and jbi and the energies Ea
and Eb , (2.86) reduces to a sum of two terms

 .r; t/ D a.t/uae�iEa t=„ C b.t/ube�iEb t=„ : (2.90)

The coefficients a.t/ and b.t/ are the time-dependent probability amplitudes of the
atomic states jai and jbi. This means that the value ja.t/j2 gives the probability of
finding the system in level jai at time t . Obviously, the relation ja.t/j2Cjb.t/j2 D 1
must hold at all times t , if decay into other levels is neglected.

Substituting (2.90) and (2.83) into (2.85) gives

i„Pa.t/uae�iEa t=„ C i„ Pb.t/ube�iEb t=„ D aVuae�iEa t=„ C bVube�iEb t=„ ; (2.91)

1 Note that in (2.86–2.88) a nondegenerate system has been assumed.
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where the relationH0un D Enun has been used to cancel equal terms on both sides.
Multiplication with u�

n.n D a; b/ and spatial integration results in the following two
equations

Pa.t/ D �.i=„/�a.t/Vaa C b.t/Vabei!ab t
�
; (2.92a)

Pb.t/ D �.i=„/�b.t/Vbb C a.t/Vbae�i!ab t
�
; (2.92b)

with !ab D .Ea � Eb/=„ D �!ba and with the spatial integral

Vab D
Z
u�
aVubd� D �eE

Z
u�
arubd� : (2.93a)

Since r has odd parity, the integrals Vaa and Vbb vanish when integrating over all
coordinates from �1 to C1. The quantity

Dab D Dba D �e
Z
u�
arubd� ; (2.93b)

is called the atomic dipole matrix element. It depends on the stationary wave func-
tions ua and ub of the two states jai and jbi and is determined by the charge
distribution in these states.

The expectation value Dab of the dipole matrix element for our two-level sys-
tem should be distinguished from the expectation value of the dipole moment in
a specific state j i

Dn D �e
Z
u�
nrun d� D 0 ; n D a; b ; (2.94a)

which is zero because the integrand is an odd function of the coordinates. Using
(2.90) and the abbreviation !ba D .Eb �Ea/=„ D �!ab , the general dipole matrix
element D D �e R  �r d� can be expressed by the coefficients a.t/ and b.t/,
and by the matrix element Dab as

D D CDab.a
�be�i!ba t C ab�eCi!ba t / D D0 cos.!bat C '/ ; (2.94b)

with

D0 D Dab ja�bj and tan ' D �=fa
�bg

<fa�bg :

Even without the external field, the expectation value of the atomic dipole moment
oscillates with the eigenfrequency !ba and the amplitude ja� �bj if the wavefunction
of the atomic system can be represented by the superposition (2.93a, 2.93b). The
time average of this oscillation’s dipole moment is zero!

Using (2.82b) for the EM field and the abbreviation

˝ab D DabE0=„ D 2DabA0=„ D ˝ba (2.95)
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which depends on the field amplitude E0 and (2.92a, 2.92b) reduces to

Pa.t/ D �.i=2/˝ab

�
ei.!�!ba/t C e�i.!C!ba/t

	
b.t/ ; (2.96a)

Pb.t/ D �.i=2/˝ab

�
e�i.!�!ba /t C ei.!C!ba/t

	
a.t/ : (2.96b)

where !ba D �!ba > 0.
These are the basic equations that must be solved to obtain the probability ampli-

tudes a.t/ and b.t/. The frequency ˝ab is called the Rabi frequency. Its physical
interpretation will be discussed in Sect. 2.8.6.

2.8.3 Weak-Field Approximation

Suppose that at time t D 0, the atoms are in the lower state Ea, which implies that
a.0/ D 1 and b.0/ D 0. We assume the field amplitude A0 to be sufficiently small
so that for times t < T the population of Eb remains small compared with that of
Ea, i.e., jb.t < T /j2 	 1. Under this weak-field condition we can solve (2.96a,
2.96b) with an iterative procedure starting with a D 1 and b D 0. Using thermal
radiation sources, the field amplitudeA0 is generally small enough to make the first
iteration step already sufficiently accurate.

With these assumptions the first approximation of (2.96a, 2.96b) gives

Pa.t/ D 0 ; (2.97a)

Pb.t/ D �.i=2/˝ba

�
ei.!ba�!/t C ei.!baC!/t	 : (2.97b)

With the initial conditions a.0/ D 1 and b.0/ D 0, integration of (2.97a, 2.97b)
from 0 to t yields

a.t/ D a.0/ D 1 ; (2.98a)

b.t/ D
�
˝ab

2

��
ei.!�!ba /t � 1
! � !ba � ei.!C!ba/t � 1

! C !ba
�
: (2.98b)

For Eb > Ea the term !ba D .Eb � Ea/=„ is positive. In the transition Ea ! Eb ,
the atomic system absorbs energy from the radiation field. Noticeable absorption
occurs, however, only if the field frequency ! is close to the eigenfrequency!ba. In
the optical frequency range this implies that j!ba � !j 	 !ba. The second term in
(2.98b) is then small compared to the first one and may be neglected. This is called
the rotating-wave approximation for only that term is kept in which the atomic wave
functions and the field waves with the phasors exp.�i!abt/ and exp.�i!t/ rotate
together.
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Figure 2.25 a Normalized transition probability for monochromatic excitation as a function of
the detuning .! � !ba/ in the rotating-wave approximation; b probability of a transition to the
upper level as a function of time for different detuning; c jb.t/j2 under broadband excitation and
weak fields

In the rotating-wave approximation we obtain from (2.98b) for the probability
jb.t/j2 that the system is at time t in the upper level Eb

jb.t/j 2 D
�
˝ab

2

�2 � sin.! � !ba/t=2
.! � !ba/=2

�2
: (2.99)

Since we had assumed that the atom was at t D 0 in the lower levelEa, (2.99) gives
the transition probability for the atom to go from Ea to Eb during the time t .

Figure 2.25a illustrates this transition probability as a function of the detuning

! D !�!ba. Equation (2.99) shows that jb.t/j2 depends on the absolute value of
the detuning
! D j!�!baj of the field frequency! from the eigenfrequency!ba.
When tuning the frequency! into resonance with the atomic system (! ! !ba), the
second factor in (2.99) approaches the value t2 because limx!0Œ.sin2 xt/=x2� D t2.
The transition probability at resonance,

jb.t/j 2!D!ba
D
�
˝ab

2

�2
t2 ; (2.100)

increases proportionally to t2. The approximation used in deriving (2.99) has, how-
ever, anticipated that jb.t/j2 	 1. According to (2.100) and (2.95), this assumption
for the resonance case is equivalent to

�
˝ab

2

�2
t2 	 1 or t 	 T D 2

˝ab

D „
DabE0

: (2.101)

Our small-signal approximation only holds if the interaction time t of the field
(amplitude E0) with the atom (matrix element Dab) is restricted to t 	 T D
„=.DabE0/. Because the spectral analysis of a wave with the finite detection
time T gives the spectral width 
! ' 1=T (see also Sect. 3.2), we cannot assume
monochromaticity, but have to take into account the frequency distribution of the
interaction term.
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2.8.4 Transition Probabilities with Broad-Band Excitation

In general, thermal radiation sources have a bandwidth •!, which is much larger
than the Fourier limit 
! D 1=T . Therefore, the finite interaction time im-
poses no extra limitation. This may change, however, when lasers are considered
(Sects. 2.8.5 and 3.4).

Instead of the field amplitude E0 (which refers to a unit frequency interval),
we introduce the spectral energy density �.!/ within the frequency range of the
absorption line by the relation, see (2.30a–2.30c),

Z
�.!/d! D �0E2

0=2 D 2�0A20 :

We can now generalize (2.99) to include the interaction of broadband radiation with
our two-level system by integrating (2.99) over all frequencies ! of the radiation
field. This yields the total transition probability Pab.t/ within the time T . If Dab k
E0, we obtain with ˝ab D DabE0=„

Pab.t/ D
Z
jb.t/j 2d! D .Dab/

2

2�0„2
Z
�.!/

�
sin.!ba � !/t=2
.!ba � !/=2

�2
d! : (2.102)

For thermal light sources or broadband lasers, �.!/ is slowly varying over the ab-
sorption line profile. It is essentially constant over the frequency range where the
factor Œsin2.!ba � !/t=2�=Œ.!ba � !/=2�2 is large (Fig. 2.25a). We can therefore
replace �.!/ by its resonance value �.!ba/. The integration can then be performed,
which gives the value �.!ba/2�t for the integral because

1Z

�1

sin2.xt/

x2
dx D 2�t :

For broadband excitation, the transition probability for the time interval between 0
and t

Pab.t/ D �

�0„2D
2
ab�.!ba/t ; (2.103)

is linearly dependent on t (Fig. 2.25c).

For broadband excitation the transition probability per second

d

dt
Pab D �

�0„2D
2
ab�.!ba/ ; (2.104)

becomes independent of time!
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To compare this result with the Einstein coefficient Bab derived in Sect. 2.3, we
must take into account that the blackbody radiation was isotropic, whereas the EM
wave (2.82a, 2.82b) used in the derivation of (2.104) propagates into one direction.
For randomly oriented atoms with the dipole moment p, the averaged component
of p2 in the z-direction is hp2zi D p2hcos2 �i D p2=3.

In the case of isotropic radiation, the interaction term D2
ab�.!ba/ therefore has

to be divided by a factor of 3. A comparison of (2.16) with the modified equation
(2.104) yields

d

dt
Pab D �

3�0„2 �.!ba/D
2
ab D �.!ba/Bab : (2.105)

With the definition (2.93a, 2.93b) for the dipole matrix element D ik , the Einstein
coefficient Bik of induced absorption Ei ! Ek finally becomes

B!
ik D

�e2

3�0„2
ˇ̌
ˇ̌
Z
u�
i rukd�

ˇ̌
ˇ̌
2

and B�
ik D B!

ik=2� : (2.106)

Equation (2.106) gives the Einstein coefficient for a one-electron system where
r D .x; y; z/ is the vector from the nucleus to the electron, and un.x; y; z/ de-
notes the one-electron wave functions.2 From (2.106) we learn that the Einstein
coefficient Bik is proportional to the squared transition dipole moment.

So far we have assumed that the energy levels Ei and Ek are not degenerate,
and therefore have the statistical weight factor g D 1. In the case of a degenerate
level jki, the total transition probability �Bik of the transition Ei ! Ek is the sum

�Bik D �
X

n

Bikn
;

over all transitions to the sublevels jkni of jki. If level jii is also degenerate, an
additional summation over all sublevels jimi is necessary, taking into account that
the population of each sublevel jimi is only the fraction Ni=gi .

The Einstein coefficient Bik for the transition Ei ! Ek between the two degen-
erate levels jii and jki is therefore

Bik D �

3�0„2
1

gi

giX

mD1

gkX

nD1
jDimkn

j 2 D �

3�0„2gi Sik : (2.107)

The double sum is called the line strength Sik of the atomic transition
jii  jki.

2 Note that when using the frequency � D !=2� instead of !, the spectral energy density �.�/
per unit frequency interval is larger by a factor of 2� than �.!/ because a unit frequency interval
d� D 1Hz corresponds to d! D 2� ŒHz�. The right-hand side of (2.106) must then be divided by
a factor of 2� , since B�

ik
�.�/ D B!

ik
�.!/.
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Figure 2.26 Transition
probability of a damped sys-
tem under weak broadband
excitation

2.8.5 Phenomenological Inclusion of Decay Phenomena

So far we have neglected the fact that the levels jai and jbi are not only coupled
by transitions induced by the external field but may also decay by spontaneous
emission or by other relaxation processes such as collision-induced transitions. We
can include these decay phenomena in our formulas by adding phenomenological
decay terms to (2.96a, 2.96b), which can be expressed by the decay constant �a
and �b (Fig. 2.24). A rigorous treatment requires quantum electrodynamics [59].

In the rotating-wave approximation, for which the term with the frequency
.!ba C !/ is neglected, (2.96a, 2.96b) then becomes

Pa.t/ D �1
2
�aa � i

2
˝abe

�i.!ba�!/t b.t/ ; (2.108a)

Pb.t/ D �1
2
�bb � i

2
˝abeCi.!ba�!/t a.t/ : (2.108b)

When the field amplitudeE0 is sufficiently small, see (2.101), we can use the weak-
signal approximation of Sect. 2.8.3. This means that ja.t/j2 D 1, jb.t/j2 	 1, and
also aa� � bb� ' 1. With this approximation, one obtains in a similar way as in
the derivation of (2.99) the transition probability

Pab.!/ D jb.t; !/j 2 D
Z
�abe

��ab t jb.t/j 2dt D 1

2

˝2
ab

.!ba � !/2 C . 12�ab/2
:

(2.108c)

This is a Lorentzian line profile (Fig. 2.26) with a full halfwidth �ab D �a C �b .
After taking the second-time derivative of (2.94b) and using (2.108a–2.108c),

the equation of motion for the dipole momentD of the atom under the influence of
a radiation field, becomes

RD C �ab PD C .!2ba C �2ab=4/D
D .˝ab/

�
.!ba C !/ cos!t C .�ab=2/ sin!t

�
:

(2.109a)
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The homogeneous equation

RD C �ab PD C .!2ba C �2ab=4/D D 0 ; (2.109b)

which describes the atomic dipoles without the driving field (˝ab D 0), has the
solution for weak damping (�ab 	 !ba)

D.t/ D D0e
.��ab=2/t cos!bat : (2.110)

The inhomogeneous equation (2.109a) shows that the induced dipole moment of the
atom interacting with a monochromatic radiation field behaves like a driven damped
harmonic oscillator with !ba D .Eb � Ea/=„ for the eigenfrequency and �ab D
.�a C �b/ for the damping constant oscillating at the driving field frequency !.

Using the approximation .!ba C !/ ' 2! and �ab 	 !ba, which means weak
damping and a close-to-resonance situation, we obtain solutions of the form

D D D1 cos!t CD2 sin!t ; (2.111)

where the factors D1 and D2 include the frequency dependence,

D1 D ˝ab.!ba � !/
.!ba � !/2 C .�ab=2/2 ; (2.112a)

D2 D
1
2
˝ab�ab

.!ab � !/2 C .�ab=2/2 : (2.112b)

These two equations for D1 and D2 describe dispersion and absorption of the EM
wave. The former is caused by the phase lag between the radiation field and the
induced dipole oscillation, and the latter by the atomic transition from the lower
level Ea to the upper level Eb and the resultant conversion of the field energy into
the potential energy .Eb � Ea/.

The macroscopic polarization P of a sample with N atoms=cm3 is related to the
induced dipole moment D by P D ND.

2.8.6 Interaction with Strong Fields

In the previous sections we assumed weak-field conditions where the probability of
finding the atom in the initial state was not essentially changed by the interaction
with the field. This means that the population in the initial state remains approx-
imately constant during the interaction time. In the case of broadband radiation,
this approximation results in a time-independent transition probability. Also the
inclusion of weak-damping terms with �ab 	 !ba did not affect the assumption of
a constant population in the initial state.
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When intense laser beams are used for the excitation of atomic transitions, the
weak-field approximation is no longer valid. In this section, we therefore consider
the “strong-field case.” The corresponding theory, developed by Rabi, leads to
a time-dependent probability of the atom being in either the upper or lower level.
The representation outlined below follows that of [57].

We consider a monochromatic field of frequency ! and start from the basic
equations (2.96a, 2.96b) for the probability amplitudes in the rotating wave ap-
proximation with !ba D �!ab

Pa.t/ D i

2
˝abe

�i.!ba�!/t b.t/ ; (2.113a)

Pb.t/ D i

2
˝abe

Ci.!ba�!/ta.t/ : (2.113b)

Inserting the trial solution

a.t/ D ei�t ) Pa.t/ D i�ei�t ;

into (2.113a) yields

b.t/ D 2�

˝ab

ei.!ba�!C�/t ) Pb.t/ D 2i�.!ba � ! C �/
˝ab

ei.!ba�!C�/t :

Substituting this back into (2.113b) gives the relation

2�.!ba � ! C �/ D ˝2
ab=2 : (2.114)

This is a quadratic equation for the unknown quantity � with the two solutions

�1;2 D �1
2
.!ba � !/˙ 1

2

q
.!ba � !/2 C˝2

ab : (2.115)

The general solutions for the amplitudes a and b are then

a.t/ D C1ei�1t C C2ei�2t ; (2.116a)

b.t/ D .2=˝ab/e
i.!ba�!/t .C1�1ei�1t C C2�2ei�2t / : (2.116b)

With the initial conditions a.0/ D 1 and b.0/ D 0, we find for the coefficients

C1 C C2 D 1 and C1�1 D �C2�2 ;
) C1 D � �2

�1 � �2 C2 D C �1

�1 � �2 :

From (2.115) we obtain �1�2 D �˝2
ab=4. With the shorthand

˝ D �1 � �2 D
q
.!ba � !/2 C˝2

ab ; (2.117)
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we get the probability amplitude

b.t/ D i.˝ab=˝/e
i.!ba�!/t=2 sin.˝t=2/ : (2.118)

The probability jb.t/j2 D b.t/b�.t/ of finding the system in level Eb is then

jb.t/j 2 D .˝ab=˝/
2 sin2.˝t=2/ ; (2.119)

where

˝ D
p
.!ba � !/2 C .Dab �E 0=„/2 (2.120)

is called the general “Rabi flopping frequency” for the nonresonant case ! ¤ !ba.
Equation (2.119) reveals that the transition probability is a periodic function of time.
Since

ja.t/j 2 D 1 � jb.t/j 2 D 1 � .˝ab=˝/
2 sin2.˝t=2/ ; (2.121)

the system oscillates with the frequency ˝ between the levels Ea and Eb , where
the level-flopping frequency ˝ depends on the detuning .!ba � !/, on the field
amplitude E0, and the matrix element Dab (Fig. 2.25b).

The general Rabi flopping frequency˝ gives the frequency of population os-
cillation in a two-level system in an electromagnetic field with amplitude E0.

Note In the literature often the term “Rabi frequency” is restricted to the resonant
case ! D !ba.

At resonance !ba D !, and (2.119) and (2.121) reduce to

ja.t/j 2 D cos2.Dab �E0t=2„/ ; (2.122a)

jb.t/j 2 D sin2.Dab �E0t=2„/ : (2.122b)

After a time

T D �„=.Dab �E 0/ D �=˝ab ; (2.123)

the probability jb.t/j2 of finding the system in level Eb becomes unity. This means
that the population probability ja.0/j2 D 1 and jb.0/j2 D 0 of the initial system has
been inverted to ja.T /j2 D 0 and jb.T /j2 D 1 (Fig. 2.27).

Radiation with the amplitude A0, which resonantly interacts with the atomic
system for exactly the time interval T D �„=.Dab � E0/, is called a �-pulse
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Figure 2.27 Population probability jb.t/j2 of the levels Eb altering with the Rabi flopping fre-
quency due to the interaction with a strong field. The resonant case is shown without damping and
with damping due to decay channels into other levels. The decaying curve represents the factor
expŒ�.�ab=2/t �

because it changes the phases of the probability amplitudes a.t/, b.t/ by � , see
(2.116a, 2.116b, 2.118).

We now include the damping terms �a and �b , and again insert the trial solution

a.t/ D ei�t ;

into (2.108a, 2.108b). Similar to the procedure used for the undamped case, this
gives a quadratic equation for the parameter � with the two complex solutions

�1;2 D �1
2

�
!ba � ! � i

2
�ab

�
˙ 1

2

s�
!ba � ! � i

2
�

�2
C˝2

ab ;

where

�ab D �a C �b and � D �a � �b : (2.124)

From the general solution

a.t/ D C1ei�1t C C2ei�2t ;

we obtain from (2.108a) with the initial conditions ja.0/j2 D 1 and jb.0/j2 D 0 the
transition probability

jb.t/j 2 D ˝2
abe

.��ab=2/t Œsin.˝=2/t�2

.!ba � !/2 C .�=2/2 C˝2
ab

: (2.125)

This is a damped oscillation (Fig. 2.27) with the damping constant 1
2
�ab D .�a C

�b/=2, the Rabi flopping frequency

˝ D �1 � �2 D
q�
!ba � ! C i

2
�
	2 C˝2

ab ; (2.126)

and the envelope˝2
abe�.�ab=2/t =Œ.!ba � !/2C .�=2/2C˝2

ab�. The spectral profile
of the transition probability is Lorentzian (Sect. 3.1), with a halfwidth depending
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Figure 2.28 Population
of level jbi for a closed
two-level system where the
relaxation channels are open
only for transitions between
jai and jbi

on � D �a � �b and on the strength of the interaction. Since ˝2
ab D .Dab �E0=„/2

is proportional to the intensity of the electromagnetic wave, the linewidth increases
with increasing intensity (saturation broadening, Sect. 3.5). Note, that ja.t/j2 C
jb.t/j2 < 1 for t > 0, because the levels a and b can decay into other levels.

In some cases the two-level system may be regarded as isolated from its envi-
ronment. The relaxation processes then occur only between the levels jai and jbi,
but do not connect the system with other levels. This implies ja.t/j2C jb.t/j2 D 1.
Equation (2.108a–2.108c) then must be modified as

Pa.t/ D �1
2
�aa.t/C 1

2
�bb.t/C i

2
˝abe�i.!ba�!/t b.t/ ; (2.127a)

Pb.t/ D �1
2
�bb.t/C 1

2
�aa.t/C i

2
˝abeCi.!ba�!/ta.t/ : (2.127b)

The trial solution a D exp.i�t/ yields, for the resonance case ! D !ba, the two
solutions

�1 D 1

2
˝ab C i

2
�ab ; �2 D �1

2
˝ab ;

and for the transition probability jb.t/j2, one obtains with ja.0/j2 D 1, jb.0/j2 D 0
a damped oscillation that approaches the steady-state value

jb.t D1/j 2 D 1

2

˝2
ab C �a�b

˝2
ab C . 12�ab/2

: (2.128)

This is illustrated in Fig. 2.28 for the special case �a D �b where jb.1/j2 D 1=2,
which means that the two levels become equally populated.

For a more detailed treatment see [57–60].

2.8.7 Relations Between Transition Probabilities, Absorption
Coefficient, and Line Strength

In this section we will summarize important relations between the different quanti-
ties discussed so far.
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Table 2.2 Relations between the transition matrix element Dik and the Einstein coefficients Aik ,
Bik , the oscillator strength fik , the absorption cross section 
ik , and the line strength Sik . The
numerical values are obtained, when � [m], Bik [m3s�2J�1], Dik [As m], mc [kg]

Aki D 1

gk

16�3�3

3"0hc3
jDikj 2

D 2�h�2
ik
e2

m � "0 � c3
fik

D 2:82 � 1046

gk � �3
jDikj 2 s�1

B
.�/

ik
D 1

gi

2�2

3"0h2
jDikj 2

D e2fik

4m"0h�ik

D 6� 1031 �3 gi

gk

Aki

B
.!/

ik
D 1

gi

�

3"0„2
jDikj 2

D �e2fik

2m"0„!ik

D gk

gi

Bki

fik D 1

gi

8�2me�

e2h
jDikj 2

D gk

gi

� 4:5� 104�2Aki

Sik D jDikj 2

D .7:8 � 10�21gi�/ fik


ik D 1


�

2�2�

3"0chgi

� Sik

˛ik D 
ik �Ni D 2!

c
� Aik D 8�h�3

c3
B

.�/

ik
B

.�/

ik
D c

h�

1Z

0


ik.�/ d�

The absorption coefficient ˛.!/ for a transition between levels jii and jki with
population densities Ni and Nk and statistical weights gi , gk is related to the ab-
sorption cross section 
ik.!/ by

˛.!/ D ŒNi � .gi=gk/Nk�
ik.!/ : (2.129)

The Einstein coefficient for absorption Bik is given by

Bik D c

„!

1Z

0


ik.!/ d! D c 
ik

„!

1Z

0

g.! � !0/ d! (2.130)

where g.!�!0/ is the line profile of the absorbing transition at center frequency!0.
The transition probability per second according to (2.15) is then

Pik D Bik � % D c

„! �
!
Z
%.!/ � 
ik.!/ d! ; (2.131)

where 
! is the spectral linewidth of the transition.
The line strength Sik of a transition is defined as the sum

Sik D
X

mi ;mk

ˇ̌
Dmi ;mk

ˇ̌
2 D jDikj 2 ; (2.132)

over all dipole-allowed transitions between all subcomponentsmi , mk of levels jii,
jki. The oscillator strength fik gives the ratio of the power absorbed by a molecule
on the transition jii ! jki to the power absorbed by a classical oscillator on its
eigenfrequency !ik D .Ek � Ei/=h.

Some of these relations are compiled in Table 2.2.



2.9 Coherence Properties of Radiation Fields 55

Figure 2.29 The field am-
plitudes An at a point P in
a radiation field as superposi-
tion of an infinite number of
waves from different surface
elements dSi of an extended
source

2.9 Coherence Properties of Radiation Fields

The radiation emitted by an extended source S generates a total field amplitude A
at the point P that is a superposition of an infinite number of partial waves with the
amplitudes An and the phases 	n emitted from the different surface elements dS
(Fig. 2.29), i.e.,

A.P / D
X

n

An.P /e
i	n.P / D

X

n

�
An.0/=r

2
n

�
ei.	n0C2�rn=�/ ; (2.133)

where 	n0.t/ D !t C 	n.0/ is the phase of the nth partial wave at the surface
element dS of the source. The phases 	n.rn; t/ D 	n;0.t/C 2�rn=� depend on the
distances rn from the source and on the angular frequency !.

If the phase differences 
	n D 	n.P; t1/� 	n.P; t2/ at a given point P between
two different times t1, t2 are nearly the same for all partial waves, the radiation
field at P is temporally coherent. The maximum time interval 
t D t2 � t1 for
which 
	n for all partial waves differ by less than � is termed the coherence time
of the radiation source. The path length 
sc D c
t traveled by the wave during
the coherence time 
t is the coherence length.

If a constant time-independent phase difference
	 D 	.P1/� 	.P2/ exists for
the total amplitudes A D A0ei	 at two different points P1, P2, the radiation field
is spatially coherent. All points Pm, Pn that fulfill the condition that for all times
t , j	.Pm; t/ � 	.Pn; t/j < � have nearly the same optical path difference from the
source. They form the coherence volume.

The superposition of coherent waves results in interference phenomena that,
however, can be observed directly only within the coherence volume. The dimen-
sions of this coherence volume depend on the size of the radiation source, on the
spectral width of the radiation, and on the distance between the source and obser-
vation point P.

The following examples illustrate these different expressions for the coherence
properties of radiation fields.
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Figure 2.30 Michelson in-
terferometer for measurement
of the temporal coherence of
radiation from the source S

2.9.1 Temporal Coherence

Consider a point source PS in the focal plane of a lens forming a parallel light beam
that is divided by a beam splitter S into two partial beams (Fig. 2.30).

They are superimposed in the plane of observation B after reflection from the
mirrors M1, M2. This arrangement is called a Michelson interferometer (Sect. 4.2).
The two beams with wavelength � travel different optical path lengths SM1SB and
SM2SB, and their path difference in the plane B is


s D 2.SM1 � SM2/ :

The mirror M2 is mounted on a carriage and can be moved, resulting in a continuous
change of
s. In the plane B, one obtains maximum intensity when both amplitudes
have the same phase, which means 
s D m�, and minimum intensity if 
s D
.2mC 1/�=2. With increasing 
s, the contrast V D .Imax � Imin/=.Imax C Imin/

decreases (Fig. 2.31) and vanishes if 
s becomes larger than the coherence length

sc (Sect. 2.9.4). Experiments show that
sc is related to the spectral width 
! of
the incident wave by


sc ' c=
! D c=.2�
�/ : (2.134)

This observation may be explained as follows. A wave emitted from a point
source with the spectral width 
! can be regarded as a superposition of many
quasi-monochromatic components with frequencies!n within the interval
!. The
superposition results in wave trains of finite length 
sc D c
t D c=
! because
the different components with slightly different frequencies !n come out of phase
during the time interval 
t and interfere destructively, causing the total amplitude
to decrease (Sect. 3.1). If the path difference 
s in the Michelson interferometer
becomes larger than
sc, the split wave trains no longer overlap in the plane B. The
coherence length 
sc of a light source therefore becomes larger with decreasing
spectral width 
!.
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Figure 2.31 Visibility V
as a function of path differ-
ence 
s for a Michelson
interferometer with a light
source with spectral band-
width 
!

Example 2.8
1. A low-pressure mercury spectral lamp with a spectral filter that only

transmits the green line � D 546 nm has, because of the Doppler width

!D D 4 � 109 Hz, a coherence length of 
sc ' 8 cm.

2. A single-mode HeNe laser with a bandwidth of 
! D 2� � 1MHz has
a coherence length of about 50m.

2.9.2 Spatial Coherence

The radiation from an extended source LS of size b illuminates two slits S1 and S2
in the plane A at a distance d apart (Young’s double-slit interference experiment,
Fig. 2.32a). The total amplitude and phase at each of the two slits are obtained by
superposition of all partial waves emitted from the different surface elements df of
the source, taking into account the different paths df –S1 and df –S2.

The intensity at the point of observation P in the plane B depends on the path
difference S1P�S2P and on the phase difference 
	 D 	.S1/ � 	.S2/ of the total
field amplitudes in S1 and S2. If the different surface elements df of the source
emit independently with random phases (thermal radiation source), the phases of
the total amplitudes in S1 and S2 will also fluctuate randomly. However, this would
not influence the intensity in P as long as these fluctuations occur in S1 and S2 syn-
chronously, because then the phase difference 
	 would remain constant. In this
case, the two slits form two coherent sources that generate an interference pattern
in the plane B.

For radiation emitted from the central part 0 of the light source, this proves to
be true since the paths 0S1 and 0S2 are equal and all phase fluctuations in 0 arrive
simultaneously in S1 and S2. For all other points Q of the source, however, path
differences 
sQ D QS1 � QS2 exist, which are largest for the edges R1, R2 of the
source. From Fig. 2.32 one can infer for b 	 r ) sin � � � the relation


sR D 
smax D R2S1 � R1S1 ' b sin � D R1S2 � R1S1 :
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Figure 2.32 a Young’s double-slit arrangement for measurements of spatial coherence; b path
difference between a slit S1 and different points of an extended source

For 
smax > �=2, the phase difference 
	 of the partial amplitudes in S1 and
S2 exceeds � . With random emission from the different surface elements df of the
source, the time-averaged interference pattern in the plane B will be washed out.
The condition for coherent illumination of S1 and S2 from a light source with the
dimension b is therefore


s D b sin.�=2/ < �=2 :

because R2S1 D R1S2.
With 2 sin � D d=r , this condition can be written as

bd=r < � : (2.135a)

Extension of this coherence condition to two dimensions yields, for a source area
As D b2, the following condition for the maximum surface Ac D d2 that can be
illuminated coherently:

b2d2=r2 � �2 : (2.135b)

Since d˝ D d2=r2 is the solid angle accepted by the illuminated surface Ac D d2,
this can be formulated as

Asd˝ � �2 : (2.135c)

The source surface As D b2 determines the maximum solid angle d˝ � �2=As

inside which the radiation field shows spatial coherence. Equation (2.135c) reveals
that radiation from a point source (spherical waves) is spatially coherent within the
whole solid angle d˝ D 4� . The coherence surfaces are spheres with the source
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at the center. Likewise, a plane wave produced by a point source in the focus of
a lens shows spatial coherence over the whole aperture confining the light beam.
For given source dimensions, the coherence surface Ac D d2 increases with the
square of the distance from the source. Because of the vast distances to stars, the
starlight received by telescopes is spatially coherent across the telescope aperture,
in spite of the large diameter of the radiation source.

The arguments above may be summarized as follows: the coherence surface Sc

(i.e., that maximum area Ac that can be coherently illuminated at a distance r from
an extended quasi-monochromatic light source with area As emitting at a wave-
length �) is determined by

Sc D �2r2=As : (2.136)

2.9.3 Coherence Volume

With the coherence length 
sc D c=
! in the propagation direction of the radi-
ation with the spectral width 
! and the coherence surface Sc D �2r2=As, the
coherence volume Vc D Sc
sc becomes

Vc D �2r2c


!As
: (2.137)

A unit surface element of a source with the spectral radiance L! [W=.m2sr/] emits
L!=„! photons per second within the frequency interval d! D 1Hz into the unit
solid angle 1 sr.

The mean number n of photons in the spectral range 
! within the coherence
volume defined by the solid angle 
˝ D �2=As and the coherence length 
sc D
c
tc generated by a source with area As is therefore

n D .L!=„!/As
˝
!
tc :

With 
˝ D �2=As and 
tc ' 1=
!, this gives

n D .L!=„!/�2 : (2.138)

Example 2.9
For a thermal radiation source, the spectral radiance for linearly polarized
light (given by (2.28) divided by a factor 2) is for cos	 D 1 and L�d� D
L!d!

L� D h�3=c2

eh�=kT � 1 :
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The mean number of photons within the coherence volume is then with � D
c=�

n D 1

eh�=kT � 1 :

This is identical to the mean number of photons per mode of the thermal
radiation field, as derived in Sect. 2.2.

Figure 2.7 and Example 2.3 give values of n for different conditions.

The mean number n of photons per mode is often called the degeneracy pa-
rameter of the radiation field. This example shows that the coherence volume is
related to the modes of the radiation field. This relation can be also illustrated in
the following way:

If we allow the radiation from all modes with the same direction of k to escape
through a hole in the cavity wall with the area As D b2, the wave emitted from As

will not be strictly parallel, but will have a diffraction-limited divergence angle
� ' �=b around the direction of k. This means that the radiation is emitted into
a solid angle d˝ D �2=b2. This is the same solid angle (2.135c) that limits the
spatial coherence.

The radiation with the same direction of k (which we assume to be the z direc-
tion) may still differ in jkj, i.e., it may have different frequencies !. The coherence
length is determined by the spectral width 
! of the radiation emitted from As.
Since jkj D !=c, the spectral width
! corresponds to an interval
k D 
!=c of
k values. This radiation illuminates a minimum “diffraction surface”

AD D r2d˝ D r2�2=As :

Multiplication with the coherence length 
sc D c=
! yields again the coherence
volume Vc D ADc=
! D r2�2c=.
!As/ of (2.137). We shall now demonstrate
that the coherence volume is identical with the spatial part of the elementary cell in
the general phase space.

As is well known from atomic physics, the diffraction of light can be explained
by Heisenberg’s uncertainty relation. Photons passing through a slit of width 
x
have the uncertainty 
px of the x-component px of their momentum p, given by

px
x 
 „ (Fig. 2.33).

Generalized to three dimensions, the uncertainty principle postulates that the
simultaneous measurements of momentum and location of a photon have the mini-
mum uncertainty


px
py
pz
x
y
z 
 „3 D Vph ; (2.139)
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Figure 2.33 The uncer-
tainty principle applied to the
diffraction of light by a slit

where Vph D „3 is the volume of the elementary cell in phase space. Photons within
the same cell of the phase space are indistinguishable and can be therefore regarded
as identical.

Photons that are emitted from the hole As D b2 within the diffraction angle � D
�=b against the surface normal (Fig. 2.34), which may point into the z-direction,
have the minimum uncertainty


px D 
py D jpj�=.2�b/ D .„!=c/�=.2�b/ D .„!=c/d=.2�r/ ; (2.140)

of the momentum components px and py , where the last equality follows from
(2.135b).

The uncertainty 
pz is mainly caused by the spectral width 
!. Since p D
„!=c, we find


pz D .„=c/
! : (2.141)

Substituting (2.140, 2.141) into (2.139), we obtain for the spatial part of the ele-
mentary phase space cell


x
y
z D �2r2c


!As
D Vc ; (2.142)

which turns out to be identical with the coherence volume defined by (2.137).

Figure 2.34 Coherence
volume and phase space cell
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2.9.4 The Coherence Function and the Degree of Coherence

In the previous subsections we have described the coherence properties of radiation
fields in a more illustrative way. We now briefly discuss a more quantitative de-
scription which allows us to define partial coherence and to measure the degree of
coherence.

In the cases of both temporal and spatial coherence, we are concerned with the
correlation between optical fields either at the same point P0 but at different times
[E.P0; t1/ and E.P0; t2/], or at the same time t but at two different points [E.P1; t/
and E.P2; t/]. The subsequent description follows the representation in [39, 61,
62].

Suppose we have an extended source that generates a radiation field with a nar-
row spectral bandwidth 
!, which we shall represent by the complex notation of
a plane wave, i.e.,

E .r; t/ D A0e
i.!t�k�r/ C c.c.

The field at two points in space S1 and S2 (e.g., the two apertures in Young’s exper-
iment) is then E.S1; t/ and E.S2; t/. The two apertures serve as secondary sources
(Fig. 2.32), and the resultant field at the point of observation P at time t is

E.P; t/ D k1E1.S1; t � r1=c/C k2E2.S2; t � r2=c/ ; (2.143)

where the imaginary numbers k1 and k2 depend on the size of the apertures and on
the distances r1 D S1P and r2 D S2P .

The resulting time averaged irradiance at P measured over a time interval which
is long compared to the coherence time is

Ip D �0c hE.P; t/E�.P; t/i ; (2.144)

where the brackets h : : :i indicate the time average. Using (2.143), this becomes

Ip D c�0
�
k1k

�
1 hE1.t � t1/E�

1 .t � t1/i C k2k�
2 hE2.t � t2/E�

2 .t � t2/i
C k1k�

2 hE1.t � t1/E�
2 .t � t2/i C k�

1 k2 hE�
1 .t � t1/E2.t � t2/i

�
: (2.145)

If the field is stationary, the time-averaged values do not depend on time. We can
therefore shift the time origin without changing the irradiances (2.144). Accord-
ingly, the first two time averages in (2.145) can be transformed to hE1.t/E�

1 .t/i
and hE2.t/E�

2 .t/i. In the last two terms we shift the time origin by an amount t2
and write them with � D t2 � t1

k1k
�
2 hE1.t C �/E�

2 .t/i C k�
1 k2 hE�

1 .t C �/E2.t/i
D 2<˚k1k�

2 hE1.t C �/E�
2 .t/i



: (2.146)
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The term

�12.�/ D hE1.t C �/E�
2 .t/i ; (2.147)

is called the mutual coherence function and describes the cross correlation of the
field amplitudes at S1 and S2. When the amplitudes and phases of E1 and E2 fluc-
tuate within a time interval 
t < � , the time average �12.�/ will be zero if these
fluctuations of the two fields at two different points and at two different times are
completely uncorrelated. If the field at S1 at time t C � were perfectly correlated
with the field at S2 at time t , the relative phase would be unaltered despite individual
fluctuations, and �12 would become independent of � .

Inserting (2.147) into (2.145) gives for the irradiance at P (note that k1 and k2
are pure imaginary numbers for which 2<fk1 � k2g D 2jk1j � jk2j)

Ip D �0c
�jk1j 2IS1 C jk2j 2IS2 C 2 jk1j jk2j <f�12.�/g

�
: (2.148)

The first term I1 D �0cjk1j2IS1 yields the irradiance at P when only the aperture
S1 is open (k2 D 0); the second term I2 D �0cjk2j2IS2 is that for k1 D 0.

Let us introduce the first-order correlation functions

�11.�/ D hE1.t C �/E�
1 .t/i ;

�22.�/ D hE2.t C �/E�
2 .t/i ; (2.149)

which correlate the field amplitude at the same point but at different times. For
� D 0 the self-coherence functions

�11.0/ D hE1.t/E�
1 .t/i D I1=.�0c/ ;

�22.0/ D I2=.�0c/ ; (2.150)

are proportional to the irradiance I at S1 and S2, respectively.
With the definition of the normalized form of the mutual coherence function,

�12.�/ D �12.�/p
�11.0/�22.0/

D hE1.t C �/E�
2 .t/iq

hjE1.t/j2 jE2.t/j2i
; (2.151)

(2.148) can be written as

Ip D I1 C I2 C 2
p
I1I2<f�12.�/g : (2.152)

This is the general interference law for partially coherent light; �12.�/ is called the
complex degree of coherence. Its meaning will be illustrated by the following: we
express the complex quantity �12.�/ as

�12.�/ D j�12.�/j ei	12.�/ ; (2.153)
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where the phase angle 	12.�/ D 	1.�/ � 	2.�/ is related to the phases of the fields
E1 and E2 in (2.147).

For j�12.�/j D 1, (2.152) describes the interference of two completely coher-
ent waves out of phase at S1 or S2 by the amount 	12.�/. For j�12.�/j D 0, the
interference term vanishes. The two waves are said to be completely incoherent.
For 0 < j�12.�/j < 1 we have partial coherence. �12.�/ is therefore a measure
of the degree of coherence. We illustrate the mutual coherence function �12.�/ by
applying it to the situations outlined in Sects. 2.9.1 and 2.9.2.

Example 2.10
In the Michelson interferometer, the incoming nearly parallel light beam is
split by S (Fig. 2.30) and recombined in the plane B. If both partial beams
have the same amplitude E D E0ei	.t/, the degree of coherence becomes

�11.�/ D hE.t C �/E
�.t/i

jE.t/j2 D ˝ei	.tC�/e�i	.t/
˛
:

For long averaging times T we obtain with 
	 D 	.t C �/ � 	.t/,

�11.�/ D lim
T!1

1

T

TZ

0

.cos
	 C i sin
	/dt : (2.154)

For a strictly monochromatic wave with infinite coherence length 
sc, the
phase function is 	.t/ D !t � k � r and 
	 D C!� with � D 
s=c. This
yields

�11.�/ D cos!� C i sin!� D ei!� ; j�11.�/j D 1 :

For a wave with spectral width 
! so large that � > 
sc=c D 1=
!,
the phase differences 
	 vary randomly between 0 and 2� and the inte-
gral averages to zero, giving �11.�/ D 0. In Fig. 2.35 the interference
pattern I.
	/ / jE1.t/ � E2.t C �/j2 in the observation plane behind
a Michelson interferometer is illustrated as a function of the phase differ-
ence 
	 D .2�=�/
s for equal intensities I1 D I2 but different values
of j�12.�/j. For completely coherent light .j�12.�/j D 1/ the intensity I.�/
changes between 4I1 and zero, whereas for j�.t/j D 0 the interference term
vanishes and the total intensity I D 2I1 does not depend on � .
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Figure 2.35 Interference pattern I.
	/ of two-beam interference for different degrees of coher-
ence

Example 2.11
For the special case of a quasi-monochromatic plane wave E D E0 �
exp.i!t � ik � r/, an optical path difference .r2� r1/ causes a corresponding
phase difference

	12.�/ D k � .r2 � r1/ ;

and (2.152) can be expressed with <f�12.�/g D j�12.�/j cos	12 by

Ip D I1 C I2 C 2
p
I1I2 j�12.�/j cos	12.�/ : (2.155)

For j�12.�/j D 1, the interference term causes a full modulation of the irradi-
ance Ip.�/. For �12.�/ D 0, the interference vanishes and the total intensity
becomes independent of the time delay � between the two beams.

Example 2.12
Referring to Young’s experiment (Fig. 2.32) with a narrow bandwidth but ex-
tended source, spatial coherence effects will predominate. The fringe pattern
in the plane B will depend on � .S1; S2; �/ D �12.�/. In the region around
the central fringe .r2 � r1/ D 0, � D 0, the values of �12.0/ and �12.0/ can
be determined from the visibility of the interference pattern.

To find the value �12.�/ for any point P on the screen B in Fig. 2.32, the
time-averaged intensity I.P / is measured when both slits are open, and also
I1.P / and I2.P / when one of the slits is blocked. In terms of these observed
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Figure 2.36 a Visibility of the interference pattern behind the two slits of Fig. 2.32 if they are
illuminated by a monochromatic extended source. The abscissa gives the slit separation d in units
of �=� . b Visibility of a Doppler-broadened line behind a Michelson interferometer as a function
of the path difference 
s

quantities, the degree of coherence can be determined from (2.152) to be

<f�12.P /g D I.P /� I1.P /� I2.P /
2
p
I1.P /I2.P /

:

This yields the desired information about the spatial coherence of the source,
which depends on the size of the source and its distance from the pinholes.

The visibility of the fringes at P is defined as

V.P / D Imax � Imin

Imax C Imin
D 2

p
I1.P /

p
I2.P /

I1.P /C I2.P / j�12.�/j ; (2.156)

where the last equality follows from (2.155). If I1 D I2 (equal size pinholes), we
see that

V.P / D j�12.�/j :

The visibility is then equal to the degree of coherence. Figure 2.36a depicts the
visibility V of the fringe pattern in P as a function of the slit separation d , indi-
cated in Fig. 2.32, when these slits are illuminated by monochromatic light from an
extended uniform source with quadratic size b � b that appears from S1 under the
angle � . Figure 2.36b illustrates the visibility as a function of path difference
s in
a Michelson interferometer which is illuminated with the Doppler-broadened line
� D 632:8 nm from a neon discharge lamp.

For more detailed presentations of coherence see the textbooks [41, 62–64].
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Figure 2.37 Coherent
excitation of two atomic
levels jai and jbi from the
same lower level jgi with
a broadband laser pulse with
„
! � .Eb �Ea/

2.10 Coherence of Atomic Systems

Two levels of an atom are said to be coherently excited if their corresponding wave
functions are in phase at the excitation time. With a short laser pulse of duration

t , which has a Fourier-limited spectral bandwidth
! ' 1=
t , two atomic levels
a and b can be excited simultaneously if their energy separation
E is smaller than
„
! (Fig. 2.37). The wave function of the excited atom is then a linear combi-
nation of the wave functions  a and  b , and the atom is said to be in a coherent
superposition of the two states jai and jbi.

An ensemble of atoms is coherently excited if the wave functions of the excited
atoms, at a certain time t , have the same phase for all atoms. This phase relation
may change with time due to differing frequencies ! in the time-dependent part
exp.i!t/ of the excited-state wave functions or because of relaxation processes,
which may differ for the different atoms. This will result in a “phase diffusion” and
a time-dependent decrease of the degree of coherence.

The realization of such coherent systems requires special experimental prepa-
rations that, however, can be achieved with several techniques of coherent laser
spectroscopy (Vol. 2, Chap. 7). An elegant theoretical way of describing observable
quantities of a coherently or incoherently excited system of atoms and molecules is
based on the density-matrix formalism.

2.10.1 Density Matrix

Let us assume, for simplicity, that each atom of the ensemble can be represented by
a two-level system (Sect. 2.8), described by the wave function

 .r; t/ D  a C  b D a.t/uae�iEa t=„ C b.t/ube�iŒ.Eb=„/t�	� ; (2.157a)

where the phase 	 is introduced because it might be different for each of the atoms.
We can write  as the state vector

�
 a
 b

�
or . a;  b/ (2.157b)
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The density matrix Q� is defined by the product of the two state vectors

Q� Dj i h j D
�
 a
 b

�
. a;  b/

D
� ja.t/j2 abe�iŒ.Ea�Eb /t=„C	�
abeCiŒ.Ea�Eb /t=„C	� jb.t/j2

�
D
�
�aa �ab
�ba �bb

�
; (2.158)

since the normalized atomic wave functions in vector notation are

ua D
�
1

0

�
and ub D

�
0

1

�
:

The diagonal elements �aa and �bb represent the probabilities of finding the atoms
of the ensemble in the level jai and jbi, respectively.

If the phases 	 of the atomic wave function (2.157a) are randomly distributed for
the different atoms of the ensemble, the nondiagonal elements of the density matrix
(2.158) average to zero and the incoherently excited system is therefore described
by the diagonal matrix

Q�incoh D
�
Œa.t/�2 0

0 Œb.t/�2

�
: (2.159)

If definite phase relations exist between the wave functions of the atoms, the system
is in a coherent state. The nondiagonal elements of (2.158) describe the degree of
coherence of the system and are therefore often called “coherences.”

Such a coherent state can, for example, be generated by the interaction of the
atomic ensemble with a sufficiently strong EM field that induces atomic dipole
moments, which add up to a macroscopic oscillating dipole moment if all atomic
dipoles oscillate in phase. The expectation value D of such an atomic dipole mo-
ment is

D D �e
Z
 �r d� : (2.160)

With (2.94b) this becomes

D D �Dab.a
�be�i!ba t C ab�ei!ba t / D Dab.�ab C �ba/: (2.161)

The nondiagonal elements of the density matrix are therefore proportional to the
expectation value of the dipole moment.

2.10.2 Coherent Excitation

We saw in Sect. 2.10.1 that in a coherently excited system of atoms, well-defined
phase relations exist between the time-dependent wavefunctions of the atomic



2.10 Coherence of Atomic Systems 69

Figure 2.38 Precession of a magnetic dipole in a homogeneous magnetic field B0 (a); Incoher-
ent precession of the different dipoles (b); Synchronization of dipoles by a radio frequency (RF)
field (c); Coherent superposition of two Zeeman sublevels (d) as the quantum-mechanical equiva-
lent to the classical picture (c)

levels. In this section we will illustrate such coherent excitations by several exam-
ples.

� If identical paramagnetic atoms with magnetic moments � and total angular mo-
mentum J are brought into a homogeneous magnetic field B0 D f0; 0; Bzg, the
angular momentum vectors J i of the atoms will precess with the Lamor fre-
quency !L D �B0 around the z-direction, where � D �=jJ j is the gyromagnetic
ratio (Fig. 2.38a). The phases 'i of this precession will be different for the dif-
ferent atoms and, in general, are randomly distributed. The precession occurs
incoherently (Fig. 2.38b). The dipole moments � of the N atoms add up to
a macroscopic “longitudinal magnetization”

Mz D
NX

iD1
� cos �i D N� cos � ; (2.162)

but the average “transversal magnetization” is zero.
When an additional radio frequency field B1 D B10 cos!t is added with B1 ?
B0, the dipoles are forced to precess synchroneously with the RF field B1 in the
x–y-plane if ! D !L. This results in a macroscopic magnetic moment M D
N�, which rotates with !L in the x–y-plane and has a phase angle �=2 against
B1 (Fig. 2.38c). The precession of the atoms becomes coherent through their
coupling to the RF field. In the quantum-mechanical description, the RF field
induces transitions between the Zeeman sublevels (Fig. 2.38d). If the RF field
B1 is sufficiently intense, the atoms are in a coherent superposition of the wave
functions of both Zeeman levels.

� Excitation by visible or UV light may also create a coherent superposition of
Zeeman sublevels. As an example, we consider the transition 6 1S0 ! 6 3P 1 of
the Hg atom at � D 253:7 nm (Fig. 2.39). In a magnetic field B D f0; 0; Bzg,
the upper level 6 3P 1 splits into three Zeeman sublevels with magnetic quantum
numbers mz D 0;˙1. Excitation with linear polarized light .E k B/ only



70 2 Absorption and Emission of Light

Figure 2.39 Coherent excitation of Zeeman sublevels with m D ˙1 (a) by linear polarized light
with E ? B (b). The fluorescence is a superposition of 
C and 
� light (c)

populates the level mJ D 0. The fluorescence emitted from this Zeeman level is
also linearly polarized.
However, if the exciting light is polarized perpendicularly to the magnetic field
.E ? B/, it may be regarded as superposition of 
C and 
� light traveling into
the z-direction, which is chosen as the quantization axis.
In this case, the levels with m D ˙1 are populated. As long as the Zeeman
splitting is smaller than the homogeneous width of the Zeeman levels (e.g., the
natural linewidth 
! D 1=�), both components are excited coherently (even
with monochromatic light!). The wave function of the excited state is repre-
sented by a linear combination  D a a C b b of the two wavefunctions of
the Zeeman sublevels m D ˙1. The fluorescence is nonisotropic, but shows an
angular distribution that depends on the coefficients a; b (Vol. 2, Sect. 7.1).

� A molecule with two closely lying levels jai and jbi that can both be reached
by optical transitions from a common groundstate jgi can be coherently excited
by a light pulse with duration 
T , if 
T < „=.Ea � Eb/, even if the levels
jai and jbi are different vibrational levels of different electronic states and their
separation is larger than their homogeneous width.
The time-dependent fluorescence from these coherently excited states shows,
besides the exponential decay exp.�t=�/, a beat period �QB D „=.Ea � Eb/
due to the different frequencies !a and !b of the two fluorescence components
(quantum beats, Vol. 2, Sect. 7.2).

2.10.3 Relaxation of Coherently Excited Systems

The time-dependent Schrödinger equation (2.85) is written in the density–matrix
formalism as

i„PQ� D ŒH ; Q�� : (2.163)
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In order to separate the different contributions of induced absorption or emission
and of relaxation processes, we write the Hamiltonian H as the sum

H DH0 CH1.t/CHR ; (2.164)

of the “internal” Hamiltonian of the isolated two-level system

H0 D
�
Ea 0

0 Eb

�
;

the interaction Hamiltonian of the system with an EM field E D E0 � cos!t

H1.t/ D ��E.t/ D
�
0 �DabE0.t/

�DbaE0.t/ 0

�
cos!t ; (2.165)

and a relaxation part

HR D „
�
�a �a'
�b' �b

�
; (2.166)

which describes all relaxation processes, such as spontaneous emission or collision-
induced transitions. The population relaxation of level jbi with a decay constant �b
causing an effective lifetime Tb D 1=�b is, for example, described by

i„�bb�b D ŒHR; Q��bb ) Tb D 1

�b
D i„�bb
ŒHR; Q��bb : (2.167)

The decay of the off-diagonal elements �ab , �ba describes the decay of the coher-
ence, i.e., of the phase relations between the atomic dipoles.

The dephasing rate is represented by the phase-relaxation constants �a' , �b' and
the decay of the nondiagonal elements is governed by

i„�ab
T2
D �ŒHR; ��ab ; (2.168)

where the “transverse” relaxation time T2 (dephasing time) is defined by

1

T2
D 1

2

�
1

Ta
C 1

Tb

�
C �	 : (2.169)

In general, the phase relaxation is faster than the population relaxation defined by
the relaxation time T1, which means that the nondiagonal elements decay faster than
the diagonal elements (Vol. 2, Chap. 7).

For more information on coherent excitation of atomic and molecular systems
see [65–67] and Vol. 2, Chap. 14.
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2.11 Problems

2.1 Verify (2.12).

2.2 The angular divergence of the output from a 1-W argon laser is assumed to be
4�10�3 rad. Calculate the radianceL and the radiant intensity I� of the laser beam
and the irradiance I (intensity) at a surface 1m away from the output mirror, when
the laser beam diameter at the mirror is 2mm. What is the spectral power density
�.�/ if the laser bandwidth is 1MHz?

2.3 Unpolarized light of intensity I0 is transmitted through a dichroic polarizer
with thickness 1mm. Calculate the transmitted intensity when the absorption coef-
ficients for the two polarizations are ˛k D 100 cm�1 and ˛? D 5 cm�1.

2.4 Assume the isotropic emission of a pulsed flashlamp with spectral bandwidth

� D 100 nm around � D 400 nm amounts to 100-W peak power out of a volume
of 1 cm3. Calculate the spectral power density �.�/ and the spectral intensity I.�/
through a spherical surface 2 cm away from the center of the emitting sphere. How
many photons per mode are contained in the radiation field?

2.5 The beam of a monochromatic laser passes through an absorbing atomic vapor
with path length L D 5 cm. If the laser frequency is tuned to the center of an
absorbing transition jii ! jki with absorption cross section 
0 D 10�14 cm2, the
attenuation of the transmitted intensity is 10%. Calculate the atomic density Ni in
the absorbing level jii.

2.6 An excited molecular level jEii is connected with three lower levels jni and
the groundstate j0i by radiative transitions with spontaneous probabilities Ai0 D
4 � 107 s�1, Ai1 D 3 � 107 s�1, Ai2 D 1 � 107 s�1, Ai3 D 5 � 107 s�1.

1. Calculate the spontaneous lifetime �i and the relative population densitiesNn=Ni
under cw excitation of jii when �1 D 500 ns, �2 D 6 ns, and �3 D 10 ns.

2. Determine the Einstein coefficient B0i for the excitation of jii from the ground-
state with �0 D 1 and with the statistical weights g0 D 1 and g1 D 3. At which
spectral energy density �� is the induced absorption rate equal to the sponta-
neous decay rate of level jii? What is the intensity of a laser with a bandwidth
of 10MHz at this radiation density?

3. How large is the absorption cross-section 
0i if the absorption linewidth is solely
determinated by the lifetime of the upper level?
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Figure 2.40 Beam-
expanding telescope with
an aperture in the focal plane

Figure 2.41 Schematic
diagram of Michelson’s star
interferometer

2.7 Under the conditions of Problem 2.6 there is an inversion between levels jii
and j2i which allows laser action on this transition. What is the minimum field
amplitude E0 and energy density � of this transition that cause a Rabi oscillation
between levels j2i and jiiwith a period T D 1=˝ which is shorter than the lifetime
of j2i?

2.8 Expansion of a laser beam is accomplished by two lenses with different focal
lengths (Fig. 2.40). Why does an aperture in the focal plane improve the quality of
the wave fronts in the expanded beam by eliminating perturbations due to diffraction
effects by dust and other imperfections on the lens surfaces?

2.9 Calculate the maximum slit separation in Young’s interference experiments that
still gives distinct interference fringes, if the two slits are illuminated

1. by incoherent light of � D 500 nm from a hole with 1-mm diameter, 1m away
from the slits;

2. by a star with 106-km diameter, at a distance of 4 light-years;
3. by two partial beams of a He-Ne laser with a spectral width of 1MHz (Fig. 2.41).

2.10 A sodium atom is placed in a cavity V D 1 cm3 with walls at the tempera-
ture T , producing a thermal radiation field with spectral energy density �.�/. At
what temperature T are the spontaneous and induced transition probabilities equal

1. for the transition 3P ! 3S (� D 589 nm) with �.3P / D 16 ns;
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2. for the hyperfine transition 3S (F D 3 ! F D 2) with �.3F / ' 1 s and
� D 1772MHz?

2.11 An optically excited sodium atom Na.3P / with a spontaneous lifetime
�.3P / D 16 ns is placed in a cell filled with 10mbar nitrogen gas at a temper-
ature of T D 400K. Calculate the effective lifetime �eff .3P / if the quenching
cross section for Na.3P /–N2 collisions is 
q D 4 � 10�15 cm2.



Chapter 3
Widths and Profiles of Spectral Lines

Spectral lines in discrete absorption or emission spectra are never strictly monochro-
matic. Even with the very high resolution of interferometers, one observes a spectral
distribution I.�/ of the absorbed or emitted intensity around the central frequency
�0 D .Ei � Ek/=h corresponding to a molecular transition with the energy dif-
ference �E D Ei � Ek between upper and lower levels. The function I.�/
in the vicinity of �0 is called the line profile (Fig. 3.1). The frequency interval
•� D j�2 � �1j between the two frequencies �1 and �2 for which I.�1/ D I.�2/ D
I.�0/=2 is the full-width at half-maximum of the line (FWHM), often shortened to
the linewidth or halfwidth of the spectral line.

The halfwidth is sometimes written in terms of the angular frequency ! D 2��
with •! D 2�ı�, or in terms of the wavelength � (in units of nm or Å) with
•� D j�1 � �2j. From � D c=�, it follows that

•� D �.c=�2/•� : (3.1)

The relative halfwidths, however, are the same in all three schemes:

ˇ̌
ˇ̌•�
�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌•!
!

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌•�
�

ˇ̌
ˇ̌ : (3.2)

The spectral region within the halfwidth is called the kernel of the line, the regions
outside (� < �1 and � > �2) are the line wings.

In the following sections we discuss various origins of the finite linewidth. Sev-
eral examples illustrate the order of magnitude of different line-broadening effects
in different spectral regions and their importance for high-resolution spectroscopy
[68–71]. Following the usual convention we shall often use the angular frequency
! D 2�� to avoid factors of 2� in the equations.

75W. Demtröder, Laser Spectroscopy 1, DOI 10.1007/978-3-642-53859-9_3,
© Springer-Verlag Berlin Heidelberg 2014
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Figure 3.1 Line profile, halfwidth, kernel, and wings of a spectral line

3.1 Natural Linewidth

An excited atom can emit its excitation energy as spontaneous radiation (Sect. 2.8).
In order to investigate the spectral distribution of this spontaneous emission on
a transition Ei ! Ek , we shall describe the excited atomic electron by the classical
model of a damped harmonic oscillator with frequency !, mass m, and restoring
force constant k. The radiative energy loss results in a damping of the oscillation
described by the damping constant � . We shall see, however, that for real atoms the
damping is extremely small, which means that � 	 !.

The amplitude x.t/ of the oscillation can be obtained by solving the differential
equation of motion

Rx C � Px C !20x D 0 ; (3.3)

where !20 D k=m.
The real solution of (3.3) with the initial values x.0/ D x0 and Px.0/ D 0 is

x.t/ D x0e�.�=2/t Œcos!t C .�=2!/ sin!t� : (3.4)

The frequency ! D .!20 � �2=4/1=2 of the damped oscillation is slightly lower than
the frequency !0 of the undamped case. However, for small damping (� 	 !0)
we can set ! ' !0 and also may neglect the second term in (3.4). With this
approximation, which is still very accurate for real atoms, we obtain the solution of
(3.3) as

x.t/ D x0e�.�=2/t cos!0t : (3.5)

The frequency !0 D 2��0 of the oscillator corresponds to the central frequency
!ik D .Ei � Ek/=„ of an atomic transition Ei ! Ek .
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Figure 3.2 a Damped oscillation: b the frequency distribution A.!/ of the amplitudes obtained
by the Fourier transform of x.t/ yields the intensity profile I.! � !0/ / jA.!/j2

3.1.1 Lorentzian Line Profile of the Emitted Radiation

Because the amplitude x.t/ of the oscillation decreases gradually, the frequency of
the emitted radiation is no longer monochromatic as it would be for an oscillation
with constant amplitude. Instead, it shows a frequency distribution related to the
function x.t/ in (3.5) by a Fourier transformation (Fig. 3.2).

The damped oscillation x.t/ can be described as a superposition of monochro-
matic oscillations exp.i!t/ with slightly different frequencies ! and amplitudes
A.!/

x.t/ D 1

2
p
2�

1Z

0

A.!/ei!td! : (3.6)

The amplitudes A.!/ are calculated from (3.5) and (3.6) as the Fourier transform

A.!/ D 1p
2�

C1Z

�1
x.t/e�i!tdt D 1p

2�

1Z

0

x0e
�.�=2/t cos.!0t/e

�i!tdt : (3.7)

The lower integration limit is taken to be zero because x.t/ D 0 for t < 0. Equa-
tion (3.7) can readily be integrated to give the complex amplitudes

A.!/ D x0p
8�

�
1

i.! � !0/C �=2 C
1

i.! C !0/C �=2
�
: (3.8)

The real intensity I.!/ / A.!/A�.!/ contains terms with .!�!0/ and .!C!0/ in
the denominator. In the vicinity of the central frequency !0 of an atomic transition
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where .! �!0/2 	 !20 , the terms with .!C!0/ can be neglected and the intensity
profile of the spectral line becomes

I.! � !0/ D C

.! � !0/2 C .�=2/2 : (3.9)

The constant C can be defined in two different ways:
For comparison of different line profiles it is useful to define a normalized inten-

sity profile L.! � !0/ D I.! � !0/=I0 with I0 D
R
I.!/d! such that

1Z

0

L.! � !0/d! D
C1Z

�1
L.! � !0/d.! � !0/ D 1 :

With this normalization, the integration of (3.9) yields C D I0�=2� .

L.! � !0/ D �=2�

.! � !0/2 C .�=2/2 ; (3.10)

is called the normalized Lorentzian profile. Its full halfwidth at half-maximum
(FWHM) is

•!n D � or •�n D �=2� : (3.11)

Any intensity distribution with a Lorentzian profile is then

I.! � !0/ D I0 �=2�

.! � !0/2 C .�=2/2 D I0L.! � !0/ ; (3.10a)

with a peak intensity I.!0/ D 2I0=.��/.

Note Often in the literature the normalization of (3.9) is chosen in such a way that
I.!0/ D I0; furthermore, the full halfwidth is denoted by 2� . In this notation the
line profile of a transition jki  jii is

I.!/ D I0g.! � !ik/ with I0 D I.!0/ ;

and

g.! � !ik/ D � 2

.!ik � !/2 C � 2
with � D �=2 : (3.10b)

With x D .!ik � !/=� this can be abbreviated as

g.! � !ik/ D 1

1C x2 with g.!ik/ D 1 : (3.10c)
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In this notation the area under the line profile becomes

1Z

0

I.!/d! D �
C1Z

�1
I.x/dx D �I0� : (3.10d)

3.1.2 Relation Between Linewidth and Lifetime

The radiant power of the damped oscillator can be obtained from (3.3) if both sides
of the equation are multiplied by m Px, which yields after rearranging

m Rx Px Cm!20x Px D ��m Px2 : (3.12)

The left-hand side of (3.12) is the time derivative of the total energy W (sum of
kinetic energy 1

2
m Px2 and potential energy kx2=2 D m!20x

2=2), and can therefore
be written as

d

dt

�m
2
Px2 C m

2
!20x

2
�
D dW

dt
D ��m Px2 : (3.13)

Inserting x.t/ from (3.5) and neglecting terms with �2 yields

dW

dt
D ��mx20!20e��t sin2 !0t : (3.14)

Because the time average sin2 !t D 1=2, the time-averaged radiant power P D
dW=dt is

dW

dt
D ��

2
mx20!

2
0e��t : (3.15)

Equation (3.15) shows that P and with it the intensity I.t/ of the spectral line
decreases to 1=e of its initial value I.t D 0/ after the decay time � D 1=� .

In Sect. 2.9 we saw that the mean lifetime �i of a molecular level Ei , which de-
cays exponentially by spontaneous emission, is related to the Einstein coefficientAi
by �i D 1=Ai . Replacing the classical damping constant � by the spontaneous
transition probability Ai , we can use the classical formulas (3.9–3.11) as a correct
description of the frequency distribution of spontaneous emission and its linewidth.
The natural halfwidth of a spectral line spontaneously emitted from the level Ei is,
according to (3.11),

•�n D Ai=2� D .2��i /�1 or •!n D Ai D 1=�i : (3.16)
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Figure 3.3 Illustration of the
uncertainty principle, which
relates the natural linewidth
to the energy uncertainties of
the upper and lower levels

The radiant power emitted fromNi excited atoms on a transition Ei ! Ek is given
by

dWik=dt D NiAik„!ik : (3.17)

If the emission of a source with volume 
V is isotropic, the radiation power
received by a detector of area A at a distance r through the solid angle d˝ D A=r2
is

Pik D
�

dWik

dt

�

V

d˝

4�
D NiAik„!ik
V A

4�r2
: (3.18)

This means that the densityNi of emitters can be inferred from the measured power,
if Aik is known (Vol. 2, Sect. 6.3).

Note Equation (3.16) can also be derived from the uncertainty principle (Fig. 3.3).
With the mean lifetime �i of the excited level Ei , its energy Ei can be determined
only with an uncertainty 
Ei ' „=�i [72]. The frequency !ik D .Ei � Ek/=„ of
a transition terminating in the stable ground state Ek has therefore the uncertainty

•! D 
Ei=„ D 1=�i : (3.19)

If the lower level Ek is not the ground state but also an excited state with the life-
time �k , the uncertainties 
Ei and 
Ek of the two levels both contribute to the
linewidth. This yields for the total uncertainty


E D
q

E2

i C
E2
k ! •!n D

q
.1=�2i C 1=�2k / : (3.20)

3.1.3 Natural Linewidth of Absorbing Transitions

In a similar way, the spectral profile of an absorption line can be derived for atoms at
rest: the intensity I of a plane wave passing in the zdirection through an absorbing
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Figure 3.4 Absorption of a parallel light beam passing through an optically thin absorbing layer

sample decreases along the distance dz by

dI D �˛Idz : (3.21)

The absorption coefficient ˛ik [cm�1] for a transition jii ! jki depends on the pop-
ulation densitiesNi ,Nk of the lower and upper levels, and on the optical absorption
cross section 
ik [cm2] of each absorbing atom, see (2.58):

˛ik.!/ D 
ik.!/ŒNi � .gi=gk/Nk� ; (3.22)

which reduces to ˛ik D 
Ni for Nk 	 Ni (Fig. 3.4). For sufficiently small in-
tensities I , the induced absorption rate is small compared to the refilling rate of
level jii and the population density Ni does not depend on the intensity I (linear
absorption). Integration of (3.21) then yields Beer’s law

I D I0e�˛.!/z D I0e�
ikNi z : (3.23)

The absorption profile ˛.!/ can be obtained from our classical model of
a damped oscillator with charge q under the influence of a driving force qE
caused by the incident wave with amplitude E D E0ei!t (see Sect. 2.6).

In Sect. 2.6 it was shown, that in the neighborhood of a molecular transition
frequency !0 where j!0 � !j 	 !0, the dispersion relations (2.51a, 2.51b) reduce
with q D e and !20 � !2 D .!0 C !/.!0 � !/ � 2!0.!0 � !/ to

˛.!/ D N e2

4�0mc

�

.!0 � !/2 C .�=2/2 ; (3.24a)

n0 D 1C N e2

4�0m!0

!0 � !
.!0 � !/2 C .�=2/2 : (3.24b)

The absorption profile ˛.!/ is Lorentzian with a FWHM of 
!n D � , which
equals for free atoms at rest the natural linewidth. The difference n0 � n0 D n0 � 1
between the refractive indices in a gas and in vacuum yields a dispersion profile.

Figure 2.15 shows the frequency dependence of ˛.!/ and n0.!/ in the vicinity
of the eigenfrequency !0 of an atomic transition.
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Note The relations derived in this section are only valid for oscillators at rest in the
observer’s coordinate system. The thermal motion of real atoms in a gas introduces
an additional broadening of the line profile, the Doppler broadening, which will be
discussed in Sect. 3.2. The profiles (3.24a, 3.24b) can therefore be observed only
with Doppler-free techniques (Vol. 2, Chaps. 2 and 4).

Example 3.1
1. The natural linewidth of the sodium D1 line at � D 589:1 nm, which

corresponds to a transition between the 3P3=2 level (� D 16 ns) and the
3 S1=2 ground state, is

•�n D 109

16 � 2� D 10
7 s�1 D 10MHz :

Note that with a central frequency �0 D 5�1014 Hz and a lifetime of 16 ns,
the damping of the corresponding classical oscillator is extremely small.
Only after 8 � 106 periods of oscillation has the amplitude decreased to
1=e of its initial value.

2. The natural linewidth of a molecular transition between two vibrational
levels of the electronic ground state with a wavelength in the infrared re-
gion is very small because of the long spontaneous lifetimes of vibrational
levels. For a typical lifetime of � D 10�3 s, the natural linewidth becomes
•�n D 160Hz.

3. Even in the visible or ultraviolet range, atomic or molecular electronic
transitions with very small transition probabilities exist. In a dipole ap-
proximation these are “forbidden” transitions. One example is the 2s $
1s transition for the hydrogen atom. The upper level 2s cannot decay by
electric dipole transition, but a two-photon transition to the 1s ground state
is possible. The natural lifetime is � D 0:12 s and the natural linewidth of
such a two-photon line is therefore •�n D 1:3Hz.

3.2 Doppler Width

Generally, the Lorentzian line profile with the natural linewidth •�n, as discussed in
Sect. 3.1, cannot be observed without special techniques, because it is completely
concealed by other broadening effects. One of the major contributions to the spec-
tral linewidth in gases at low pressures is the Doppler width, which is due to the
thermal motion of the absorbing or emitting molecules.

Consider an excited molecule with a velocity v D fvx; vy; vzg relative to the rest
frame of the observer. The central frequency of a molecular emission line that is !0
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Figure 3.5 a Doppler shift of a monochromatic emission line and b absorption line

in the coordinate system of the molecule is Doppler shifted to

!e D !0 C k � v ; (3.25)

for an observer looking toward the emitting molecule (that is, against the direction
of the wave vector k of the emitted radiation; Fig. 3.5a). For the observer, the appar-
ent emission frequency !e is increased if the molecule moves toward the observer
(k � v > 0), and decreased if the molecule moves away (k � v < 0).

Similarly, one can see that the absorption frequency !0 of a molecule moving
with the velocity v across a plane EM wave E D E 0 exp.i!t � k � r/ is shifted.
The wave frequency! in the rest frame appears in the frame of the moving molecule
as

! 0 D ! � k � v :
The molecule can only absorb if ! 0 coincides with its eigenfrequency !0. The
absorption frequency ! D !a is then

!a D !0 C k � v : (3.26a)

As in the emission case, the absorption frequency !a is increased for k � v > 0

(Fig. 3.5b). This happens, for example, if the molecule moves parallel to the wave
propagation. It is decreased if k � v < 0, e.g., when the molecule moves against
the light propagation. If we choose the Cz-direction to coincide with the light
propagation, with k D f0; 0; kzg and jkj D 2�=�, (3.26a) becomes

!a D !0.1C vz=c/ : (3.26b)

Note Equations (3.25) and (3.26a, 3.26b) describe the linear Doppler shift. For
higher accuracies, the quadratic Doppler effect must also be considered (Vol. 2,
Sect. 9.1).
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At thermal equilibrium, the molecules of a gas follow a Maxwellian velocity dis-
tribution. At the temperature T , the number of molecules ni.vz/dvz in the level Ei
per unit volume with a velocity component between vz and vz C dvz is

ni.vz/dvz D Ni

vp
p
�

e�.vz=vp/
2

dvz ; (3.27)

where Ni D
R
ni .vz/dvz is the density of all molecules in level Ei , vp D

.2kT=m/1=2 is the most probable velocity, m is the mass of a molecule, and
k is Boltzmann’s constant. Inserting the relation (3.26b) between the velocity com-
ponent and the frequency shift with dvz D .c=!0/d! into (3.27) gives the number
of molecules with absorption frequencies shifted from !0 into the interval from !

to ! C d!

ni.!/d! D Ni c

!0vp
p
�

exp

"
�
�
c.! � !0/
!0vp

�2#
d! : (3.28)

Since the emitted or absorbed radiant power P.!/d! is proportional to the density
ni.!/d! of molecules emitting or absorbing in the interval d!, the intensity profile
of a Doppler-broadened spectral line becomes

I.!/ D I0 exp

"
�
�
c.! � !0/
!0vp

�2#
: (3.29)

This is a Gaussian profile with a full halfwidth

•!D D 2
p

ln 2!0vp=c D
�!0
c

�p
8kT ln 2=m ; (3.30a)

which is called the Doppler width. Inserting vp from (3.30a) into (3.29) with
1=.4 ln 2/ D 0:36 yields

I.!/ D I0 exp
�
� .! � !0/

2

0:36•!2D

�
: (3.31)

Note that •!D increases linearly with the frequency !0 and is proportional to
.T=m/1=2. The largest Doppler width is thus expected for hydrogen .M D 1/ at
high temperatures and a large frequency ! for the Lyman ˛ line.

Equation (3.30a) can be written more conveniently in terms of the Avogadro
number NA (the number of molecules per mole), the mass of a mole, M D NAm,
and the gas constantR D NAk. Inserting these relations into (3.30a) for the Doppler
width gives

•!D D .2!0=c/
p
2RT ln 2=M : (3.30b)
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Figure 3.6 Comparison
between Lorentzian (L) and
Gaussian (G) line profiles of
equal halfwidths

or, in frequency units, using the values for c and R,

•�D D 7:16 � 10�7�0
p
T=M ŒHz� : (3.30c)

Example 3.2
1. Vacuum ultraviolet: for the Lyman ˛ line (2p ! 1s transition in the

H atom) in a discharge with temperature T D 1000K, M D 1,
� D 121:6 nm, �0 D 2:47 � 1015 s�1 ! •�D D 5:6 � 1010 Hz, •�D D
2:8 � 10�3 nm.

2. Visible spectral region: for the sodium D line (3p ! 3s transition of the
Na atom) in a sodium-vapor cell at T D 500K, � D 589:1 nm, �0 D
5:1 � 1014 s�1 ! •�D D 1:7 � 109 Hz, •�D D 1 � 10�3 nm.

3. Infrared region: for a vibrational transition .Ji ; vi / $ .Jk; vk/ between
two rovibronic levels with the quantum numbers J; v of the CO2 molecule
in a CO2 cell at room temperature (T D 300K), � D 10 µm, � D 3 �
1013 s�1, M D 44! •�D D 5:6 � 107 Hz, •�D D 1:9 � 10�2 nm.

These examples illustrate that in the visible and UV regions, the Doppler width
exceeds the natural linewidth by about two orders of magnitude. Note, however,
that the intensity I approaches zero for large arguments .� � �0/ much faster for
a Gaussian line profile than for a Lorentzian profile (Fig. 3.6). It is therefore pos-
sible to obtain information about the Lorentzian profile from the extreme line wings,
even if the Doppler width is much larger than the natural linewidth (see below).

More detailed consideration shows that a Doppler-broadened spectral line can-
not be strictly represented by a pure Gaussian profile as has been assumed in the
foregoing discussion, since not all molecules with a definite velocity component vz
emit or absorb radiation at the same frequency ! 0 D !0.1 C vz=c/. Because of
the finite lifetimes of the molecular energy levels, the frequency response of these
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Figure 3.7 Lorentzian
profile centered at !0 D
!0 C k � v D !0.1C vz=c/

for molecules with a definite
velocity component vz

molecules is represented by a Lorentzian profile, see (3.10)

L.! � ! 0/ D �=2�

.! � ! 0/2 C .�=2/2 ;

with a central frequency ! 0 (Fig. 3.7). Let n.! 0/d! 0 D n.vz/dvz be the number
of molecules per unit volume with velocity components within the interval vz to
vzCdvz . The spectral intensity distribution I.!/ of the total absorption or emission
of all molecules at the transition Ei ! Ek is then

I.!/ D I0
Z
n.! 0/L.! � ! 0/d! 0 : (3.32)

Inserting (3.10) for L.! � ! 0/d! 0 and (3.28) for n.! 0/, we obtain

I.!/ D C
1Z

0

expf�Œ.c=vp/.!0 � ! 0/=!0�2g
.! � ! 0/2 C .�=2/2 d! 0 (3.33)

with

C D �Nic

2vp�3=2!0
:

This intensity profile, which is a convolution of Lorentzian and Gaussian pro-
files (Fig. 3.8), is called a Voigt profile. Voigt profiles play an important role in the
spectroscopy of stellar atmospheres, where accurate measurements of line wings
allow the contributions of Doppler broadening and natural linewidth or collisional
line broadening to be separated (see [73] and Sect. 3.3). From such measurements
the temperature and pressure of the emitting or absorbing layers in the stellar atmo-
spheres may be deduced [74].
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Figure 3.8 Voigt profile as a convolution of Lorentzian line shapes L.!0 �!i / of molecules with
different velocity components vzi and central absorption frequencies !i D !0.1C vzi=c/

3.3 Collisional Broadening of Spectral Lines

When an atom A with the energy levels Ei and Ek approaches another atom or
molecule B, the energy levels of A are shifted because of the interaction between
A and B. This shift depends on the electron configurations of A and B and on the
distance R.A;B/ between both collision partners, which we define as the distance
between the centers of mass of A and B.

The energy shifts
E are, in general, different for the levels Ei and Ek and may
be positive as well as negative. The energy shift 
E is positive if the interaction
between A and B is repulsive, and negative if it is attractive. When plotting the en-
ergyE.R/ for the different energy levels as a function of the interatomic distanceR
typical potential curves of Fig. 3.9 are obtained.

This mutual interaction of both partners at distances R � Rc is called a collision
and radiusRc is the collision radius. If no internal energy of the collision partners is
transferred during the collision by nonradiative transitions, the collision is termed
elastic. Without additional stabilizing mechanisms (recombination), the partners
will separate again after the collision time �c ' Rc=v, which depends on the relative
velocity v.

Example 3.3
At thermal velocities of v D 5 � 102 m=s and a typical collision radius of
Rc D 1 nm, we obtain the collision time �c D 2 � 10�12 s. During this time
the electronic charge distribution generally follows the perturbation “adiabat-
ically”, which justifies the potential curve model of Fig. 3.9.

The collisional shift of a spectral line depends on the energy difference
E.R/ D
Ek.R/ � Ei.R/ around the collision radius R, compared to the difference at
R D 1.
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Figure 3.9 Illustration of collisional line broadening explained with the potential curves of the
collision pair AB

The collisional broadening stems from two effects: The shortening of the upper
state lifetime by inelastic collisions and the distribution of the energy differences

E.R/ by elastic collisions (see below).

3.3.1 Phenomenological Description

If atom A undergoes a radiative transition between levels Ei and Ek during the
collision time, the frequency

!ik D jEi.R/ � Ek.R/j =„ (3.34)

of absorbed or emitted radiation depends on the distance R.t/ at the time of the
transition. We assume that the radiative transition takes place in a time interval that
is short compared to the collision time, so that the distanceR does not change during
the transition. In Fig. 3.9 this assumption leads to vertical radiative transitions.

In a gas mixture of atoms A and B, the mutual distance R.A;B/ shows random
fluctuations with a distribution around a mean value R that depends on pressure
and temperature. According to (3.34), the fluorescence yields a corresponding fre-
quency distribution around a most probable value !ik.Rm/, which may be shifted
against the frequency !0 of the unperturbed atom A. The shift 
! D !0 � !ik
depends on how differently the two energy levels Ei and Ek are shifted at a dis-
tance Rm.A;B/ where the emission probability has a maximum. The intensity
profile I.!/ of the collision-broadened and shifted emission line can be obtained
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from

I.!/ /
Z
Aik.R/Pcol.R/ŒEi .R/� Ek.R/�dR ; (3.35)

where Aik.R/ is the spontaneous transition probability, which depends on R be-
cause the electronic wave functions of the collision pair (AB) depend on R, and
Pcol.R/ is the probability per unit time that the distance between A and B lies in the
range from R to RC dR.

From (3.35) it can be seen that the intensity profile of the collision-broadened
line reflects the difference of the potential curves

Ei.R/ � Ek.R/ D V ŒA.Ei /; B�� V ŒA.Ek/; B� : (3.36)

Let V.R/ be the interaction potential between the ground-state atom A and its
collision partner B. The probability that B has a distance between R and R C dR
is proportional to 4�R2dR and (in thermal equilibrium) to the Boltzmann factor
expŒ�V.R/=kT �. The numberN.R/ of collision partners B with distanceR from A
is therefore

N.R/dR D N04�R2e�V.R/=kT dR ; (3.37)

where N0 is the average density of atoms B. Because the intensity of an absorp-
tion line is proportional to the density of absorbing atoms while they are forming
collision pairs, the intensity profile of the absorption line can be written as

I.!/d! D C �
�
R2 exp

�
�Vi .R/
kT

�
d

dR
ŒVi.R/ � Vk.R/�

�
dR ; (3.38)

where „!.R/ D ŒVi .R/ � Vk.R/� ! „d!=dR D dŒVi .R/ � Vk.R/�=dR has been
used. Measuring the line profile as a function of temperature yields

dI.!; T /

dT
D Vi .R/

kT 2
I.!; T / ; (3.39)

and therefore the ground-state potential Vi .R/ separately.
Frequently, different spherical model potentials V.R/ are substituted in (3.38),

such as the Lennard–Jones potential

V.R/ D a=R12 � b=R6 ; (3.40)

The coefficients a; b are adjusted for optimum agreement between theory and ex-
periment [75–83].

The line shift caused by elastic collisions corresponds to an energy shift 
E D
„
! between the excitation energy „!0 of the free atom A� and the photon energy
„!. It is supplied from the kinetic energy of the collision partners. This means that
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in case of positive shifts (
! > 0), the kinetic energy is smaller after the collision
than before.

Besides elastic collisions, inelastic collisions may also occur in which the exci-
tation energy Ei of atom A is either partly or completely transferred into internal
energy of the collision partner B, or into translational energy of both partners. Such
inelastic collisions are often called quenching collisions because they decrease the
number of excited atoms in level Ei and therefore quench the fluorescence inten-
sity. The total transition probabiltiy Ai for the depopulation of level Ei is a sum of
radiative and collision-induced probabilities (Fig. 2.20)

Ai D Arad
i C Acoll

i with Acoll
i D NB
iv : (3.41)

Inserting the relations

v D
s
8kT

��
; � D MA �MB

MA CMB
; pB D NBkT ; (3.42)

between the mean relative velocity v, the responsible pressure pB, and the gas tem-
perature T into (3.41) gives the total transition probability

Ai D 1

�sp
C apB with a D 2
ik

s
2

��kT
: (3.43)

It is evident from (3.16) that this pressure-dependent transition probability causes
a corresponding pressure-dependent linewidth •!, which can be described by a sum
of two damping terms

•! D •!n C •!col D �n C �col D �n C apB : (3.44)

The collision-induced additional line broadening apB is therefore often called pres-
sure broadening.

From the derivation in Sect. 3.1, one obtains a Lorentzian profile (3.9) with
a halfwidth � D �n C �col for the line broadened by inelastic collisions:

I.!/ D C

.! � !0/2 C Œ.�n C �col/=2�2
: (3.45)

The elastic collisions do not change the amplitude, but the phase of the damped
oscillator is changed due to the frequency shift 
!.R/ during the collisions. They
are often termed phase-perturbing collisions (Fig. 3.10).

When taking into account line shifts 
! caused by elastic collisions, the line
profile for cases where it still can be described by a Lorentzian becomes

I.!/ D C �

.! � !0 �
!/2 C .�=2/2 ; (3.46)
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Figure 3.10 Phase perturbation of an oscillator by collisions: a classical path approximation of
colliding particles; b frequency change of the oscillatorA.t/ during the collision; c resulting phase
shift

Figure 3.11 Shift and
broadening of a Lorentzian
line profile by collisions

where the line shift


! D NB � v � 
s (3.47a)

and the line broadening

� D �n CNB � v � 
b (3.47b)

are determined by the number density NB of collision parameters B and by the
collision cross sections 
s for line shifts and 
b for broadening (Fig. 3.11). The
constant C � D .I0=2�/.� C NBv
b/ becomes I0�=2� for NB D 0, when (3.46)
becomes identical to (3.10).

Note The real collision-induced line profile depends on the interaction potential
between A and B. In most cases it is no longer Lorentzian, but has an asymmetric
profile because the transition probability depends on the internuclear distance and
because the energy difference 
E.R/ D Ei.R/ � Ek.R/ is generally not a uni-
formly rising or falling function but may have extrema.

Figure 3.12 depicts as examples pressure broadening and shifts in [cm�1] of the
lithium resonance line perturbed by different noble gas atoms. Table 3.1 compiles
pressure-broadening and line shift data for different alkali resonance lines.
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Figure 3.12 Pressure broad-
ening (left scale) and shifts
(right scale) of the lithium
resonance line by different
noble gases [84]

3.3.2 Relations Between Interaction Potential, Line Broadening,
and Shifts

In order to gain more insight into the physical meaning of the cross sections

s and 
b, we have to discover the relation between the phase shift �.R/ and the
potential V.R/. Assume potentials of the form

Vi .R/ D Ci=Rn ; Vk.R/ D Ck=Rn ; (3.48)

between the atom in level Ei or Ek and the perturbing atom B. The frequency
shift 
! for the transition Ei ! Ek is then

„
!.R/ D Ci � Ck
Rn

: (3.49)

The line broadening comes from two contributions:

1. The phase shift, due to the frequency shift of the oscillator during the collision
2. the quenching collisions which shorten the effective lifetime of the upper level

of A.

The corresponding phase shift of the oscillator A due to a collision with impact
parameter R0, where we neglect the scattering of B and assume that the path of B
is not deflected but follows a straight line (Fig. 3.13), is


	.R0/ D
C1Z

�1

!dt D 1

„

C1Z

�1

.Ci � Ck/dt
ŒR20 C v2.t � t0/2�n=2

D ˛n.Ci � Ck/
vRn�1

0

: (3.50)
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Figure 3.13 Linear path
approximation of a collision
between A and B

Equation (3.50) provides the relation between the phase shift
	.R0/ and the differ-
ence (3.49) of the interaction potentials, where ˛n is a numerical constant depending
on the exponent n in (3.49).

The phase shifts may be positive .Ci > Ck/ or negative depending on the relative
orientation of spin and angular momenta. This is illustrated by Fig. 3.14, which
shows the phase shifts of the Na atom, oscillating on the 3s–3p transition for Na–
H collisions at large impact parameters [79].

It turns out that the main contribution to the line broadening cross section 
b

comes from collisions with small impact parameters, whereas the lineshift cross
section 
s still has large values for large impact parameters. This means that elastic

Figure 3.14 Phase shift of the Na�(3p) oscillation for Na�–H collisions versus impact parameter.
The various adiabatic molecular states for Na�H are indicated [79]
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Figure 3.15 Broadening and shift of the Cs resonance line at � D 894:3 nm by argon

Figure 3.16 Satellites in
the pressure-broadened line
profile of the cesium transi-
tion 6s ! 9p3=2 for Cs–Xe
collisions at different xenon
densities [atoms=cm3] [81]

collisions at large distances do not cause noticeable broadening of the line, but can
still very effectively shift the line center [85]. Figure 3.15 exhibits broadening and
shift of the Cs resonance line by argon atoms.

Nonmonotonic interaction potentials V.R/, such as the Lennard–Jones potential
(3.40), cause satellites in the wings of the broadened profiles (Fig. 3.16) From the
satellite structure the interaction potential may be deduced [86].

Because of the long-range Coulomb interactions between charged particles (elec-
trons and ions) described by the potential (3.48) with n D 1, pressure broadening
and shift is particularly large in plasmas and gas discharges [87, 88]. This is of
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interest for gas discharge lasers, such as the HeNe laser or the argon-ion laser [89,
90]. The interaction between charged particles can be described by the linear and
quadratic Stark effects. It can be shown that the linear Stark effect causes only line
broadening, while the quadratic effect also leads to line shifts. From measurements
of line profiles in plasmas, very detailed plasma characteristics, such as electron
or ion densities and temperatures, can be determined. Plasma spectroscopy has
therefore become an extensive field of research [91], of interest not only for astro-
physics, but also for fusion research in high-temperature plasmas [92]. Lasers play
an important role in accurate measurements of line profiles in plasmas [93–96].

The classical models used to explain collisional broadening and line shifts can be
improved by using quantum mechanical calculations. These are, however, beyond
the scope of this book, and the reader is referred to the literature [68, 81, 89–101].

Example 3.4
1. The pressure broadening of the sodium D line � D 589 nm by argon is
2:3 � 10�5 nm=mbar, equivalent to 0:228MHz=Pa. The shift is about
�1MHz=torr. The self-broadening of 150MHz=torr due to collisions be-
tween Na atoms is much larger. However, at pressures of several torr, the
pressure broadening is still smaller than the Doppler width.

2. The pressure broadening of molecular vibration–rotation transitions with
wavelengths � ' 5�m is a few MHz=torr. At atmospheric pressure, the
collisional broadening therefore exceeds the Doppler width. For exam-
ple, the rotational lines of the �2 band of H2O in air at normal pressure
(760 torr) have a Doppler width of 150MHz, but a pressure-broadened
linewidth of 930MHz.

3. The collisional broadening of the red neon line at � D 633 nm in the
low-pressure discharge of a HeNe laser is about •� D 150MHz=torr; the
pressure shift 
� D 20MHz=torr. In high-current discharges, such as
the argon laser discharge, the degree of ionization is much higher than in
the HeNe laser and the Coulomb interaction between ions and electrons
plays a major role. The pressure broadening is therefore much larger:
•� D 1500MHz=torr. Because of the high temperature in the plasma, the
Doppler width •�D ' 5000MHz is even larger [90].

3.3.3 Collisional Narrowing of Lines

In the infrared and microwave ranges, collisions may sometimes cause a narrow-
ing of the linewidth instead of a broadening (Dicke narrowing) [102]. This can be
explained as follows: if the lifetime of the upper molecular level (e.g., an excited
vibrational level in the electronic ground state) is long compared to the mean time
between successive collisions, the velocity of the oscillator is often altered by elastic
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Figure 3.17 Dicke narrow-
ing and pressure broadening
of a rotational line of a vi-
brational transition in H2O
at 1871 cm�1 (� D 5:3�m)
as a function of Ar and Xe
pressure [103]

collisions and the mean velocity component is smaller than without these collisions,
resulting in a smaller Doppler shift. When the Doppler width is larger than the
pressure-broadened width, this effect causes a narrowing of the Doppler-broadened
lines, if the mean-free path is smaller than the wavelength of the molecular transi-
tion [103]. Figure 3.17 illustrates this Dicke narrowing for a rotational transition
of the H2O molecule at � D 5:34�m. The linewidth decreases with increasing
pressure up to pressures of about 100–150 torr, depending on the collision partner,
which determines the mean-free path �. For higher pressures, the pressure broad-
ening overcompensates the Dicke narrowing, and the linewidth increases again.

There is a second effect that causes a collisional narrowing of spectral lines. In
the case of very long lifetimes of levels connected by an EM transition, the linewidth
is not determined by the lifetimes but by the diffusion time of the atoms out of the
laser beam (Sect. 3.4). Inserting a noble gas into the sample cell decreases the
diffusion rate and therefore increases the interaction time of the sample atoms with
the laser field, which results in a decrease of the linewidth with pressure [104] until
the pressure broadening overcompensates the narrowing effect.

3.4 Transit-Time Broadening

In many experiments in laser spectroscopy, the interaction time of molecules
with the radiation field is small compared with the spontaneous lifetimes of ex-
cited levels. Particularly for transitions between rotational–vibrational levels of
molecules with spontaneous lifetimes in the millisecond range, the transit time
T D d=jvj of molecules with a mean thermal velocity v passing through a laser
beam of diameter d may be smaller than the spontaneous lifetime by several orders
of magnitude.
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Example 3.5
1. Molecules in a molecular beam with thermal velocities jvj D 5 � 104

cm=s passing through a laser beam of 0.1-cm diameter have the mean
transit time T D 2�s.

2. For a beam of fast ions with velocities v D 3�108 cm=s, the time required
to traverse a laser beam with d D 0:1 cm is already below 10�9 s, which
is shorter than the spontaneous lifetimes of most atomic levels.

In such cases, the linewidth of a Doppler-free molecular transition is no longer
limited by the spontaneous transition probabilities (Sect. 3.1), but by the time of
flight through the laser beam, which determines the interaction time of the molecule
with the radiation field. This can be seen as follows: consider an undamped oscilla-
tor x D x0 cos!0t that oscillates with constant amplitude during the time interval T
and then suddenly stops oscillating. Its frequency spectrum is obtained from the
Fourier transform

A.!/ D 1p
2�

TZ

0

x0 cos.!0t/e
�i!tdt : (3.51)

The spectral intensity profile I.!/ D A�A is, for .! � !0/	 !0,

I.!/ D C sin2Œ.! � !0/T=2�
.! � !0/2 ; (3.52)

according to the discussion in Sect. 3.1. This is a function with a full halfwidth
•!T D 5:6=T around its central maximum !0 (Fig. 3.18a) and a full width •!b D
4�=T ' 12:6=T between the zero points on both sides of the central maximum.

This example can be applied to an atom that traverses a laser beam with a rect-
angular intensity profile (Fig. 3.18a). The oscillator amplitude x.t/ is proportional
to the field amplitude E D E0.r/ cos!t . If the interaction time T D d=v is small
compared to the damping time T D 1=� , the oscillation amplitude can be regarded
as constant during the time T . The full halfwidth of the absorption line is then
•! D 5:6v=d ! •� ' v=d .

In reality, the field distribution across a laser beam that oscillates in the funda-
mental mode is given by (Sect. 5.3)

E D E0e�r2=w2

cos!t ; (3.53)

in which 2w gives the diameter of the Gaussian beam profile across the points where
E D E0=e. Substituting the forced oscillator amplitude x D ˛E into (3.51), one
obtains instead of (3.52) a Gaussian line profile (Fig. 3.18b)

I.!/ D I0 exp

�
�.! � !0/2 w

2

2v2

�
; (3.54)
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Figure 3.18 Transition probability P.!/ of an atom traversing a laser beam a with a rectangular
intensity profile I.x/; and b with a Gaussian intensity profile for the case � < 1=T D v=d . The
intensity profile I.!/ of an absorption line is proportional to P.!/

with a transit-time limited halfwidth (FWHM)

•!tt D 2.v=w/
p
2 ln.2/ ' 2:4v=w! •� ' 0:4v=w : (3.55)

The quantity w D .�R=2�/1=2 (see Sect. 5.2.3) is called the beam waist of the
Gaussian beam profile.

There are two possible ways of reducing the transit-time broadening: one may
either enlarge the laser beam diameter 2w, or one may decrease the molecular ve-
locity v. Both methods have been verified experimentally and will be discussed in
Vol. 2, Sects. 2.3 and 9.2. The most efficient way is to directly reduce the atomic
velocity by optical cooling (Vol. 2, Chap. 9).

Example 3.6
1. A beam of NO2 molecules with v D 600m=s passes through a fo-

cused laser beam with w D 0:1mm. Their transit time broadening
•� D •!=2� ' 400 kHz is large compared to their natural linewidth
•�n ' 10 kHz of NO2 transitions in the visible region.

2. For frequency standards the rotational–vibrational transition of CH4 at
� D 3:39�m is used (Vol. 2, Sect. 2.3). In order to reduce the transit-time
broadening for CH4 molecules with v D 7� 104 cm=s below their natural
linewidth of •� D 10 kHz, the laser-beam diameter must be enlarged to
2w 
 6 cm.
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Figure 3.19 Line broaden-
ing caused by the curvature
of wave fronts

So far, we have assumed that the wave fronts of the laser radiation field are
planes and that the molecules move parallel to these planes. However, the phase
surfaces of a focused Gaussian beam are curved except at the focus. As Fig. 3.19
illustrates, an atom moving along the r-direction perpendicular to the laser beam z-
axis experiences a maximum phase shift 
	 D x2�=�, between the points r D 0

and r D r1. With r2 D R2� .R�x/2 we obtain the approximation x ' r2=2R for
x 	 R. This gives for the phase shifts


	 D kr2=2R D !r2=.2cR/ ; (3.56)

where k D !=c is the magnitude of the wave vector, and R is the radius of cur-
vature of the wave front. This phase shift depends on the location of an atom and
is therefore different for the different atoms, and causes additional line broadening
(Sect. 3.3.1). The calculation [105] yields for the transit-time broadened halfwidth,
including the wave-front curvature,

•! D 2v

w

p
2 ln 2

"
1C

�
�w2

R�

�2#1=2

D •!tt

"
1C

�
�w2

R�

�2#1=2
� •!tt.1C
	2/1=2 : (3.57)

In order to minimize this additional broadening, the radius of curvature has to be
made as large as possible. If 
	 	 � for a distance r D w, the broadening by
the wave-front curvature is small compared to the transit-time broadening. This
imposes the condition R� w2=� on the radius of curvature.

Example 3.7
For a wave with � D 1�m! ! D 2 � 1015 Hz. With w D 1 cm, this gives,
according to (3.56), a maximum phase shift
	 D 2�1015 = .6�1010R [cm]).
In order to keep
	 	 2� , the radius of curvature should beR� 5�103 cm.
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For R D 5 � 103 cm ! 
	 D 2� and the phase-front curvature causes an
additional broadening by a factor of about 6:5.

3.5 Homogeneous and Inhomogeneous Line Broadening

If the probability Pik.!/ of absorption or emission of radiation with frequency !
causing a transition Ei ! Ek is equal for all the molecules of a sample that are in
the same level Ei , we call the spectral line profile of this transition homogeneously
broadened. Natural line broadening is an example that yields a homogeneous line
profile. In this case, the probability for emission of light with frequency ! on
a transition Ei ! Ek with the normalized Lorentzian profileL.!�!0/ and central
frequency !0 is given by

Pik.!/ D AikL.! � !0/ :

It is equal for all atoms in level Ei .
The standard example of inhomogeneous line broadening is Doppler broadening.

In this case, the probability of absorption or emission of monochromatic radia-
tion E.!/ is not equal for all molecules, but depends on their velocity v (Sect. 3.2).
We divide the molecules in level Ei into subgroups such that all molecules with
a velocity component within the interval vz to vz C
vz belong to one subgroup. If
we choose 
vz to be ı!n=k where ı!n is the natural linewidth, we may consider
the frequency interval ı!n to be homogeneously broadened inside the much larger
inhomogeneous Doppler width. That is to say, all molecules in the subgroup can ab-
sorb or emit radiation with wave vector k and frequency ! D !0Cvzjkj (Fig. 3.7),
because in the coordinate system of the moving molecules, this frequency is within
the natural width ı!n around !0 (Sect. 3.2).

Collisions alter the line profile in a more complex way. In Sect. 3.3 we saw that
the spectral line profile is altered by two kinds of collisions: Inelastic and elastic
collisions. Inelastic collisions cause additional damping, resulting in a shortening of
the excited state lifetime and a pure broadening of the Lorentzian line profile. This
broadening by inelastic collisions brings about a homogeneous Lorentzian line pro-
file. The elastic collisions could be described as phase-perturbing collisions. The
Fourier transform of the oscillation trains with random phase jumps again yields
a Lorentzian line profile, as derived in Sect. 3.3. Summarizing, we can state that
elastic and inelastic collisions that only perturb the phase or amplitude of an oscil-
lating atom without changing its velocity cause homogeneous line broadening.

So far, we have neglected the fact that collisions also change the velocity of
both collision partners. If the velocity component vz of a molecule is altered by
an amount uz during the collision, the molecule is transferred from one subgroup
.vz ˙ 
vz/ within the Doppler profile to another subgroup .vz C uz ˙ 
vz/.
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Figure 3.20 a Effect of velocity-changing collisions on the frequency shift of homogeneous sub-
groups within a Doppler-broadened line profile, b velocity change of atom A during a collision
with atom B

This causes a shift of its absorption or emission frequency from ! to ! C kuz
(Fig. 3.20). This shift should not be confused with the line shift caused by phase-
perturbing elastic collisions that also occurs when the velocity of the oscillator does
not noticeably change.

At thermal equilibrium, the changes uz of vz by velocity-changing collisions
are randomly distributed. Therefore, the whole Doppler profile will, in general,
not be affected and the effect of these collisions is canceled out in Doppler-limited
spectroscopy. In Doppler-free laser spectroscopy, however, the velocity-changing
collisions may play a non-negligible role. They cause effects that depend on the
ratio of the mean time T D �=v between collisions (� D mean free pathlength
between successive collisions) to the interaction time �c with the radiation field. For
T > �c, the redistribution of molecules by velocity-changing collisions causes only
a small change of the population densities ni.vz/dvz within the different subgroups,
without noticeably changing the homogeneous width of this subgroup. If T 	 �c,
the different subgroups are uniformly mixed. This results in a broadening of the
homogeneous linewidth associated with each subgroup. The effective interaction
time of the molecules with a monochromatic laser field is shortened because the
velocity-changing collisions move a molecule out of resonance with the field. The
resultant change of the line shape can be monitored using saturation spectroscopy
(Vol. 2, Sect. 2.3).

Under certain conditions, if the mean free path� of the molecules is smaller than
the wavelength of the radiation field, velocitychanging collisions may also result in
a narrowing of a Doppler-broadening line profile (Dicke narrowing, Sect. 3.3.3).

3.6 Saturation and Power Broadening

At sufficiently large laser intensities, the optical pumping rate on an absorbing tran-
sition becomes larger than the relaxation rates. This results in a noticeable decrease
of the population in the absorbing levels. This saturation of the population den-
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Figure 3.21 Two-level sys-
tem with no relaxation into
other levels

sities also causes additional line broadening. The spectral line profiles of such
partially saturated transitions are different for homogeneously and for inhomoge-
neously broadened lines [106]. Here we treat the homogeneous case, while the
saturation of inhomogeneous line profiles is discussed in Vol. 2, Chap. 2.

3.6.1 Saturation of Level Population by Optical Pumping

The effect of optical pumping on the saturation of population densities is illustrated
by a two-level system with population densities N1 and N2. The two levels are
coupled to each other by absorption or emission and by relaxation processes, but
have no transitions to other levels (Fig. 3.21). Such a “true” two-level system is
realized by many atomic resonance transitions without hyperfine structure.

With the probability P12 D B12�.!/ for a transition j1i ! j2i by absorption of
photons „! and the relaxation probability Ri for level jii, the rate equation for the
level population is

dN1
dt
D �dN2

dt
D �P12N1 �R1N1 CP12N2 CR2N2 ; (3.58)

where we have assumed nondegenerate levels with statistical weight factors g1 D
g2 D 1. Under stationary conditions (dNi=dt D 0) we obtain with N1 C N2 D N

from (3.58) with the abbreviation P12 D P

.P CR1/N1 D .P C R2/.N �N1/ ) N1 D N P CR2
2P CR1 CR2 (3.59a)

.P CR2/N2 D .P C R1/.N �N2/ ) N2 D N P CR1
2P CR1 CR2 : (3.59b)

When the pump rate P becomes much larger than the relaxation rates Ri , the popu-
lationN1 approachesN=2, i.e.,N1 D N2. This means that the absorption coefficient
˛ D 
.N1 � N2/ approaches zero for P ! 1 (Fig. 3.22). The medium becomes
completely transparent.

Without a radiation field .P D 0/, the population densities at thermal equilib-
rium according to (3.59a, 3.59b) are

N10 D R2

R1 CR2N I N20 D R1

R1 CR2N : (3.59c)
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Figure 3.22 Saturation of
population density N1 and
absorption coefficient ˛ D

.N1 � N2/ as functions of
the saturation parameter S
(see text)

With the abbreviations


N D N1 �N2 and 
N0 D N10 �N20
we obtain from (3.59a–3.59c)


N D N R2 �R1
2P CR1 CR2


N0 D N R2 �R1
R2 CR1

which gives:


N D 
N0

1C 2P=.R1 CR2/ D

N0

1C S : (3.59d)

The saturation parameter

S D 2P=.R1 CR2/ D P=R D B12�.!/=R (3.60)

represents the ratio of pumping rate P to the average relaxation rate R D
.R1 C R2/=2. If the spontaneous emission of the upper level j2i is the only
relaxation mechanism, we have R1 D 0 and R2 D A21. Since the pump rate due to
a monochromatic wave with intensity I.!/ is P D 
12.!/I.!/=„!, we obtain for
the saturation parameter

S D 2
12I.!/

„!A12 : (3.61)

The saturated absorption coefficient ˛.!/ D 
12
N is, according to (3.59d),

˛ D ˛0

1C S ; (3.62)

where ˛0 is the unsaturated absorption coefficient without pumping.
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3.6.2 Saturation Broadening of Homogeneous Line Profiles

According to (2.15) and (3.59d), the power absorbed per unit volume on the tran-
sition j1i ! j2i by atoms with the population densities N1, N2 in a radiation field
with a broad spectral profile and spectral energy density � is

dW12

dt
D „!B12�.!/
N D „!B12�.!/ 
N0

1C S : (3.63)

With S D B12�.!/=R, see (3.60), this can be written as

dW12

dt
D „!R 
N0

1C S�1 : (3.64)

Since the absorption profile ˛.!/ of a homogeneously broadened line is Lorentzian,
see (3.24a), the induced absorption probability of a monochromatic wave with fre-
quency ! follows a Lorentzian line profile B12�.!/ �L.! �!0/ (see 3.10). We can
therefore introduce a frequency-dependent spectral saturation parameter S! for the
transition E1 ! E2,

S! D B12�.!/

R
L.! � !0/ : (3.65)

We can assume that the mean relaxation rate R is independent of ! within the
frequency range of the line profile. With the definition (3.24a) of the Lorentzian
profile L.! � !0/, we obtain for the spectral saturation parameter S!

S! D S0 .�=2/2

.! � !0/2 C .�=2/2 with S0 D S!.!0/ : (3.66)

Substituting (3.66) into (3.64) yields the frequency dependence of the absorbed
radiation power per unit frequency interval d! D 1 s�1

d

dt
W12.!/ D „!R
N0S0.�=2/2

.! � !0/2 C .�=2/2.1C S0/ D
C

.! � !0/2 C .�s=2/2
: (3.67)

This a Lorentzian profile with the increased halfwidth

�s D �
p
1C S0 : (3.68)

The halfwidth �s D •!s of the saturation-broadened line increases with the satura-
tion parameter S0 at the line center !0. If the induced transition rate at !0 equals
the total relaxation rate R, the saturation parameter S0 D ŒB12�.!0/�=R becomes
S0 D 1, which increases the linewidth by a factor

p
2, compared to the unsaturated

linewidth •!0 for weak radiation fields .�! 0/.
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Figure 3.23 Saturation
broadening of a homoge-
neous line profile

Since the power dW12=dt absorbed per unit volume equals the intensity decrease
per centimeter, dI D �˛sI , of an incident wave with intensity I , we can derive the
absorption coefficient ˛ from (3.67). With I D c� and S! from (3.66) we obtain

˛s.!/ D ˛0.!0/ .�=2/2

.! � !0/2 C .�s=2/2
D ˛0.!/

1C S! ; (3.69)

where the unsaturated absorption profile is

˛0.!/ D ˛0.!0/.�=2/
2

.! � !0/2 C .�=2/2 (3.70)

with ˛0.!0/ D 2„!B12
N0=�c� .
This shows that the saturation decreases the absorption coefficient ˛.!/ by the

factor .1 C S!/. At the line center, this factor has its maximum value .1 C S0/,
while it decreases for increasing .!�!0/ to 1, see (3.66). The saturation is therefore
strongest at the line center, and approaches zero for .!�!0/!1 (Fig. 3.23). This
is the reason why the line broadens. For a more detailed discussion of saturation
broadening, see Vol. 2, Chap. 9 and [105–107].

3.6.3 Power Broadening

The broadening of homogeneous line profiles by intense laser fields can also be
regarded from another viewpoint compared to Sect. 3.6.2. When a two-level system
is exposed to a radiation field E D E0 cos!t , the population probability of the
upper level jbi is, according to (2.95) and (2.119),

jb.!; t/j 2 D D2
abE

2
0

„2.!ab � !/2 CD2
abE

2
0

� sin2


1

2

p
.!ab � !/2 C .DabE0=„/2 � t

�
; (3.71)

an oscillatory function of time, which oscillates at exact resonance ! D !ab with
the Rabi flopping frequency˝R D ˝ab D DabE0=„.
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If the upper level jbi can decay by spontaneous processes with a relaxation con-
stant � , its mean population probability is

Pb.!/ D jb.!; t/j2 D
1Z

0

�e��t jb.!1; t/j 2dt : (3.72)

Inserting (3.71) and integrating yields

Pb.!/ D 1

2

D2
abE

2
0=„2

.!ab � !/2 C �2.1C S/ ; (3.73)

with S D D2
abE

2
0=.„2�2/. Since Pb.!/ is proportional to the absorption line

profile, we obtain as in (3.67) a power-broadened Lorentzian line profile with the
linewidth

�S D �
p
1C S : (3.74)

Since the induced absorption rate within the spectral interval � is, according to
(2.57) and (2.105)

B12�� D B12I�=c ' D2
12E

2
0=„2 ; (3.75)

the quantity S in (3.73) turns out to be identical with the saturation parameter S in
(3.60).

If both levels jai and jbi decay with the relaxation constants �a and �b , respec-
tively, the line profile of the homogeneously broadened transition jai ! jbi is again
described by (3.73), where now (Vol. 2, Sect. 2.1 and [107])

� D 1
2
.�a C �b/ and S D D2

abE
2
0=.„2�a�b/ : (3.76)

If a strong pump wave is tuned to the center !0 D !ab of the transition and
the absorption profile is probed by a tunable weak probe wave, the absorption
profile looks different: due to the population modulation with the Rabi flopping
frequency ˝, sidebands are generated at !0 ˙ ˝ that have the homogeneous
linewidth �S. The superposition of these sidebands (Fig. 3.24) gives a line profile
that depends on the ratio ˝=�S of the Rabi flopping frequency˝ and the saturated
linewidth �S. For a sufficiently strong pump wave .˝ > �S/, the separation of the
sidebands becomes larger than their width and a dip appears at the center !0.

3.7 Spectral Line Profiles in Liquids and Solids

Many different types of lasers use liquids or solids as amplifying media. Since
the spectral characteristics of such lasers play a significant role in applications of
laser spectroscopy, we briefly outline the spectral linewidths of optical transitions
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Figure 3.24 Absorption profile of a homogeneous transition pumped by a strong pump wave kept
at !0 and probed by a weak tunable probe wave for different values of the ratio ˝=�S of the Rabi
frequency ˝ to the linewidth �S

in liquids and solids. Because of the large densities compared with the gaseous
state, the mean relative distances R.A;Bj/ between an atom or molecule A and its
surrounding partners Bj are very small (typically a few tenths of a nanometer), and
the interaction between A and the adjacent partners Bj is accordingly large.

In general, the atoms or molecules used for laser action are diluted to small con-
centrations in liquids or solids. Examples are the dye laser, where dye molecules
are dissolved in organic solutions at concentrations of 10�4 to 10�3 moles=liter, or
the ruby laser, where the relative concentration of the active Cr3C ions in Al3O3

is on the order of 10�3. The optically pumped laser molecules A� interact with
their surrounding host molecules B. The resulting broadening of the excited levels
of A� depends on the total electric field produced at the location of A by all ad-
jacent molecules Bj, and on the dipole moment or the polarizability of A�. The
linewidth 
!ik of a transition A�.Ei / ! A�.Ek/ is determined by the difference
in the level shifts (
Ei �
Ek).

In liquids, the distances Rj .A�;Bj/ show random fluctuations analogous to the
situation in a high-pressure gas. The linewidth 
!ik is therefore determined by the
probability distribution P.Rj / of the mutal distances Rj .A�;Bj/ and the correla-
tion between the phase perturbations at A� caused by elastic collisions during the
lifetime of the levels Ei , Ek (see the analogous discussion in Sect. 3.3).

Inelastic collisions of A� with molecules B of the liquid host may cause ra-
diationless transitions from the level Ei populated by optical pumping to lower
levels En. These radiationless transitions shorten the lifetime of Ei and cause
collisional line broadening. In liquids the mean time between successive inelastic
collisions is of the order of 10�11 to 10�13 s. Therefore the spectral lineEi ! Ek is
greatly broadened with a homogeneously broadened profile. When the line broad-
ening becomes larger than the separation of the different spectral lines, a broad
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Figure 3.25 a Schematic level diagram illustrating radiative and radiationless transitions. b Ab-
sorption and emission cross section of rhodamine 6G dissolved in ethanol

continuum arises. In the case of molecular spectra with their many closely spaced
rotational–vibrational lines within an electronic transition, such a continuum in-
evitably appears since the broadening at liquid densities is always much larger than
the line separation.

Examples of such continuous absorption and emission line profiles are the opti-
cal dye spectra in organic solvents, such as the spectrum of Rhodamine 6G shown
in Fig. 3.25b, together with a schematic level diagram [108]. The optically pumped
level Ei is collisionally deactivated by radiationless transitions to the lowest vibra-
tional level Em of the excited electronic state. The fluorescence starts therefore
from Em instead of Ei and ends on various vibrational levels of the electronic
ground state (Fig. 3.25a). The emission spectrum is therefore shifted to larger wave-
lengths compared with the absorption spectrum (Fig. 3.25b).

In crystalline solids the electric field E.R/ at the location R of the excited
molecule A� has a symmetry depending on that of the host lattice. Because the
lattice atoms perform vibrations with amplitudes depending on the temperatur T ,
the electric field will vary in time and the time average hE.T; t;R/i will depend on
temperature and crystal structure [109–111]. Since the oscillation period is short
compared with the mean lifetime of A�.Ei /, these vibrations cause homogeneous
line broadening for the emission or absorption of the atom A. If all atoms are placed
at completely equivalent lattice points of an ideal lattice, the total emission or ab-
sorption of all atoms on a transitionEi ! Ek would be homogeneously broadened.

However, in reality it often happens that the different atoms A are placed at
nonequivalent lattice points with nonequal electric fields. This is particularly true
in amorphous solids or in supercooled liquids such as glass, which have no regular
lattice structure. For such cases, the line centers !0j of the homogeneously broad-
ened lines for the different atoms Aj are placed at different frequencies. The total
emission or absorption forms an inhomogeneously broadened line profile, which is
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composed of homogeneous subgroups. This is completely analogous to the gaseous
case of Doppler broadening, although the resultant linewidth in solids may be larger
by several orders of magnitude. An example of such inhomogeneous line broad-
ening is the emission of excited neodymium ions in glass, which is used in the
Nd-glass laser. At sufficiently low temperatures, the vibrational amplitudes de-
crease and the linewidth becomes narrower. For T < 4K it is possible to obtain,
even in solids under favorable conditions, linewidths below 10MHz for optical tran-
sitions [112, 113].

3.8 Problems

3.1 Determine the natural linewidth, the Doppler width, pressure broadening and
shifts for the neon transition 3s2 ! 2p4 at � D 632:8 nm in a HeNe discharge at
pHe D 2mbar, pNe D 0:2mbar at a gas temperature of 400K. The relevant data
are: �.3s2/ D 58 ns, �.2p4/ D 18 ns, 
B.Ne�He/ bD 6�10�14 cm2, 
S.Ne�He/ '
1 � 10�14 cm2, 
B.Ne�Ne/ D 1 � 10�13 cm2, 
S.Ne�Ne/ D 1 � 10�14 cm2.

3.2 What is the dominant broadening mechanism for absorption lines in the fol-
lowing examples:

1. The output from a CO2 laser with 50W at � D 10�m is focussed into a sam-
ple of SF6 molecules at the pressure p. The laser beam waist w in the focal
plane is 0:25mm. Use the numerical parameters T D 300K, p D 1mbar, the
broadening cross section 
b D 5 � 10�14 cm2 and the absorption cross section

a D 10�14 cm2.

2. Radiation from a star passes through an absorbing interstellar cloud of H-atoms,
which absorb on the hfs-transition at � D 21 cm and on the Lyman-˛ transition
1S ! 2P at � D 121:6 nm. The Einstein coefficient for the � D 21 cm line
is Aik D 4 � 10�15 s�1, that for the Lyman-˛ transition is Aik D 1 � 109 s�1.
The atomic density of H atoms is n D 10 cm�3 and the temperature T D 10K.
At which path lengths has the radiation decreased to 10% of I0 for the two
transitions?

3. The expanded beam from a HeNe laser at � D 3:39�m with 10mW power is
sent through a methane cell (T D 300K, p D 0:1mbar, beam diameter: 1 cm).
The absorbing CH4 transition is from the vibrational ground state (� ' 1)
to an excited vibrational level with � ' 20�s. Give the ratios of Doppler
width to transit-time width to natural width to pressure-broadened linewidth for
a collision cross section 
b D 10�16 cm2.

4. Calculate the minimum beam diameter that is necessary to bring about the
transit-time broadening in Example 3.2c below the natural linewidth. Is satura-
tion broadening important, if the absorption cross section is 
 D 10�10 cm2?
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3.3 The sodium D-line at � D 589 nm has a natural linewidth of 10MHz.

1. How far away from the line center do the wings of the Lorentzian line profile
exceed the Doppler profile at T D 500K if both profiles are normalized to
I.!0/ D I0?

2. Calculate the intensity I.! � !0/ of the Lorentzian which equals that of the
Gaussian profile at this frequency !c relative to the line center !0.

3. Compare the intensities of both profiles normalized to 1 at ! D !0 at a distance
0:1.!0 � !c/ from the line center.

4. At what laser intensity is the power broadening equal to half of the Doppler
width at T D 500K, when the laser frequency is tuned to the line center !0 and
pressure broadening can be neglected?

3.4 Estimate the collision broadened width of the Li D line at � D 670:8 nm due
to

1. Li–Ar collisions at p.Ar/ D 1 bar (Fig. 3.12);
2. Li–Li collisions at p.Li/ D 1mbar. This resonance broadening is due

to the interaction potential V.r/ � 1=r3 and can be calculated as �res D
Ne2fik=.4��0m!ik/, where the oscillator strength fik is 0:65. Compare with
numbers in Table 3.1.

3.5 An excited atom with spontaneous lifetime � suffers quenching collisions.
Show that the line profile stays Lorentzian and doubles its linewidth if the mean
time between two collisions is t c D � . Calculate the pressure of N2 molecules at
T D 400K for which t c D � for collisions Na� C N2 with the quenching cross
section 
a D 4 � 10�15 cm2.

3.6 A cw laser with 100MHz output power excites K atoms at low potassium pres-
sures in a cell with 10mbar neon as a buffer gas at a temperature T D 350K.
Estimate the different contributions to the total linewidth. At which laser intensi-
ties does the power broadening at low pressures exceeds the pressure broadening at
10mbar (the lifetime of the upper level is �sp D 25 ns) and how strong has the laser
beam to be focused that power broadening at 10mbar exceeds the Doppler width?



Chapter 4
Spectroscopic Instrumentation

This chapter is devoted to a discussion of instruments and techniques that are of
fundamental importance for the measurements of wavelengths and line profiles, or
for the sensitive detection of radiation. The optimum selection of proper equipment
or the application of a new technique is often decisive for the success of an exper-
imental investigation. Since the development of spectroscopic instrumentation has
shown great progress in recent years, it is most important for any spectroscopist
to be informed about the state-of-the-art regarding sensitivity, spectral resolving
power, and signal-to-noise ratios attainable with modern equipment.

At first we discuss the basic properties of spectrographs andmonochromators.
Although for many experiments in laser spectroscopy these instruments can be re-
placed by monochromatic tunable lasers (Chap. 5 and Vol. 2, Chap. 1), they are still
indispensible for the solution of quite a number of problems in spectroscopy.

Probably the most important instruments in laser spectroscopy are interferom-
eters, which are applicable in various modifications to numerous problems. We
therefore treat these devices in somewhat more detail. Recently, new techniques
of measuring laser wavelengths with high accuracy have been developed; they are
mainly based on interferometric devices. Because of their relevance in laser spec-
troscopy they will be discussed in a separate section.

Great progress has also been achieved in the field of low-level signal detection.
Apart from new photomultipliers with an extended spectral sensivity range and
large quantum efficiencies, new detection instruments have been developed such
as image intensifiers, infrared detectors, charge-coupled devices (CCDs) or optical
multichannel analyzers, which could move from classified military research into
the open market. For many spectroscopic applications they prove to be extremely
useful.

113W. Demtröder, Laser Spectroscopy 1, DOI 10.1007/978-3-642-53859-9_4,
© Springer-Verlag Berlin Heidelberg 2014
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Figure 4.1 Prism spectrograph

4.1 Spectrographs and Monochromators

Spectrographs, the first instruments for measuring wavelengths, still hold their po-
sition in spectroscopic laboratories, particularly when equipped with modern acces-
sories such as computerized microdensitometers or optical multichannel analyzers.
Spectrographs are optical instruments that form images S2.�/ of the entrance slit S1;
the images are laterally separated for different wavelengths � of the incident radia-
tion (Fig. 2.17). This lateral dispersion is due to either spectral dispersion in prisms
or diffraction on plane or concave reflection gratings.

Figure 4.1 depicts the schematic arrangement of optical components in a prism
spectrograph. The light source L illuminates the entrance slit S1, which is placed
in the focal plane of the collimator lens L1. Behind L1 the parallel light beam
passes through the prism P, where it is diffracted by an angle �.�/ depending on the
wavelength �. The camera lens L2 forms an image S2.�/ of the entrance slit S1. The
position x.�/ of this image in the focal plane of L2 is a function of the wavelength �.
The linear dispersion dx=d� of the spectrograph depends on the spectral dispersion
dn=d� of the prism material and on the focal length of L2.

When a reflecting diffraction grating is used to separate the spectral lines
S2.�/, the two lenses L1 and L2 are commonly replaced by two spherical mir-
rors M1 and M2, which image the entrance slit either onto the exit slit S2, or via the
mirror M onto a CCD array in the plane of observation (Fig. 4.2). Both systems
can use either photographic or photoelectric recording. According to the kind of
detection, we distinguish between spectrographs and monochromators.

In spectrographs a charge-coupled device (CCD) diode array is placed in the
focal plane of L2 or M2. The whole spectral range 
� D �1.x1/ � �2.x2/ covered
by the lateral extension 
x D x1 � x2 of the diode array can be simultaneously
recorded. The cooled CCD array can accumulate the incident radiant power over
long periods (up to 20 h). CCD detection can be employed for both pulsed and cw
light sources. The spectral range is limited by the spectral sensitivity of available
CCD materials and covers the region between about 200–1000 nm.

Monochromators, on the other hand, use photoelectric recording of a selected
small spectral interval. An exit slit S2, selecting an interval
x2 in the focal plane B,
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Figure 4.2 Grating
monochromator

lets only the limited range
� through to the photoelectric detector. Different spec-
tral ranges can be detected by shifting S2 in the x-direction. A more convenient
solution (which is also easier to construct) turns the prism or grating by a gear-box
drive, which allows the different spectral regions to be tuned across the fixed exit
slit S2. Modern devices uses a direct drive of the grating axis by step motors and
measure the turning angle by electronic angle decoders. This avoids backlash of
the driving gear. Unlike the spectrograph, different spectral regions are not detected
simultaneously but successively. The signal received by the detector is proportional
to the product of the area h
x2 of the exit slit with height h with the spectral in-
tensity

R
I.�/d�, where the integration extends over the spectral range dispersed

within the width 
x2 of S2.
Whereas the spectrograph allows the simultaneous measurement of a large re-

gion with moderate time resolution, photoelectric detection allows high time resolu-
tion but permits, for a given spectral resolution, only a small wavelength interval
�
to be measured at a time. With integration times below some minutes, photoelectric
recording shows a higher sensitivity, while for very long detection times of sev-
eral hours, photoplates may still be more convenient, although cooled CCD arrays
currently allow integration times up to several hours.

In spectroscopic literature the name spectrometer is often used for both types
of instruments. We now discuss the basic properties of spectrometers, relevant for
laser spectroscopy. For a more detailed treatment see for instance [114–123].

4.1.1 Basic Properties

The selection of the optimum type of spectrometer for a particular experiment is
guided by some basic characteristics of spectrometers and their relevance to the
particular application. The basic properties that are important for all dispersive
optical instruments may be listed as follows:
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Figure 4.3 Light-gathering power of a spectrometer

a) Speed of a Spectrometer

When a light beam with spectral intensity I�.�/, cross section As and spectral
radiation power

P0.�/ d� D I�
� � As � d� (4.1a)

within the solid angle d˝ D 1 sr falls onto the entrance slit of a spectrometer with
slit areaA < As and acceptance angel˝, the power transmitted by the spectrometer
is

Pt.�/ d� D P0.A=As/ � T .�/ �˝ � d� D I�.�/ � A � T .�/ �˝ � d� ; (4.1b)

where T .�/ is the wavelength dependent transmission of the spectrometer.
The product U D A˝ is often named étendue. For the prism spectrograph the

maximum solid angle of acceptance, ˝ D F=f 21 , is limited by the effective area
F D hD of the parallel light beam transmitted through the prism, which represents
the limiting aperture with height h and width D for the light beam (Fig. 4.1). For
the grating spectrometer the sizes of the grating and mirrors limit the acceptance
solid angle ˝.

Example 4.1
For a prism with height h D 6 cm, D D 6 cm, f1 D 30 cm! D=f D 1 W 5
and ˝ D 0:04 sr. With an entrance slit of 5 � 0:1mm2, the étendue is U D
5 � 10�3 � 4 � 10�2 D 2 � 10�4 cm2 sr.

In order to utilize the optimum speed, it is advantageous to image the light
source onto the entrance slit in such a way that the acceptance angle ˝ is fully
used (Fig. 4.4). Although more radiant power from an extended source can pass the
entrance slit by using a converging lens to reduce the source image on the entrance
slit, the divergence is increased. The radiation outside the acceptance angle ˝ can-
not be detected, but may increase the background by scattering from lens holders
and spectrometer walls.
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Figure 4.4 Optimized imaging of a light source onto the entrance slit of a spectrometer is
achieved when the solid angle˝ 0 of the incoming light matches the acceptance angle˝ D .a=d/2

of the spectrometer

Figure 4.5 a Imaging of an
extended light source onto
the entrance slit of a spec-
trometer with ˝� D ˝ .
b Correct imaging optics for
laser wavelength measure-
ments with a spectrometer.
The laser light, scattered by
the ground glass, forms the
source that is imaged onto the
entrance slit

Often the wavelength of lasers is measured with a spectrometer. In this case, it
is not recommended to direct the laser beam directly onto the entrance slit, because
the prism or grating would be not uniformely illuminated. This decreases the spec-
tral resolution. Furthermore, the symmetry of the optical path with respect to the
spectrometer axis is not guaranteed with such an arrangement, resulting in system-
atic errors of wavelengths measurements if the laser beam does not exactly coincide
with the spectrometer axis. It is better to illuminate a ground-glass plate with the
laser and to use the incoherently scattered laser light as a secondary source, which
is imaged in the usual way (Fig. 4.5).
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Figure 4.6 a Useful spectral ranges of different optical materials; and b transmittance of different
materials with 1-cm thicknesses [118]b

b) Spectral Transmission

For prism spectrometers, the spectral transmission depends on the material of the
prism and the lenses. Using fused quartz, the accessible spectral range spans from
about 180 to 3000 nm. Below 180 nm (vacuum-ultraviolet region), the whole spec-
trograph must be evacuated, and lithium fluoride or calcium fluoride must be used
for the prism and the lenses, although most VUV spectrometers are equipped with
reflection gratings and mirrors.

In the infrared region, several materials (for example, CaF2, NaCl, and KBr crys-
tals) are transparent up to 30�m, while CsI and diamond are transparent up to as
high as 80�m. (Fig. 4.6). However, because of the high reflectivity of metallic
coated mirrors and gratings in the infrared region, grating spectrometers with mir-
rors are preferred over prism spectrographs.

Many vibrational–rotational transitions of molecules such as H2O or CO2 fall
within the range 3–10�m, causing selective absorption of the transmitted radia-
tion. Infrared spectrometers therefore have to be either evacuated or filled with
dry nitrogen. Because dispersion and absorption are closely related (see Sect. 2.6),
prism materials with low absorption losses also show low dispersion, resulting in
a limited spectral resolving power (see below).

Since the ruling or holographic production of high-quality gratings has reached
a high technological standard, most spectrometers used today are equipped with
diffraction gratings rather than prisms. The spectral transmission of grating spec-
trometers reaches from the VUV region into the far infrared. The design and the



4.1 Spectrographs and Monochromators 119

Figure 4.7 Rayleigh’s crite-
rion for the resolution of two
nearly overlapping lines

Figure 4.8 Angular disper-
sion of a parallel beam

coatings of the optical components as well as the geometry of the optical arrange-
ment are optimized according to the specified wavelength region.

c) Spectral Resolving Power

The spectral resolving power of any dispersing instrument is defined by the expres-
sion

R D j�=
�j D j�=
�j ; (4.2)

where
� D �1��2 stands for the minimum separation of the central wavelengths
�1 and �2 of two closely spaced lines that are considered to be just resolved. It is
possible to recognize that an intensity distribution is composed of two lines with
the intensity profiles I1.�� �1/ and I2.�� �2/ if the total intensity I.�/ D I1.��
�1/ C I2.� � �2/ shows a pronounced dip between two maxima (Fig. 4.7). The
intensity distribution I.�/ depends, of course, on the ratio I1=I2 and on the profiles
of both components. Therefore, the minimum resolvable interval
� will differ for
different profiles.

Lord Rayleigh introduced a criterion of resolution for diffraction-limited line
profiles, where two lines are considered to be just resolved if the central diffraction
maximum of the profile I1.� � �1/ coincides with the first minimum of I2.� �
�2/ [116].

Let us consider the attainable spectral resolving power of a spectrometer. When
passing the dispersing element (prism or grating), a parallel beam composed of
two monochromatic waves with wavelengths � and � C 
� is split into two par-
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Figure 4.9 a Diffraction in a spectrometer by the limiting aperture with diameter a. b Limitation
of spectral resolution by diffraction

tial beams with the angular deviations � and � C 
� from their initial direction
(Fig. 4.8). The angular separation is


� D .d�=d�/
� ; (4.3)

where d�=d� is called the angular dispersion [rad=nm]. Since the camera lens
with focal length f2 images the entrance slit S1 into the plane B (Fig. 4.1), the dis-
tance
x2 between the two images S2.�/ and S2.�C
�) is, according to Fig. 4.8,


x2 D f2
� D f2 d�

d�

� D dx

d�

� : (4.4)

The factor dx=d� is called the linear dispersion of the instrument. It is generally
measured in mm=nm. In order to resolve two lines at � and �C
�, the separation

x2 in (4.4) has to be at least the sum ıx2.�/C ıx2.�C
�/ of the widths of the
two slit images. Since the width ıx2 is related to the width ıx1 of the entrance slit
according to geometrical optics by

ıx2 D .f2=f1/ıx1 ; (4.5)

the resolving power �=
� can be increased by decreasing ıx1. Unfortunately, there
is a theoretical limitation set by diffraction. Because of the fundamental importance
of this resolution limit, we discuss this point in more detail.

When a parallel light beam passes a limiting aperture with diameter a, a Fraun-
hofer diffraction pattern is produced in the plane of the focusing lens L2 (Fig. 4.9).
The intensity distribution I.	/ as a function of the angle 	 with the optical axis of
the system is given for 	 	 �=2) sin	 � 	 by the well-known formula [116]

I.	/ D I0
�

sin.� � .a=�/ sin	/

.a� sin	/=�

�2
' I0

�
sin.a�	=�/

a�	=�

�2
: (4.6)



4.1 Spectrographs and Monochromators 121

The first two diffraction minima at 	 D ˙�=a 	 � are symmetrical to the central
maximum (zeroth diffraction order) at 	 D 0. The intensity of the central diffrac-
tion maximum

I .0/ D
C�=aZ

��=a
I.˚/ d˚

contains about 90% of the total intensity.
Even an infinitesimally small entrance slit therefore produces a slit image of

width

ıxdiffr
s D f2.�=a/ ; (4.7)

defined as the distance between the central diffraction maximum and the first mini-
mum, which is approximately equal to the FWHM of the central maximum.

According to the Rayleigh criterion, two equally intense spectral lines with
wavelengths � and �C
� are just resolved if the central diffraction maximum of
S2.�/ coincides with the first minimum of S2.�C
�/ (see above). This means that
their maxima are just separated by ıxdiffr

S D f2.�=a/. From (4.6) one can compute
that, in this case, both lines partly overlap with a dip of .8=�2/Imax � 0:8Imax

between the two maxima. The distance between the centers of the two slit images
is then obtained from (4.7) (see Fig. 4.9b) as


x2 D f2.�=a/ : (4.8a)

The separation of the two lines by dispersion (4.4) 
x2 D f2.d�=d�/
� has to be
larger than this limit. This gives the fundamental limit on the resolving power

j�=
�j � a.d�=d�/ ; (4.9)

which clearly depends only on the size a of the limiting aperture and on the angular
dispersion of the instrument.

For a finite entrance slit with width b the separation 
x2 between the central
peaks of the two images I.� � �1/ and I.� � �2/ must be larger than (4.8a). We
now obtain


x2 
 f2 �
a
C b f2

f1
; (4.8b)

in order to meet the Rayleigh criterion (Fig. 4.10). With 
x2 D f2.d�=d�/
�, the
smallest resolvable wavelength interval 
� is then


� 

�
�

a
C b

f1

��
d�

d�

��1
: (4.10)
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Figure 4.10 Intensity pro-
files of two monochromatic
lines measured in the focal
plane of L2 with an entrance
slit width b 	 f1 � �=a and
a magnification factor f2=f1

of the spectrograph. Solid
line: without diffraction;
dashed line: with diffraction.
The minimum resolvable dis-
tance between the line centers
is 
x2 D f2.b=f1 C �=a/

Figure 4.11 Diffraction by
the entrance slit

Note The spectral resolution is limited, not by the diffraction due to the en-
trance slit, but by the diffraction caused by the much larger aperture a, deter-
mined by the size of the prism or grating.

Although it does not influence the spectral resolution, the much larger diffrac-
tion by the entrance slit imposes a limitation on the transmitted intensity at small
slit widths. This can be seen as follows: when illuminated with parallel light, the
entrance slit with width b produces a Fraunhofer diffraction pattern analogous to
(4.6) with a replaced by b. The central diffraction maximum extends between the
angles ı	 D ˙�=b (Fig. 4.11) and can completely pass the limiting aperture a only
if 2ı	 is smaller than the acceptance angle a=f1 of the spectrometer. This imposes
a lower limit to the useful width bmin of the entrance slit,

bmin 
 2�f1=a : (4.11)

In all practical cases, the incident light is divergent, which demands that the sum
of the divergence angle and the diffraction angle has to be smaller than a=f and the
minimum slit width b correspondingly larger.
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Figure 4.12 a Diffraction limited intensity distribution I.x2/ in the plane B for different widths b
of the entrance slit. b The width •x2.b/ of the entrance slit image S2.x2/ with and without
diffraction by the aperture a. c Intensity I.x2/ in the observation plane as a function of entrance
slit width b for a spectral continuum c and for a monochromatic spectral line (m) with diffraction
(solid curves 2c and 2m) and without diffraction (dashed curves 1c and 1m)

Figure 4.12a illustrates the intensity distribution I.x/ in the plane B for different
slit widths b. Figure 4.12b shows the dependence of the width 
x2.b/ of the slit
image S2 on the entrance slit width b, taking into account the diffraction caused
by the aperture a. This demonstrates that the resolution cannot be increased much
by decreasing b below bmin. The peak intensity I.b/ in the plane B is plotted in
Fig. 4.12c as a function of the slit width b. According to (4.1b), the transmitted
radiation flux 	.�/ depends on the product U D A˝ of the entrance slit areaA and
the acceptance angle ˝ D .a=f1/

2. The flux in B would therefore depend linearly
on the slit width b if diffraction were not present. This means that for monochro-
matic radiation the peak intensity [W=m2] in the plane B should then be constant
(curve 1m) although the transmitted power would increase linearly with b. For
a spectral continuum it should decrease linearly with decreasing slit width (curve
1c). Because of the diffraction by S1, the intensity decreases with the slit width b
both for monochromatic radiation (2m) and for a spectral continuum (2c). Note the
steep decrease for b < bmin.

Substituting b D bmin D 2f �=a into (4.10) yields the practical limit for 
�
imposed by diffraction by S1 and by the limiting aperture with width a


� D 3f .�=a/d�=dx : (4.12)

Instead of the theoretical limit (4.9) given by the diffraction through the aperture a,
a smaller practically attainable resolving power is obtained from (4.12), which takes
into account a finite minimum entrance slit width bmin imposed by intensity consid-
erations and which yields:

R D �=
� D .a=3/d�=d� : (4.13)
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Example 4.2
For a D 10 cm, � D 5 � 10�5 cm, f D 100 cm, d�=dx D 1 nm=mm,
with b D 10�m;! 
� D 0:015 nm; with b D 5�m;! 
� D 0:01 nm.
However, from Fig. 4.12 one can see that the transmitted intensity with b D
5�m is only 25% of that with b D 10�m.

Note For photographic detection of line spectra, it is actually better to really use
the lower limit bmin for the width of the entrance slit, because the density of the de-
veloped photographic layer depends only on the time-integrated spectral irradiance
[W=m2] rather than on the radiation power [W]. Increasing the slit width beyond
the diffraction limit bmin, in fact, does not significantly increase the density contrast
on the plate, but does decrease the spectral resolution.

Using photoelectric recording, the detected signal depends on the radiation
power 	�d� transmitted through the spectrometer and therefore increases with
increasing slit width. In the case of completely resolved line spectra, this increase
is proportional to the slit width b since 	� / b. For continuous spectra it is even
proportional to b2 because the transmitted spectral interval d� also increases pro-
portional to b and therefore 	�d� / b2. Using diode arrays as detectors, the image

x2 D .f2=f1/b should have the same width as one diode in order to obtain the
optimum signal at maximum resolution.

The obvious idea of increasing the product of ˝A without loss of spectral reso-
lution by keeping the width b constant but increasing the height h of the entrance
slit is of limited value because imaging defects of the spectrometer cause a curva-
ture of the slit image, which again decreases the resolution. Rays from the rim of
the entrance slit pass the prism at a small inclination to the principal axis. This
causes a larger angle of incidence ˛2, which exceeds that of miniumum deviation.
These rays are therefore refracted by a larger angle � , and the image of a straight slit
becomes curved toward shorter wavelengths (Fig. 4.13). Since the deviation in the
plane B is equal to f2� , the radius of curvature is of the same order of magnitude
as the focal length of the camera lens and increases with increasing wavelength be-
cause of the decreasing spectral dispersion. In grating spectrometers, curved images
of straight slits are caused by astigmatism of the spherical mirrors. The astigmatism
can be partly compensated by using curved entrance slits [122]. Another solution
is based on astigmatism-corrected imaging by using an asymmetric optical setup
where the first mirror M1 in Fig. 4.2 is placed at a distance d1 < f1 from the en-
trance slit and the exit slit at a distance d2 > f2 from M2. In this arrangement [124]
the grating is illuminated with slightly divergent light.

When the spectrometer is used as a monochromator with an entrance slit width b1
and an exit slit width b2, the power P.t/ recorded as a function of time while the
grating is uniformly turned has a trapezoidal shape for b1 � bmin (Fig. 4.14) with
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Figure 4.13 Curvature
of the image of a straight
entrance slit caused
by astigmatic imaging
errors

Figure 4.14 Signal pro-
file P.t/ / P.x2.t// at
the exit slit of a monochro-
mator with b 	 bmin

and b2 < .f2=f1/b1 for
monochromatic incident light
with uniform turning of the
grating

a baseline .f2=f1/b1 C b2. Optimum resolution at maximum transmitted power
is achieved for b2 D .f2=f1/b1. The line profile P.t/ D P.x2/ then becomes
a triangle.

d) Free Spectral Range

The free spectral range of a spectrometer is the wavelength interval ı� of the
incident radiation for which a one-valued relation exists between � and the posi-
tion x.�/ of the entrance slit image. Two spectral lines with wavelengths �1 and
�2 D �1˙ ı� cannot be distinguished without further information. This means that
the wavelength � measured by the instrument must be known beforehand with an
uncertainty
� < •�. While for prism spectrometers the free spectral range covers
the whole region of normal dispersion of the prism material, for grating spectrom-
eters •� is determined by the diffraction order m and decreases with increasing m
(Sect. 4.1.3).

Interferometers, which are generally used in very high orders (m D 104–108),
have a high spectral resolution but a small free spectral range ı�. For unambiguous
wavelength determination they need a preselector, which allows one to measure
the wavelength within the free spectral range ı� of the high-resolution instrument
(Sect. 4.2.4).
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4.1.2 Prism Spectrometer

When passing through a prism, a light ray is refracted by an angle � that depends
on the prism angle ", the angle of incidence ˛1, and the refractive index n of the
prism material (Fig. 4.15). We obtain from Fig. 4.15

� D ˛1 � ˇ1 C ˛2 � ˇ2 : (4.14a)

Using the relation ˇ1 C ˇ2 D " for minimum refraction, where the light passes
through the prism parallel to the baseline g of the prism we obtain

� D ˛1 C ˛2 � " (4.14b)

between the total deviation � and the prism angle ", we find the minimum refraction
by differentiating:

d�

d˛1
D 1C d˛2

d˛1
D 0) d˛1 D �d˛2 : (4.14c)

From Snellius’ law sin ˛ D n sinˇ we obtain the derivatives:

cos˛1 d˛1 D n cosˇ1 dˇ1 (4.14d)

cos˛2 d˛2 D n cosˇ2 dˇ2 : (4.14e)

Because ˇ1 C ˇ2 D ") dˇ1 D �dˇ2, the division of (4.14d) by (4.14e) yields

cos˛1 d˛1
cos˛2 d˛2

D cosˇ1
cosˇ2

:

For the minimum deviation � with d˛1 D �d˛2 we get the result:

cos˛1
cos˛2

D �cosˇ1
cosˇ2

D �
 
1 � sin2 ˇ1
1 � sin2 ˇ2

!1=2
: (4.14f)

Squaring the equation yields

1 � sin2 ˛1
1 � sin2 ˛2

D n2 � sin2 ˛1
n2 � sin2 ˛2

(4.14g)

Figure 4.15 Refraction of
light by a prism at minimum
deviation where ˛1 D ˛2 D
˛ and � D 2˛ � "
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Figure 4.16 Limiting aper-
ture in a prism spectrometer

which can only be fulfilled for n ¤ 1 if ˛1 D ˛2. The minimum deviation � is
obtained for symmetrical rays with ˛1 D ˛2 D ˛. The minimum deviation

�min D 2˛ � " (4.14h)

is obtained when the ray passes the prism parallel to the base g. In this case, we
derive from Snellius’ law:

sin
�
�min C "

2

�
D sin ˛ D n sinˇ D n sin."=2/ (4.14i)

sin
�
� C "
2

�
D n sin."=2/ : (4.14j)

From (4.14j) the derivation d�=dn D .dn=d�/�1 is

d�

dn
D 2 sin."=2/

cosŒ.� C "/=2� D
2 sin."=2/p

1 � n2 sin2."=2/
: (4.15)

The angular dispersion d�=d� D .d�=dn/.dn=d�/ is therefore

d�

d�
D 2 sin."=2/p

1 � n2 sin2."=2/

dn

d�
: (4.16)

This shows that the angular dispersion increases with the prism angle ", but
does not depend on the size of the prism.

For the deviation of laser beams with small beam diameters, small prisms can
therefore be used without losing angular dispersion. In a prism spectrometer, how-
ever, the size of the prism determines the limiting aperture a and therefore the
diffraction; it has to be large in order to achieve a large spectral resolving power
(see previous section). For a given angular dispersion, an equilateral prism with
" D 60ı uses the smallest quantity of possibly expensive prism material. Because
sin 30ı D 1=2, (4.16) then reduces to

d�

d�
D dn=d�
p
1 � .n=2/2 : (4.17)
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Figure 4.17 Refractive index n.�/ for some prism materials

The diffraction limit for the resolving power �=
� according to (4.9) is

�=
� � a.d�=d�/ :

The diameter a of the limiting aperture in a prism spectrometer is (Fig. 4.16)

a D d cos˛1 D g cos˛

2 sin."=2/
: (4.18)

Substituting d�=d� from (4.16) gives

�=
� D g cos˛1p
1 � n2 sin2."=2/

dn

d�
: (4.19)

At minimum deviation, (4.14a)–(4.14j) gives n sin."=2/ D sin.� C "/=2 D sin ˛1
and therefore (4.19) reduces to

�=
� D g.dn=d�/ : (4.20a)

According to (4.20a), the theoretical maximum resolving power depends solely on
the base length g and on the spectral dispersion of the prism material. Because of
the finite slit width b 
 bmin, the resolution reached in practice is somewhat lower.
The corresponding resolving power can be derived from (4.11) to be at most

R D �


�
� 1

3
g

�
dn

d�

�
: (4.20b)

The spectral dispersion dn=d� is a function of prism material and wavelength �.
Figure 4.17 shows dispersion curves n.�/ for some materials commonly used for
prisms. Since the refractive index increases rapidly in the vicinity of absorption



4.1 Spectrographs and Monochromators 129

Table 4.1 Refractive index and dispersion of some materials used in prism spectrometers

Material Useful spectral range
[�m]

Refractive index n Dispersion �dn=d� [nm�1]

Glass (BK7) 0:35–3:5 1.516 4:6� 10�5 at 589 nm

1.53 1:1 � 10�4 at 400 nm

Heavy flint 0:4–2 1.755 1:4 � 10�4 at 589 nm

1.81 4:4� 10�4 at 400 nm

Fused quartz 0:15–4:5 1.458 3:4 � 10�5 at 589 nm

1.470 1:1 � 10�4 at 400 nm

NaCl 0:2–26 1.79 6:3 � 10�3 at 200 nm

1.38 1:7 � 10�5 at 20�m

LiF 0:12–9 1.44 6:6 � 10�4 at 200 nm

1.09 8:6 � 10�5 at 10�m

lines, glass has a larger disperison in the visible and near-ultraviolet regions than
quartz, which, on the other hand, can be used advantageously in the UV down to
180 nm. In the vacuum-ultraviolet range CaF, MgF, or LiF prisms are sufficiently
transparent. Table 4.1 gives a summary of the optical characteristics and useful
spectral ranges of some prism materials.

If achromatic lenses (which are expensive in the infrared and ultraviolet region)
are not employed, the focal length of the two lenses decreases with the wavelength.
This can be partly compensated by inclining the plane B against the principal axis
in order to bring it at least approximately into the focal plane of L2 for a large
wavelength range (Fig. 4.1).

In Summary: The advantage of a prism spectrometer is the unambiguous assign-
ment of wavelengths, since the position S2.�/ is a monotonic function of �. Its
drawback is the moderate spectral resolution. It is mostly used for survey scans of
extended spectral regions.

Example 4.3
a) Suprasil (fused quartz) has a refractive index n D 1:47 at � D 400 nm

and dn=d� D 1100 cm�1. This gives d�=d� D 1:6 � 10�4 rad=nm. With
a slitwidth bmin D 2f �=a and g D 5 cm we obtain from (4.20b) �=
� �
1830. At � D 500 nm) 
� 
 0:27 nm.

b) For heavy flint glass at 400 nm n D 1:81 and dn=d� D 4400 cm�1, giving
d�=d� D 1:0 � 10�3 rad=nm. This is about six times larger than that
for quartz. With a focal length f D 100 cm for the camera lens, one
achieves a linear dispersion dx=d� D 1mm=nm with a flint prism, but
only 0:15mm=nm with a quartz prism.
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4.1.3 Grating Spectrometer

In a grating spectrometer (Fig. 4.2) the collimating lens L1 is replaced by a spher-
ical mirror M1 with the entrance slit S1 in the focal plane of M1. The collimated
parallel light is reflected by M1 onto a reflection grating consisting of many straight
grooves (about 105) parallel to the entrance slit. The grooves have been ruled onto
an optically smooth glass substrate or have been produced by holographic tech-
niques [125–131]. The whole grating surface is coated with a highly reflecting
layer (metal or dielectric film). The light reflected from the grating is focused by
the spherical mirror M2 onto the exit slit S2 or onto a photographic plate in the focal
plane of M2.

a) Basic Considerations

The many grooves, which are illuminated coherently, can be regarded as small radi-
ation sources, each of them diffracting the light incident onto this small groove with
a width d � � into a large range 
r � �=d of angles r around the direction of
geometrical reflection (Fig. 4.18a). The total reflected light consists of a coherent
superposition of these many partial contributions. Only in those directions where
all partial waves emitted from the different grooves are in phase will constructive
interference result in a large total intensity, while in all other directions the different
contributions cancel by destructive interference.

Figure 4.18b depicts a parallel light beam incident onto two adjacent grooves. At
an angle of incidence ˛ to the grating normal (which is normal to the grating surface,
but not necessarily to the grooves) one obtains constructive interference for those
directions ˇ of the reflected light for which the path difference
s D 
s1 �
s2 is
an integer multiplem of the wavelength �. With
s1 D d sin ˛ and
s2 D d sinˇ

Figure 4.18 a Reflection of incident light from a single groove into the diffraction angle �=d
around the specular reflection angle r D i . b Illustration of the grating equation (4.21)
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Figure 4.19 Illustration of
the blaze angle �

this yields the grating equation

d.sin ˛ ˙ sinˇ/ D m� ; (4.21)

the plus sign has to be taken if ˇ and ˛ are on the same side of the grating normal;
otherwise the minus sign, which is the case shown in Fig. 4.18b.

The reflectivity R.ˇ; �/ of a ruled grating depends on the diffraction angle ˇ
and on the blaze angle � of the grating, which is the angle between the groove
normal and the grating normal (Fig. 4.19). If the diffraction angle ˇ coincides
with the angle r of specular reflection from the groove surfaces, R.ˇ; �/ reaches its
optimum value R0, which depends on the reflectivity of the groove coating. From
Fig. 4.19 one infers for the case where ˛ and ˇ are on opposite sides of the grating
normal, i D ˛ � � and r D � C ˇ, which yields, for specular reflection i D r , the
condition for the optimum blaze angle �

� D .˛ � ˇ/=2 : (4.22)

Because of the diffraction of each partial wave into a large angular range, the re-
flectivity R.ˇ/ will not have a sharp maximum at ˇ D ˛ � 2� , but will rather show
a broad distribution around this optimum angle. The angle of incidence ˛ is de-
termined by the particular construction of the spectrometer, while the angle ˇ for
which constructive interference occurs depends on the wavelength �. Therefore the
blaze angle � has to be specified for the desired spectral range and the spectrometer
type.

In laser-spectroscopic applications the case ˛ D ˇ often occurs, which means
that the light is reflected back into the direction of the incident light. For such
an arrangement, called a Littrow-grating mount (shown in Fig. 4.20), the grating
equation (4.21) for constructive interference reduces to

2d sin ˛ D m� : (4.21a)

Maximum reflectivity of the Littrow grating is achieved for i D r D 0 ! � D ˛

(Fig. 4.20b). The Littrow grating acts as a wavelength-selective reflector because
light is only reflected if the incident wavelength satisfies the condition (4.21a).
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Figure 4.20 a Littrow mount of a grating with ˇ D ˛. b Illustration of blaze angle for a Littrow
grating

For Littrow gratings used as wavelength-selective reflectors, it is desirable to
have a high reflectivity in a selected orderm and low reflections for all other orders.
This can be achieved by selecting the width of the grooves and the blaze angle
correctly. Because of diffraction by each groove with a width d , light can only
reach angles ˇ within the interval ˇ0 ˙ �=d (Fig. 4.18a).

Example 4.4
With a blaze angle � D ˛ D ˇ D 30ı and a step height h D �, the grating can
be used in second order, while the third order appears at ˇ D ˇ0 C 37ı. With
d D �= tan � D 2�, the central diffraction lobe extends only to ˇ0˙ 30ı, the
intensity in the third order is very small.

b) Intensity Distribution of Reflected Light

We now examine the intensity distribution I.ˇ/ of the reflected light when
a monochromatic plane wave is incident onto an arbitrary grating.

According to (4.21) the path difference between partial waves reflected by ad-
jacent grooves is 
s D d.sin ˛ ˙ sinˇ/ and the corresponding phase difference
is

	 D 2�

�

s D 2�

�
d.sin ˛ ˙ sinˇ/ : (4.23)
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The superposition of the amplitudes reflected from all N grooves in the direc-
tion ˇ gives the total reflected amplitude

AR D
p
R

N�1X

mD0
Ageim	 D pRAg

1 � eiN	

1 � e�i	
; (4.24)

where R.ˇ/ is the reflectivity of the grating, which depends on the reflec-
tion angle ˇ, and Ag is the amplitude of the partial wave incident onto each
groove. Because the intensity of the reflected wave is related to its amplitude by
IR D �0cARA

�
R, see (2.30c), we find, with eix D cosx C i sin x, from (4.24),

IR D RI0 sin2.N	=2/

sin2.	=2/
with I0 D c�0AgA

�
g : (4.25)

This intensity distribution is plotted in Fig. 4.21 for two different values of the
total groove number N . Note that for real optical gratings N � 105! The principal
maxima occur for 	 D 2m� , which is, according to (4.23), equivalent to the grating
equation (4.21) and means that at a fixed angle ˛ the path difference between partial
beams from adjacent grooves is for certain angles ˇm an integer multiple of the
wavelength, where the integerm is called the order of the interference. The function
(4.25) has (N � 1) minima with IR D 0 between two successive principal maxima.
These minima occur at values of 	 for which N	=2 D `� , ` D 1; 2; : : :, N � 1,
and mean that for each groove of the grating, another one can be found that emits
light into the direction ˇ with a phase shift � , such that all pairs of partial waves
just cancel.

The line profile I.ˇ/ of the principal maximum of orderm around the diffraction
angle ˇm can be derived from (4.25) by substituting ˇ D ˇmC �. Because for large
N , I.ˇ/ is very sharply centered around ˇm, we can assume � 	 ˇm. With the
relation

sin.ˇm C �/ D sin ˇm cos � C cosˇm sin � � sinˇm C � cosˇm ;

and because .2�d=�/.sin˛ C sinˇm/ D 2m� , we obtain from (4.23)

	.ˇ/ D 2m� C 2�.d=�/� cosˇm D 2m� C ı1 (4.26)

with

ı1 D 2�.d=�/� cosˇm 	 1 :

Furthermore, (4.25) can be written as

IR D RI0 Œsin.Nm� CNı1=2/�2
Œsin.m� C ı1=2/�2

D RI0 sin2.Nı1=2/

sin2.ı1=2/
' RI0N 2 sin2.Nı1=2/

.Nı1=2/2
:

(4.27)
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The first two minima with IR D 0 on both sides of the central maximum at ˇm
are at

Nı1 D ˙2� ) ı1 D ˙2�=N : (4.28a)

From (4.26) we can now calculate the angular width 
ˇ of the central maximum
around ˇm: The first two minima on both sides of the intensity maximum appear
for

2�d

�
� cosˇm D ı1 D ˙2�

N
) (4.28b)

�1;2 D ˙�
Nd cosˇm

) 
ˇ D 2�

N d cosˇm
: (4.28c)

The intensity maximum of mth order therefore has a line profile (4.27) with
a base full width 
ˇ D 2�=.Nd cosˇm/. This corresponds to a diffraction pattern
produced by an aperture with width b D Nd cosˇm, which is just the size of the
whole grating projected onto a plane, normal to the direction of ˇm (Fig. 4.18).

Example 4.5
For N � d D 10 cm, � D 5 � 10�5 cm, ˇm D 45ı ) cosˇm D 1

2

p
2)

"1=2 D 7 � 10�6 rad D 4 � 10�4 ı.

Note According to (4.28a)–(4.28c) the full angular halfwidth 
ˇ D 2� of the
interference maxima decreases as 1=N , while according to (4.27) the peak intensity
increases with the number of illuminated grooves proportional to N2I0, where I0
is the power incident onto a single groove. The area under the main maxima is
therefore proportional to NI0, which is due to the increasing concentration of light
into the directions ˇm. Of course, the incident power per groove decreases as 1=N .
The total reflected power is therefore independent of N .

The intensity of the N � 2 small side maxima, which are caused by incom-
plete destructive interference, decreases proportional to 1=N with increasing groove
number N . Figure 4.21 illustrates this point for N D 5 and N D 11. For gratings
used in practical spectroscopy with groove numbers of about 105, the reflected in-
tensity IR.�/ at a given wavelength � has very sharply defined maxima only in
those directions ˇm, as defined by (4.21). The small side maxima are completely
negligible at such large values of N , provided the distance d between the grooves
is exactly constant over the whole grating area.
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Figure 4.21 Intensity distri-
bution I.ˇ/ for two different
numbers N of illuminated
grooves. Note the different
scales of the ordinates!

c) Spectral Resolving Power

Differentiating the grating equation (4.21) with respect to �, we obtain at a given
angle ˛ the angular dispersion

dˇ

d�
D m

d cosˇ
: (4.29a)

Substituting m=d D .sin ˛ ˙ sinˇ/=� from (4.21), we find

dˇ

d�
D sin ˛ ˙ sin ˇ

� cosˇ
: (4.29b)

This illustrates that the angular dispersion is determined solely by the angles
˛ and ˇ and not by the number of grooves! For the Littrow mount with ˛ D ˇ and
the C sign in (4.29b), we obtain

dˇ

d�
D 2 tan ˛

�
: (4.29c)

The spectral resolving power can be immediately derived from (4.29a) and the base
halfwidth 
ˇ D � D �=.Nd cosˇ/ of the principal diffraction maximum (4.28a)–
(4.28c), if we apply the Rayleigh criterion (see above) that two lines � and �C
�
are just resolved when the maximum of I.�/ falls into the adjacent minimum for
I.�C
�/. This is equivalent to the condition

dˇ

d�

� D �

Nd cosˇ
;
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or, inserting (4.29b):

�


�
D Nd.sin ˛ ˙ sinˇ/

�
; (4.30)

which reduces with (4.21) to

R D �


�
D mN : (4.31)

The theoretical spectral resolving power equals the product of the diffraction or-
derm with the total numberN of illuminated grooves. If the finite slit width b1 and
the diffraction at limiting aperatures are taken into account, the practically achiev-
able resolving power according to (4.13) is about 2–3 times lower.

Often it is advantageous to use the spectrometer in second order (m D 2), which
increases the spectral resolution by a factor of 2 without losing much intensity, if
the blaze angle � is correctly choosen to satisfy (4.21) and (4.22) with m D 2.

Example 4.6
A grating with a ruled area of 10 � 10 cm2 and 103 grooves=mm allows in
second order (m D 2) a theoretical spectral resolution of R D 2 � 105.
This means that at � D 500 nm two lines that are separated by 
� D 2:5 �
10�3 nm should be resolvable. Because of diffraction, the practical limit is

� � 5 � 10�3 nm. The dispersion for ˛ D ˇ D 30ı and a focal length
f D 1m is dx=d� D f dˇ=d� D 2mm=nm. With a slit width b1 D b2 D
50�m a spectral resolution of 
� D 0:025 nm can be achieved. In order to
decrease the slit image width to 5� 10�3 mm, the entrance slit width b has to
be narrowed to 10�m.

Lines around � D 1�m in the spectrum would appear in 1st order at the
same angles ˇ as lines with � D 500mm in 2nd order. They have to be
suppressed by filters.

A special design is the so-called echelle grating, which has very widely spaced
grooves forming right-angled steps (Fig. 4.22). The light is incident normal to the

Figure 4.22 Echelle grating



4.1 Spectrographs and Monochromators 137

small side of the grooves. The path difference between two reflected partial beams
incident on two adjacent grooves with an angle of incidence ˛ D 90ı � � is 
s D
2d cos � . The grating equation (4.21) gives for the angle ˇ of the mth diffraction
order

d.cos � C sinˇ/ � 2d cos � D m� ; (4.32)

where ˇ is close to ˛ D 90ı � � .
With d � � the grating is used in a very high order (m ' 10–100) and the

resolving power is very high according to (4.31). Because of the larger distance d
between the grooves, the achievable relative ruling accuracy is higher and large
gratings (up to 30 cm) can be ruled. The disadvantage of the echelle is the small
free spectral range ı� D �=m between successive diffraction orders.

Example 4.7
N D 3 � 104, d D 10�m, � D 30ı, � D 500 nm, m D 34. The spectral
resolving power is R D 106, but the free spectral range is only ı� D 15 nm.
This means that the wavelengths � and �Cı� overlap in the same direction ˇ.

d) Grating Ghosts

Minute deviations of the distance d between adjacent grooves, caused by inaccu-
racies during the ruling process, may result in constructive interference from parts
of the grating for “wrong” wavelengths. Such unwanted maxima, which occur for
a given angle of incidence ˛ into “wrong” directions ˇ, are called grating ghosts.
Although the intensity of these ghosts is generally very small, intense incident ra-
diation at a wavelength �i may cause ghosts with intensities comparable to those
of other weak lines in the spectrum. This problem is particularly serious in laser
spectroscopy when the intense light at the laser wavelength, which is scattered by
cell walls or windows, reaches the entrance slit of the monochromator.

In order to illustrate the problematic nature of achieving the ruling accuracy
that is required to avoid these ghosts, let us assume that the carriage of the ruling
engine expands by only 1�m during the ruling of a 10 � 10 cm2 grating, e.g., due
to temperature drifts. The groove distance d in the second half of the grating differs
therefore from that of the first half by 5�10�6d . WithN D 105 grooves, the waves
from the second half are then completely out of phase with those from the first half.
The condition (4.21) is then fulfilled for different wavelengths in both parts of the
grating, giving rise to unwanted wavelengths at the wrong positions ˇ. Such ghosts
are particularly troublesome in laser Raman spectroscopy (Vol. 2, Chap. 3) or low-
level fluorescence spectroscopy, where very weak lines have to be detected in the
presence of extremely strong excitation lines. The ghosts from these excitation lines
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may overlap with the fluorescence or Raman lines and complicate the assignment
of the spectrum.

e) Holographic Gratings

Although modern ruling techniques with interferometric length control have greatly
improved the quality of ruled gratings [125–128] the most satisfactory way of
producing completely ghost-free gratings is with holography. The production of
holographic gratings proceeds as follows: a photosensitive layer on the grating’s
blank surface in the (x; y) plane is illuminated by two coherent plane waves with
the wave vectors k1 and k2 .jk1j D jk2j;k D fkx; 0; kzg/, which form the an-
gles ˛ and ˇ against the surface normal (Fig. 4.23). The intensity distribution of
the superposition in the plane z D 0 of the photolayer consists of parallel dark and
bright fringes imprinting an ideal grating into the layer, which becomes visible after
developing the photoemulsion. The grating constant

d D �=2

sin ˛ C sinˇ

depends on the wavelength � D 2�=jkj and on the angles ˛ and ˇ. Such holo-
graphic gratings are essentially free of ghosts. Their reflectivity R, however, is
lower than that of ruled gratings and is furthermore strongly dependent on the po-
larization of the incident wave. This is due to the fact that holographically produced
grooves are no longer planar, but have a sinusoidal surface and the “blaze angle” �
varies across each groove [130].

Summary: Summarizing the considerations above, we find that the grating acts
as a wavelength-selective mirror, reflecting light of a given wavelength only into
definite directions ˇm, called themth diffraction orders, which are defined by (4.21).
The intensity profile of a diffraction order corresponds to the diffraction profile
of a slit with width b D Nd cosˇm representing the size of the whole grating
projection as seen in the direction ˇm. The spectral resolution �=
� D mN D

Figure 4.23 a Photographic
production of a holographic
grating; b surface of a holo-
graphic grating
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Nd.sin ˛Csinˇ/=� is therefore limited by the effective size of the grating measured
in units of the wavelength.

For a more detailed discussion of special designs of grating monochromators,
such as the concave gratings used in VUV spectroscopy, the reader is referred to
the literature on this subject [125–131]. An excellent account of the production and
design of ruled gratings can be found in [125].

4.2 Interferometers

For the investigation of the various line profiles discussed in Chap. 3, interferome-
ters are preferentially used because, with respect to the spectral resolving power,
they are superior even to large spectrometers. In laser spectroscopy the differ-
ent types of interferometers not only serve to measure emission – or absorption
– line profiles, but they are also essential devices for narrowing the spectral width
of lasers, monitoring the laser linewidth, and controlling and stabilizing the wave-
length of single-mode lasers (Chap. 5).

In this section we discuss some basic properties of interferometers with the aid of
some illustrating examples. The characteristics of the different types of interferom-
eters that are essential for spectroscopic applications are discussed in more detail.
Since laser technology is inconceivable without dielectric coatings for mirrors, in-
terferometers, and filters, an extra section deals with such dielectric multilayers.
The extensive literature on interferometers [133–136] informs about special designs
and applications.

4.2.1 Basic Concepts

The basic principle of all interferometers may be summarized as follows (Fig. 4.24).
The indicent lightwave with intensity I0 is divided into two or more partial beams
with amplitudes Ak , which pass different optical path lengths sk D nxk (where
n is the refractive index) before they are again superimposed at the exit of the
interferometer. Since all partial beams come from the same source, they are co-

Figure 4.24 Schematic illustration of the basic principle for all interferometers
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herent as long as the maximum path difference does not exceed the coherence
length (Sect. 2.9). The total amplitude of the transmitted wave, which is the su-
perposition of all partial waves, depends on the amplitudes Ak and on the phases
	k D 	0C 2�sk=� of the partial waves. It is therefore sensitively dependent on the
wavelength �.

The maximum transmitted intensity is obtained when all partial waves interfere
constructively. This gives the condition for the optical path difference 
sik D
si � sk , namely


sik D m� ; m D 1; 2; 3; : : : : (4.33)

The condition (4.33) for maximum transmission of the interferometer applies not
only to a single wavelength � but to all �m for which

�m D 
s=m ; m D 1; 2; 3; : : : :
The wavelength interval

ı� D �m � �mC1 D 
s

m
� 
s

mC 1 D

s

m2 Cm (4.34a)

is called the free spectral range of the interferometer. With the mean wavelength
N� D 1

2
.�m C �mC1/ D 1

2

s. 1

m
C 1

mC1/, we can write the free spectral range as:

ı� D 2�

2mC 1 : (4.34b)

It is more conveniently expressed in terms of frequency. With � D c=�, (4.33)
yields 
s D mc=�m and the free spectral frequency range

ı� D �mC1 � �m D c=
s ; (4.34c)

becomes independent of the orderm.

Note It is important to realize that from one interferometric measurement alone
one can only determine � modulo m � ı� because all wavelengths � D �0 C mı�
are equivalent with respect to the transmission of the interferometer. One therefore
has at first to measure �within one free spectral range using other techniques before
the absolute wavelength can be obtained with an interferometer.

Examples of devices in which only two partial beams interfere are the Michelson
interferometer and the Mach–Zehnder interferometer. Multiple-beam interference
is used, for instance, in the grating spectrometer, the Fabry–Perot interferometer,
and in multilayer dielectric coatings of highly reflecting mirrors.

Some interferometers utilize the optical birefringence of specific crystals to pro-
duce two partial waves with mutually orthogonal polarization. The phase difference
between the two waves is generated by the different refractive index for the two
polarizations. An example of such a “polarization interferometer” is the Lyot fil-
ter [137] used in dye lasers to narrow the spectral linewidth (Sect. 4.2.11).
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4.2.2 Michelson Interferometer

The basic principle of the Michelson interferometer (MI) is illustrated in Fig. 4.25.
The incident plane wave

E D A0ei.!t�kx/

is split by the beam splitter S (with reflectivity R and transmittance T ) into two
waves

E1 D A1 exp Œi.!t � kx C 	1/� and E2 D A2 exp Œi.!t � ky C 	2/� :
If the beam splitter has negligible absorption (R C T D 1), the amplitudes

A1 and A2 are determined by A1 D
p
TA0 and A2 D

p
RA0 with A20 D A21 C A22.

After being reflected at the plane mirrors M1 and M2, the two waves are superim-
posed in the plane of observation B. In order to compensate for the dispersion that
beam 1 suffers by passing twice through the glass plate of beam splitter S, often an
appropriate compensation plate P is placed in one side arm of the interferometer.
The amplitudes of the two waves in the plane B are

p
TRA0, because each wave

has been transmitted and reflected once at the beam splitter surface S. The phase
difference 	 between the two waves is

	 D 2�

�
2.SM1 � SM2/C
	 ; (4.35)

where 
	 accounts for additional phase shifts that may be caused by reflection.
The total complex field amplitude in the plane B is then

E D pRTA0ei.!tC	0/.1C ei	/ : (4.36)

The detector in B cannot follow the rapid oscillations with frequency ! but mea-
sures the time-averaged intensity NI , which is, according to (2.30c),

NI D 1
2
c�0A

2
0RT .1C ei	/.1C e�i	/ D c�0A20RT .1C cos	/

D 1
2
I0.1C cos	/ for R D T D 1

2
and I0 D 1

2
c�0A

2
0 : (4.37)

Figure 4.25 Two-beam
interference in a Michelson
interferometer
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Figure 4.26 Intensity trans-
mitted through the Michelson
interferometer as a function
of the phase difference 	
between the two interfering
beams for R D T D 0:5

Figure 4.27 Circular fringe
pattern produced by the MI
with divergent incident light

If mirror M2 (which is mounted on a carriage) moves along a distance 
y, the
optical path difference changes by 
s D 2n
y (n is the refractive index between
S and M2) and the phase difference 	 changes by 2�
s=�. Figure 4.26 shows the
intensity IT.	/ in the plane B as a function of 	 for a monochromatic incident plane
wave. For the maxima at 	 D 2m� (m D 0; 1; 2; : : :), the transmitted intensity IT

becomes equal to the incident intensity I0, which means that the transmission of
the interferometer is TI D 1 for 	 D 2m� . In the minima for 	 D .2m C 1/�
the transmitted intensity IT is zero! The incident plane wave is being reflected back
into the source.

This illustrates that the MI can be regarded either as a wavelength-dependent fil-
ter for the transmitted light, or as a wavelength-selective reflector. In the latter func-
tion it is often used for mode selection in lasers (Fox–Smith selector, Sect. 5.4.3).

For divergent incident light the path difference between the two waves depends
on the inclination angle (Fig. 4.27). In the plane B an interference pattern of cir-
cular fringes, concentric to the symmetry axis of the system, is produced. Moving
the mirror M2 causes the ring diameters to change. The intensity behind a small
aperture in the plane B, centered around the interferometer axis still follows ap-
proximately the function I.	/ in Fig. 4.26. With parallel incident light but slightly
tilted mirrors M1 or M2, the interference pattern consists of parallel fringes, which
move into a direction perpendicular to the fringes when 
s is changed.

The MI can be used for absolute wavelength measurements by counting the num-
ber N of maxima in B when the mirror M2 is moved along a known distance 
y.
The wavelength � is then obtained from

� D 2n
y=N :

This technique has been applied to very precise determinations of laser wavelengths
(Sect. 4.4).
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The MI may be described in another equivalent way, which is quite instructive.
Assume that the mirror M2 in Fig. 4.25 moves with a constant velocity v D 
y=
t .
A wave with frequency! and wave vector k incident perpendicularly on the moving
mirror suffers a Doppler shift


! D ! � ! 0 D 2k � v D .4�=�/v ; (4.38)

on reflection.
Inserting the path difference 
s D 
s0 C 2vt and the corresponding phase

difference 	 D .2�=�/
s into (4.37) gives, with (4.38) and 
s0 D 0,

NI D 1
2
NI0.1C cos
!t/ with 
! D 2!v=c : (4.39)

We recognize (4.39) as the time-averaged beat signal, obtained from the superpo-
sition of two waves with frequencies ! and ! 0 D ! � 
!, giving the averaged
intensity of

NI D I0.1C cos
!t/cos2Œ.! 0 C !/t=2�x D 1
2
NI0.1C cos
!t/ :

Note that the frequency ! D .c=v/
!=2 of the incoming wave can be measured
from the beat frequency
!, provided the velocity v of the moving mirror is known.
The MI with uniformly moving mirror M2 can be therefore regarded as a device that
transforms the high frequency ! (1014–1015 s�1) of an optical wave into an easily
accessible rf-range .v=c/!.

Example 4.8
v D 3 cm=s ! .v=c/ D 10�10. The frequency ! D 3 � 1015 Hz .� D
0:6 �m/ is transformed to 
! D 6 � 105 Hz ' 
� � 100 kHz.

The maximum path difference 
s that still gives interference fringes in the
plane B is limited by the coherence length of the incident radiation (Sect. 2.9).
Using spectral lamps, the coherence length is limited by the Doppler width of the
spectral lines and is typically a few centimeters. With stabilized single-mode lasers,
however, coherence lengths of several kilometers can be achieved. In this case, the
maximum path difference in the MI is, in general, not restricted by the source but
by technical limits imposed by laboratory facilities.

The attainable path difference 
s can be considerably increased by an optical
delay line, placed in one arm of the interferometer (Fig. 4.28). It consists of a pair of
mirrors, M3, M4, which reflect the light back and forth many times. In order to keep
diffraction losses small, spherical mirrors, which compensate by collimation the di-
vergence of the beam caused by diffraction, are preferable. With a stable mounting
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Figure 4.28 Michelson interferometer with optical delay line allowing a large path difference
between the two interfering beams: a schematic arrangement; b spot positions of the reflected
beams on mirror M3

of the whole interferometer, optical path differences up to 350m could be realized
[138], allowing a spectral resolution of �=
� ' 1011. This was demonstrated by
measuring the linewidth of a HeNe laser oscillating at � D 5�1014 Hz as a function
of discharge current. The accuracy obtained was better than 5 kHz.

For gravitational-wave detection [139], a MI with side arms of about 1-km length
has been built where the optical path difference can be increased to 
s > 100 km
by using highly reflective spherical mirrors and an ultrastable solid-state laser with
a coherence length of 
sc � 
s (see Vol. 2, Sect. 9.8, Sect. 9.8.3) [140].

4.2.3 Fourier Spectroscopy

When the incoming wave consists of two components with frequencies !1 and !2,
the interference pattern varies with time according to

NI .t/ D 1
2
NI10Œ1C cos 2!1.v=c/t�C 1

2
I20Œ1C cos 2!2.v=c/t�

D NI0f1C cosŒ.!1 � !2/vt=c� cosŒ.!1 C !2/vt=c�g ; (4.40)

where we have assumed I10 D I20 D I0. This is a beat signal, where the amplitude
of the interference signal at .!1C!2/.v=c/ is modulated at the difference frequency
.!1 � !2/v=c (Fig. 4.29). From the sum

.!1 C !2/C .!1 � !2/ D 2!1
we obtain the frequency !1, and from the difference

.!1 C !2/ � .!1 � !2/ D 2!2
the frequency !2.

The spectral resolution can roughly be estimated as follows: if 
y is the path
difference traveled by the moving mirror in Fig. 4.25, the number of interference
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Figure 4.29 Interference
signal behind the MI with
uniformly moving mirror M2

when the incident wave con-
sists of two components with
frequencies !1 and !2 and
equal amplitudes

maxima that are counted by the detector isN1 D 2
y=�1 for an incident wave with
the wavelength �1, and N2 D 2
y=�2 for �2 < �1. The two wavelengths can be
clearly distinguished when N2 
 N1 C 1. This yields with �1 D �2 C 
� and

�	 � for the spectral resolving power

�


�
D 2
y

�
D N D 
s

�
with � D .�1 C �2/=2 and N D 1

2
.N1 CN2/ :

(4.41a)

The equivalent consideration in the frequency domain follows. In order to deter-
mine the two frequencies !1 and !2, one has to measure at least over one modula-
tion period

T D c

v

2�

!1 � !2 D
c

v

1

�1 � �2 :

The frequency difference that can be resolved is then


� D c

vT
D c


s
D c

N�
) 
�

c=�
D 1

N
or

�


�
D N D 
s

�
: (4.41b)

The spectral resolving power �=�� of the Michelson interferometer equals
the maximum path difference �s=� measured in units of the wavelength �.

Example 4.9
a) 
y D 5 cm, � D 10�m! N D 104) �=
� D 104,
b) 
y D 100 cm, � D 0:5 �m! N D 4 � 106) 
� D 2:5 � 10�7�

where the latter example can be realized only with lasers that have a suffi-
ciently large coherence length (Sect. 4.4).

c) �1 D 10�m, �2 D 9:8 �m ! .�2 � �1/ D 6 � 1011 Hz; with v D
1 cm=s ! T D 50ms. The minimum measuring time for the resolution
of the two spectral lines is 50ms, and the minimum path difference
s D
vT D 5 � 10�2 cm D 500�m.
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When the incoming radiation is composed of several components with frequen-
cies !k , the total amplitude in the plane B of the detector is the sum of all interfer-
ence amplitudes (4.36),

E D
X

k

Akei.!k tC	0k/.1C ei	k / : (4.42a)

A detector with a large time constant compared with the maximum period 1=.!i �
!k/ does not follow the rapid oscillations of the amplitude at frequencies !k or at
the difference frequencies .!i�!k/, but gives a signal proportional to the sum of the
intensities Ik in (4.37). We therefore obtain for the time-dependent total intensity

NI .t/ D
X

k

1
2
NIk0.1C cos	k/ D

X

k

1
2
NIk0.1C cos
!kt/ ; (4.42b)

where the audio frequencies 
!k D 2!kv=c are determined by all differences
between the frequencies !k of the components and by the velocity v of the mov-
ing mirror. Measurements of these frequencies 
!k allows one to reconstruct the
spectral components of the incoming wave with frequencies !k (Fourier transform
spectroscopy [141, 142]).

Since the path-difference 
s.t/ D v � t is a continuous function of the time t ,
the sum in (4.42b) can be replaced by the integral

I.t/ D
Z
I.!/ cos.! 
s=c/ d! : (4.42c)

The Fourier-transform of the measured intensity I.t/ in (4.42c) gives the wanted
spectrum

I.!/ D
Z
I.t/ � cos.! � vt=c/ dt : (4.42d)

The main advantage of Fourier spectroscopy is the fact, that all spectral intervals
d! with the intensity I.!/ d! are measured simultaneously in contrast to classi-
cal spectroscopy with a monochromator where the different spectral intervals are
measured subsequently. If a spectrum consisting ofN spectral intervals
! (where

! is the spectral interval which can be resolved by the wavelength-selecting in-
strument) is measured in a time T with a monochromator, Fourier spectroscopy can
obtain this spectrum in the shorter time T=

p
N with the same signal-to-noise ratio.

4.2.4 Mach–Zehnder Interferometer

Analogous to the Michelson interferometer, the Mach–Zehnder interferometer is
based on the two-beam interference by amplitude splitting of the incoming wave.
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Figure 4.30 Mach–Zehnder interferometer: a schematic arrangement, b path difference between
the two parallel beams

The two waves travel along different paths with a path difference 
s D 2a cos˛
(Fig. 4.30b). Inserting a transparent object into one arm of the interferometer alters
the optical path difference between the two beams. This results in a change of the
interference pattern, which allows a very accurate determination of the refractive
index of the sample and its local variation. The Mach–Zehnder interferometer may
be regarded therefore as a sensitive refractometer.

If the beam splitters B1, B2 and the mirrors M1, M2 are all strictly parallel,
the path difference between the two split beams does not depend on the angle of
incidence ˛ because the path difference between the beams 1 and 3 is exactly com-
pensated by the same path length of beam 4 between M2 and B2 (Fig. 4.30a). This
means that the interfering waves in the symmetric interferometer (without sam-
ple) experience the same path difference on the solid path as on the dashed path
in Fig. 4.30a. Without the sample, the total path difference is therefore zero; it is

s D .n � 1/L with the sample having the refractive index n in one arm of the
interferometer.

Expanding the beam on path 3 gives an extended interference-fringe pattern,
which reflects the local variation of the refractive index. Using a laser as a light
source with a large coherence length, the path lengths in the two interferometer
arms can be made different without losing the contrast of the interference pattern
(Fig. 4.31). With a beam expander (lenses L1 and L2), the laser beam can be ex-
panded up to 10–20 cm and large objects can be tested. The interference pattern
can either be photographed or may be viewed directly with the naked eye or with
a television camera [143]. Such a laser interferometer has the advantage that the
laser beam diameter can be kept small everywhere in the interferometer, except be-
tween the two expanding lenses. Since the illuminated part of the mirror surfaces
should not deviate from an ideal plane by more than �=10 in order to obtain good
interferograms, smaller beam diameters are advantageous.

The Mach–Zehnder interferometer has found a wide range of applications. Den-
sity variations in laminar or turbulent gas flows can be seen with this technique and
the optical quality of mirror substrates or interferometer plates can be tested with
high sensitivity [143, 144].



148 4 Spectroscopic Instrumentation

Figure 4.31 Laser interferometer for sensitive measurements of local variations of the index of
refraction in extended samples, for example, in air above a candle flame

In order to get quantitative information of the local variation of the optical path
through the sample, it is useful to generate a fringe pattern for calibration purposes
by slightly tilting the plates B1, M1 and B2, M2 in Fig. 4.31, which makes the inter-
ferometer slightly asymmetric. Assume that B1 and M1 are tilted clockwise around
the z-direction by a small angle ˇ and the pair B2, M2 is tilted counterclockwise by
the same angle ˇ. The optical path between B1 and M1 is then�1 D 2a cos.˛Cˇ/,
whereas B2M2 D �2 D 2a cos.˛ � ˇ/. After being recombined, the two beams
therefore have the path difference

� D �2 ��1 D 2aŒcos.˛ � ˇ/ � cos.˛ C ˇ/� D 4a sin ˛ sinˇ ; (4.43)

which depends on the angle of incidence ˛. In the plane of observation, an in-
terference pattern of parallel fringes with path differences � D m � � is observed
with an angular separation 
� between the fringes m and m C 1 given by 
� D
˛m � ˛mC1 D �=.4a sinˇ cos˛/.

A sample in path 3 introduces an additional path difference


s.ˇ/ D .n � 1/L= cosˇ

depending on the local refractive index n and the path length L through the sample.
The resulting phase difference shifts the interference pattern by an angle � D .n �
1/.L=�/
". Using a lens with a focal length f , which images the interference
pattern onto the plane O, gives the spatial distance
y D f
" between neighboring
fringes. The additional path difference caused by the sample shifts the interference
pattern by N D .n � 1/.L=�/ fringes.

Figure 4.32 shows for illustration the interferogram of the convection zone of
hot air above a candle flame, placed below one arm of the laser interferometer in
Fig. 4.31. It can be seen that the optical path through this zone changes by many
wavelengths.

The Mach–Zehnder interferometer has been used in spectroscopy to measure the
refractive index of atomic vapors in the vicinity of spectral lines (Sect. 3.1). The
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Figure 4.32 Interferogram
of the density profile in
the convection zone above
a candle flame (H. Rotten-
kolber) [143]

experimental arrangement (Fig. 4.33) consists of a combination of a spectrograph
and an interferometer, where the plates B1;M1 and B2;M2 are tilted in such a di-
rection that without the sample the parallel interference fringes with the separation

y.�/ D f
" are perpendicular to the entrance slit, which is parallel to the y-
direction. The spectrograph disperses the fringes with different wavelengths �i in
the z-direction. Because of the wavelength-dependent refractive index n.�/ of the
atomic vapor (Sect. 3.1.3), the fringe shift follows a dispersion curve in the vicinity
of the spectral line (Fig. 4.34). The dispersed fringes look like hooks around an
absorption line, which gave this technique the name hook method. To compensate
for background shifts caused by the windows of the absorption cell, a compensat-
ing plate is inserted into the second arm. This technique was developed in 1912
by Rozhdestvenski [146] in St. Petersburg. For more details of the Hook method,
see [144–146].

Figure 4.33 Combination of Mach–Zehnder interferometer and spectrograph used for the hook
method



150 4 Spectroscopic Instrumentation

Figure 4.34 Position of fringes as a function of wavelength around the absorption line doublet of
aluminium atoms, as observed behind the spectrograph [145]

4.2.5 Sagnac Interferometer

In the Sagnac interferometer (Fig. 4.35), the beam splitter BS splits the incom-
ing beam into a transmitted beam and a reflected beam. The two beams circulate
in opposite directions in the x; y-plane through the ring interferometer. If the
whole interferometer rotates clockwise around an axis in the z-direction through
the center of the x–y area around which the beams circulate, the optical path for
the clockwise-circulating beam becomes longer than that for the counterclockwise
running beam (the Sagnac effect). This causes a phase difference between the two
beams and the intensity of the interfering beams as measured in the observation
plane changes with the angular speed of rotation ˝. The phase shift between the
two partial waves is


	 D 8�A � n �˝=.� � c/ (4.44)

whereA is the area inside the circulating beams, n is the unit vector perpendicular to
the area A, � the wavelength of the optical waves, and c the velocity of light. Using
such a device angular velocities of less than 0:1ı=h (5�10�7 rad=s) can be detected.
Using optical fibers the optical beams can circulate N times (N D 100–10;000)
around the area A, and the effective area in (4.44) becomes N � A, which increases
the sensitivity considerably.

Such a device with three orthogonal Sagnac interferometers can be used as a nav-
igation system, because the Earth’s rotation causes a Sagnac effect that depends on
the angle between the surface normal n and the Earth’s axis of rotation !; i.e., on
the geographical latitude.

The Sagnac effect can be also explained by the Doppler effect: upon reflection at
a mirror moving at a velocity v, the frequency � of the reflected beam is shifted by

� D 2� � v=c. The frequencies of the two waves circulating in opposite directions
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Figure 4.35 Sagnac interferometer

are therefore shifted away from each other by


� D 4A=.L � �/n �˝ (4.45)

where L is the path length for one round trip in the ring interferometer. Since

	 D .2�L=c/
�, both equations are equivalent, although the detection technique
is different. The determination of the phase shift is based on measuring the intensity
change at the detector, while the beat frequency 
� can be directly counted with
high precision [147].

4.2.6 Multiple-Beam Interference

In a grating spectrometer, the interfering partial waves emitted from the different
grooves of the grating all have the same amplitude. In contrast, in multiple-beam
interferometers these partial waves are produced by multiple reflection at plane or
curved surfaces and their amplitude decreases with increasing number of reflec-
tions. The resultant total intensity therefore differs from (4.25).
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Figure 4.36 Multiple-beam
interference at two plane-
parallel partially reflecting
surfaces

a) Transmitted and Reflected Intensity

Assume that a plane wave E D A0 expŒi.!t � kx/� is incident at the angle ˛ on
a plane transparent plate with two parallel, partially reflecting surfaces (Fig. 4.36).
At each surface the amplitude Ai is split into a reflected component AR D Ai

p
R

and a refracted component AT D Ai
p
1 �R, neglecting absorption. The reflectiv-

ity R D IR=Ii depends on the angle of incidence ˛ and on the polarization of the
incident wave. Provided the refractive index n is known, R can be calculated from
Fresnel’s formulas [116]. From Fig. 4.36, the following relations are obtained for
the amplitudes Ai of waves reflected at the upper surface, Bi of refracted waves, Ci
of waves reflected at the lower surface, and Di of transmitted waves

jA1j D
p
R jA0j ; jB1j D

p
1 �R jA0j ;

jC1j D
p
R.1 �R/ jA0j ; jD1j D .1 �R/ jA0j ;

jA2j D
p
1 �R jC1j D .1 �R/

p
R jA0j ; jB2j D R

p
1 �R jA0j ;

jC2j D R
p
R.1 �R/ jA0j ; jD2j D R.1 �R/ jA0j ;

jA3j D
p
1 �R jC2j D R3=2.1 �R/ jA0j ; : : : : (4.46)

This scheme can be generalized to the equations

jAiC1j D RjAi j ; i 
 2 ; (4.47a)

jDiC1j D RjDi j ; i 
 1 : (4.47b)

Two successively reflected partial waves Ei and EiC1 have the optical path differ-
ence (Fig. 4.37)


s D .2nd= cosˇ/ � 2d tanˇ sin ˛ :

Because sin ˛ D n sinˇ, this can be reduced to


s D 2nd cosˇ D 2nd
q
1 � sin2 ˇ D 2d

p
n2 � sin2 ˛ ; (4.48a)
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Figure 4.37 Optical path
difference between two
beams being reflected from
the two surfaces of a plane-
parallel plate

if the refractive index within the plane-parallel plate is n > 1 and outside the plate
n D 1. This path difference causes a corresponding phase difference

	 D 2�
s=�C
	 ; (4.48b)

where 
	 takes into account possible phase changes caused by the reflections. For
instance, the incident wave with amplitude A1 suffers the phase jump 
	 D �

while being reflected at the medium with n > 1. Including this phase jump, we can
write

A1 D
p
RA0 exp.i�/ D �pRA0 :

The total amplitudeA of the reflected wave is obtained by summation over all partial
amplitudes Ai , taking into account the different phase shifts,

A D
pX

mD1
Amei.m�1/	 D �pRA0 C

p
RA0.1 �R/ei	 C

pX

mD3
Amei.m�1/	

D �pRA0
"
1 � .1 �R/ei	

p�2X

mD0
Rmeim	

#
: (4.49)

For vertical incidence (˛ D 0), or for an infinitely extended plate, we have an
infinite number of reflections. The geometrical series in (4.49) has the limit .1 �
Rei	/�1 for p !1. We obtain for the total amplitude

A D �pRA0 1 � ei	

1 �Rei	
: (4.50)

The intensity I D 2c�0AA� of the reflected wave is then, with I0 D 2c"0A0A�
0 ,

IR D I0R 4 sin2.	=2/

.1 �R/2 C 4R sin2.	=2/
: (4.51a)

In an analogous way, we find for the total transmitted amplitude

D D
1X

mD1
Dmei.m�1/	 D .1 �R/A0

1X

0

Rmeim	 ;
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Figure 4.38 Transmittance of an absorption-free multiple-beam interferometer as a function of
the phase difference 	 for different values of the finesse F �

which gives the total transmitted intensity

IT D I0 .1 �R/2
.1 �R/2 C 4R sin2.	=2/

: (4.52a)

Equations (4.51a, 4.52a) are called the Airy formulas. Since we have neglected ab-
sorption, we should have IRCIT D I0, as can easily be verified from (4.51a, 4.52a).

The abbreviation F D 4R=.1 � R/2 is often used, which allows the Airy equa-
tions to be written in the form

IR D I0 F sin2.	=2/

1C F sin2.	=2/
; (4.51b)

IT D I0 1

1C F sin2.	=2/
: (4.52b)

Figure 4.38 illustrates (4.52b) for different values of the reflectivity R. The maxi-
mum transmittance is T D 1 for 	 D 2m� . At these maxima IT D I0, therefore
the reflected intensity IR is zero. The minimum transmittance is

T min D 1

1C F D
�
1 �R
1CR

�2
:

Example: For R D 0:98) T min D 10�4.
For R D 0:90) T min D 2:8 � 10�3.
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The ratio

C D ITmax=ITmin D 1C F D
�
1CR
1 �R

�2

is named the contrast of the interferometer.

b) Free Spectral Range and Finesse

The frequency range •� between two maxima is the free spectral range of the in-
terferometer. Interference maxima occur for 
s D m � � (m D 1; 2; 3; : : :) which
corresponds to a phase difference 
˚ D m � 2� . The free spectral range •� is
obtained from

˚1 �˚2 D 2�
s=�1 � 2�
s=�2 D 2.mC 1/� � 2m� D 2�
! 
s � .�2 � �1/ D �1 � �2 � �2) •� D �2=
s :

Wegen � D c=� folgt

•� D � �c=�2	 •� D c=
s D c=
�
2d
p
n2 � sin2 ˛

�
: (4.53a)

For vertical incidence (˛ D 0), the free spectral range becomes

j•�j˛D0 D c

2nd
: (4.53b)

The full halfwidth � D j	1 � 	2j with I.	1/ D I.	2/ D I0=2 of the trans-
mission maxima in Fig. 4.38 expressed in phase differences is calculated from
(4.52a), (4.52b) as

� D 4 arcsin
�
1 �R
2
p
R

�
; (4.54a)

which reduces for R � 1) .1 �R/	 R to

� D 2.1 �R/p
R

D 4p
F
: (4.54b)

In frequency units, the free spectral range •� corresponds to a phase difference
•	 D 2� . Therefore the halfwidth 
� becomes


� D �

2�
•� ' 2•�

�
p
F
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Figure 4.39 Finesse F �

R of a Fabry–Perot interferometer as a function of the mirror reflectivity R

which yields for vertical incidence with (4.53b)


� D c

2nd

1 �R
�
p
R
: (4.54c)

The ratio •�=
� of free spectral range •� to the halfwidth 
� of the transmission
maxima is called the finesse F � of the interferometer. From (4.53b) and (4.54c) we
obtain for the “reflectivity finesse” F �

R

F �
R D

•�


�
D �
p
R

1 �R D
�

2

p
F : (4.55a)

The full halfwidth of the transmission peaks is then


� D •�

F �
R

: (4.55b)

The finesse is a measure for the effective number of interfering partial waves in the
interferometer. This means that for vertical incidence the maximum path difference
between interfering waves is 
smax D F �2nd . Figure 4.39 shows the finesse F �

R
as a function of the mirror reflectivity.

Since we have assumed an ideal plane-parallel plate with a perfect surface qual-
ity, the finesse (4.55a) is determined only by the reflectivity R of the surfaces. In
practice, however, deviations of the surfaces from an ideal plane and slight incli-
nations of the two surfaces cause imperfect superposition of the interfering waves.
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This results in a decrease and a broadening of the transmission maxima, which de-
creases the total finesse. If, for instance, a reflecting surface deviates by the amount
�=q from an ideal plane, the finesse cannot be larger than q. One can define the
total finesse F � of an interferometer by

1

F �2 D
X

i

1

F �2
i

; (4.55c)

where the different terms F �
i give the contributions to the decrease of the finesse

caused by the different imperfections of the interferometer.
If, for instance, the surface of the mirror shows a parabolic deviation from a plane

surface, i.e.,

S.r; '/ D S0 C ˛r2

the finesse becomes (with k D 2�=� [148])

F � D �

Œ.1 �R/2=RC k2˛2�1=2 (4.56)

which yields

1

F �2 D
.1 �R/2
�2R

C 4˛2

�2
D 1

F �2
R

C 1

F �2
f

(4.57)

where Fp is the finesse determined by the curvature of the mirror surface.

Example 4.10
A plane, nearly parallel plate has a diameterD D 5 cm, a thickness d D 1 cm,
and a wedge angle of 0:200. The two reflecting surfaces have the reflectivity
R D 95%. The surfaces are flat to within �=50, which means that no point
of the surface deviates from an ideal plane by more than �=50. The different
contributions to the finesse are:

� Reflectivity finesse: F �
R D �

p
R=.1 �R/ ' 60;

� Surface finesse: FS ' 50;
� Wedge finesse: with a wedge angle of 0:200 the optical path between the

two reflecting surfaces changes by about 0:1�.� D 0:5 �m/ across the
diameter of the plate. For a monochromatic incident wave this causes im-
perfect interference and broadens the maxima corresponding to a finesse
of about 20.

The total finesse is then F �2 D 1=.1=602C 1=502C 1=202/! F � ' 17:7.
This illustrates that high-quality optical surfaces are necessary to obtain

a high total finesse [148]. It makes no sense to increase the reflectivity without
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Figure 4.40 Transmitted in-
tensity IT.�/ for two closely
spaced spectral lines at the
limit of spectral resolution
where the linespacing equals
the halfwidth of the lines

a corresponding increase of the surface finesse. In our example the imperfect
parallelism was the main cause for the low finesse. Decreasing the wedge
angle to 0:100 increases the wedge finesse to 40 and the total finesse to 27:7.

A much larger finesse can be achieved using spherical mirrors, because the
demand for parallelism is dropped. With sufficiently accurate alignment and
high reflectivities, values of F � > 50;000 are possible (Sect. 4.2.10).

c) Spectral Resolution

The spectral resolution, �=
� or �=
�, of an interferometer is determined by the
free spectral range •� and by the finesse F �. Two incident waves with frequencies
�1 and �2 D �1C
� can still be resolved if their frequency separation 
� is larger
than ı�=F �, which means that their peak separation should be larger than their full
halfwidth.

Quantitatively this can be seen as follows: assume the incident radiation consists
of two components with the intensity profiles I1.� � �1/ and I2.� � �2/ and equal
peak intensities I1.�1/ D I2.�2/ D I0. For a peak separation �2 � �1 D •�=F � D
2•�=�

p
F , the total transmitted intensity I.�/ D I1.�/C I2.�/ is obtained from

(4.52a) as

I.�/ D I0
�

1

1C F sin2.��=•�/
C 1

1C F sin2Œ�.� C •�=F �/=•��

�
; (4.58)

where the phase shift 	 D 2�
s=� D 2�
s.�=c/ D 2��=•� in (4.52b) has been
expressed by the free spectral range •� D c=2nd D c=
s, where
s is the optical
path difference between two successive partial waves in Fig. 4.36 for ˛ D 0. The
function I.�/ is plotted in Fig. 4.40 around the frequency � D .�1 C �2/=2. For
� D �1 D mc=2nd , the first term in (4.58) becomes 1 and the second term can be
derived with sinŒ�.�1 C •�=F �/=•�� D sin�=F � ' �=F � and F.�=F �/2 D 4
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to become 0:2. Inserting this into (4.58) yields I.� D �1/ D 1:2I0, I.� D .�1 C
�2/=2/ ' I0, and I.� D �2/ D 1:2I0. This just corresponds to the Rayleigh
criterion for the resolution of two spectral lines. The spectral resolving power of
the interferometer is therefore

�=
� D .�=•�/F � ! 
� D •�=F � : (4.59)

This can be also expressed by the optical path differences 
s between two succes-
sive partial waves

�


�
D �


�
D F �
s

�
: (4.60)

The resolving power of an interferometer is the product of finesse F � and optical
path difference 
s=� in units of the wavelength �.

A comparison with the resolving power �=
� D mN D N
s=� of a grating
spectrometer with N grooves shows that the finesse F � can indeed be regarded as
the effective number of interfering partial waves and F �
s can be regarded as the
maximum path difference between these waves.

The spectral resolution �=�� D �=�� equals the maximum path-difference
�smax=� in units of the wavelength �.

Example 4.11
d D 1 cm, n D 1:5, R D 0:98, � D 500 nm. An interferometer with negligi-
ble wedge and high-quality surfaces, where the finesse is mainly determined
by the reflectivity, achieves with F � D �

p
R=.1 � R/ D 155 a resolving

power of �=
� D 107. This means that the instrument’s linewidth is about

� � 5 � 10�5 nm or, in frequency units, 
� D 60MHz.

d) Influence of Absorption Losses

Taking into account the absorption A D .1�R � T / of each reflective surface, the
transmitted intensity (4.52a), (4.52b) must be modified to

IT D I0 T 2

.AC T /2
1

Œ1C F sin2.ı=2/�
; (4.61a)

where T 2 D T1T2 is the product of the transmittance of the two reflecting surfaces.
The absorption causes three effects:
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a) The maximum transmittance is decreased by the factor

IT

I0
D T 2

.AC T /2 D
T 2

.1 �R/2 < 1 : (4.61b)

Note that even a small absorption of each reflecting surface results in a drastic
reduction of the total transmittance. For A D 0:05, R D 0:9 ! T D 0:05)
T 2=.1 � R/2 D 0:25. This illustrates, that even for a small absorption of A D
5% the transmitted intensity drops to 25 % of the absorption-free transmittance.

b) For a given transmission factor T , the reflectivity R D 1�A�T decreases with
increasing absorption. The quantity

F D 4R

.1 �R/2 D
4.1� T � A/
.T C A/2 (4.61c)

decreases with increasing A. For the example above we obtain F D 360. This
makes the transmission peaks broader because of the decreasing number of in-
terfering partial waves. The contrast

C D Imax
T

Imin
T

D 1C F D
�
1CR
1 �R

�2
(4.61d)

of the transmitted intensity also decreases. If absorption is taken into account,
we can insert R D 1 � A � T and obtain for the contrast

C D ITmax=ITmin D .2 � A � T /2=.AC T /2 :
For A > 0 but constant transmission T the reflectivity R and therefore the
contrast C decreases.

Example 4.12
R D 0:95, A D 0:03, T D 0:02) C D 1521.
Without absorption is A D 0, T D 0:02 and R D 0:98) C D 9801.

c) The absorption causes a phase shift
	 at each reflection, which depends on the
wavelength �, the polarization, and the angle of incidence ˛ [116]. This effect
causes a wavelength-dependent shift of the maxima.

4.2.7 Plane Fabry–Perot Interferometer

A practical realization of the multiple beam-interference discussed in this section
may use either a solid plane-parallel glass or fused quartz plate with two coated re-
flecting surfaces (Fabry–Perot etalon, Fig. 4.41a) or two separate plates, where one
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Figure 4.41 Two real-
izations of a Fabry–Perot
interferometer: a solid etalon;
b air-spaced plane-parallel
reflecting surfaces

surface of each plate is coated with a reflection layer. The two reflecting surfaces
are opposed and are aligned to be as parallel as achievable (Fabry–Perot interfer-
ometer (FPI), Fig. 4.41b). The outer surfaces are coated with antireflection layers
in order to avoid reflections from these surfaces that might overlap the interference
pattern. Furthermore, they have a slight angle against the inner surfaces (wedge).

Both devices can be used for parallel as well as for divergent incident light. We
now discuss them in more detail, first considering their illumination with parallel
light.

a) The Plane FPI as a Transmission Filter

In laser spectroscopy, etalons are mainly used as wavelength-selective transmission
filters within the laser resonator to narrow the laser bandwidth (Sect. 5.4). The
wavelength �m or frequency �m for the transmission maximum ofmth order, where
the optical path between successive beams is 
s D m�, can be deduced from
(4.48a) and Fig. 4.37 to be

�m D 2d

m

p
n2 � sin2 ˛ D 2nd

m
cosˇ ; (4.62a)

�m D mc

2nd cosˇ
: (4.62b)

For all wavelengths � D �m (m D 1; 2; : : :) in the incident light, the phase differ-
ence between the transmitted partial waves becomes ı D 2m� and the transmitted
intensity is, according to (4.61a)–(4.61d),

IT D T 2

.1 �R/2 I0 D
T 2

.AC T /2 I0 ; (4.63)

where A D 1 � T � R is the absorption of the etalon (substrate absorption plus
absorption of one reflecting surface). The reflected waves interfere destructively for
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Figure 4.42 Incomplete in-
terference of two reflected
beams with finite dia-
meter D, causing a decrease
of the maximum transmitted
intensity

� D �m and the reflected intensity becomes zero for A D 0 while the transmitted
intensity is IT D I0.

For A > 0 there remains a small residual reflected intensity and IT=I0 < 1.
Note, however, that this is only true for A 	 1 and infinitely extended plane

waves, where the different reflected partial waves completely overlap. If the inci-
dent wave is a laser beam with the finite diameter D, the different reflected partial
beams do not completely overlap because they are laterally shifted by � D b cos˛
with b D 2d tanˇ (Fig. 4.42). For a rectangular intensity profile of the laser beam,
the fraction �=D of the reflected partial amplitudes does not overlap and cannot
interfere destructively. This means that, even for maximum transmission, the re-
flected intensity is not zero but a background reflection remains, which is missing
in the transmitted light. For small angles ˛, one obtains for the intensity loss per
transit due to reflection [149] for a rectangular beam profile

IR

I0
D 4R

.1 �R/2
�
2˛d

nD

�2
: (4.64a)

For a Gaussian beam profile the calculation is more difficult, and the solution can
only be obtained numerically. The result for a Gaussian beam with the radius w
(Sect. 5.3) is [150]

IR

I0
' 8R

.1 �R/2
�
2d˛

nw

�2
: (4.64b)

A parallel light beam with the diameter D passing a plane-parallel plate with the
angle of incidence ˛ therefore suffers reflection losses in addition to the eventual
absorption losses. The reflection losses increase with ˛2 and are proportional to the
ratio .d=D/2 of the etalon thickness d and the beam diameter D (walk-off losses).

Example 4.13
d D 1 cm, D D 0:2 cm, n D 1:5, R D 0:3, ˛ D 1ı ¶ 0:017 rad! IR=I0 D
0:05, which means 5% walk-off losses.
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Figure 4.43 The interference ring system of the transmitted intensity may be regarded as
wavelength-selective imaging of corresponding ring areas of an extended light source

The transmission peak �m of the etalon can be shifted by tilting the etalon. Ac-
cording to (4.62a), (4.62b) the wavelength �m decreases with increasing angle of
incidence ˛. The walk-off losses, however, limit the tuning range of tilted etalons
within a laser resonator. With increasing angle ˛, the losses may become intolerably
large.

b) Illumination with Divergent Light

Illuminating the FPI with divergent monochromatic light (e.g., from an extended
source or from a laser beam behind a diverging lens), a continuous range of inci-
dent angles ˛ is offered to the FPI, which transmits, for a wavelength �m, those
directions ˛m that obey (4.62a). We then observe an interference pattern of bright
rings in the transmitted light (Fig. 4.43). Since the reflected intensity IR D I0 � IT

is complementary to the transmitted one, a corresponding system of dark rings ap-
pears in the reflected light at the same angles of incidence ˛m.

When ˇ is the angle of inclination to the interferometer axis inside the FPI, the
transmitted intensity is maximum, according to (4.62a), (4.62b), for

m� D 2nd cosˇ ; (4.65)

where n is the refractive index between the reflecting planes. Let us number the
rings by the integer p, beginning with p D 0 for the central ring. Withm D m0�p,
we can rewrite (4.65) for small angles p̌ as

.m0 � p/� D 2nd cos p̌ � 2nd.1 � ˇ2p=2/ D 2nd


1 � 1

2

�n0 p̨

n

�2�
; (4.66)

where n0 is the refractive index of air, and Snell’s law sin ˛ ' ˛ D .n=n0/ˇ has
been used (Fig. 4.44).
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Figure 4.44 Illustration of
(4.67a), (4.67b)

When the interference pattern is imaged by a lens with the focal length f into the
plane of the photoplate, we obtain for the ring diameters Dp D 2f p̨ the relations

.m0 � p/� D 2nd
h
1 � .n0=n/2D2

p=
�
8f 2

	i
; (4.67a)

.m0 � p � 1/� D 2nd
h
1 � .n0=n/2D2

pC1=
�
8f 2

	i
: (4.67b)

Subtracting the second equation from the first one yields

D2
pC1 �D2

p D
4nf 2

n20d
� : (4.68)

For the smallest ring with p D 0, (4.66) becomes

m0� D 2nd
�
1 � ˇ20=2

	 ) m0�C ndˇ20 D 2nd ; (4.69)

which can be written as

.m0 C �/� D 2nd : (4.70)

The “excess” � < 1, also called fractional interference order, can be obtained from
a comparison of (4.69) and (4.70) as

� D ndˇ20=� D .n0=n/d˛20=� : (4.71)

Inserting � from (4.70) into (4.67a) yields the relation

D2
p D

8n2f 2

n20.m0 C �/ .p C �/ : (4.72)

A linear fit of the squares D2
p of the measured ring diameters versus the ring num-

ber p yields the excess � and therefore from (4.70) the wavelength �, provided the
refractive index n and the value of d of the plate separation are known from a pre-
vious calibration of the interferometer. However, the wavelength is determined by
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Figure 4.45 Determination
of the access � from the plot
of D2

p versus p

(4.70) only modulo a free spectral range •� D �2=.2nd/. This means that all wave-
lengths �m differing by m free spectral ranges produce the same ring systems. For
an absolute determination of �, the integer orderm0 must be known.

When illuminated with strictly parallel light parallel to the interferom-
eter axis the plane of observation behind the FPI is completely dark for
� ¤ 2nd cos =̌m and uniformly illuminated for � D 2nd cos =̌m. The
reflected intensity is zero for � D 2nd cos =̌m, otherwise the reflection coef-
ficient is R D 1 which means that the total incident intensity is reflected back
into the source.

Illumination with divergent light produces a ring system of bright rings with
a dark background. In the reflected light a dark ring system on a bright back-
ground appears. If the light beam is divergent in the x-direction but parallel in
the y-direction the ring system changes into a system of parallel straight bright
or dark lines.

The experimental scheme for the absolute determination of � utilizes a com-
bination of FPI and spectrograph in a so-called crossed arrangement (Fig. 4.46),
where the ring system of the FPI is imaged onto the entrance slit of a spectrograph.
The spectrograph disperses the slit images S.�/ with a medium dispersion in the
x-direction (Sect. 4.1), the FPI provides high dispersion in the y-direction. The
resolution of the spectrograph must only be sufficiently high to separate the im-
ages of two wavelengths differing by one free spectral range of the FPI. Figure 4.47
shows, for illustration, a section of the Na2 fluorescence spectrum excited by an
argon laser line. The ordinate corresponds to the FPI dispersion and the abscissa to
the spectrograph dispersion [151].

The angular dispersion dˇ=d� of the FPI can be deduced from (4.66)

dˇ

d�
D
�

d�

dˇ

��1
D m=.2nd sinˇ/ D 1

�m sinˇ
with �m D 2nd=m : (4.73)
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Figure 4.46 Combination of FPI and spectrograph for the unambiguous determination of the
integral order m0

Figure 4.47 Section of the argon laser-excited fluorescence spectrum of Na2 obtained with the
arrangement of crossed FPI and spectrograph shown in Fig. 4.46 [151]

Equation (4.73) shows that the angular dispersion becomes infinite for ˇ ! 0. The
linear dispersion of the ring system on the photoplate is

dD

d�
D f dˇ

d�
D f

�m sinˇ
: (4.74)
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Example 4.14
f D 50 cm, � D 0:5 �m. At a distance of 1mm from the ring center is
ˇ D 0:1=50 and we obtain a linear dispersion of dD=d� D 500mm=nm.
This is at least one order of magnitude larger than the dispersion of a large
spectrograph.

c) The Air-Spaced FPI

Different from the solid etalon, which is a plane-parallel plate coated on both sides
with reflecting layers, the plane FPI consists of two wedged plates, each having
one high-reflection and one antireflection coating (Fig. 4.41b). The finesse of the
FPI critically depends, apart from the reflectivity R and the optical surface quality,
on the parallel alignment of the two reflecting surfaces. The advantage of the air-
spaced FPI, that any desired free spectral range can be realized by choosing the
corresponding plate separation d , must be paid for by the inconvenience of careful
alignment. Instead of changing the angle of incidence ˛, wavelength tuning can
be also achieved for ˛ D 0 by variation of the optical path difference 
s D 2nd ,
either by changing d with piezoelectric tuning of the plate separation, or by altering
the refractive index by a pressure change in the container enclosing the FPI.

The tunable FPI is used for high-resolution spectroscopy of line profiles. The
transmitted intensity IT.p/ as a function of the optical path difference nd is given
by the convolution

IT.�/ D I0.�/T .nd; �/ ;

where the transmission of the FPI T .nd; �/ D T .	/ can be obtained from
(4.52a), (4.52b).

With photoelectric recording (Fig. 4.48), the large dispersion at the ring center
can be utilized. The light source LS is imaged onto a small pinhole P1, which
serves as a point source in the focal plane of L1. The parallel light beam passes
the FPI, and the transmitted intensity is imaged by L2 onto another pinhole P2 in
front of the detector. All light rays within the cone cosˇ0 � m0�=.nd/, where
ˇ is the angle against the interferometer axis, contribute according to (4.66) to the
central fringe. If the optical path length nd is tuned, the different transmission
orders with m D m0;m0 C 1;m0 C 2; : : : are successively transmitted for a wave-
length � according to m� D 2nd . Light sources that come close to being a point
source, can be realized when a focused laser beam crosses a sample cell and the
laser-induced fluorescence emitted from a small section of the beam length is im-
aged through the FPI onto the entrance slit of a monochromator, which is tuned to
the desired wavelength interval 
� around �m (Fig. 4.46). If the spectral interval

� resolved by the monochromator is smaller then the free spectral range •� of the
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Figure 4.48 Use of a plane FPI for photoelectric recording of the spectrally resolved transmitted
intensity IT.n � d; �/ emitted from a point source

Figure 4.49 Photoelectric recording of a Doppler-broadened laser-excited fluorescence line of
Na2 molecules in a vapor cell and the Doppler-free scattered laser line. The pressure scan
p D a

corresponds to one free spectral range of the FPI

FPI, an unambigious determination of � is possible. For illustration, Fig. 4.49 shows
a Doppler-broadened fluorescence line of Na2 molecules excited by a single-mode
argon laser at � D 488 nm, together with the narrow line profile of the scattered
laser light. The pressure change 
p ¶ 2d
nL D a corresponds to one free spec-
tral range of the FPI, i.e., 2d
nL D �.

For Doppler-free resolution of fluorescence lines (Vol. 2, Chap. 4), the laser-
induced fluorescence of molecules in a collimated molecular beam can be imaged
through a FPI onto the entrance slit of the monochromator (Fig. 4.50). In this case,
the crossing point of laser and molecular beam, indeed, represents nearly a point
source.
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Figure 4.50 Experimental arrangement for photoelectric recording of high-resolution fluores-
cence lines excited by a single-mode laser in a collimated molecular beam and observed through
FPI plus monochromator

4.2.8 Confocal Fabry–Perot Interferometer

A confocal interferometer, sometimes called incorrectly a spherical FPI, consists
of two spherical mirrors M1, M2 with equal curvatures (radius r) that are opposed at
a distance d D r (Fig. 4.51a) [152, 153]. These interferometers have gained great
importance in laser physics as high-resolution spectrum analyzers for detecting the
mode structure and the linewidth of lasers [154–156], and, in the nearly confocal
form, as laser resonators (Sect. 5.2).

Neglecting spherical aberration, all light rays entering the interferometer paral-
lel to its axis would pass through the focal point F and would reach the entrance
point P1 again after having passed the confocal FPI four times (Fig. 4.51a). Fig-
ure 4.51b illustrates the general case of a ray which enters the confocal FPI at
a small inclination � and passes the successive points P1, A, B, C, P1, shown in
Fig. 4.51d in a projection. Angle � is the skew angle of the entering ray.

Because of spherical aberration, rays with different distances �1 from the axis
will not all go through F but will intersect the axis at different positions F0 depending
on �1 and � . Also, each ray will not exactly reach the entrance point P1 after four
passages through the confocal FPI since it is slightly shifted at successive passages.
However, it can be shown [152, 155] that for sufficiently small angles � , all rays
intersect at a distance �.�1; �/ from the axis in the vicinity of the two points P and P0
located in the central plane of the confocal FPI (Fig. 4.51b).

The optical path difference 
s between two successive rays passing through P
can be calculated from geometrical optics. For �1 	 r and � 	 1, one obtains for
the near confocal case d � r [155]


s D 4d C �21�22 cos 2�=r3C higher-order terms : (4.75)

An incident light beam with diameter D D 2�1 therefore produces, in the central
plane of a confocal FPI, an interference pattern of concentric rings. Analogous of
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Figure 4.51 Trajectories of rays in a confocal FPI: a incident beam parallel to the FPI axis; b
inclined incident beam; c perspective view for illustrating the skew angle; d projection of the
skewed rays onto the mirror surfaces

the treatment in Sect. 4.2.7, the intensity I.�; �/ is obtained by adding all ampli-
tudes with their correct phases ı D ı0 C .2�=�/
s. According to (4.52a), (4.52b)
we get

I.�; �/ D I0T
2

.1 �R/2 C 4R sin2Œ.�=�/
s�
; (4.76)

where T D 1�R�A is the transmission of each of the two mirrors. The intensity
has maxima for ı D 2m� , which is equivalent to

4d C �4=r3 D m� ; (4.77)

when we neglect the higher-order terms in (4.75) and set � D 0 and �2 D �1�2.
The free spectral range •�, i.e., the frequency separation between successive

interference maxima, is for the near-confocal FPI with �	 d

•� D c

4d C �4=r3 ; (4.78)

which is different from the expression •� D c=2d for the plane FPI.
The radius �m of the mth-order interference ring is obtained from (4.77),

�m D Œ.m�� 4d/r3�1=4 ; (4.79)
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which reveals that �m depends critically on the separation d of the spherical mirrors.
Changing d by a small amount � from d D r to d D r C � changes the path
difference to


s D 4.r C �/C �4=.r C �/3 � 4.r C �/C �4=r3 : (4.80)

For a given wavelength �, the value of � can be chosen such that 4.r C �/ D m0�.
In this case, the radius of the central ring becomes zero. We can number the outer
rings by the integer p and obtain with m D m0 C p for the radius of the pth ring
the expression

�p D .p�r3/1=4 : (4.81)

The radial dispersion deduced from (4.79),

d�

d�
D mr3=4

Œ.m�� 4d/r3�3=4 ; (4.82)

becomes infinite for m� D 4d , which occurs according to (4.79) at the center with
� D 0.

This large dispersion can be used for high-resolution spectroscopy of narrow line
profiles with a scanning confocal FPI and photoelectric recording (Fig. 4.52).

If the central plane of the near-confocal FPI is imaged by a lens onto a circular
aperture with sufficiently small radius b < .�r3/1=4 only the central interference
order is transmitted to the detector while all other orders are stopped. Because of the
large radial dispersion for small � one obtains a high spectral resolving power. With
this arrangement not only spectral line profiles but also the instrumental bandwidth
can be measured, when an incident monochromatic wave (from a stabilized single-
mode laser) is used. The mirror separation d D rC � is varied by the small amount
� and the power

P.�; b; �/ D 2�
bZ

�D0
�I.�; �; �/d� ; (4.83)

Figure 4.52 Photoelectric recording of the spectral light power transmitted of a scanning confocal
FPI
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Figure 4.53 Illustration of
the larger sensitivity against
misalignment for the plane
FPI compared with the spher-
ical FPI

transmitted through the aperture is measured as a function of � at fixed values of
� and b.

The integrand I.�; �; �/ can be obtained from (4.76), where the phase difference
ı.�/ D 2�
s=� is deduced from (4.80).

The optimum choice for the radius b of the aperture is based on a compromise be-
tween spectral resolution and transmitted intensity. When the interferometer has the
finesse F �, the spectral halfwidth of the transmission peak is •�=F �, see (4.55b),
and the maximum spectral resolving power becomes F �
s=� (4.60). For the ra-
dius b D .r3�=F �/1=4 of the aperture, which is just .F �/1=4 times the radius �1 of
a fringe with p D 1 in (4.81), the spectral resolving power is reduced to about 70%
of its maximum value. This can be verified by inserting this value of b into (4.83)
and calculating the halfwidth of the transmission peak P.�1; F �; �/.

The total finesse of the confocal FPI is, in general, higher than that of a plane
FPI for the following reasons:

� The alignment of spherical mirrors is far less critical than that of plane mirrors,
because tilting of the spherical mirrors does not change (to a first approximation)
the optical path length 4r through the confocal FPI, which remains approxi-
mately the same for all incident rays (Fig. 4.53). For the plane FPI, however, the
path length increases for rays below the interferometer axis, but decreases for
rays above the axis.

� Spherical mirrors can be polished to a higher precision than plane mirrors. This
means that the deviations from an ideal sphere are less for spherical mirrors than
those from an ideal plane for plane mirrors. Furthermore, such deviations do not
wash out the interference structure but cause only a distortion of the ring system
because a change of d allows the same path difference
s for another value of �
according to (4.75).

The total finesse of a confocal FPI is therefore mainly determined by the reflec-
tivity R of the mirrors. For R D 0:99, a finesse F � D �

p
R=.1 �R/ � 300

can be achieved, which is much higher than that obtainable with a plane FPI, where
other factors decrease F �. With the mirror separation r D d D 3 cm, the free
spectral range is ı D 2:5GHz and the spectral resolution is 
� D 7:5MHz at the
finesse F � D 300. This is sufficient to measure the natural linewidth of many opti-
cal transitions. With modern high-reflection coatings, values of R D 0:9995 can be
obtained and confocal FPI with a finesse F � 
 104 have been realized [157].
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From Fig. 4.52 we see that the solid angle accepted by the detector behind the
aperture with radius b is ˝ D �b2=r2. The light power transmitted to the detector
is proportional to the product of the solid angle ˝ and area A in the central plane,
which is imaged by the lens onto the aperture (often called the étendue U ). With
the aperture radius b D .r3�=F �/1=4 (see above) the étendue becomes

U D A˝ D �2b4=r2 D �2r�=F � : (4.84)

For a given finesse F �, the étendue of the confocal FPI increases with the mirror
separation d D r . The spectral resolving power

�


�
D 4F � r

�
; (4.85)

of the confocal FPI is proportional to the product of finesse F � and the ratio of
mirror separation r D d to the wavelength �. With a given étendueU D �2r�=F �,
we can insert r D UF �=.�2�/ into (4.84) and obtain for the spectral resolving
power

�


�
D
�
2F �

��

�2
U ; (confocal FPI) : (4.86)

Let us compare this with the case of a plane FPI with the plate diameter D and the
separation d , which is illuminated with nearly parallel light (Fig. 4.48). According
to (4.66), the path difference between a ray parallel to the axis and a ray with a small
inclination ˇ is, given by 
s D 2nd.1 � cosˇ/ � ndˇ2.

To achieve a finesse F � with photoelectric recording, this variation of the path
length for the different rays through the interferometer should not exceed �=F �,
which restricts the solid angle ˝ D ˇ2 acceptable by the detector to ˝ � �=.d �
F �/. The étendue is therefore

U D A˝ D �D
2

4

�

d � F � : (4.87)

Inserting the value of d given by this equation into the spectral resolving power
�=
� D 2dF �=�, we obtain

�


�
D �D2

2U
; (plane FPI) : (4.88)

While the spectral resolving power is proportional to U for the confocal FPI, it is
inversely proportional to U for the plane FPI. This is because the étendue increases
with the mirror separation d for the confocal FPI but decreases proportional to 1=d
for the plane FPI. For a mirror radius r > D2=4d , the étendue of the confocal FPI
is larger than that of a plane FPI with equal spectral resolution. This means that the
transmitted power is larger for the confocal FPI for r > D2=4d .
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Example 4.15
A confocal FPI with r D d D 5 cm has for � D 500 nm the étendue U D
.2:47 � 10�3=F �/ cm2=sr. This is the same étendue as that of a plane FPI
with d D 5 cm and D D 10 cm. However, the diameter of the spherical
mirrors can be much smaller (less than 5mm). With a finesse F � D 100,
the étendue is U D 2:5 � 10�5 [cm2 sr] and the spectral resolving power is
�=
� D 4 � 107. With this étendue the resolving power of the plane FPI is
6�106, provided the whole plane mirror surface has a surface quality to allow
a surface finesse of F � 
 100. In practice, this is difficult to achieve for a flat
plane with D D 10 cm diameter, while for the small spherical mirrors even
F � > 104 is feasible.

This example shows that for a given light-gathering power, the confocal
FPI can have a much higher spectral resolving power than the plane FPI.

More detailed information on the history, theory, practice, and application of
plane and spherical Fabry–Perot interferometers may be found in [158–160].

4.2.9 Multilayer Dielectric Coatings

The constructive interference found for the reflection of light from plane-parallel
interfaces between two regions with different refractive indices can be utilized to
produce highly reflecting, essentially absorption-free mirrors. The improved tech-
nology of such dielectric mirrors has greatly supported the development of visible
and ultraviolet laser systems.

The reflectivity R of a plane interface between two regions with complex refrac-
tive indices n1 D n0

1 � i�1 and n2 D n0
2 � i�2 can be calculated from Fresnel’s

formulas [129]. It depends on the angle of incidence ˛ and on the direction of
polarization. For the polarization component with the electric field vector E par-
allel to the plane of incidence (defined by the incident and the reflected beam), the
reflectivity is

Rp D
�
n2 cos˛ � n1 cosˇ

n2 cos˛ C n1 cosˇ

�2
D



tan.˛ � ˇ/
tan.˛ C ˇ/

�2
(4.89a)

where ˇ is the refraction angle (sinˇ D .n1=n2/ sin ˛). For the vertical component
(E perpendicular to the plane of incidence), one obtains:

Rs D
�
n1 cos˛ � n2 cosˇ

n1 cos˛ C n2 cosˇ

�2
D



sin.˛ � ˇ/
sin.˛ C ˇ/

�2
: (4.89b)
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Figure 4.54 Reflectivities Rp and Rs for the two polarization components parallel and perpen-
dicular to the plane of incidence as a function of the angle of incidence ˛: a air–glass boundary
(n1 D 1, n2 D 1; 5); b air-metal boundary for Cu(n0 D 0:76, � D 3:32) and Ag(n0 D 0:055,
� D 3:32)

The reflectivities Rp and Rs are illustrated in Fig. 4.54 for three different materials
for incident light polarized parallel .Rp/ and perpendicular .Rs/ to the plane of
incidence.

For vertical incidence (˛ D 0, ˇ D 0), one obtains from Fresnel’s formulas for
both polarizations

Rj˛D0 D
�
n1 � n2
n1 C n2

�2
: (4.89c)

Since this case represents the most common situation for laser mirrors, we shall
restrict the following discussion to vertical incidence.

To achieve maximum reflectivities, the numerator .n1 � n2/2 should be maxi-
mized and the denominator minimized. Since n1 is always larger than one, this
implies that n2 should be as large as possible. Unfortunately, the dispersion rela-
tions (3.24a, 3.24b) imply that a large value of n also causes large absorption. For
instance, highly polished metal surfaces have a maximum reflectivity of R D 0:95

in the visible spectral range. The residual 5% of the incident intensity are absorbed
and therefore lost.

The situation can be improved by selecting reflecting materials with low ab-
sorption (which then necessarily also have low reflectivity), but using many lay-
ers with alternating high and low refractive index n. Choosing the proper optical
thickness nd of each layer allows constructive interference between the different
reflected amplitudes to be achieved. Reflectivities of up to R D 0:9999 have been
reached [161–164].
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Figure 4.55 Maximum
reflection of light with
wavelength � by a two-
layer dielectric coating:
a n1 > n2 > n3;
b n1 > n2 < n3

Figure 4.55 illustrates such constructive interference for the example of a two-
layer coating. The layers with refractive indices n1, n2 and thicknesses d1, d2
are evaporated onto an optically smooth substrate with the refractive index n3.
The phase differences between all reflected components have to be ım D 2m�

(m D 1; 2; 3; : : :) for constructive interference. Taking into account the phase shift
ı D � at reflection from an interface with a larger refractive index than that of the
foregoing layer, we obtain the conditions

n1d1 D �=4 and n2d2 D �=2 for n1 > n2 > n3 ; (4.90a)

and

n1d1 D n2d2 D �=4 for n1 > n2; n3 > n2 : (4.90b)

The reflected amplitudes can be calculated from Fresnel’s formulas. The total re-
flected intensity is obtained by summation over all reflected amplitudes taking into
account the correct phase. The refractive indices are now selected such that

P
Ai

becomes a maximum. The calculation is still feasible for our example of a two-
layer coating and yields for the three reflected amplitudes (double reflections are
neglected)

A1 D
p
R1A0 I A2 D

p
R2.1 �

p
R1/A0 ;

A3 D
p
R3.1 �

p
R2/.1 �

p
R1/A0 ;

where the reflectivities Ri are given by (4.89a)–(4.89c).

Example 4.16
jn1j D 1:6, jn2j D 1:2, jn3j D 1:45; A1 D 0:231A0, A2 D 0:143A0, A3 D
0:094A0. AR D P

Ai D 0:468A0 ! IR D 0:22I0 ! R D 0:22, provided
the path differences have been choosen correctly.
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Figure 4.56 The dielectric multilayer mirror: a Composition of multilayers; b Reflectivity of
a high-reflectance multilayer mirror with 17 layers as a function of the incident wavelength �

This example illustrates that for materials with low absorption, many layers are
necessary to achieve a high reflectivity. Figure 4.56a depicts schematically the
composition of a dielectric multilayer mirror. The calculation and optimization
of multilayer coatings with up to 20 layers becomes very tedious and time consum-
ing, and is therefore performed using computer programs [162, 164]. Figure 4.56b
illustrates the reflectivity R.�/ of a high-reflectance mirror with 17 layers.

By proper selection of different layers with slightly different optical path lengths,
one can achieve a high reflectivity over an extended spectral range. Currently,
“broad-band” reflectors are available with reflectivity of R 
 0:99 within the spec-
tral range (�0 ˙ 0:2�0), while the absorption losses are less than 0:2% [161, 163].
At such low absorption losses, the scattering of light from imperfect mirror surfaces
may become the major loss contribution. When total losses of less than 0:5% are
demanded, the mirror substrate must be of high optical quality (better than �=20),
the dielectric layers have to be evaporated very uniformly, and the mirror surface
must be clean and free of dust or dirty films [164]. The best mirrors are produced
by ion implantation techniques. Such dielectric mirrors with alternating �=4-layers
of materials with high and low refractive indices are often called “Bragg mirrors”
because they work in a similar way to the Bragg reflection of X-rays at perfect
crystal planes. With very pure materials of extremely low absorption, they reach
reflectivities of R > 0:99999 [165]. The reflectivity R.�/ of a Bragg mirror for
vertical incidence around � D 1000 nm is shown in Fig. 4.57.

Instead of maximizing the reflectivity of a dielectric multilayer coating through
constructive interference, it is, of course, also possible to minimize it by destruc-
tive interference. Such antireflection coatings are commonly used to minimize
unwanted reflections from the many surfaces of multiple-lens camera objectives,
which would otherwise produce an annoying background illumination of the pho-
tomaterial. In laser spectroscopy such coatings are important for minimizing re-
flection losses of optical components inside the laser resonator and for avoiding
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Figure 4.57 Bragg mirror with eight alternating layers of TiO2 and SiO2

reflections from the back surface of output mirrors, which would introduce undesir-
able couplings, thereby causing frequency instabilities of single-mode lasers.

Using a single layer (Fig. 4.58a), the reflectivity reaches a minimum only for
a selected wavelength � (Fig. 4.59). We obtain IR D 0 for ı D .2mC 1/� , if the
two amplitudesA1 and A2 reflected by the interfaces (n1, n2) and (n2, n3) are equal.
For vertical incidence this gives the condition

R1 D
�
n1 � n2
n1 C n2

�2
D R2 D

�
n2 � n3
n2 C n3

�2
; (4.91)

which can be reduced to

n2 D pn1n3 : (4.92)

For a single layer on a glass substrate the values are n1 D 1 and n3 D 1:5. Accord-
ing to (4.92), n2 should be n2 D

p
1:5 D 1:23. Durable coatings with such low

refractive indices are not available. One often uses MgF2 with n2 D 1:38, giving
a reduction of reflection from 4% to 1:2% (Fig. 4.59).

With multilayer antireflection coatings the reflectivity can be decreased below
0:2% for an extended spectral range [164]. For instance, with three �=4 layers

Figure 4.58 Antireflec-
tion coating: a single layer;
b multilayer coating
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a

dc

b

Figure 4.59 Antireflection coatings. a Single layer MgF2 on substrates with different refractive
index n; b–d broadband multilayer AR-coatings, optimized for different spectral ranges

(MgF2, SiO, and CeF3) the reflection drops to below 1% for the whole range be-
tween 420 nm and 840 nm [161, 166, 167].

4.2.10 Interference Filters

Interference filters are used for selective transmission in a narrow spectral range.
Incident radiation of wavelengths outside this transmission range is either reflected
or absorbed. One distinguishes between line filters and bandpass filters.

A line filter is essentially a Fabry–Perot etalon with a very small optical path nd
between the two reflecting surfaces. The technical realization uses two highly re-
flecting coatings (either silver coatings or dielectric multilayer coatings) that are
separated by a nonabsorbing layer with a low refractive index (Fig. 4.60). For
instance, for nd D 0:5 �m the transmission maxima for vertical incidence are
obtained from (4.62a) at �1 D 1�m, �2 D 0:5 �m, �3 D 0:33�m, etc. In the
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Figure 4.60 Interference filters of the Fabry–Perot type: a with two single layers of silver; b with
dielectric multilayer coatings

visible range this filter has therefore only one transmission peak at � D 500 nm,
with a halfwidth that depends on the finesse F � D �pR=.1 �R/ (Fig. 4.38).

The interference filter is characterized by the following quantities:

� The wavelength �m at peak transmission;
� The maximum transmission;
� The contrast factor, which gives the ratio of maximum to minimum transmission;
� The bandwidth 
� D �1 � �2 with T .�1/ D T .�2/ D 1

2
Tmax.

The maximum transmission according to (4.61a)–(4.61d) is Tmax D T 2=.1�R/2.
Using thin silver or aluminum coatings with R D 0:8, T D 0:1, and A D 0:1, the
transmission of the filter is only Tmax D 0:25 and the finesse F � D 15. For our
example this means a halfwidth of 660 cm�1 at a free spectral range of 104 cm�1.
At � D 500 nm this corresponds to a free spectral range of 250 nm and a halfwidth
of about 16 nm. For many applications in laser spectroscopy, the low peak transmis-
sion of interference filters with absorbing metal coatings is not tolerable. One has to
use absorption-free dielectric multilayer coatings (Fig. 4.60b) with high reflectivity,
which allows a large finesse and therefore a smaller bandwidth and a larger peak
transmission (Fig. 4.61).

Example 4.17
With R D 0:95, A D 0:01 and T D 0:04, according to (4.61a)–(4.61d)
we obtain a peak transmission of 64%, which increases with A D 0:005,
T D 0:045 to 81%. The contrast becomes � D Imax

T =Imin
T D .1 C F / D

1C 4F �2=�2 D 1520. With a thickness nd D 5�m of the separating layer,
the free spectral range is •� D 3 � 1013 Hz ¶ 25 nm at � D 500 nm.

A higher finesse F � due to larger reflectivities of the reflecting films not
only decreases the bandwidth but also increases the contrast factor. With
R D 0:98! F D 4R=.1�R/2 D 9:8� 103, which means that the intensity
at the transmission minimum is only about 10�4 of the peak transmission.
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Figure 4.61 Spectral trans-
mission of interference
filters. Solid curve: line fil-
ter. Dashed curve: bandpass
filter. Note the logarithmic
scale

The bandwidth can be further decreased by using two interference filters in se-
ries. However, it is preferable to construct a double filter that consists of three
highly-reflecting surfaces, separated by two nonabsorbing layers of the same optical
thickness. If the thickness of these two layers is made slightly different, a bandpass
filter results that has a flat transmission curve but steep slopes to both sides. Com-
mercial interference filters are currently available with a peak transmission of at
least 90% and a bandwidth of less than 2 nm [162, 168]. Special narrow-band fil-
ters even reach 0:3 nm, however, with reduced peak transmission.

The wavelength �m of the transmission peak can be shifted to lower values by
tilting the interference filter, which increases the angle of incidence ˛, see (4.62a).
The tuning range is, however, restricted, because the reflectivity of the multilayer
coatings also depends on the angle ˛ and is, in general, optimized for ˛ D 0. For
divergent incident light, the transmission bandwidth increases with the divergence
angle. From (4.62a), we obtain for the wavelength �.˛/ of a tilted filter

� D 2nd

m
cosˇ D �0 cosˇ � �0

�
1 � ˇ

2

2

�
� �0

�
1 � ˛2

2n2

�
: (4.93)

Example 4.18
�0 D 1500 nm, n D 1:5, ˛ D 150ı ¶ 0:25 rad ) �.˛/ D 1389 nm )

� D �0 � �.˛/ D 111 nm
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Figure 4.62 Reflection
interference filter

In the ultraviolet region, where the absorption of most materials used for inter-
ference filters becomes large, the selective reflectance of interference filters can be
utilized to achieve narrow-band filters with low losses (Fig. 4.62). For more detailed
treatment, see [161–168].

In low-level fluorescence spectroscopy or Raman spectroscopy, the scattered
light of the intense exciting laser often overlaps the fluorescence lines. Here special
interference filters are available which have a narrow minimum transmission at the
laser wavelength (line-blocking filter) but a high transmission in the other spectral
ranges.

Since temperature drifts cause a change of the spacing d, the wavelength �p

at peak transmission also shifts with temperature. Typical values are d�p=dT D
0:02 nm=K. A temperature change of 10 K therefore shifts the peak transmis-
sion by 0.2 nm. This is only relevant for filters with a very narrow transmission
bandwidth.

4.2.11 Birefringent Interferometer

The basic principle of the birefringent interferometer or Lyot filter [137, 169] is
founded on the interference of polarized light that has passed through a birefringent
crystal. Assume that a linearly polarized plane wave

E D A � cos.!t � kx/ ;
with

A D f0;Ay;Azg ; Ay D jAj sin ˛ ; Az D jAj cos˛ ;

is incident on the birefringent crystal (Fig. 4.63). The electric vector E makes
an angle ˛ with the optical axis, which points into the z-direction. Within the
crystal, the wave is split into an ordinary beam with the wave number ko D nok
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Figure 4.63 Lyot filter: a schematic arrangement; b index ellipsoid of the birefringent crystal

and the phase velocity vo D c=no, and an extraordinary beam with ke D nek and
ve D c=ne. The partial waves have mutually orthogonal polarization in directions
parallel to the z- and y-axis, respectively. Let the crystal with length L be placed
between x D 0 and x D L. Because of the different refractive indices no and ne

for the ordinary and the extraordinary beams, the two partial waves at x D L

Ey.L/ D Ay cos.!t � keL/ and Ez.L/ D Az cos.!t � k0L/ ;

show a phase difference of


	 D k.n0 � ne/L D .2�=�/
nL with 
n D n0 � ne : (4.94)

The superposition of these two waves results, in general, in elliptically polarized
light, where the principal axis of the ellipse is turned by an angle ˇ D 	=2 against
the direction of A0.

For phase differences 
	 D 2m� , linearly polarized light with E.L/ k E .0/

is obtained. However, for 
	 D .2mC 1/� and ˛ D 45ı, the transmitted wave is
also linearly polarized, but now E .L/ ? E.0/.

The elementary Lyot filter consists of a birefringent crystal placed between two
linear polarizers (Fig. 4.63a). Assume that the two polarizers are both parallel to the
electric vector E .0/ of the incoming wave. The second polarizer parallel to E .0/

transmits only the projection

E D Ey sin ˛ C Ez cos˛

D AŒsin2 ˛ cos.!t � keL/C cos2 ˛ cos.!t � k0L/� ;

of the amplitudes, which yields with (4.91) the transmitted time averaged intensity

NIT D 1
2
c�0E

2 D NI0.sin4 ˛ C cos4 ˛ C 2 sin2 ˛ cos2 ˛ cos
	/ : (4.95)
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Using the relations cos	 D 1 � 2 sin2 1
2
	, and 2 sin ˛ cos˛ D sin 2˛, this reduces

to

NIT D I0Œ1 � sin2 1
2

	 sin2.2˛/� ; (4.96)

which gives for ˛ D 45ı

IT D I0


1 � sin2


	

2

�
D I0 cos2


	

2
: (4.96a)

The transmission of the Lyot filter is therefore a function of the phase retardation,
i.e.,

T .�/ D IT

I0
D T0 cos2

�
�
nL

�

�
(4.97)

which depends on the wavelength �.

Note According to (4.96) the maximum modulation of the transmittance with
Tmax D T0 and Tmin D 0 is only achieved for ˛ D 45ı!

Taking into account absorption and reflection losses, the maximum transmission
IT=I0 D T0 < 1 becomes less than 100%. Within a small wavelength interval, the
difference 
n D n0 � ne can be regarded as constant. Therefore (4.97) gives the
wavelength-dependent transmission function, cos2 	, typical of a two-beam inter-
ferometer (Fig. 4.26). For extended spectral ranges the different dispersion of no.�/

and ne.�/ has to be considered, which causes a wavelength dependence,
n.�/.
The free spectral range •� is obtained from (4.97) as


n � L
�1

� 
n � L
�2

D 1 :

With � D c=�, this becomes

ı� D c

.no � ne/L
: (4.98)

Example 4.19
For a crystal of potassium dihydrogen phosphate (KDP), ne D 1:51, n0 D
1:47! 
n D 0:04 at � D 600 nm. A crystal with L D 2 cm then has a free
spectral range •� D 3:75 � 1011 Hz ¶ • N� D 12:5 cm�1 ! 
� D 0:45 nm at
� D 600 nm.
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Figure 4.64 a Transmitted intensity IT.�/ of a Lyot filter composed of three birefringent crystals
with lengths L, 2L, and 4L between polarizers. b Arrangement of the crystals and the state of
polarization of the transmitted wave

If N elementary Lyot filters with different lengths Lm are placed in series, the
total transmission T is the product of the different transmissions Tm, i.e.,

T .�/ D
NY

mD1
T0m cos2

�
�
nLm

�

�
: (4.99)

Figure 4.64 illustrates a possible experimental arrangement and the correspond-
ing transmission for a Lyot filter composed of three components with the lengths
L1 D L, L2 D 2L, and L3 D 4L. The free spectral range •� of this filter equals
that of the shortest component; the halfwidth
� of the transmission peaks is, how-
ever, mainly determined by the longest component. When we define, analogous
to the Fabry–Perot interferometer, the finesse F � of the Lyot filter as the ratio of
the free spectral range •� to the halfwidth 
�, we obtain, for a composite Lyot
filter with N elements of lengths Lm D 2m�1L1, a finesse that is approximately
F � D 2N .

The wavelength of the transmission peak can be tuned by changing the difference

n D no � ne. This can be realized in two different ways:
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Figure 4.65 Electro-optic tuning of a Lyot filter [170]

� By changing the angle � between the optical axis and the wave vector k, which
alters the index ne. This can be illustrated with the index ellipsoid (Fig. 4.63b),
which gives both refractive indices for a given wavelength as a function of � . The
difference 
n D no � ne therefore depends on � . The two axes of the ellipsoid
with minimum ne (� D 90ı for a negative birefringent crystal) and maximum no

(� D 0ı) are often called the fast and the slow axes. Turning the crystal around
the x-axis in Fig. 4.63a, which is perpendicular to the y–z-plane of Fig. 4.63b,
results in a continuous change of 
n and a corresponding tuning of the peak
transmission wavelength � (Sect. 5.7.4).

� By using the different dependence of the refractive indices no and ne on an
applied electric field [171]. This “induced birefringence” depends on the ori-
entation of the crystal axis in the electric field. A common arrangement employs
a potassium dihydrogen phosphate (KDP) crystal with an orientation where the
electric field is parallel to the optical axis (z-axis) and the wave vector k of the
incident wave is perpendicular to the z-direction (transverse electro-optic effect,
Fig. 4.65). Two opposite sides of the rectangular crystal with the side length d
are coated with gold electrodes and the electric field E D U=d is controlled by
the applied voltage.

In the external electric field the uniaxial crystal becomes biaxial. In addition
to the natural birefringence of the uniaxial crystal, a field-induced birefringence is
generated, which is approximately proportional to the field strength E [172]. The
changes of no or ne by the electric field depend on the symmetry of the crystal, the
direction of the applied field, and on the magnitude of the electro-optic coefficients.
For the KDP crystal only one electro-optic coefficient d36 D �10:7� 10�12 [m=V]
(see Sect. 6.1) is effective if the field is applied parallel to the optical axis.

The difference
n D no � ne then becomes


n.Ez/ D 
n.E D 0/C 1
2
n31d36Ez : (4.100)

Maximum transmittance is obtained for


nL D m� .m D 0; 1; 2 : : :/ ;
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which gives the wavelength � at the maximum transmittance

� D .
n.E D 0/C 0:5 n1 3d36Ez/L=m ; (4.101)

as a function of the applied field.
While this electro-optic tuning of the Lyot filter allows rapid switching of the

peak transmission, for many applications, where a high tuning speed is not de-
manded, mechanical tuning is more convenient and easier to realize.

4.2.12 Tunable Interferometers

For many applications in laser spectroscopy it is advantageous to have a high-
resolution interferometer that is able to scan, in a given time interval 
t , through
a limited spectral range 
�. The scanning speed 
�=
t depends on the method
used for tuning, while the spectral range
� is limited by the free spectral range •�
of the instrument. All techniques for tuning the wavelength �m D 2nd=m at the
transmission peak of an interferometer are based on a continuous change of the op-
tical path difference between successive interfering beams [171, 173]. This can be
achieved in different ways:

a) Change the refractive index n by altering the pressure between the reflecting
plates of a FPI (pressure-scanned FPI);

b) Change the distance d between the plates with piezoelectric or magnetostrictive
elements;

c) Tilt the solid etalons with a given thickness d against the direction of the incom-
ing plane wave;

d) Change the optical path difference 
s D 
nL in birefringent crystals by
electro-optic tuning or by turning the optical axis of the crystal (Lyot filter).

While method (a) is often used for high-resolution fluorescence spectroscopy with
slow scan rates or for tuning pulsed dye lasers, method (b) is realized in a scan-
ning confocal FPI (used as an optical spectrum analyzer) for monitoring the mode
structure of lasers.

With a commercial spectrum analyzer, the transmitted wavelength � can be
repetitively scanned over more than one free spectral range with a saw-tooth volt-
age (Fig. 4.66) applied to the piezoelectric distance holder [154, 173]. Scanning
rates up to several kilohertz are possible. Although the finesse of such devices may
exceed 103, the hysteresis of piezoelectric crystals limits the accuracy of absolute
wavelength calibration. Here a pressure-tuned FPI may be advantageous. The pres-
sure change has to be sufficiently slow to avoid turbulence and temperature drifts.
With a digitally pressure-scanned FPI, where the pressure of the gas in the interfer-
ometer chamber is changed by small, discrete steps, repetitive scans are reproduced
within about 10�3 of the free spectral range [174].
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Figure 4.66 Scanning con-
focal FPI with transmission
peaks of a fundamental laser
mode and sawtooth voltage at
the piezo on one mirror

For fast wavelength tuning of dye lasers, Lyot filters with electro-optic tuning
are employed within the laser resonator. A tuning range of a few nanometers can
be repetitively scanned with rates up to 105 per second [175].

4.3 Comparison Between Spectrometers and Interferometers

When comparing the advantages and disadvantages of different dispersing devices
for spectroscopic analysis, the characteristic properties of the instruments discussed
in the foregoing sections, such as spectral resolving power, étendue, spectral trans-
mission, and free spectral range, are important for the optimum choice. Of equal
significance is the question of how accurately the wavelengths of spectral lines can
be measured. To answer this question, further specifications are necessary, such as
the backlash of monochromator drives, imaging errors in spectrographs, and hys-
teresis in piezo-tuned interferometers. In this section we shall treat these points in
a comparison for different devices in order to give the reader an impression of the
capabilities and limitations of these instruments.

4.3.1 Spectral Resolving Power

The spectral resolving power discussed for the different instruments in the previous
sections can be expressed in a more general way, which applies to all devices with
spectral dispersion based on interference effects. Let 
sm be the maximum path
difference between interfering waves in the instrument, e.g., between the rays from
the first and the last groove of a grating (Fig. 4.67a) or between the direct beam and
a beam reflected m times in a Fabry–Perot interferometer (Fig. 4.67b). Two wave-
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Figure 4.67 Maximum optical path difference and spectral resolving power: a in a grating spec-
trometer; b in a Fabry–Perot interferometer

lengths �1 and �2 D �1 C 
� can still be resolved if the number of wavelengths
over this maximum path difference


sm D 2m�2 D .2mC 1/�1 ; m D integer ;

differs for the two wavelengths by at least one unit. In this case, an interference
maximum for �1 coincides with the first minimum for �2. From the above equation
we obtain the theoretical upper limit for the resolving power

�


�
D 
sm

�
; (4.102)

which is equal to the maximum path difference measured in units of the wave-
length �.

With the maximum time difference 
Tm D 
sm=c for traversing the two paths
with the path difference 
sm, we obtain with � D c=� from (4.102) for the mini-
mum resolvable interval 
� D �.c=�2/
�,


� D 1=
Tm ) 
� �
Tm D 1 : (4.103)

The product of the minimum resolvable frequency interval 
� and the maximum
difference in transit times through the spectral apparatus is equal to 1.

Example 4.20
a) Grating Spectrometer: The maximum path difference is, according to

(4.30) and Fig. 4.67,


sm D Nd.sin ˛ � sinˇ/ D mN� :
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The upper limit for the resolving power is therefore, according to (4.102),

R D �=
� D mN .m W diffraction order,

N W number of illuminated grooves) :

Form D 2 andN D 105 this givesR D 2�105, or
� D 5�10�6�. Be-
cause of diffraction, which depends on the size of the grating (Sect. 4.1.3),
the realizable resolving power is 2–3 times lower. This means that at
� D 500 nm, two lines with 
� 
 10�2 nm can still be resolved.

b) Michelson Interferometer: The path difference 
s between the two in-
terfering beams is changed from 
s D 0 to 
s D 
sm. The numbers
of interference maxima are counted for the two components �1 and �2
(Sect. 4.2.4). A distinction between �1 and �2 is possible if the number
m1 D 
s=�1 differs by at least 1 from m2 D 
s=�2; this immediately
gives (4.102). With a modern design, maximum path differences 
s up
to several meters have been realized for wavelength measurements of sta-
bilized lasers (Sect. 4.5.3). For � D 500 nm and 
s D 1m, we obtain
�=
� D 2 � 106, which is one order of magnitude better than for the
grating spectrometer.

c) Fabry–Perot Interferometer: The path difference is determined by the
optical path difference 2nd between successive partial beams times the
effective number of reflections, which can be expressed by the reflectivity
finesse F � D �

p
R=.1 � R/. With ideal reflecting planes and perfect

alignment, the maximum path difference would be 
sm D 2ndF � and
the spectral resolving power, according to (4.102), would be

�=
� D F �2nd=� :

Because of imperfections of the alignment and deviations from ideal
planes, the effective finesse is lower than the reflectivity finesse. With
a value of F �

eff D 50, which can be achieved, we obtain for nd D 1 cm

�=
� D 2 � 106 ;
which is comparable with the Michelson interferometer having 
sm D
100 cm. However, with a confocal FPI, a finesse of F �

eff D 1000 can be
achieved. With r D d D 4 cm we then obtain

�=
� D F �4d=� � 5 � 108 ;
which means that for � D 500 nm, two lines with 
� D 1 � 10�6 nm
(
� D 1MHz at � D 5 � 1014 s�1) are still resolvable, provided that
their linewidth is sufficiently small. With high-reflection mirror coatings
a finesse of F �

eff D 105 has been realized. With r D d D 1m this yields
�=
� D 8 � 1011 [160].
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Figure 4.68 Acceptance angle of a spectrometer (a); and a Fabry–Perot interferometer (b)

4.3.2 Light-Gathering Power

The light-gathering power, or étendue, has been defined in Sect. 4.1.1 as the prod-
uct U D A˝ of entrance area A and solid angle of acceptance ˝ of the spectral
apparatus. For most spectroscopic applications it is desirable to have an étendue U
as large as possible to gain intensity. An equally important goal is to reach a maxi-
mum resolving powerR. However, the two quantitites U andR are not independent
of each other but are related, as can be seen from the following examples.

Example 4.21
a) Spectrometer: The area of the entrance slit with width b and height h

is A D b � h. The acceptance angle ˝ D .a=f /2 is determined by the
focal length f of the collimating lens or mirror and the diameter a of
the limiting aperture in the spectrometer (Fig. 4.68a). We can write the
étendue,

U D bha2=f 2 ;

as the product of the area A D bh and the solid angle ˝ D .a=f /2.
Using typical figures for a medium-sized spectrometer (b D 10�m,
h D 0:5 cm, a D 10 cm, f D 100 cm) we obtain ˝ D 0:01,
A D 5 � 10�4 cm2 ! U D 5 � 10�6 cm2 sr. With the resolving power
R D mN , the product

RU D mNA˝ � mN bha
2

f 2
; (4.104a)

increases with the diffraction orderm, the size a of the grating, the number
of illuminated grooves N , and the slit area bh (as long as imaging errors
can be neglected). For m D 1, N D 105, and the above figures for h, b,
a, and f , we obtain RU D 0:5 cm2 sr.
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b) Interferometer: For the Michelson and Fabry–Perot interferometers, the
allowable acceptance angle for photoelectric recording is limited by the
aperture in front of the detector, which selects the central circular fringe.
From Figs. 4.52 and 4.68b we see that the fringe images at the center
and at the edge of the limiting aperture with diameter a are produced by
incoming beams that are inclined by an angle # against each other. With
a=2 D f # , the solid angle accepted by the FPI is ˝ D a2=.4f 2/. For
a plate diameter D the étendue is then U D �.D2=4/˝. According to
(4.88) the spectral resolving powerR D �=
� of a plane FPI is correlated
with the étendue U by R D �D2.2U /�1. The product

RU D �D2=2 ; (4.104b)

is, for a plane FPI, therefore solely determined by the plate diameter.
For D D 5 cm, RU is about 40 cm2 sr, and therefore two orders of mag-
nitude larger than for a grating spectrometer.

In Sect. 4.2.12 we saw that for a given resolving power the spherical FPI has
a larger étendue for mirror separations r > D2=4d . For Example 4.21 with D D
5 cm, d D 1 cm, the confocal FPI therefore gives the largest product RU of all
interferometers for r > 6 cm. Because of the higher total finesse, however, the
confocal FPI may be superior to all other instruments even for smaller mirror sepa-
rations.

In summary, we can say that at comparable resolving power interferometers have
a larger lightgathering power than spectrometers.

4.4 Accurate Wavelength Measurements

One of the major tasks for spectroscopists is the measurement of wavelengths of
spectral lines. This allows the determination of molecular energy levels and of
molecular structure. The attainable accuracy of wavelength measurements depends
not only on the spectral resolution of the measuring device but also on the achiev-
able signal-to-noise ratio and on the reproducibility of measured absolute wave-
length values.

With the ultrahigh resolution, which can, in principle, be achieved with single-
mode tunable lasers (Vol. 2, Chaps. 1–5), the accuracy of absolute wavelength mea-
surements attainable with conventional techniques may not be satisfactory. New
methods have been developed that are mainly based on interferometric measure-
ments of laser wavelengths. For applications in molecular spectroscopy, the laser
can be stabilized on the center of a molecular transition. Measuring the wavelength
of such a stabilized laser yields simultaneously the wavelength of the molecular
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transition with a comparable accuracy. We shall briefly discuss some of these
devices, often called wavemeters, that measure the unknown laser wavelength by
comparison with a reference wavelength �R of a stabilized reference laser. Most
proposals use for reference a HeNe laser, stabilized on a hyperfine component of
a molecular iodine line, which has been measured by direct comparison with the
primary wavelength standard to an accuracy of better than 10�10 [176].

Another method measures the absolute frequency �L of a stabilized laser and
deduces the wavelength �L from the relation �L D c=�L using the best average
of experimental values for the speed of light [177–179], which has been chosen to
define the meter and thus the wavelength � by the definition: 1m is the distance
traveled by light in vacuum during the time 
t D 1=299;792;458 s�1. This defines
the speed of light as

c D 299;792;458m=s : (4.105)

Such a scheme reduces the determination of lengths to the measurements of times
or frequencies, which can be measured much more accurately than lengths [180].
Recently, the direct comparison of optical frequencies with the Cs standard in the
microwave region has become possible with broadband frequency combs gener-
ated by visible femtosecond lasers. These frequency combs represent equidistant
frequencies, separated by about 100MHz, which span a wide frequency range, typ-
ically over 1014 Hz. They allow absolute frequency measurements. This method
will be discussed in Vol. 2, Sect. 14.7.

4.4.1 Precision and Accuracy of Wavelength Measurements

Resolving power and light-gathering power are not the only criteria by which
a wavelength-dispersing instrument should be judged. A very important question is
the attainable precision and accuracy of absolute wavelength measurements.

To measure a physical quantity means to compare it with a reference standard.
This comparison involves statistical and systematic errors. Measuring the same
quantity n times will yield values Xi that scatter around the mean value

X D 1

n

nX

iD1
Xi :

The attainable precision for such a set of measurements is determined by statisti-
cal errors and is mainly limited by the signal-to-noise ratio for a single measurement
and by the number n of measurements (i.e., by the total measuring time). The pre-
cision can be characterized by the standard deviation [181, 182],


 D
 

nX

iD1

.X �Xi/2
n

!1=2
: (4.106)
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The adopted mean value X , averaged over many measured values Xi , is claimed to
have a certain accuracy, which is a measure of the reliability of this value, expressed
by its probable deviation 
X from the unknown “true” value X . A stated accuracy
of X=
X means a certain confidence that the true value X is within X ˙ 
X .
Since the accuracy is determined not only by statistical errors but, particularly, by
systematic errors of the apparatus and measuring procedure, it is always lower than
the precision. It is also influenced by the precision with which the reference stan-
dard can be measured and by the accuracy of its comparison with the value X .
Although the attainable accuracy depends on the experimental efforts and expen-
ditures, the skill, imagination, and critical judgement of the experimentalist always
have a major influence on the ultimate achieved and stated accuracy.

We shall characterize precision and accuracy by the relative uncertainties of the
measured quantity X , expressed by the ratios




X
or


X

X
;

respectively. A series of measurements with a standard deviation 
 D 10�8X
has a relative uncertainty of 10�8 or a precision of 108. Often one says that the
precision is 10�8, although this statement has the disadvantage that a high precision
is expressed by a small number.

Let us now briefly examine the attainable precision and accuracy of wavelength
measurements with the different instruments discussed above. Although both quan-
tities are correlated with the resolving power and the attainable signal-to-noise ratio,
they are furthermore influenced by many other instrumental conditions, such as
backlash of the monochromator drive, or asymmetric line profiles caused by imag-
ing errors, or shrinking of the photographic film during the developing process.
Without such additional error sources, the precision could be much higher than the
resolving power, because the center of a symmetric line profile can be measured to
a small fraction � of the halfwidth. The value of � depends on the attainable signal-
to-noise ratio, which is determined, apart from other factors, by the étendue of the
spectrometer. We see that for the precision of wavelength measurements, the prod-
uct of resolving power R and étendue U , RU , discussed in the previous section,
plays an important role.

For scanning monochromators with photoelectric recording, the main limitation
for the attainable accuracy is the backlash of the grating-drive and nonuniformities
of the gears, which limits the reliability of linear extrapolation between two calibra-
tion lines. Carefully designed monochromators have errors due to the drive that are
less than 0:1 cm�1, allowing a relative uncertainty of 10�5 or an accuracy of about
105 in the visible range.

In absorption spectroscopy with a tunable laser, the accuracy of line positions is
also limited by the nonuniform scan speed d�=dt of the laser (Sect. 5.6). One has
to record reference wavelength marks simultaneously with the spectrum in order to
correct for the nonuniformities of d�=dt .
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A serious source of error with scanning spectrometers or scanning lasers is the
distortion of the line profile and the shift of the line center caused by the time
constant of the recording device. If the time constant � is comparable with the
time 
t D 
�=vsc needed to scan through the halfwidth 
� of the line pro-
file (which depends on the spectral resolution), the line becomes broadened, the
maximum decreases, and the center wavelength is shifted. The line shift •� de-
pends on the scanning speed vsc [nm=min] and is approximately •� D vsc� D
.d�=dt/� [122].

Example 4.22
With a scanning speed vsc D 10 nm=min and a time constant of the recorder
� D 1 s the line shift is already ı� D 0:15 nm!

Because of the additional line broadening, the resolving power is reduced.
If this reduction is to be less than 10%, the scanning speed must be below
vsc < 0:24
�=� . With 
� D 0:02 nm, � D 1 s! vsc < 0:3 nm=min.

Photographic recording avoids these problems and therefore allows a more accu-
rate wavelength determination at the expense of an inconvenient developing process
of the photoplate and the subsequent measuring procedure to determine the line
positions. A typical figure for the standard deviation for a 3-m spectrograph is
0:01 cm�1. Imaging errors causing curved lines, asymmetric line profiles due to
misalignment, and backlash of the microdensitometer used for measuring the line
positions on the photoplate are the main sources of errors.

Modern devices use photodiodes or CCD arrays (Sect. 4.5.2) instead of photo-
plates. With a diode width of 25�m, the peak of a symmetric line profile extending
over 3–5 diodes can be determined by a least-squares fit to a model profile within
1–5�m, depending on the S=N ratio. When the array is placed behind a spectrom-
eter with a dispersion of 1mm=nm, the center of the line can be determined within
10�3 nm. Since the signals are read electronically, there are no moving parts in the
device and any mechanical error source (backlash) is eliminated.

The highest accuray (i.e., the lowest uncertainty) can be achieved with modern
wavemeters, which we shall discuss in Sect. 4.4.2.

4.4.2 Today’s Wavemeters

The different types of wavemeters for very accurate measurements of laser wave-
lengths are based on modifications of the Michelson interferometer [184], the
Fizeau interferometer [185], or on a combination of several Fabry–Perot interfer-
ometers with different free spectral ranges [186–188]. The wavelength is measured
either by monitoring the spatial distribution of the interference pattern with photodi-
ode arrays, or by using traveling devices with electronic counting of the interference
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Figure 4.69 Traveling Michelson interferometer for accurate measurements of wavelengths of
single-mode cw lasers

fringes. Nowadays several versions of wavemeters are commercially available
which reach uncertainties of ˙0:2 pm (accuracies �=•� of about 10C7). They can
operate over a wide spectral range from 300 nm to 5�m.

a) The Michelson Wavemeter

Figure 4.69 illustrates the principle of a traveling-wave Michelson-type interferom-
eter as used in our laboratory. Such a wavemeter was first demonstrated in a slightly
different version by Hall and Lee [184] and by Kowalski et al. [190]. The beamsBR

of a reference laser and Bx of a laser with unknown wavelength �x traverse the in-
terferometer on identical paths, but in opposite directions. Both incoming beams
are split into two partial beams by the beam splitters BS1 and BS2, respectively.
One of the partial beams travels the constant path BS1–P–T3–P–BS2 for the ref-
erence beam, and in the opposite direction for the beam BX . The second partial
beam travels the variable path BS1–T1–M3–M4–T2–BS2 for BR, and in the oppo-
site direction for BX . The moving corner-cube reflectors T1 and T2 are mounted on
a carriage, which either travels with wheels on rods or slides on an airtrack.

The corner-cube reflectors guarantee that the incoming light beam is always re-
flected exactly parallel to its indicent direction, irrespective of slight misalignments
or movements of the traveling reflector. The two partial beams (BS1–T1–M3–M4–
T2–BS2 and BS1–P–T3–P–BS2) for the reference laser interfere at the detector
PD1, and the two beams BS2–T2–M4–M3–T1–BS1 and BS2–P–T3–P–BS1 from
the unknown laser interfere at the detector PD2. When the carriage is moving at
a speed v D dx=dt the phase difference ı.t/ between the two interfering beams
changes as

ı.t/ D 2�
s
�
D 2� � 4dx

dt

t

�
D 8� vt

�
; (4.107)
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Figure 4.70 Signal sequences in the two detection channels of the traveling Michelson waveme-
ter. The grey signal pulses are not counted

where the factor 4 stems from the fact that the optical path difference 
s has
been doubled by introducing two corner-cube reflectors. The rates of interfer-
ence maxima, which occur for ı D m2� , are counted by PD2 for the unknown
wavelength �X and by PD1 for the reference wavelength �R. The unknown wave-
length �X can be obtained from the ratio of both counting rates if proper corrections
are made for the dispersion n.�R/ � n.�X/ of air. An electronic device produces
a short voltage pulse each time the line-varying interference intensity passes through
zero. These pulses are counted.

The signal lines to both counters are simultaneously opened at the time t0 when
the detector PD2 just delivers a trigger signal. Both counters are simultaneously
stopped at the time t1 when PD2 has reached the preset number N0. From


t D t1 � t0 D N0�X=4v D .NR C �/�R=4v ;

we obtain for the vacuum wavelength �0X

�0X D
NR C �
N0

�0R
n.�X; P; T /

n.�R; P; T /
: (4.108a)

The unknown fractional number � < 2 takes into account that the trigger signals
from PD1, which define the start and stop times t0 and t1 (Fig. 4.69), may not exactly
coincide with the pulse rise times in channel 2. The two worst cases are shown in
Fig. 4.70. For case a, the trigger pulse at t0 just misses the rise of the signal pulse,
but the trigger at t1 just coincides with the rise of a signal pulse. This means that the
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signal channel counts one pulse less than it should. In case b, the start pulse at t0
coincides with the rise time of a signal pulse, but the stop pulse just misses a signal
pulse. In this case, the signal channel counts one pulse more than it should.

For a maximum optical path difference 
s D 4m, the number of counts for
� D 500 nm is 8 � 106, which allows a precision of about 107, if the counting error
is not larger than 1. Provided the signal-to-noise ratio is sufficiently high, the attain-
able precision can, however, be enhanced by interpolations between two successive
counts using a phase-locked loop [191, 192]. This is an electronic device that multi-
plies the frequency of the incoming signal by a factorM while always being locked
to the phase of the incoming signal. Assume that the counting rate fR D 4v=�R

in the reference channel is multiplied by M . Then the unknown wavelength �X is
determined by

�0X D
MNR C �
MN0

�0R
nX

nR
D NR C "=M

N0
�0R
nx

nR
: (4.108b)

For M D 100 the limitation of the accuracy by the counting error due to the un-
known fractional number � is reduced by a factor of 100.

Instead of the phase-locked loop a coincidence curcuit may be employed. Here
the signal paths to both counters are opened and closed at selected times t0 and t1,
when both trigger signals from PD2 and PD1 coincide within a small time interval,
say 10�8 s. Both techniques reduce the counting uncertainty to a value below 2 �
10�9.

In general, the attainable accuracy, however, is lower because it is influenced by
several sources of systematic errors. One is a misalignment of the interferometer,
which causes both beams to travel slightly different path lengths. Another point
that has to be considered is the curvature of the wavefronts in the diffraction-limited
Gaussian beams (Sect. 5.3). This curvature can be reduced by expanding the beams
through telescopes (Fig. 4.69). The uncertainty of the reference wavelength �R and
the accuracy of measuring the refractive index n.�/ of air are further error sources.

The maximum relative uncertainty of the absolute vacuum wavelength �X can
be written as a sum of five terms:

ˇ̌
ˇ̌
�X
�X

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
�R

�R

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ �

MNR

ˇ̌
ˇ̌C

ˇ̌
ˇ̌
r
r

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ •s

s

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ •	

2�N0

ˇ̌
ˇ̌ ; (4.109)

where r D n.�X/=n.�R/ is the ratio of the refractive indices, •s is the difference of
the travel paths for reference and signal beams, and •	 is the phase front variation
in the detector plane. Let us briefly estimate the magnitude of the different terms in
(4.109):

� The wavelength �R of the I2-stabilized HeNe laser is known within an uncer-
tainty j
�R=�Rj < 10�10 [180]. Its frequency stability is better than 100 kHz,
i.e., j
�=�j < 2 � 10�10. This means that the first term in (4.109) contributes at
most 3 � 10�10 to the uncertainty of �X .

� With � D 1:5, M D 100, and NR D 8 � 106, the second term is about 2 � 10�9.
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� The index of refraction, n.�; p; T /, depends on the wavelength �, on the total
air pressure, on the partial pressures of H2O and CO2, and on the temperature. If
the total pressure is measured within 0:5mbar, the temperature T within 0:1K,
and the relative humidity within 5%, the refractive index can be calculated from
formulas given by Edlen [193] and Owens [194].
With the stated accuracies, the third term in (4.109) becomes

j
r=r j � 1 � 10�3 jn0.�X/ � n0.�R/j ; (4.110)

where n0 is the refractive index for dry air under standard conditions (T0 D
15 ıC, p0 D 1013 hPa). The contribution of the third term depends on the wave-
length difference
� D �R � �X . For 
� D 1 nm one obtains j
r=r j < 10�11,
while for 
� D 200 nm this term becomes, with j
r=r j � 5 � 10�9, a serious
limitation of the accuracy of j
�X=�X j.

� The magnitude of the fourth term j•s=
sj depends on the effort put into the
alignment of the two laser beams within the interferometer. If the two beams are
tilted against each other by a small angle ˛, the two path lengths for �X and �R

differ by

•s D 
s.�R/ �
s.�X/ D 
sR.1 � cos˛/ � .˛2=2/
sR :

With ˛ D 10�4 rad, the systematic relative error becomes

j•s=
sj � 5 � 10�9 :

It is therefore necessary to align both beams very carefully.
� With a surface quality of �=10 for all mirrors and beam splitters, the distortions

of the wavefront are already visible in the interference pattern. However, plane
waves are focused onto the detector area and the phase of the detector signal is
due to an average over the cross section of the enlarged beam (� 1 cm2). This
averaging minimizes the effect of wavefront distortion on the accuracy of �X . If
the modulation of the interference intensity (4.37) exceeds 90%, this term may
be neglected.

With careful alignment, good optical quality of all optical surfaces and accu-
rate recording of p, T , and PH2O, the total uncertainty of �X can be pushed below
10�8. This gives an absolute uncertainty 
�x � 3MHz of the optical frequency
�x D 5�1014 s�1 for a wavelength separation between �R and �x of
� � 120 nm.
This has been proved by a comparison of independently measured wavelengths
�x D 514:5 nm (I2-stabilized argon laser) and �R D 632:9 nm (I2-stabilized HeNe
laser) [195].

When cw dye laser wavelengths are measured, another source of error arises.
Due to air bubbles in the dye jet or dust particles within the resonator beam waist,
the dye laser emission may be interrupted for a few microseconds. If this happens
while counting the wavelength a few counts are missing. This can be avoided by
using an additional phase-locked loop with a multiplication factor Mx D 1 in the
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counting channel of PDx . If the time constant of the phase-locked loop is larger
than 10�s, it continues to oscillate at the counting frequency during the few mi-
croseconds of dye laser beam interruptions.

There are several different designs of Michelson wavemeters that are commer-
cially available and are described in [197–199].

b) Sigmameter

While the traveling Michelson is restricted to cw lasers, a motionless Michelson
interferometer was designed by Jacquinot, et al. [200], which includes no moving
parts and can be used for cw as well as for pulsed lasers. Figure 4.71 illustrates

Figure 4.71 Sigmameter [200]
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its operation. The basic element is a Michelson interferometer with a fixed path
difference ı. The laser beam enters the interferometer polarized at 45ı with respect
to the plane of Fig. 4.71. When inserting a prism into one arm of the interferom-
eter, where the beam is totally reflected at the prism base, a phase difference 
'
is introduced between the two components polarized parallel and perpendicular to
the totally reflecting surface. The value of 
' depends, according to Fresnel’s for-
mulas [129], on the incidence angle ˛ and can be made �=2 for ˛ D 55ı190 and
n D 1:52. The interference signal at the exit of the interferometer is recorded sep-
arately for the two polarizations and one obtains, because of the phase shifts �=2,
Ijj D I0.1 C cos 2�ı=�/ and I? D I0.1 C sin 2�ı=�/. From these signals it is
possible to deduce the wave number 
 D 1=� modulo 1=ı, since all wave num-
bers 
m D 
0 C m=ı (m D 1; 2; 3; : : :) give the same interference signals. Using
several interferometers of the same type with a common mirror M1 but different
positions of M2, which have path differences in geometric ratios, such as 50 cm,
5 cm, 0:5 cm, and 0:05 cm, the wave number 
 can be deduced unambiguously with
an accuracy determined by the interferometer with the highest path difference. The
actual path differences ıi are calibrated with a reference line and are servo-locked
to this line. The precision obtained with this instrument is about 5MHz, which
is comparable with that of the traveling Michelson interferometer. The measuring
time, however, is much less since the different ıi can be determined simultaneously.
This instrument is more difficult to build but easier to handle. Since it measures
wave numbers 
 D 1=�, the inventors called it a sigmameter.

c) Computer-Controlled Fabry–Perot Wavemeter

Another approach to accurate wavelength measurements of pulsed and cw lasers,
which can be also applied to incoherent sources, relies on a combination of a small
grating monochromator and three Fabry–Perot etalons [186–188]. The incom-
ing laser beam is sent simultaneously through the monochromator and three
temperature-stabilized Fabry–Perot interferometers with different free spectral
ranges •�i (Fig. 4.72). In order to match the laser beam profile to the sensitive area
of the linear diode arrays (25mm � 50�m), focusing with cylindrical lenses Zi
is utilized. The divergence of the beams in the plane of Fig. 4.72 is optimized by
the spherical lenses Li in such a way that the diode arrays detect 4–6 FPI fringes
(Fig. 4.73). The linear arrays have to be properly aligned so that they coincide
with a diameter through the center of the ring system. According to (4.72), the
wavelength � can be determined from the ring diameters Dp and the excess �,
provided the integer orderm0 is known, which means that �must already be known
at least within one-half of a free spectral range (Sect. 4.3).

The device is calibrated with different lines from a cw dye laser that are si-
multaneously measured with the traveling Michelson wavemeter (see above). This
calibration allows:

� The unambiguous correlation between wavelength � and the position of the
illuminated diode of array 1 behind the monochromator with an accuracy of
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Figure 4.72 Wavemeter for pulsed and cw lasers, based on a combination of a small polychro-
mator and three FPI with widely differing free spectral ranges [195]

Figure 4.73 Measuring
interference ring diameters
with a linear diode array:
a correct alignment;
b misaligned diode array

˙0:1 nm, which is sufficient to determine � within 0:5 of the free spectral range
of etalon 1;

� The accurate determination of nd for all three FPI.

If the free spectral range •�1 of the thin FPI is at least twice as large as the uncer-
tainty 
� of the monochromator measurement, the integer orderm0 of FPI1 can be
unambiguously determined. The measurement of the ring diameters improves the
accuracy by a factor of about 20. This is sufficient to determine the larger integer
order m0 of FPI2; from its ring diameters, � can be measured with an accuracy
20 times higher than that from FPI1. The final wavelength determination uses the
ring diameters of the large FPI3. Its accuracy reaches about 1% of the free spectral
range of FPI3.
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Figure 4.74 Output sig-
nals at the polychromator
and the three diode arrays of
the FPI wavemeter, which
had been illuminated by
a cw HeNe laser oscillating
on two axial modes (a–d).
The lowest figure shows the
ring intensity pattern of an
excimer-pumped single-mode
dye laser measured behind
a FPI with 3:3GHz free spec-
tral range [187]

The whole measuring cycle is controlled by a computer. For pulsed lasers, one
pulse (with an energy of 
 5�J) is sufficient to initiate the device, while for cw
lasers, a few microwatts input power are sufficient. The arrays are read out by the
computer and the signals can be displayed on a screen. Such signals for the arrays
D1–D4 are shown in Fig. 4.74 for a HeNe laser oscillating on two longitudinal
modes and for a pulsed dye laser.

Since the optical distances nidi of the FPI depend critically on temperature
and pressure, all FPI must be kept in a temperature-stabilized pressure-tight box.
Furthermore, a stabilized HeNe laser can be used to control long-term drift of the
FPI [195].
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Example 4.23
With a free spectral range of •� D 1GHz, the uncertainty of calibration and
of the determination of an unknown wavelength are both about 10MHz. This
gives an absolute uncertainty of less than 20MHz. For the optical frequency
� D 6 � 1014 Hz, the relative accuracy is then 
�=� � 3 � 10�8.

d) Fizeau Wavemeter

The Fizeau wavemeter constructed by Snyder [201] can be used for pulsed and cw
lasers. While its optical design is simpler than that of the sigmameter and the FPI
wavemeter, its accuracy is slightly lower. Its basic principle is shown in Fig. 4.75b.
The incident laser beam is focused by an achromatic microscope lens system onto
a small pinhole, which represents a nearly pointlike light source. The divergent
light is transformed by a parabolic mirror into an enlarged parallel beam, which
hits the Fizeau interferometer (FI) under an incident angle ˛ (Fig. 4.75a). The FI
consists of two fused quartz plates with a slightly wedged air gap (	 � 1=20ı). For
small wedge angles 	, the optical path difference 
s between the constructively
interfering beams 1 and 10 is approximately equal to that of a plane-parallel plate
according to (4.48a), namely


s1 D 2nd.z1/ cosˇ D m� :

Figure 4.75 Fizeau wavemeter: a interference at a wedge (the wedge angle 	 is greatly exager-
ated); b schematic design; A, aperture as spatial filter; P, parabolic mirror; C, distance holder of
cerodur; D, diode array
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Figure 4.76 Densitometer
trace of the fringe pattern in
a Fizeau wavemeter [185]

The path difference between the beams 2 and 20, which belong to the next interfer-
ence order, is 
s2 D .m C 1/�. The interference of the reflected light produces
a pattern of parallel fringes (Fig. 4.76) with the separation

� D z2 � z1 D d.z2/� d.z1/
tan	

D �

2n tan	 cosˇ
; (4.111)

which depends on the wavelength �, the wedge angle 	, the angle of incidence ˛,
and the refractive index n of air.

Changing the wavelength � causes a shift 
z of the fringe pattern and a slight
change of the fringe separation �. For a change of � by one free spectral range

•� D �2

2nd cosˇ
: (4.112)

and 
z is equal to the fringe separation �. Therefore the two fringe patterns for �
and �C•� look identical, apart from the slight change of�. It is therefore essential
to know � at least within ˙•�=2. This is possible from a measurement of �. With
a diode array of 1024 diodes, the fringe separation � can be obtained from a least-
squares fit to the measured intensity distribution I.z/ with a relative accuracy of
10�4, which yields an absolute value of � within ˙10�4� [202].

With a value d D 1mm of the air gap, the order of interference m is about
3000 at � D 500 nm. An accuracy of 10�4 is therefore sufficient for the unam-
biguous determination of m. Since the position of the interference fringes can be
measured within 0:3% of the fringe separation, the wavelength � can be obtained
within 0:3% of a free spectral range, which gives the accuracy �=
� � 107. The
preliminary value of �, deduced from the fringe separation �, and the final value,
determined from the fringe position, are both obtained from the same FI after having
calibrated the system with lines of known wavelengths.

The advantage of the Fizeau wavemeter is its compact design and its low price.
A very elegant construction by Gardner [203, 204] is sketched in Fig. 4.77. The
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Figure 4.77 Compact design
of a Fizeau wavemeter [203]

wedge air gap is fixed by a Zerodur spacer between the two interferometer plates
and forms a pressure tight volume. Variations of air pressure in the surroundings
therefore do not cause changes of n within the air gap. The reflected light is sent
to the diode array by a totally reflecting prism. The data are processed by a small
computer [205].

4.5 Detection of Light

For many applications in spectroscopy the sensitive detection of light and the ac-
curate measurement of its intensity are of crucial importance for the successful
performance of an experiment. The selection of the proper detector for optimum
sensitivity and accuracy for the detection of radiation must take into account the
following characteristic properties, which may differ for the various detector types:

� The spectral relative response R.�/ of the detector, which determines the wave-
length range in which the detector can be used. The knowledge of R.�/ is
essential for the comparison of the true relative intensities I.�1/ and I.�2/ at
different wavelengths.

� The absolute sensitivity S.�/ D Vs=P , which is defined as the ratio of output
signal Vs to incident radiation power P . If the output is a voltage, as in photo-
voltaic devices or in thermocouples, the sensitivity is expressed in units of volts
per watt. In the case of photocurrent devices, such as photomultipliers, S.�/
is given in amperes per watt. With the detector area A the sensitivity S can be
expressed in terms of the irradiance I :

S.�/ D Vs=.AI/ : (4.113)

� The achievable signal-to-noise ratio Vs=Vn, which is, in principle, limited by
the noise of the incident radiation. It may, in practice, be further reduced by
inherent noise of the detector. The detector noise is often expressed by the noise
equivalent input power (NEP), which means an incident radiation power that
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Figure 4.78 Typical detector: a schematic setup; b equivalent electrical circuit; c frequency re-
sponse Vs.f /

generates the same output signal as the detector noise itself, thus yielding the
signal-to-noise ratio S=N D 1. In infrared physics a figure of merit for the
infrared detector is the detectivity

D D
p
A
f

P

Vs

Vn
D
p
A
f

NEP
: (4.114)

The specific detectivity D� Œcm s�1=2 W�1� gives the obtainable signalto-noise
ratio Vs=Vn of a detector with the sensitive area A D 1 cm2 and the detector
bandwidth 
f D 1Hz, at an incident radiation power of P D 1W. Because
the noise equivalent input power is NEP D P � Vn=Vs, the specific detectivity of
a detector with the area 1 cm2 and a bandwidth of 1Hz is D� D 1=NEP.

� The maximum intensity range in which the detector response is linear. It means
that the output signal Vs is proportional to the incident radiation power P . This
point is particularly important for applications where a wide range of intensities
is covered. Examples are output-power measurements of pulsed lasers, Raman
spectroscopy, and spectroscopic investigations of line broadening, when the in-
tensities in the line wings may be many orders of magnitude smaller than at the
center.

� The time or frequency response of the detector, characterized by its time con-
stant � . Many detectors show a frequency response that can be described by
the model of a capacitor, which is charged through a resistor R1 and discharged
through R2 (Fig. 4.78b). When a very short light pulse falls onto the detector,
its output pulse is smeared out. If the output is a current i.t/ that is proportional
to the incident radiation power P.t/ (as, for example, in photomultipliers), the
output capacitance C is charged by this current and shows a voltage rise and fall,
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determined by

dV

dt
D 1

C



i.t/ � V

R2

�
: (4.115)

If the current pulse i.t/ lasts for the time T , the voltage V.t/ at the capacitor
increases up to t D T and for R2C � T reaches the peak voltage

Vmax D 1

C

TZ

0

i.t/dt ;

which is determined by C and not by R2! After the time T the voltage decays
exponentially with the time constant � D CR2. Therefore, the value ofR2 limits
the repetition frequency f of pulses to f < .R2C /

�1.
The time constant �1 D R1C of the detector causes the output signal to rise
slower than the incident input pulse and the time constant �2 D R2C causes
a slower decay than that of the input pulse. The time constants can be determined
by modulating the continuous input radiation at the frequency f . The output
signal of such a device is characterized by (see Example 4.14)

Vs.f / D Vs.0/p
1C .2�f �/2 ; (4.116)

where � D CR1R2=.R1 C R2/ D �1 � �2=.�1 C �2/. At the modulation fre-
quency f D 1=.2��/, the output signal has decreased to 1=

p
2 of its dc value.

The knowledge of the detector time constant � is essential for all applications
where fast transient phenomena are to be monitored, such as atomic lifetimes or
the time dependence of fast laser pulses (Vol. 2, Chap. 6).

� The price of a detector is another factor that cannot be ignored, since unfortu-
nately it often restricts the optimum choice.

In this section we briefly discuss some detectors that are commonly used in laser
spectroscopy. The different types can be divided into two categories, thermal de-
tectors and direct photodetectors. In thermal detectors, the energy absorbed from
the incident radiation raises the temperature and causes changes in the temperature-
dependent properties of the detector, which can be monitored. Direct photodetec-
tors are based either on the emission of photoelectrons from photocathodes, or on
changes of the conductivity of semiconductors due to incident radiation, or on pho-
tovoltaic devices where a voltage is generated by the internal photoeffect. Whereas
thermal detectors have a wavelength-independent sensitivity, photodetectors show
a spectral response that depends on the work function of the emitting surface or on
the band gap in semiconductors.

During recent years the development of image intensifiers, image converters,
CCD cameras, and vidicon detectors has made impressive progress. At first pushed
by military demands, these devices are now coming into use for light detection at
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low levels, e.g., in Raman spectroscopy, or for monitoring the faint fluorescence
of spurious molecular constituents. Because of their increasing importance we
give a short survey of the principles of these devices and their application in laser
spectroscopy. In time-resolved spectroscopy, subnanosecond detection can now be
performed with fast phototubes in connection with transient digitizers, which re-
solve time intervals of less than 100 ps. Since such time-resolved experiments in
laser spectroscopy with streak cameras and correlation techniques are discussed in
Vol. 2, Chap. 6, we confine ourselves here to discussing only some of these modern
devices from the point of view of spectroscopic instrumentation. A more exten-
sive treatment of the characteristics and the performance of various detectors can
be found in special monographs on detectors [206, 208, 211–217]. For reviews on
photodetection techniques relevant in laser physics, see also [218–221].

4.5.1 Thermal Detectors

Because of their wavelength-independent sensitivity, thermal detectors are use-
ful for calibration purposes, e.g., for an absolute measurement of the radiation
power of cw lasers, or of the output energy of pulsed lasers. In the rugged form
of medium-sensitivity calibrated calorimeters, they are convenient devices for any
laser laboratory. With more sophisticated and delicate design, they have been devel-
oped as sensitive detectors for the whole spectral range, particularly for the infrared
region, where other sensitive detectors are less abundant than in the visible range.

For a simple estimate of the sensitivity and its dependence on the detector pa-
rameters, such as the heat capacitance and thermal losses, we shall consider the fol-
lowing model [222]. Assume that the fraction ˇ of the incident radiation power P
is absorbed by a thermal detector with heat capacityH , which is connected to a heat
sink at constant temperature Ts (Fig. 4.79a). When G is the thermal conductivity of
the link between the detector and the heat sink, the temperature T of the detector
under illumination can be obtained from

ˇP D H dT

dt
CG.T � Ts/ : (4.117)

If the time-independent radiation power P0 is switched on at t D 0, the time-
dependent solution of (4.117) is

T D Ts C ˇP0

G
.1 � e�.G=H/t / : (4.118)

The temperature T rises from the initial value Ts at t D 0 to the temperature T D
Ts C 
T for t D 1 with the time constant � D H=G. The temperature rise for
t D1


T D ˇP0

G
(4.119)
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Figure 4.79 Model of a thermal detector: a schematic diagram; b equivalent electrical circuit;
c frequency response 
T.˝/

is inversely proportional to the thermal losses G and does not depend on the heat
capacity H , while the time constant of the rise � D H=G depends on the ratio of
both quantities. Small values of G make a thermal detector sensitive, but slow! It is
therefore essential to realize small values of both quantities (H and G).

In general, P will be time dependent. When we assume the periodic function

P D P0.1C a cos˝t/ ; jaj � 1 ; (4.120)

we obtain, inserting (4.120) into (4.117), a detector temperature of

T .˝/ D Ts C
T.1C cos.˝t C '// ; (4.121)

which depends on the modulation frequency ˝, and which shows a phase lag 	
determined by

tan	 D ˝H=G D ˝� ; (4.122a)

and a modulation amplitude


T D aˇP0p
G2 C˝2H2

D aˇP0

G
p
1C˝2�2

: (4.122b)

At the frequency ˝g D G=H D 1=� , the amplitude 
T decreases by a factor
of
p
2 compared to its DC value.

Note The problem is equivalent to the analogous case of charging a capacitor
(C $ H ) through a resistor R1 that discharges through R2 (R2 $ 1=G) (the
charging current i corresponds to the radiation power P ). The ratio � D H=G

(H=G $ R2C ) determines the time constant of the device (Fig. 4.79b).

We learn from (4.122b) that the sensitivity S D 
T=P0 becomes large if
G and H are made as small as possible. For modulation frequencies ˝ > G=H ,
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Figure 4.80 Calorimeter for measuring the output power of cw lasers or the output energy of
pulsed lasers: a experimental design; b calorimeter with active irradiated thermistor and nonirra-
diated reference thermistor; c balanced bridge circuit

the amplitude
T will decrease approximately inversely to ˝. Since the time con-
stant � D H=G limits the frequency response of the detector, a fast and sensitive
detector should have a minimum heat capacity H .

Since the specific heat decreases with decreasing temperature, thermal detectors
with fast response but still high sensitivity, i.e. large value ofG, should be operated
at low temperatures.

For the calibration of the output power from cw lasers, the demand for high
sensitivity is not as relevant since, in general, sufficiently large radiation power
is available. Figure 4.80 depicts a simple home-made calorimeter and its circuit
diagram. The radiation falls through a hole into a metal cone with a black inner sur-
face. Because of the many reflections, the light has only a small chance of leaving
the cone, ensuring that all light is absorbed. The absorbed power heats a thermo-
couple or a temperaturedependent resistor (thermistor) embedded in the cone. For
calibration purposes, the cone can be heated by an electric wire. If the detector
represents one part of a bridge (Fig. 4.80c) that is balanced for the electric input
W D UI , but without incident radiation, the heating power has to be reduced by

W D P to maintain the balance with the incident radiation power P .

A system with higher accuracy uses the difference in output signals of two iden-
tical cones, where only one is irradiated (Fig. 4.80b).

For the measurement of output energies from pulsed lasers, the calorimeter
should integrate the absorbed power at least over the pulse duration. From (4.117)
we obtain

t0Z

0

ˇP dt D H
T C
t0Z

0

G.T � Ts/dt : (4.123)

When the detector is thermally isolated, the heat conductivity G is small, there-
fore the second term may be completely neglected for sufficiently short pulse dura-
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Figure 4.81 Schematic circuit diagram of a bolometer: a thermopile; b thermistor; and c bridge
circuit with difference amplifier

tions t0. The temperature rise


T D 1

H

t0Z

0

ˇP dt ; (4.124)

is then directly proportional to the input energy. Instead of the cw electric input for
calibration (Fig. 4.80a), now a charged capacitor C is discharged through the heat-
ing coil. If the discharge time is matched to the laser pulse time, the heat conduction
is the same for both cases and does not enter into calibration. If the temperature rise
caused by the discharge of the capacitor equals that caused by the laser pulse, the
pulse energy is 1

2
CU 2.

For more sensitive detection of low incident powers, bolometers and Golay cells
are used. A special design for a bolometer consists of N thermocouples in series,
where one junction touches the backside of a thin electrically insulating foil that is
exposed to the incident radiation (Fig. 4.81a). The other junction is in contact with
a heat sink. The output voltage is

U D N dU

dT

T ;

where dU=dT is the sensitivity of a single thermocouple.
Another version utilizes a thermistor that consists of a material with a large tem-

perature coefficient ˛ D .dR=dT /=R of the electrical resistance R. If a constant
current i is fed through R (Fig. 4.81b), the incident power P that causes a temper-
ature increase 
T produces the voltage output signal


U D i
R D iR˛
T D V0R

RC R1˛
T ; (4.125)

where 
T is determined from (4.121) as 
T D ˇP.G2 C ˝2H2/�1=2. The re-
sponse
U=P of the detector is therefore proportional to i , R, and ˛, and decreases
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with increasing H and G. At a constant supply voltage V0, the current change 
i
caused by the irradiation is, for 
R	 RC R1,


i D V0
�

1

R1 C R �
1

R1 CRC
R
�
� V0 
R

.R1 CR/2 ; (4.126)

and can be generally neglected.
Since the input impedance of the following amplifier has to be larger thanR, this

puts an upper limit on R. Because any fluctuation of i causes a noise signal, the
current i through the bolometer has to be extremely constant. This and the fact that
the temperature rise due to Joule’s heating should be small, limits the maximum
current through the bolometer.

Equations (4.125 and 4.121) demonstrate again that small values of G and H
are desirable. Even with perfect thermal isolation, heat radiation is still present and
limits the lower value ofG. At the temperature difference
T between a bolometer
and its surroundings, the Stefan–Boltzmann law gives for the net radiation flux
P
to the surroundings from the detector with the emitting area A� and the emissivity
� � 1


P D 4A�
T 3
T ; (4.127)

where 
 D 5:77 � 10�8 W=m2 K�4 is the Stefan–Boltzmann constant. The mini-
mum thermal conductivity is therefore

Gm D 4A
�T 3 ; (4.128)

even for the ideal case where no other heat links to the surroundings exist. This
limits the detection sensitivity to a minimum input radiation of about 10�10 W
for detectors operating at room temperatures and with a bandwidth of 1Hz. It is
therefore advantageous to cool the bolometer, which furthermore decreases the heat
capacity.

This cooling has the additional advantage that the slope of the function dR=dT
becomes larger at low temperatures T . Two different materials can be utilized, as
discussed below.

In semiconductors the electrical conductivity is proportional to the electron den-
sity ne in the conduction band. With the band gap 
EG this density is, according
to the Boltzmann relation

ne.T /

ne.T C
T / D exp

�
�
EG
T

2kT 2

�
; (4.129)

and is very sensitively dependent on temperature.
The quantity dR=dT becomes exceedingly large at the critical temperature Tc of

superconducting materials. If the bolometer is always kept at this temperature Tc

by a temperature control, the incident radiation power P can be very sensitively
measured by the magnitude of the feedback control signal used to compensate for
the absorbed radiation power [224–226].
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Figure 4.82 Thermal excita-
tion of electrons from donor
levels into the conduction
band

thermal excitation

electron

conduction band
donor levels

valence band

Example 4.24
With

R
P dt D 10�12 Ws, ˇ D 1, H D 10�11 Ws=K we obtain from (4.124):


T D 0:1K. With ˛ D 10�4=K and R D 10�, R1 D 10�, V0 D 1V,
the current change is 
i D 2:5 � 10�6 A and the voltage change is 
V D
R
i D 2:5 � 10�5 V, which is readily detected.

Another material used for sensitive bolometers is a thin small disc of doped
silicon, where the dopants are donor atoms with energy levels slightly below the
conduction band (Fig. 4.82). A small temperature rise 
T increases the fraction of
ionized donors exponentially, thus producing free electrons in the conduction band.
Such bolometers have to be operated at low temperatures in order to increase their
sensitivity. The detectivity D� (4.114) increases with falling temperature because
the noise decreases (Fig. 4.83).

For thermal detectors the heat conduction G limits the sensitivity and the
heat capacity H the frequency response. Since the specific heat decreases with
the temperature, low temperatures improve both the sensitivity and the fre-
quency response.

In Fig. 4.84 the whole setup for a bolometer operated at liquid helium temper-
atures is shown, including the liquid nitrogen and helium containers. Pumping the
evaporating helium gas away drops the temperature below 1:5K. The cold apertures

Figure 4.83 Specific de-
tectivity D� as a function of
bolometer temperature
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Figure 4.84 Bolometer with helium cryostat

in front of the bolometer disc stop thermal radiation from the walls of the vacuum
vessel from reaching the detector. Using such a device radiation powers of less than
10�13 W can still be measured.

The Golay cell uses another method of thermal detection of radiation, namely the
absorption of radiation in a closed gas capsule. According to the ideal gas law, the
temperature rise 
T causes the pressure rise 
p D N.R=V /
T (where N is the
number of moles and R the gas constant), which expands a flexible membrane on
which a mirror is mounted (Fig. 4.85a). The movement of the mirror is monitored
by observing the deflection of a light beam from a light-emitting diode [227].

In modern devices the flexible membrane is part of a capacitor with the other
plate fixed. The pressure rise causes a corresponding change of the capacitance,
which can be converted to an AC voltage (Fig. 4.85b). This sensitive detector,
which is essentially a capacitor microphone, is now widely used in photoacoustic
spectroscopy (Vol. 2, Sect. 6.3) to detect the absorption spectrum of molecular gases
by the pressure rise proportional to the absorption coefficient.
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Figure 4.85 Golay cell: a using deflection of light by a flexible mirror; b monitoring the capaci-
tance change 
C of a capacitor C with a flexible membrane (spectraphone)

A recently developed thermal detector for infrared radiation is based on the py-
roelectric effect [228–231]. Pyroelectric materials are good electrical insulators
that possess an internal macroscopic electricdipole moment, depending on the tem-
perature. The crystal neutralizes the electric field of this dielectric polarization by
a corresponding surface-charge distribution. A change of the internal polarization
caused by a temperature rise will produce a measurable change in surface charge,
which can be monitored by a pair of electrodes applied to the sample (Fig. 4.86).
Because of the capacitive transfer of the change of the electric dipole moments, py-
roelectric detectors monitor only changes of input power. Any incident cw radiation
therefore has to be chopped.

While the sensitivity of good pyroelectric detectors is comparable to that of Go-
lay cells or high-sensitivity bolometers, they are more robust and therefore less
delicate to handle. They also have a much better time resolution down into the
nanosecond range [229]. The development of artificial pyroelectric materials in the
form of thin films made of Gallium Nitride GaN or of Cesium Nitrate CsNO3 has
increased sensitivity and frequency response of pyroelectric detectors.

Figure 4.86 Pyroelectric
detector
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4.5.2 Photodiodes

Photodiodes are doped semiconductors that can be used as photovoltaic or photo-
conductive devices. When the p–n junction of the diode is irradiated, the pho-
tovoltage Vph is generated at the open output of the diode (Fig. 4.87a); within
a restricted range it is proportional to the absorbed radiation power. Diodes used as
photoconductive elements change their internal resistance upon irradiation and can
therefore be used as photoresistors in combination with an external voltage source
(Fig. 4.87b).

For their use as radiation detectors the spectral dependence of their absorption
coefficient is of fundamental importance. In an undoped semiconductor the absorp-
tion of one photon h� causes an excitation of an electron from the valence band into
the conduction band (Fig. 4.88a). With the energy gap 
Eg D Ec � Ev between
the valence and conduction band, only photons with h� 
 
Eg are absorbed. The
intrinsic absorption coefficient

˛intr.�/ D
8
<

:
˛0.h� �
Eg/

1=2 ; for h� > 
Eg ;

0 ; for h� < 
Eg ;
(4.130)

is shown in Fig. 4.89 for different undoped materials. The quantity ˛0 depends
on the material and is generally larger for semiconductors with direct transitions

Figure 4.87 Use of a pho-
todiode: a as a photovoltaic
device; and b as a photocon-
ductive resistor

Figure 4.88 a Direct
band–band absorption in
an undoped semiconductor;
and b indirect transitions,
illustrated in a E.k/ band
diagram
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Figure 4.89 Spectral absorption ˛.�/ of some semiconductors. Amorphous silicon a-SiH with
indirect absorption transitions shows a smaller slope d˛=d� of the curve ˛.�/ while semiconduc-
tors with direct absorption (InP, GaAs or CuInSe2) have a much steeper slope

Figure 4.90 Photoabsorption in undoped semiconductors (a) and by donors (b) and acceptors (c)
in n- or p-doped semiconductors

(
k D 0) as e.g. GaAs, than for indirect transitions with 
k ¤ 0 (crystalline
silicon). The steep rise of ˛.�/ for h� > Eg has only been observed for direct
transitions, while it is much flatter for indirect transitions.

In doped semiconductors photon-induced electron transitions can occur between
the donor levels and the conduction band, or between the valence band and the
acceptor levels (Fig. 4.90). Since the energy gaps 
Ed D Ec � Ed or 
Ea D
Ev�Ea are much smaller than the gapEc�Ev, doped semiconductors absorb even
at smaller photon energies h� and can therefore be employed for the detection of
longer wavelengths in the midinfrared. In order to minimize thermal excitation of
electrons, these detectors must be operated at low temperatures. For � � 10�m
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Figure 4.91 Detec-
tivityD�.�/ of some
photodetectors [218]

generally liquid-nitrogen cooling is sufficient, while for � > 10�m liquid-helium
temperatures around 4–10K are required.

Figure 4.91 plots the detectivity of commonly used photodetector materials with
their spectral dependence, while Fig. 4.92 illustrates their useful spectral ranges and
their dependence on the energy gap 
Eg.

a) Photoconductive Diodes

When a photodiode is illuminated, its electrical resistance decreases from a “dark
value” RD to a value RI under illumination. In the circuit shown in Fig. 4.87b, the
change of the output voltage is given by


U D
�

RD

RD C R �
RI

RI CR
�
U0 D R.RD �RI/

.RCRD/.RCRI/
U0 ; (4.131)

Figure 4.92 Energy gaps
and useful spectral ranges
of some semiconducting
materials
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Figure 4.93 Electronic
diagram of a photoconduc-
tive detector with amplifier;
CD is the capacitance of the
photodiode and Ca is the
capacitance of the amplifier

which becomes, at a given illumination, maximum for

R �
p
RDRI :

The time constant of the photoconductive diode is determined by � 
 RC ,
whereC D CPDCCa is the capacitance of the diode plus the input capacitance of the
circuit. Its lower limit is set by the diffusion time of the electrons on their way from
the p–n junction where they are generated to the electrodes. Detectors from PbS,
for example, have typical time constants of 0:1–1ms, while InSb detectors are much
faster (� ' 10�7–10�6 s). Although photoconductive detectors are generally more
sensitive, photovoltaic detectors are better suited for the detection of fast signals.

b) Photovoltaic Detector

While photoconductors are passive elements that need an external power supply,
photovoltaic diodes are active elements that generate their own photovoltage upon
illumination, although they are often used with an external bias voltage. The prin-
ciple of the photogenerated voltage is shown in Fig. 4.94.

In the nonilluminated diode, the diffusion of electrons from the n-region into the
p-region (and the opposite diffusion of the holes) generates a space charge, with
opposite signs on both sides of the p–n junction, which results in the diffusion
voltage VD and a corresponding electric field across the p–n junction (Fig. 4.94b).
Note that this diffusion voltage cannot be detected across the electrodes of the diode,
because it is just compensated by the different contact potentials between the two
ends of the diode and the connecting leads.

When the detector is illuminated, electron–hole pairs are created by photon ab-
sorption within the p–n junction. The electrons are driven by the diffusion voltage
into the n-region, the holes into the p-region. This leads to a decrease 
VD of the
diffusion voltage, which appears as the photovoltage Vph D 
VD across the open
electrodes of the photodiode. If these electrodes are connected through an Ampére-
meter, the photoinduced current

iph D ��e	A ; (4.132)

is measured, which equals the product of quantum efficiency �, the illuminated
active area A of the photoiode, and the incident photon flux density 	 D I=h�.
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Figure 4.94 Photovoltaic diode: a schematic structure and b diffusion voltage and generation of
an electron–hole pair by photon absorption within the p–n junction. c Reduction of the diffusion
voltage VD under illumination for an open circuit

Figure 4.95 a Current–voltage characteristics of a dark and an illuminated diode; b diffusion
voltage and photovoltage at the open ends and photocurrent in a shortened diode as a function of
incident radiation power

The illuminated p–n photodetector can therefore be used either as a current gen-
erator or a voltage source, depending on the external resistor between the electrodes.

Note The photon-induced voltage Uph < 
Eg=e is always limited by the energy
gap 
Eg. The voltage Uph across the open ends of the photodiode is reached even
at relatively small photon fluxes, while the photocurrent is linear over a large range
(Fig. 4.95b). When using photovoltaic detectors for measuring radiation power, the
load resistor RL must be sufficiently low to keep the output voltage Uph D iphRL <

Us D 
Eg=e always below its saturation value Us. Otherwise, the output signal is
no longer proportional to the input power.

If an external voltage U is applied to the diode, the diode current without illumi-
nation

iD.U / D CT 2e�eVD=kT .eeU=kT � 1/ ; (4.133a)
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shows the typical diode characteristics (Fig. 4.95a). For large negative voltages U
.exp.Ue=kT /	 1/, a negative reverse dark current

is D �CT 2e�eVD=kT (4.133b)

is flowing through the diode. During illumination the dark current iD is superim-
posed by the opposite photocurrent

iill.U / D iD.U / � iph : (4.134)

With open ends of the diode we obtain i D 0, and therefore from (4.133a), (4.133b)
the photovoltage becomes

Uph.i D 0/ D kT

e



ln

�
iph

is

�
C 1

�
: (4.135)

Fast photodiodes are always operated at a reverse bias voltage U < 0, where
the saturated reverse current is of the dark diode is small (Fig. 4.95a). From
(4.133a), (4.133b) we obtain, with Œexp.eU=kT /	 1� for the total diode current,

i D �is � iph D �CT 2e�eVD=kT � iph ; (4.136)

which becomes independent of the external voltage U .
Materials used for photovoltaic detectors are, e.g., silicon, cadmium sulfide

(CdS), and gallium arsenide (GaAs). Silicon detectors deliver photovoltages up to
550mV and photocurrents up to 40mA=cm2 [206]. The efficiency � D Pel=Pph of
energy conversion reaches 10–14%. New devices with a minimum number of crys-
tal defects can even reach 20–30%. Gallium arsenide (GaAs) detectors show larger
photovoltages up to 1V, but slightly lower photocurrents of about 20mA=cm2.

c) Fast Photodiodes

The photocurrent generates a signal voltage Vs D Uph D RLiph across the load
resistorRL that is proportional to the absorbed radiation power over a large intensity
range of several decades, as long as Vs < 
Eg=e (Fig. 4.95b). From the circuit
diagram in Fig. 4.96 with the capacitance Cs of the semiconductor and its series
and parallel resistances Rs and Rp, one obtains for the upper frequency limit [232]

fmax D 1

2�Cs.Rs CRL/.1CRs=Rp/
; (4.137)

which reduces, for diodes with large Rp and small Rs, to

fmax D 1

2�CsRL
: (4.138)
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Figure 4.96 Equivalent cir-
cuit of a photodiode with
internal capacity CS, series
internal resistor RS, paral-
lel internal resistor RP, and
external load resistor RL

With small values of the resistor RL, a high-frequency response can be achieved,
which is limited only by the drift time of the carriers through the boundary layer of
the p–n junction. This drift time can be reduced by an external bias voltage. Using
diodes with large bias voltages and a 50-� load resistor matched to the connecting
cable, rise times in the subnanosecond range can be obtained.

Example 4.25

Cs D 10�11 F; RL D 50� ) fmax D 300MHz; � D 1

2�fmax
'

0:6 ns.

For photon energies h� close to the band gap, the absorption coefficient de-
creases, see (4.130). The penetration depth of the radiation, and with it the volume
from which carriers have to be collected, becomes large. This increases the collec-
tion time and makes the diode slow.

Definite collection volumes can be achieved in PIN diodes, where an undoped
zone I of an intrinsic semiconductor separates the p- and n-regions (Fig. 4.97).
Since no space charges exist in the intrinsic zone, the bias voltage applied to the

Figure 4.97 PIN photodiode with head-on (a) and side-on (b) illumination



224 4 Spectroscopic Instrumentation

Figure 4.98 a Work functions 	m of metal and 	s of semiconductor and electron affinity �. Ec is
the energy at the bottom of the conduction band and EF is the Fermi energy. b Schottky barrier at
the contact layer between metal and n-type semiconductor. c Generation of a photocurrent

diode causes a constant electric field, which accelerates the carriers. The intrinsic
region may be made quite wide, which results in a low capacitance of the p–n junc-
tion and provides the basis for a very fast and sensitive detector. The limit for the
response time is, however, also set by the transit time � D w=vth of the carriers
in the intrinsic region, which is determined by the width w and the thermal veloc-
ity vth of the carriers. Silicon PIN diodes with a 700-µm wide zone I have response
times of about 10 ns and a sensitivity maximum at � D 1:06�m, while diodes
with a 10-µm wide zone I reach 100 ps with a sensitivity maximum at a shorter
wavelength–around � D 0:6 �m [233]. Fast response combined with high sensi-
tivity can be achieved when the incident radiation is focused from the side into the
zone I (Fig. 4.97b). The only experimental disadvantage is the critical alignment
necessary to hit the small active area.

Very fast response times can be reached by using the photoeffect at the metal–
semiconductor boundary known as the Schottky barrier [234]. Because of the
different work functions 	m and 	s of the metal and the semiconductor, electrons
can tunnel from the material with low 	 to that with high 	 (Fig. 4.98). This causes
a space-charge layer and a potential barrier

VB D 	B=e ; with 	B D 	m � � ; (4.139)

between metal and semiconductor. The electron affinity is given by � D 	s �
.Ec � EF/. If the metal absorbs photons with h� > 	B, the metal electrons gain
sufficient energy to overcome the barrier and “fall” into the semiconductor, which
thus acquires a negative photovoltage. The majority carriers are responsible for the
photocurrent, which ensures fast response times.

For measurements of optical frequencies, ultrafast metal–insulator-metal (MIM)
diodes have been developed [235], which can be operated up to 88THz (� D
3:39�m). In these diodes, a 25-µm diameter tungsten wire with its end electro-
chemically etched to a point less than 200 nm in radius serves as the point contact
element, while the optically polished surface of a nickel plate with a thin oxide layer
forms the base element of the diode (Fig. 4.99).
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Figure 4.99 Arrangement
of a metal–insulator–metal
(MIM) diode used for optical
frequency mixing of laser
frequencies

These MIM diodes can be used as mixing elements at optical frequencies. When
illuminating the contact point with a focused CO2 laser, a response time of 10�14 s
or better has been demonstrated by the measurement of the 88-THz emission from
the third harmonic of the CO2 laser. If the beams of two lasers with the frequencies

Figure 4.100 Point-
contact diode: a electron
miocroscope picture
b current-voltage charac-
teristics [237]
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f1 and f2 are focused onto the junction between the nickel oxide layer and the
sharp tip of the tungsten wire, the MIM diode acts as a rectifier and the wire as an
antenna, and a signal with the difference frequency f1�f2 is generated. Difference
frequencies up into the terahertz range can be monitored [236] (see Sect. 6.6). The
basic processes in these MIM diodes represent very interesting phenomena of solid-
state physics. They could be clarified only recently [236].

Difference frequencies up to 900GHz between two visible dye lasers have been
measured with Schottky diodes (Fig. 4.100) by mixing the difference frequency
with harmonics of 90-GHz microwave radiation which was also focused onto the
diode [237]. Meanwhile, Schottky-barrier mixer diodes have been developed that
cover the frequency range 1–10THz [237].

d) Avalanche Diodes as Internal Amplifyers

Internal amplification of the photocurrent can be achieved with avalanche diodes,
which are reverse-biased semiconductor diodes, where the free carriers acquire suf-
ficient energy in the accelerating field to produce additional carriers on collisions
with the lattice (Fig. 4.101). The multiplication factor M , defined as the average
number of electron–hole pairs after avalanche multiplication initiated by a single
photoproduced electron–hole pair, increases with the reverse-bias voltage. The mul-
tiplication factor

M D 1= Œ1 � .V=Vbr/
n� (4.140)

depends on the external bias voltage V and the breakdown voltage Vbr. The value
of n (2–6) depends on the material of the avalanche diode. M can be also expressed
by the multiplication coefficient ˛ for electrons and the lengthL of the space charge
boundary:

M D 1

1 � R L
0
˛.x/ dx

: (4.141)

Values ofM up to 106 have been reported in silicon, which allows sensitivities com-
parable with those of a photomultiplier. The advantage of these avalanche diodes
is their fast response time, which decreases with increasing bias voltage. In this
device the product of gain times bandwidth may exceed 1012 Hz if the breakdown
voltage is sufficiently high [208]. The value of M also depends upon the tempera-
ture (Fig. 4.101b).

In order to avoid electron avalanches induced by holes accelerated into the oppo-
site direction, which would result in additional background noise, the amplification
factor for holes must be kept considerably smaller than for electrons. This is
achieved by a specially tailored layer structure, which yields a sawtooth-like graded
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Figure 4.101 Avalanche diode: a schematic illustration of avalanche formation (nC, pC are
heavily doped layers); b amplification factor M.V / as a function of the bias voltage V for a Si-
avalanche diode; c spatial variation of band edges and bandgap without external field; and d within
an external electric field

band-gap dependence 
Eg.x/ in the field x-direction (Fig. 4.101c,d). In an exter-
nal field this structure results in an amplification factor M that is 50–100 times
larger for electrons than for holes [238].

Such modern avalanche diodes may be regarded as the solid-state analog to pho-
tomultipliers (Sect. 4.5.5). Their advantages are a high quantum efficiency (up
to 40%) and a low supply voltage (10–100V). Their disadvantage for fluores-
cence detection is the small active area compared to the much larger cathode area
of photomultipliers [239–241].

Detailed data on avalanche photodiodes can be found on the homepage of Hama-
matsu [242].

4.5.3 Photodiode Arrays

Many small photodiodes can be integrated on a single chip, forming a photodiode
array. If all diodes are arranged in a line we have a onedimensional diode array,
consisting of up to 2048 diodes. With a diode width b D 15�m and a spacing of
d D 10�m between two diodes, the length L of an array of 1024 diodes becomes
25mm with a height of about 40�m [243].
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Figure 4.102 Schematic structure of a single diode within the array (a) and electronic circuit
diagram of a one-dimensional diode array (b)

The basic principle and the electronic readout diagram is shown in Fig. 4.102.
An external bias voltage U0 is applied to p–n diodes with the sensitive area A and
the internal capacitanceCs. Under illumination with an intensity I the photocurrent
iph D �AI , which is superimposed on the dark current iD, discharges the diode
capacitance Cs during the illumination time 
T by


Q D
Z tC
T

t

.iD C �AI/dt D Cs
U : (4.142)

Every photodiode is connected by a multiplexing MOS switch to a voltage line and
is recharged to its original bias voltage U0. The recharging pulse 
U D 
Q=Cs

is sent to a video line connected with all diodes. These pulses are, according to
(4.142), a measure for the incident radiation energy

R
AIdt , if the dark current iD

is subtracted and the quantum efficiency � is known.
The maximum integration time 
T is limited by the dark current iD, which

therefore also limits the attainable signal-to-noise ratio. At room temperature typ-
ical integration times are in the millisecond range. Cooling of the diode array by
Peltier cooling down to �40 ıC drastically reduces the dark current and allows in-
tegration times of 1–100 s. The minimum detectable incident radiation power is
determined by the minimum voltage pulse 
U that can be safely distinguished
from noise pulses. The detection sensitivity therefore increases with decreasing
temperature because of the possible increasing integration time. At room tempera-
ture typical sensitivity limits are about 500 photons per second and diode.

If such a linear diode array with N diodes and a length L D N.bC d/ is placed
in the observation plane of a spectrograph (Fig. 4.1), the spectral interval

•� D d�

dx
L ;
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which can be detected simultaneously, depends on the linear dispersion dx=d� of
the spectrograph. The smallest resolvable spectral interval


� D d�

dx
b ;

is limited by the width b of the diode. Such a system of spectrograph plus diode
array is called an optical multichannel analyzer (OMA) or an optical spectrum an-
alyzer (OSA) [243, 244].

Example 4.26
b C d D 25�m; L D 25mm; d�=dx D 5 nm=mm
) •� D 125 nm; 
� D 0:125 nm.

The diodes can be also arranged in a two-dimensional array, which allows the de-
tection of two-dimensional intensity distributions. This is, for instance, important
for the observation of spatial distributions of light-emitting atoms in gas discharges
or flames (Vol. 2, Sect. 15.4) or of the ring pattern behind a Fabry–Perot interfer-
ometer.

4.5.4 Charge-Coupled Devices (CCDs)

Photodiode arrays are now increasingly replaced by charge-coupled device (CCD)
arrays, which consist of an array of small MOS junctions on a doped silicon sub-
strate (Fig. 4.103) [245–250]. The incident photons generate electrons and holes
in the n- or p-type silicon. The electrons or holes are collected and change the
charge of the MOS capacitances. These changes of the charge can be shifted to the
next MOS capacitance by applying a sequence of suitable voltage steps according
to Fig. 4.103b. The charges are thus shifted from one diode to the next until they
reach the last diode of a row, where they cause the voltage change 
U , which is
sent to a video line.

The quantum efficiency � of CCD arrays depends on the material used for the
substrate, it reaches peak values over 90%. The efficiency �.�/ is generally larger
than 20% over the whole spectral range, which covers the region from 350–900 nm.
Using fused quartz windows, even the UV and the IR from 200–1000 nm can be
covered (Fig. 4.103c), and the efficiencies of most photocathodes are exceeded
(Sect. 4.5.5). The spectral range of special CCDs ranges from 0:1–1000 nm. They
can therefore be used in the VUV and X-ray regions, too. The highest sensitivity
up to 90% efficiency is achieved with backward-illuminated devices (Fig. 4.104).
Table 4.2 compiles some relevant data for commercial CCD devices and Fig. 4.105
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Figure 4.103 Principle of a CCD array: a alternately, a positive (solid line) and a negative (dashed
line) voltage are applied to the electrodes. b This causes the charged carriers generated by photons
to be shifted to the next diode. This shift occurs with the pulse frequency of the applied voltage.
c Spectral sensitivity of CCD diodes

Figure 4.104 Spectral
dependence of the quan-
tum efficiency �.�/ of
front-illuminated (a) and
backward-illuminated
CCD arrays with visible-
AR coatings (b) and UV–AR
coatings (c)

a

bc

compares the spectral quantum efficiency of CCD detectors with those of the pho-
tographic plate and photomultiplier cathodes.

The dark current of cooled CCD arrays may be below 10�2 electrons per second
and diode. The readout dark pulses are smaller than those of photodiode arrays.
Therefore, the sensitivity is high and may exceed that of good photomultipliers.
Particular advantages are their large dynamic range, which covers about five orders
of magnitude, and their linearity.

The disadvantage is their small size compared to photographic plates. This re-
stricts the spectral range that can be detected simultaneously. More information
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Table 4.2 Characteristic data of CCD arrays

Active area [mm2] 24:6 � 24:6

Pixel size [�m] 7:5 � 15 up to 24� 24

Number of pixels 1024 � 1024 up to 2048 � 2048

Dynamic range [bits] 16

Readout noise at 50 kHz [electron charges] 4–6

Dark charge [electrons=.h pixel/] < 1

Hold time at �120 ıC [h] > 10

Quantum efficiency peak

Front illuminated 50%

Backward illuminated > 90%

Spectral range [mm] 300–1100

Figure 4.105 Comparison of the quantum efficiencies of CCD detectors, photoplates and photo-
multipliers

about CCD detectors, which are becoming increasingly important in spectroscopy,
can be found in [246, 250, 251].

4.5.5 Photoemissive Detectors

Photoemissive detectors, such as the photocell or the photomuliplier, are based on
the external photoeffect. The photocathode of such a detector is covered with one
or several layers of materials with a low work function 	 (e.g., alkali metal com-
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Figure 4.106 Photoemissive detector: a principle arrangement of a photocell; b opaque photo-
cathode; and c semitransparent photocathode

pounds or semiconductor compounds). Under illumination with monochromatic
light of wavelength � D c=�, the emitted photoelectrons leave the photocathode
with a kinetic energy given by the Einstein relation

Ekin D h� � 	 : (4.143)

They are further accelerated by the voltage V0 between the anode and cathode and
are collected at the anode. The resultant photocurrent is measured either directly or
by the voltage drop across a resistor (Fig. 4.106a).

a) Photocathodes

The most commonly used photocathodes are metallic or alkaline (alkali halides, al-
kali antimonide or alkali telluride) cathodes. The quantum efficiency � D ne=nph

is defined as the ratio of the rate of photoelectrons ne to the rate of incident photons
nph. It depends on the cathode material, on the form and thickness of the pho-
toemissive layer, and on the wavelength � of the incident radiation. The quantum
efficiency � D nanbnc can be represented by the product of three factors. The first
factor na gives the probability that an incident photon is actually absorbed. For ma-
terials with a large absorption coefficient, such as pure metals, the reflectivity R is
high (e.g., for metallic surfacesR 
 0:8–0:9 in the visible region), and the factor na
cannot be larger than (1 � R). For semitransparent photocathodes of thickness d ,
on the other hand, the absorption must be large enough to ensure that ˛d > 1.
The second factor nb gives the probability that the absorbed photon really produces
a photoelectron instead of heating the cathode material. Finally, the third factor nc
stands for the probability that this photoelectron reaches the surface and is emitted
instead of being backscattered into the interior of the cathode.

Two types of photoelectron emitters are manufactured: opaque layers, where
light is incident on the same side of the photocathode from which the photoelectrons
are emitted (Fig. 4.106b); and semitransparent layers (Fig. 4.106c), where light en-
ters at the opposite side to the photoelectron emission and is absorbed throughout
the thickness d of the layer. Because of the two factors na and nc , the quantum effi-
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Figure 4.107 Spectral
sensitivity curves of some
commercial cathode types.
The solid lines give S.�/
[mA=W], whereas the dashed
curves given quantum effi-
ciencies � D ne=nph

ciency of semitransparent cathodes and its spectral change are critically dependent
on the thickness d , and reach that of the reflection-mode cathode only if the value
of d is optimized.

Figure 4.107 shows the spectral sensitivity S.�/ of some typical photocathodes,
scaled in milliamperes of photocurrent per watt incident radiation. For comparison,
the quantum efficiency curves for � D 0:001, 0:01 and 0:1 are also drawn (dashed
curves). Both quantities are related by

S D i

Pin
D nee

nphh�
) S D �e�

hc
: (4.144)

For most emitters the threshold wavelength for photoemission is below 0:85�m,
corresponding to a work function 	 
 1:4 eV. An example for such a material
with 	 � 1:4 eV is a surface layer of NaKSb [252]. Only some complex cathodes
consisting of two or more separate layers have an extended sensitivity up to about
� � 1:2 �m. For instance, an InGaAs photocathode has an extended sensitivity in
the infrared, reaching up to 1700 nm. The spectral response of the most commonly
fabricated photocathodes is designated by a standard nomenclature, using the sym-
bols S1 to S20. Some newly developed types are labeled by special numbers, which
differ for the different manufacturers [253]. Examples are S1 D Ag � O � Cs
(300–1200 nm) or S4 D Sb � Cs (300–650 nm).

Recently, a new type of photocathode has been developed that is based on pho-
toconductive semiconductors whose surfaces have been treated to obtain a state of
negative electron affinity (NEA) (Fig. 4.108). In this state an electron at the bot-
tom of the conduction band inside the semiconductor has a higher energy than the
zero energy of a free electron in vacuum [254]. When an electron is excited by
absorption of a photon into such an energy level within the bulk, it may travel to
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Figure 4.108 Level scheme for negative electron affinity photocathodes

the surface and leave the photocathode. These NEA cathodes have the advantage
of a high sensitivity, which is fairly constant over an extended spectral range and
even reaches into the infrared up to about 1:2 �m. Since these cathodes represent
cold-electron emission devices, the dark current is very low. Until now, their main
disadvantage has been the complicated fabrication procedure and the resulting high
price.

Different devices of photoemissive detectors are of major importance in modern
spectroscopy. These are the the photomultiplier, the image intensifier, and the streak
camera.

b) Photomultipliers

Photomultipliers are a good choice for the detection of low light levels. They over-
come some of the noise limitations by internal amplification of the photocurrent
using secondary-electron emission from internal dynodes to mulitply the number of
photoelectrons (Fig. 4.109).

Figure 4.109 Photomultiplier with time-dependent output voltage pulse induced by an electron
avalanche that was triggered by a delta-function light pulse
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The photoelectrons emitted from the cathode are accelerated by a voltage of
a few hundred volts and are focused onto the metal surface (e.g., Cu–Be) of the
first “dynode” where each impinging electron releases, on the average, q secondary
electrons. These electrons are further accelerated to a second dynode where each
secondary electron again produces about q tertiary electrons, and so on. The ampli-
fication factor q depends on the accelerating voltage U , on the incidence angle ˛,
and on the dynode material. Typical figures for U D 200V are q D 3–5. A pho-
tomulitplier with ten dynodes therefore has a total current amplification of G D
q10 � 105–107. Each photoelectron in a photomultiplier with N dynodes produces
a charge avalanche at the anode of Q D qN e and a corresponding voltage pulse of

V D Q

Ca
D qN e

Ca
D Ge

Ca
; (4.145)

where Ca is the capacitance of the anode (including connections).

Example 4.27
G D 2 � 106, Ca D 30 pf ) V D 10:7mV.

For cw operation the DC output voltage is given by V D ia � R, independent of
the capacitance Ca.

For experiments demanding high time resolution, the rise time of this anode
pulse should be as small as possible. Let us consider which effects may contribute
to the anode pulse rise time, caused by the spread of transit times for the differ-
ent electrons [255, 256]. Assume that a single photoelectron is emitted from the
photocathode, and is accelerated to the first dynode. The initial velocities of the
secondary electrons vary because these electrons are released at different depths
of the dynode material and their initial energies, when leaving the dynode surface,
are between 0 and 5 eV. The transit time between two parallel electrodes with dis-
tance d and potential difference V is obtained from d D 1

2
at2 with a D eV=.md/,

which gives

t D d
r
2m

eV
; (4.146)

for electrons with massm starting with zero initial energy. Electrons with the initial
energy Ekin reach the next electrode earlier by the time difference


t1 D d

eV

p
2mEkin : (4.147)
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Example 4.28
Ekin D 0:5 eV, d D 1 cm, V D 250V ) 
t1 D 0:1 ns.

The electrons travel slightly different path lengths through the tube, which causes
an additional time spread of


t2 D 
d
r
2m

eV
; (4.148)

which is of the same magnitude as 
t1. The rise time of an anode pulse started by
a single photoelectron therefore decreases with increasing voltage proportional to
V �1=2. It depends on the geometry and form of the dynode structures.

When a short intense light pulse produces many photoelectrons simultaneously,
the time spread is further increased by two phenomena:

� The initial velocities of the emitted photoelectrons differ, e.g., for a cesium anti-
monide S5 cathode between 0 and 2 eV. This spread depends on the wavelength
of the incoming light [257]a.

� The time of flight between the cathode and the first dynode strongly depends on
the locations of the spot on the cathode where the photoelectron is emitted. The
resulting time spread may be larger than that from the other effects, but may be
reduced by a focusing electrode between the cathode and the first dynode with
careful optimization of its potential. Typical anode rise times of photomultipli-
ers range from 0:5–20 ns. For specially designed tubes with optimized side-on
geometry, where the curved opaque cathode is illuminated from the side of the
tube, rise times of 0:4 ns have been achieved [257]b. Shorter rise times can be
reached with channel plates and channeltrons [257]c.

Example 4.29
Photomultiplier type 1P28: N D 9, q D 5:1 at V D 1250V ) G D 2:5 �
106; anode capacitance and input capacitance of the amplifier Ca D 15 pF.
A single photoelectron produces an anode pulse of 27mV with a rise time of
2 ns. With a resistor R D 105 � at the PM exit, the trailing edge of the output
pulse is Ca D 1:5 � 10�6 s.

For low-level light detection, the question of noise mechanisms in photomulti-
pliers is of fundamental importance [259]. There are three main sources of noise:

� Photomultiplier dark current;
� Noise of the incoming radiation;
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� Shot noise and Johnson noise caused by fluctuations of the amplification and by
noise of the load resistor.

We shall discuss these contributions separately:

� When a photomultiplier is operated in complete darkness, electrons are still emit-
ted from the cathode. This dark current is mainly due to thermionic emission
and is only partly caused by cosmic rays or by radioactive decay of spurious ra-
dioactive isotopes in the multiplier material. According to Richardson’s law, the
thermionic emission current

i D C1T 2e�C2	=T ; (4.149)

strongly depends on the cathode temperature T and on its work function 	.
If the spectral sensitvity extends into the infrared, the work function 	 must
be small, which increases the dark current. In order to decrease the dark cur-
rent, the temperature T of the cathode must be reduced. For instance, cooling
a cesium–antimony cathode from 20 ıC to 0 ıC reduces the dark current by a fac-
tor of about ten. The optimum operation temperature depends on the cathode
type (because of 	). For S1 cathodes, e.g., those with a high infrared sensitiv-
ity and therefore a low work function 	, it is advantageous to cool the cathode
down to liquid nitrogen temperatures. For other types with maximum sensitivity
in the green, cooling below �40 ıC gives no significant improvement because
the thermionic part of the dark current has already dropped below other con-
tributions, e.g., caused by high-energy ˇ-particles from disintegration of 40K
nuclei in the window material. Excessive cooling can even cause undesirable
effects, such as a reduction of the signal photocurrent or voltage drops across
the cathode, because the electrical resistance of the cathode film increases with
decreasing temperature [260].
For many spectroscopic applications only a small fraction of the cathode area is
illuminated, e.g., for photomultipliers behind the exit slit of a monochromator.
In such cases, the dark current can be futher reduced either by using photomulit-
pliers with a small effective cathode area or by placing small magnets around an
extended cathode. The magnetic field defocuses electrons from the outer parts
of the cathode area. These electrons cannot reach the first dynode and do not
contribute to the dark current.

� The shot noise

hinis D
p
2e � i �
f (4.150a)

of the photocurrent [259] is amplified in a photomultiplier by the gain factor G.
The root-mean-square (rms) noise voltage across the anode load resistor R is
therefore

hV is D GR
p
2e ic
f ; ic W cathode current ;

D R
p
2e Gia
f ; ia D Gic W anode current ; (4.150b)
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if the gain factor G is assumed to be constant. However, generally G is not con-
stant, but shows fluctuations due to random variations of the secondary-emission
coefficient q, which is a small integer. This contributes to the total noise and
multiplies the rms shot noise voltage by a factor a > 1, which depends on the
mean value of q [261]. The shot noise at the anode is then:

hVSi D aR
p
2eG ia
f : (4.150c)

� The Johnson noise of the load resistorR at the temperature T gives an rms-noise
current

hiniJ D
p
4kT
f=R (4.151a)

and a noise voltage

hVniJ D RhiniJ :
� From (4.150a)–(4.150c) we obtain with (4.151a) for the superposition hV iSt+J Dq

hV i2S C hVni2J of shot noise and Johnson noise across the anode load resistor R

at room temperature, where 4kT=e � 0:1V

hV iJCs D
p

eR
f.2RGa2ia C 0:1/ ŒVolt� : (4.151)

For GR iaa2 � 0:05V, the Johnson noise can be neglected. With the gain factor
G D 106 and the load resistor of R D 105 �, this implies that the anode cur-
rent ia should be larger than 5� 10�13 A. Since the anode dark current is already
much larger than this limit, we see that the Johnson noise does not contribute to
the total noise of photomultipliers.
The channel photomultiplier is a new photomultiplier design for low-level light
detection. Here the photoelectrons released from the photocathode are not mul-
tiplied by a series of dynodes, but instead move from the cathode to the anode
through a curved narrow semiconductive channel (Fig. 4.110). Each time a pho-
toelectron hits the inner surface of the channel, it releases q secondary electrons,
where the integer q depends on the voltage applied between the anode and the
cathode. The curved geometry causes a grazing incidence of the electrons onto
the surface, which enhances the secondary emission factor q. The total gain of
these channel photomultipliers (CPM) can exceed M D 108 and is therefore
generally higher than for PM with dynodes.
The main advantages of the CPM are its compact design, its greater dynamic
range and its lower dark current (caused mainly by thermionic emission from
the photocathode) which is smaller due to its reduced area. The noise caused by
fluctuations in the multiplication factor is also smaller, due to the larger value of
the secondary emission factor q.
A significant improvement of the signal-to-noise ratio in detection of low levels
of radiation can be achieved with single-photon counting techniques, which en-
able spectroscopic investigations to be performed at incident radiation fluxes
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Figure 4.110 Channel photomultiplier. a Schematic design; b gain factor G as a function of the
applied voltage between cathode and anode. [From Olympics Fluo View Resource Center]

down to 10�17 W. These techniques are discussed in Sect. 4.5.6. More details
about photomultipliers and optimum conditions of performance can be found in
excellent introductions issued by Hamamatsu, EMI or RCA [261, 262]. An ex-
tensive review of photoemissive detectors has been given by Zwicker [252]; see
also the monographs [216, 217, 258, 263, 264].

c) Microchannel Plates

Photomultipliers are now often replaced by microchannel plates. They consist
of a photocathode layer on a thin semiconductive glass plate (0:5–1:5mm) that
is perforated by millions of small holes with diameters in the range 10–25�m
(Fig. 4.111). The total area of the holes covers about 60% of the glass plate area.
The inner surface of the holes (channels) has a high secondary emission coefficient
for electrons that enter the channels from the photocathode and are accelerated by
a voltage applied between the two sides of the glass plate. The amplification factor
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Figure 4.111 Microchannel plate (MCP): a schematic construction; b electron avalanche in one
channel; c schematic arrangement of MCP detector with spatial resolution

is about 103 at an electric field of 500V=mm. Placing two microchannel plates in
series (Fig. 4.112) allows an amplification of 106, which is comparable to that of
photomultipliers.
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Figure 4.112 Microchannel plate: a microholes; b design of a microchannel plate; c principle of
amplification; d two-stage microchannel plate
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Figure 4.113 Single-stage image intensifier with magnetic focusing

The advantage of the microchannel plates is the short rise time (< 1 ns) of the
electron avalanches generated by a single photon, the small size, and the possibility
of spatial resolution [265].

d) Photoelectric Image Intensifiers

Image intensifiers consist of a photocathode, an electro-optical imaging device, and
a fluorescence screen, where an intensified image of the irradiation pattern at the
photocathode is reproduced by the accelerated photoelectrons. Either magnetic
or electric fields can be used for imaging the cathode pattern onto the fluorescent
screen. Instead of the intensified image being viewed on a phosphor screen, the
electron image can be used in a camera tube to generate picture signals, which can
be reproduced on the television screen and can be stored either photographically or
on a recording medium [266–270].

For applications in spectroscopy, the following characteristic properties of image
intensifiers are important:

� The intensity magnification factor M , which gives the ratio of output intensity
to input intensity;

� The dark current of the system, which limits the minimum detectable input
power;

� The spatial resolution of the device, which is generally given as the maximum
number of parallel lines per millimeter of a pattern at the cathode which can still
be resolved in the intensified output pattern;

� The time resolution of the system, which is essential for recording of fast tran-
sient input signals.

Figure 4.113 illustrates a simple, single-stage image intensifier with a magnetic
field parallel to the accelerating electric field. All photoelectrons starting from the
point P at the cathode follow helical paths around the magnetic field lines and are
focused into P0 at the phosphor screen after a few revolutions. The location of P0
is, to a first approximation, independent of the direction ˇ of the initial photoelec-
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Figure 4.114 Cascade image intensifier: a schematic diagram with cathodes Ci , fluorescence
screens Pi , and ring electrodes providing the acceleration voltage; b detail of phosphor–cathode
sandwich structure

tron velocities. To get a rough idea about the possible magnification factor M , let
us assume a quantum efficiency of 20% for the photocathode and an accelerating
potential of 10 kV. With an efficiency of 20% for the conversion of electron energy
to light energy in the phosphor screen, each electron produces about 1000 photons
with h� D 2 eV. The amplification factor M giving the number of output photons
per incoming photon is then M D 200. However, light from the phosphor is emit-
ted into all directions and only a small fraction of it can be collected by an optical
system. This reduces the total gain factor.

The collection efficiency can be enhanced when a thin mica window is used to
support the phosphor screen and photographic contact prints of the image are made.
Another way is the use of fiber-optic windows.

Larger gain factors can be achieved with cascade intensifier tubes (Fig. 4.114),
where two or more stages of simple image intensifiers are coupled in series [268].
The critical components of this design are the phosphor–photocathode sandwich
screens, which influence the sensitivity and the spatial resolution. Since light emit-
ted from a spot around P on the phosphor should release photelectrons from the
opposite spot around P0 of the photocathode, the distance between P and P0 should
be as small as possible in order to preserve the spatial resolution. Therefore, a thin
layer of phosphor (a few microns) of very fine grain-size is deposited by elec-
trophoresis on a mica sheet with a few microns thickness. An aluminum foil reflects
the light from the phosphor back onto the photocathode (Fig. 4.114b) and prevents
optical feedback to the preceding cathode.

The spatial resolution depends on the imaging quality, which is influenced by the
thickness of the phosphor-screen–photocathode sandwiches, by the homogeneity of
the magnetic field, and by the lateral velocity spread of the photoelectrons. Red-
sensitive photocathodes generally have a lower spatial resolution since the initial
velocities of the photoelectrons are larger. The resolution is highest at the center of
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Table 4.3 Characteristic data of image intensifiers

Type Useful diameter
[mm]

Resolution
[linepairs=mm]

Gain Spectral range [nm]

RCA 4550 18 32 3� 104

Depending on cathode
type between 160 and
1000 nm

RCA C33085DP 38 40 6� 105

EMI 9794 48 50 2� 105

Hamamatsu

V4435U 25 64 4� 106

I.I. with

Multichannel plate 40 80 1� 107

Figure 4.115 Modern ver-
sion of a compact image
intensifier

the screen and decreases toward the edges. Table 4.3 compiles some typical data of
commercial three-stage image intensifiers [269]. In Fig. 4.115 a modern version of
an image intensifier is shown. It consists of a photocathode, two short proximity-
focused image intensifiers, and a fiber-optic coupler, which guides the intensified
light generated at the exit of the second stage onto a CCD array.

Image intensifiers can be advantageously employed behind a spectrograph for
the sensitive detection of extended spectral ranges [270]. Let us assume a linear
dispersion of 1mm=nm of a medium-sized spectrograph. An image intensifier with
a useful cathode size of 30mm and a spatial resolution of 30 lines=mm allows si-
multaneous detection of a spectral range of 30 nm with a spectral resolution of
3 � 10�2 nm. This sensitivity exceeds that of a photographic plate by many or-
ders of magnitude. With cooled photocathodes, the thermal noise can be reduced
to a level comparable with that of a photomultiplier, therefore incident radiation
powers of a few photons can be detected. A combination of image intensifiers
and vidicons or special diode arrays has been developed (optical multichannel an-
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alyzers, OMA) that has proved to be very useful for fast and sensitive measure-
ments of extended spectral ranges, in particular for low-level incident radiation
(Sect. 4.5.3).

Such intensified OMA systems are commercially available. Their advantages
may be summarized as follows [271, 272]:

� The vidicon targets store optical signals and allow integration over an extended
period, whereas photomultipliers respond only while the radiation falls on the
cathode.

� All channels of the vidicon acquire optical signals simultaneously. Mounted
behind a spectrometer, the OMA can measure an extended spectral range simul-
taneously, while the photomultiplier accepts only the radiation passing through
the exit slit, which defines the resolution. With a spatial resolution of 30 lines
per mm and a linear dispersion of 0:5 nm=mm of the spectrometer, the spectral
resolution is 1:7 � 10�2 nm. A vidicon target with a length of 16mm can detect
a spectral range of 8 nm simultaneously.

� The signal readout is performed electronically in digital form. This allows com-
puters to be used for signal processing and data analyzing. The dark current of
the OMA, for instance, can be automatically substracted, or the program can
correct for background radiation superimposed on the signal radiation.

� Photomultipliers have an extended photocathode where the dark current from all
points of the cathode area is summed up and adds to the signal. In the image in-
tensifier in front of the vidicon, only a small spot of the photocathode is imaged
onto a single diode. Thus the whole dark current from the cathode is distributed
over the spectral range covered by the OMA.
The image intensifier can be gated and allows detection of signals with high time
resolution [273]. If the time dependence of a spectral distribution is to be meas-
ured, the gate pulse can be applied with variable delay and the whole system acts
like a boxcar integrator with additional spectral display. The two-dimensional
diode arrays also allow the time dependence of single pulses and their spectral
distribution to be displayed, if the light entering the entrance slit of the spectrom-
eter is swept (e.g., by a rotating mirror) parallel to the slit. The OMA or OSA
systems therefore combine the advantages of high sensitivity, simultaneous de-
tection of extended spectral ranges, and the capability of time resolution. These
merits have led to their increased popularity in spectroscopy [271, 272].

4.5.6 Detection Techniques and Electronic Equipment

In addition to the radiation detectors, the detection technique and the optimum
choice of electronic equipment are also essential factors for the success and the
accuracy of spectroscopic measurements. This subsection is devoted to some mod-
ern detection techniques and electronic devices.
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Figure 4.116 Schematic
block-diagram of photon-
counting electronics

a) Photon Counting

At very low incident radiation powers it is advantageous to use the photomultiplier
for counting single photoelectrons emitted at a rate n per second rather than to
measure the photocurrent i D n � 
t � e � G=
t averaged over a period 
t [274].
The electron avalanches arriving at the anode with the charge Q D Ge generated
by a single photoelectron produce voltage pulses U D eG=C at the anode with the
capacitance C . With C D 1:5 � 10�11 F, G D 106 ! U D 10mV. These pulses
with rise times of about 1 ns trigger a fast discriminator, which delivers a TTL-norm
pulse of 5V to a counter or to a digital–analog converter (DAC) driving a rate meter
with variable time constant (Fig. 4.116) [275].

Compared with the conventional analog measurement of the anode current, the
photon-counting technique has the following advantages:

� Fluctuations of the photomultiplier gainG, which contribute to the noise in ana-
log measurements, see (4.151), are not significant here, since each photoelectron
induces the same normalized pulse from the discriminator as long as the anode
pulse exceeds the discriminator threshold.

� Dark curent generated by thermal electrons from the various dynodes can be
suppressed by setting the discriminator threshold correctly. This discrimination
is particularly effective in photomultipliers with a large conversion efficiency q
at the first dynode, covered with a GaAsP layer.

� Leakage currents between the leads in the photomulitplier socket contribute to
the noise in current measurements, but are not counted by the discriminator if it
is correctly biased.

� High-energy ˇ-particles from the disintegration of radioactive isotopes in the
window material and cosmic ray particles cause a small, but nonnegligible, rate
of electron bursts from the cathode with a charge n � e of each burst (n � 1).
The resulting large anode pulses cause additional noise of the anode current.
They can, however, be completely suppressed by a window discriminator used
in photon counting.

� The digital form of the signal facilitates its further processing. The discriminator
pulses can be directly fed into a computer that analyzes the data and may control
the experiment [276].

The upper limit of the counting rate depends on the time resolution of the dis-
criminator, which may be below 10 ns. This allows counting of randomly dis-
tributed pulse rates up to about 10MHz without essential counting errors.
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The lower limit is set by the dark pulse rate [277]. With selected low-noise
photomultipliers and cooled cathodes, the dark pulse rate may be below 1 per sec-
ond. Assuming a quantum efficiency of � D 0:2, it should therefore be possible
to achieve, within a measuring time of 1 s, a signalto-noise ratio of unity even at
a photon flux of 5 photons=s. At these low photon fluxes, the probability p.N /
of N photoelectrons being detected within the time interval 
t follows a Poisson
distribution

p.N / D N
N

e�N

N Š
; (4.152)

where N is the average number of photoelectrons detected within a given time
interval 
t [277]. If the probability that at least one photoelectron will be detected
within 
t is 0:99, then 1 � p.0/ D 0:99 and

p.0/ D e� NN D 0:01 ; (4.153)

which yields N 
 4:6. This means that we can expect a pulse during the observa-
tion time with 99% certainty only if at least 20 photons fall onto the photocathode
with a quantum efficiency of � D 0:2. For longer detection times, however, the
detectable photoelectron rate may be even lower than the dark current rate if, for
instance, lock-in detection is used. It is not the dark pulse rate ND itself that limits
the signal-to-noise ratio, but rather its fluctuations, which are proportional to N1=2

D .
Because of their low noise, channel photomultipliers or avalanche diodes are

well suited to low-level photon counting.

b) Measurements of Fast Transient Events

Many spectroscopic investigations require the observation of fast transient events.
Examples are lifetime measurements of excited atomic or molecular states, investi-
gations of collisional relaxation, and studies of fast laser pulses (Vol. 2, Chap. 6).
Another example is the transient response of molecules when the incident light
frequency is switched into resonance with molecular eigenfrequencies (Vol. 2,
Chap. 7). Several techniques are used to observe and to analyze such events and
recently developed instruments help to optimize the measuring procedure. The
combination of a CCD detector and a gated microchannel plate, which acts as an
image intensifier with nanosecond resolution, allows the time-resolved sensitive
detection of fast events. In addition, there are several devices that are particularly
suited for the electronic handling of short pulses. We briefly present three exam-
ples of such equipment: the boxcar integrator with signal averaging, the transient
recorder, and the fast transient digitizer with subnanosecond resolution.

The boxcar integrator measures the amplitudes and shapes of signals with a con-
stant repetition rate integrated over a specific sampling interval 
t . It records these
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Figure 4.117 Principle of boxcar operation with synchronization of the repetitive signals. The
time base determines the opening times of the gate with width
t . The slow scan-time ramp shifts
the delay times �i continuously over the signal–pulse time profile

signals repetitively over a selected number of pulses and computes the average value
of those measurements. With a synchronized trigger signal it can be assured that one
looks each time at the identical time interval of each sampled waveform. A delay
circuit permits the sampled time interval 
t (called aperture) to be shifted to any
portion of the waveform under investigation. Figure 4.117 illustrates a possible way
to perform this sampling and averaging. The aperture delay is controlled by a ramp
generator, which is synchronized to the signal repetition rate and which provides
a sawtooth voltage at the signal repetition frequency. A slow aperture-scan ramp
shifts the gating time interval 
t , where the signal is sampled at the time delay �i
after the trigger pulse for a time interval 
t . Between two successive signals the
gate time is shifted by an amount
� , which depends on the slope of the ramp. This
slope has to be sufficiently slow in order to permit a sufficient number of samples to
be taken in each segment of the waveform. The output signal is then averaged over
several scans of the time ramp by a signal averager [278]. This increases the signal-
to-noise ratio and smooths the dc output, which follows the shape of the waveform
under study.

The slow ramp is generally not a linearly increasing ramp as shown in Fig. 4.117,
but rather a step function where the time duration of each step determines the num-
ber of samples taken at a given delay time � . If the slow ramp is replaced by
a constant selectable voltage, the system works as a gated integrator.

The integration of the input signal Us.t/ over the sampling time interval 
t can
be performed by charging a capacitance C through a resistor R (Fig. 4.118), which
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Figure 4.118 Simplified diagram of boxcar realization

Figure 4.119 Block diagram of a transient recorder

gives a current i.t/ D Us.t/=R. The output is then

U.�/ D 1

C

�C
tZ

�

i.t/dt D 1

RC

�C
tZ

�

Us.t/dt : (4.154)

For repetitive scans, the voltages U.�/ can be summed. Because of inevitable leak-
age currents, however, unwanted discharge of the capacitance occurs if the signal
under study has a low duty factor and the time between successive samplings be-
comes large. This difficulty may be overcome by a digital output, consisting of
a two-channel analog-todigital-to-analog converter. After a sampling switch opens,
the acquired charge is digitized and loaded into a digital storage register. The digital
register is then read by a digital-to-analog converter producing a dc voltage equal
to the voltage U.�/ D Q.�/=C on the capacitor. This dc voltage is fed back to the
integrator to maintain its output potential until the next sample is taken.

The boxcar integrator needs repetitive waveforms because it samples each time
only a small time interval 
t of the input pulse and composes the whole period of
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the repetitive waveform by adding many sampling points with different delays. For
many spectroscopic applications, however, only single-shot signals are available.
Examples are shock-tube experiments or spectroscopic studies in laser-induced fu-
sion. In such cases, the boxcar integrator is not useful and a transient recorder is
a better choice. This instrument uses digital techniques to sample N preselected
time intervals 
ti which cover the total time T D N
t of an analog signal as it
varies with time. The wave shape during the selected period of time is recorded
and held in the instrument’s memory until the operator instructs the instrument
to make a new recording. The operation of a transient recorder is illustrated in
Fig. 4.119 [279, 280]. A trigger, derived from the input signal or provided exter-
nally, initiates the sweep. The amplified input signal is converted at equidistant
time intervals to its digital equivalent by an analog-to-digital converter and stored
in a semiconductor memory in different channels. With 100 channels, for instance,
a single-shot signal is recorded by 100 equidistant sampling intervals. The time res-
olution depends on the sweep time and is limited by the frequency response of the
transient recorder. Sample intervals between 10 ns up to 20 s can be selected. This
allows sweep times of 20�s to 5 h for 2000 sampling points. With modern devices,
sampling rates of up to 500MHz are achievable.

Figure 4.120 Fast transient digitizer: a silicon diode-array target; and b writing and reading
gun [281]



250 4 Spectroscopic Instrumentation

Acquisition and analysis beyond 500MHz has become possible by combining
the features of a transient recorder with the fast response time of an electron beam
that writes and stores information on a diode matrix target in a scan converter tube.
Figure 4.120 illustrates the basic principle of the transient digitizer [281]. The
diode array of about 640;000 diodes is scanned by the reading electron beam, which
charges all reverse-biased p–n junctions until the diodes reach a saturation voltage.
The writing electron beam impinges on the other side of the 10�m thick target and
creates electron–hole pairs, which diffuse to the anode and partially discharge it.
When the reading beam hits a discharged diode, it becomes recharged, subsequently
a current signal is generated at the target lead, which can be digitally processed.

The instrument can be used in a nonstoring mode where the operation is similar
to that of a conventional television camera with a video signal, which can be mon-
itored on a TV monitor. In the digital mode the target is scanned by the reading
beam in discrete steps. The addresses of points on the target are transferred and
stored in memory only when a trace has been written at those points on the target.
This transient digitizer allows one to monitor fast transient signals with a time res-
olution of 100 ps and to process the data in digital form in a computer. It is, for
instance, possible to obtain the frequency distribution of the studied signal from its
time distribution by a Fourier transformation performed by the computer.

c) Optical Oscilloscope

The optical oscilloscope represents a combination of a streak camera and a sampling
oscilloscope. Its principle of operation is illustrated by Fig. 4.121 [282]: The inci-
dent light I.t/ is focused onto the photocathode of the streak camera. The electrons
released from the cathode pass between two deflecting electrodes toward the sam-
pling slit. Only those electrons that traverse the deflecting electric field at a given
selectable time can pass through the slit. They impinge on a phosphor screen and
produce light that is detected by a photomultiplier (PM). The PM output is amplified
and fed into a sampling oscilloscope, where it is stored and processed. The sam-
pling operation can be repeated many times with different delay times t between the
trigger and the sampling, similar to the principle of a boxcar operation (Fig. 4.117).
Each sampling interval yields the signal

S.t;
t/ D
tC
tZ

t

I.t/dt : (4.155)

The summation over all sampled time intervals
t gives the total signal

S.t/ D
NX

nD1

tDn�
tZ

tD.n�1/
t
I.t/dt ; (4.156)

which reflects the input time profile I.t/ of the incident light.
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Figure 4.121 Optical oscilloscope [282]

The spectral response of the system depends on that of the first photocathode
and reaches from 350 to 850�m for the visible version and from 400 to 1550�m
for the extended infrared version. The time resolution is better than 10 ps and the
sampling rate can be selected up to 2MHz. The limitation is given by the time jitter,
which was stated to be less than 20 ps.

d) Vidicon

In the Vidicon the electrons, emitted from the photocathode are accelerated by an
electric field and are imaged onto a CCD array or a photodiode array. (Fig. 4.122).
They produce electron–hole pairs. The voltage applied to the photodiodes drives the
electrons to the positive electrode and the holes to the negative electrode resulting in
a discharge of the diode capacitance. An electron beam imaged by an appropriate
electron optics onto the different diodes of the array recharges the capacities up
to their original voltage. This recharging current appears as voltage pulse on the
common video line and gives the wanted signal.

Such photodiode arrays with the vidicon technique reach high sensitivities which
are only limited by the quantum efficiency of the photocathode camparable to that
of good photomultipliers. The advantage of these devices is the spatial resolution
because each point on the photocathode is imaged onto a specific photodiode. If
the light falling onto the photocathode has been dispersed by a spectrometer with
a dispersion d�=dx, the spatial resolution 
x gives a spectral resolution


� D d�

dx

x :
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Figure 4.122 Basic principles of a vidicon. a Total setup, b details of detection system, c photo-
diode array

With a total legth L of the array the spectral range which can be simultaneously
measured is

•� D d�

dx
L :

These devices which store and analyse the information contained in the incident
light simultaneously in many channels, are called optical multichannel analysers
(OMA) or OSA (optical spectrum analysers). They measure two-dimensional im-
ages from weak extended light sources or cover simultaneously a spectral range •�
[283]. The signals can be time integrated over a period of many seconds (for cooled
devices even several hours) and are therefore superior to photomultipliers. They
have found increasing importance in astronomy, where the faint images of distant
galaxies are observes and their spectra are measured.
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Figure 4.123 Schematic diagram of the PIAS as image intensifier with photon counting detection

e) PIAS System

PIAS is an acronym for Photocounting Image Aquisation System. Its basic prin-
ciple is illustrated in Fig. 4.123. The photons from a light source fall onto the
photocathode of an image intensifier where they release electrons which are ampli-
fied in a multichannel canal plate (MCP) and are imaged onto a position sensitive
detector. A computer software analyses the data and gives the measured spectrum
or the spatial variation of the intensity from extended sources [284, 285].

4.6 Conclusions

The aim of this chapter was to provide a general background in spectroscopic in-
strumentation, to summarize some basic ideas of spectroscopy, and to present some
important relations between spectroscopic quantities. This background should be
helpful in understanding the following chapters that deal with the main subject of
this textbook: the applications of lasers to the solution of spectroscopic problems.
Although until now we have only dealt with general spectroscopy, the examples
given were selected with special emphasis on laser spectroscopy. This is especially
true in Chap. 4, which is, of course, not a complete account of spectroscopic equip-
ment, but is intended to give a survey on modern instrumentation used in laser
spectroscopy.

There are several excellent and more detailed presentations of special instru-
ments and spectroscopic techniques, such as spectrometers, interferometry, and
Fourier spectroscopy. Besides the references given in the various sections, several
series on optics [115], optical engineering [114], advanced optical techniques [284],
and the monographs [117, 119, 283–288] may help to give more extensive infor-
mation about special problems. Useful practical hints can be found in the hand-
books [289, 290].
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4.7 Problems

4.1 Calculate the spectral resolution of a grating spectrometer with an entrance slit
width of 10 µm, focal lengths f1 D f2 D 2m of the mirrors M1 and M2, a grating
with 1800 grooves=mm and an angle of incidence ˛ D 45ı. What is the useful
minimum slit width if the size of grating is 100 � 100mm2?

4.2 The spectrometer in Problem 4.1 shall be used in first order for a wavelength
range around 500 nm. What is the optimum blaze angle, if the geometry of the
spectrometer allows an angle of incidence ˛ about 20ı?

4.3 Calculate the number of grooves=mm for a Littrow grating for a 25ı incidence
at � D 488 nm (i.e., the first diffraction order is being reflected back into the inci-
dent beam at an angle ˛ D 25ı to the grating normal).

4.4 A prism can be used for expansion of a laser beam if the incident beam is nearly
parallel to the prism surface. Calculate the angle of incidence ˛ for which a HeNe
laser beam .� D 632:8 nm/ transmitted through a rectangular flint glass prism with
� D 60ı is expanded tenfold.

4.5 Assume that a signal-to-noise ratio of 50 has been achieved in measuring the
fringe pattern of a Michelson interferometer with one continuously moving mirror.
Estimate the minimum path length
L that the mirror has to travel in order to reach
an accuracy of 10�4 nm in the measurement of a laser wavelength at � D 600 nm.

4.6 The dielectric coatings of each plate of a Fabry–Perot interferometer have the
following specifications: R D 0:98, A D 0:3%. The flatness of the surfaces is
�=100 at � D 500 nm. Estimate the finesse, the maximum transmission, and the
spectral resolution of the FPI for a plate separation of 5mm.

4.7 A fluorescence spectrum shall be measured with a spectral resolution of
10�2 nm. The experimentor decides to use a crossed arrangement of grating spec-
trometer (linear dispersion: 0:5 nm=mm) and FPI of Problem 4.6. Estimate the
optimum combination of spectrometer slit width and FPI plate separation.

4.8 An interference filter shall be designed with peak transmission at � D 550 nm
and a bandwidth of 5 nm. Estimate the reflectivity R of the dielectric coatings and
the thickness of the etalon, if no further transmission maximum is allowed between
350 and 750 nm.
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4.9 A confocal FPI shall be used as optical spectrum analyzer, with a free spectral
range of 3GHz. Calculate the mirror separation d and the finesse that is necessary
to resolve spectral features in the laser output within 10MHz. What is the minimum
reflectivity R of the mirrors, if the surface finesse is 500?

4.10 Calculate the transmission peaks of a Lyot filter with two plates (d1 D 1mm,
d2 D 4mm) with n D 1:40 in the fast axis and n D 1:45 in the slow axis (a)
as a function of � for ˛ D 45ı in (4.97); and (b) as a function of ˛ for a fixed
wavelength �. What is the contrast of the transmitted intensity I.˛/ for arbitrary
values of � if the absorption losses are 2%?

4.11 Derive (4.116) for the equivalent electrical circuit of Fig. 4.79b.

4.12 A thermal detector has a heat capacity H D 10�8 J=K and a thermal conduc-
tivity to a heat sink of G D 10�9 W=K. What is the temperature increase 
T for
10�9 W incident cw radiation if the efficiency ˇ D 0:8? If the radiation is switched
on at a time t D 0, how long does it take before the detector reaches a temperature
increase
T.t/ D 0:9
T1? What is the time constant of the detector and at which
modulation frequency˝ of the incident radiation has the response decreased to 0.5
of its dc value?

4.13 A bolometer is operated at the temperature T D 8K between superconducting
and normal conducting states, where R D 10�3 �. The heat capacity is H D
10�8 J=K and the dc electrical current 1mA. What is the change 
i of the heating
current in order to keep the temperature constant when the bolometer is irradiated
with 10�10 W?

4.14 The anode of a photomultiplier tube is connected by a resistor of R D 1 k�
to ground. The stray capacitance is 10 pf, the current amplification 106, and the
anode rise time 1:5 ns. What is the peak amplitude and the halfwidth of the anode
output pulse produced by a single photoelectron? What is the dc output current
produced by 10�12 W cw radiation at � D 500 nm, if the quantum efficiency of the
cathode is � D 0:2 and the anode resistor R D 106 �? Estimate the necessary
voltage amplification of a preamplifier (a) to produce 1V pulses for single-photon
counting; and (b) to read 1V on a dc meter of the cw radiation?
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4.15 A manufacturer of a two-stage optical image intensifier states that incident
intensities of 10�17 W at � D 500 nm can still be “seen” on the phosphor screen
of the output state. Estimate the minimum intensity amplification, if the quantum
efficiency of the cathodes and the conversion efficiency of the phosphor screens are
both 0.2 and the collection efficiency of light emitted by the phosphor screens is
0.1. The human eye needs at least 20 photons=s to observe a signal.

4.16 Estimate the maximum output voltage of an open photovoltaic detector at
room temperature under 10 µW irradiation when the photocurrent of the shortened
output is 50 µA and the dark current is 50 nA.



Chapter 5
Lasers as Spectroscopic Light Sources

In this chapter we summarize basic laser concepts with regard to their applica-
tions in spectroscopy. A sound knowledge of laser physics with regard to passive
and active optical cavities and their mode spectra, the realization of single-mode
lasers, or techniques for frequency stabilization will help the reader to gain a deeper
understanding of many subjects in laser spectroscopy and to achieve optimum per-
formance of an experimental setup. Of particular interest for spectroscopists are
the various types of tunable lasers, which are discussed in Sect. 5.7. Even in spec-
tral ranges where no tunable lasers exist, optical frequency-doubling and mixing
techniques may provide tunable coherent radiation sources, as outlined in Chap. 6.

5.1 Fundamentals of Lasers

This section gives a short introduction to the basic physics of lasers in a more
intuitive than mathematical way. A more detailed treatment of laser physics and
an extensive discussion of various types of lasers can be found in textbooks (see,
for instance, [291–300]). For more advanced presentations based on the quantum-
mechanical description of lasers, the reader is referred to [301–305].

5.1.1 Basic Elements of a Laser

A laser consists of essentially three components (Fig. 5.1a):

� The active medium, which amplifies an incident electromagnetic (EM) wave;
� The energy pump, which selectively pumps energy into the active medium to

populate selected levels and to achieve population inversion;
� The optical resonator composed, for example, of two opposite mirrors, which

stores part of the induced emission that is concentrated within a few resonator
modes.

257W. Demtröder, Laser Spectroscopy 1, DOI 10.1007/978-3-642-53859-9_5,
© Springer-Verlag Berlin Heidelberg 2014
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Figure 5.1 a Schematic setup of a laser; b population inversion (dashed curve), compared with
a Boltzmann distribution at thermal equilibrium (solid curve)

The energy pump (e.g., flashlamps, gas discharges, or even other lasers) gener-
ates a population distribution N.E/ in the laser medium, which strongly deviates
from the Boltzmann distribution (2.18) that exists for thermal equilibrium. At suf-
ficiently large pump powers the population density N.Ek/ of the specific level Ek
may exceed that of the lower level Ei (Fig. 5.1b).

For such a population inversion, the induced emission rate NkBki�.�/ for the
transition Ek ! Ei exeeds the absorption rate NiBik�.�/. An EM wave passing
through this active medium is amplified instead of being attenuated according to
(3.22).

The function of the optical resonator is the selective feedback of radiation emit-
ted from the excited molecules of the active medium. Above a certain pump thresh-
old this feedback converts the laser amplifier into a laser oscillator. When the
resonator is able to store the EM energy of induced emission within a few resonator
modes, the spectral energy density �.�/ may become very large. This enhances the
induced emission into these modes since, according to (2.22), the induced emission
rate already exceeds the spontaneous rate for �.�/ > h�. In Sect. 5.1.3 we shall
see that this concentration of induced emission into a small number of modes can
be achieved with open resonators, which act as spatially selective and frequency-
selective optical filters.

5.1.2 Threshold Condition

When a monochromatic EM wave with the frequency � travels in the z-direction
through a medium of molecules with energy levelsEi andEk and .Ek�Ei/=h D �,
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Figure 5.2 Gain and losses of an EM wave traveling back and forth along the resonator axis

the intensity I.�; z/ is, according to (3.23), given by

I.�; z/ D I.�; 0/e�˛.�/z ; (5.1)

where the frequency-dependent absorption coefficient

˛.�/ D ŒNi � .gi=gk/Nk�
.�/ ; (5.2)

is determined by the absorption cross section 
.�/ for the transition (Ei ! Ek) and
by the population densities Ni , Nk in the energy levels Ei , Ek with the statistical
weights gi , gk , see (2.60). We infer from (5.2) that for Nk > .gk=gi/Ni , the
absorption coefficient ˛.�/ becomes negative and the incident wave is amplified
instead of attenuated.

If the active medium is placed between two mirrors (Fig. 5.2), the wave is re-
flected back and forth, and traverses the amplifying medium many times, which
increases the total amplification. With the length L of the active medium the total
gain factor per single round-trip without losses is

G.�/ D I.�; 2L/

I.�; 0/
D e�2˛.�/L : (5.3)

A mirror with reflectivity R reflects only the fraction R of the incident intensity.
The wave therefore suffers at each reflection a fractional reflection loss of (1 �R).
Furthermore, absorption in the windows of the cell containing the active medium,
diffraction by apertures, and scattering due to dust particles in the beam path or due
to imperfect surfaces introduce additional losses. When we summarize all these
losses by a loss coefficient � , which gives the fractional energy loss 
W=W per
round-trip time T , the intensity I decreases without an active medium per round-
trip (if we assume the loss to be equally distributed along the resonator length d )
as

I D I0e�� : (5.4)

Including the amplification by the active medium with length L, we obtain for the
intensity after a single round-trip through the resonator with length d , which may
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be larger than L:

I.�; 2d/ D I.�; 0/ expŒ�2˛.�/L� �� : (5.5)

The wave is amplified if the gain overcomes the losses per round-trip. This implies
that

�2L˛.�/ > � : (5.6)

With the absorption cross section 
.�/ from (5.2), this can be written as

2L
N 
.�/ > �

which yields the threshold condition for the population difference


N D Nk.gi=gk/�Ni > 
Nthr D �

2
.�/L
: (5.7)

Example 5.1
L D 10 cm, � D 10%, 
 D 10�12 cm2 ! 
N D 5 � 109=cm3. At a neon
pressure of 0:2mbar, 
N corresponds to about 10�6 of the total density of
neon atoms in a HeNe laser.

If the inverted population difference 
N of the active medium is larger than

Nthr, a wave that is reflected back and forth between the mirrors will be amplified
in spite of losses, therefore its intensity will increase.

The wave is initiated by spontaneous emission from the excited atoms in the
active medium. Those spontaneously emitted photons that travel into the right di-
rection (namely, parallel to the resonator axis) have the longest path through the
active medium and therefore the greater chance of creating new photons by induced
emission. Above the threshold they induce a photon avalanche, which grows until
the depletion of the population inversion by stimulated emission just compensates
the repopulation by the pump. Under steady-state conditions the inversion decreases
to the threshold value
Nthr, the saturated net gain is zero, and the laser power lim-
its itself to a finite value PL. This laser power is determined by the pump power, the
losses � , and the gain coefficient ˛.�/ (Sect. 5.7 and Chap. 7).

The frequency dependence of the gain coefficient ˛.�/ is related to the line pro-
file g.�� �0/ of the amplifying transition. Without saturation effects (i.e., for small
intensities), ˛.�/ directly reflects this line shape, for homogeneous as well as for in-
homogeneous profiles. According to (2.60) and (2.130) we obtain with the Einstein
coefficienct Bik

˛.�/ D 
N
ik.�/ D 
N.h�=c/Bikg.� � �0/ ; (5.8)
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which shows that the amplification is largest at the line center �0. For high intensi-
ties, saturation of the inversion occurs, which is different for homogeneous and for
inhomogeneous line profiles (Vol. 2, Sects. 2.1 and 2.2).

The loss factor � also depends on the frequency � because the resonator losses
are strongly dependent on �. The frequency spectrum of the laser therefore depends
on a number of parameters, which we discuss in more detail in Sect. 5.2.

5.1.3 Rate Equations

The photon number inside the laser cavity and the population densities of atomic or
molecular levels under stationary conditions of a laser can readily be obtained from
simple rate equations. Note, however, that this approach does not take into account
coherence effects (Vol. 2, Chap. 7).

With the pump rate P (which equals the number of atoms that are pumped per
second and per cm3 into the upper laser level j2i), the relaxation rates RiNi (which
equal the number of atoms that are removed per second and cm3 from the level jii
by collision or spontaneous emission), and the spontaneous emission probabil-
ity A21 per second, we obtain from (2.21) for equal statistical weights g1 D g2 the
rate equations for the population densities Ni and the photon densities n (Fig. 5.3):

dN1
dt
D .N2 �N1/B21nh� CN2A21 �N1R1 ; (5.9a)

dN2
dt
D P � .N2 �N1/B21nh� �N2A21 �N2R2 ; (5.9b)

dn

dt
D �ˇnC .N2 �N1/B21nh� : (5.9c)

The loss coefficient ˇ [s�1] determines the loss rate of the photon density n.t/
stored inside the optical resonator. Without an active medium (N1 D N2 D 0), we
obtain from (5.9c)

n.t/ D n.0/e�ˇt : (5.10)

Figure 5.3 Level diagram
for pumping process P,
relaxation rates NiRi ,
spontaneous and induced
transitions in a four-level
system
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A comparison with the definition (5.4) of the dimensionless loss coefficient � per
round-trip yields for a resonator with length d and round-trip time T D 2d=c

� D ˇT D ˇ.2d=c/ : (5.11)

Under stationary conditions we have dN1=dt D dN2=dt D dn=dt D 0. Adding
(5.9a and 5.9b) then yields

P D N1R1 CN2R2 ; (5.12)

which means that the pump rate P just compensates the loss rates N1R1 C N2R2
of the atoms in the two laser levels caused by relaxation processes into other levels.
Further insight can be gained by adding (5.9b and 5.9c), which gives for stationary
conditions

P D ˇnCN2.A21 CR2/ : (5.13)

In a continuous-wave (cw) laser the pump rate equals the sum of photon loss
rate ˇn plus the total relaxation rate N2.A21 C R2/ of the upper laser level.
A comparison of (5.12 and 5.13) shows that for a cw laser the relation holds

N1R1 D ˇnCN2A21 : (5.14)

Under stationary laser operation the relaxation rate N1R1 of the lower laser level
must always be larger than its feeding rate from the upper laser level!

The stationary inversion 
Nstat can be obtained from the rate equation when
multiplying (5.9a) by R2, (5.9b) by R1, and adding both equations. We find


Nstat D .R1 � A21/P
B12nh�.R1 C R2/C A21R1 CR1R2 : (5.15)

This shows that a stationary inversion 
Nstat > 0 can only be maintained for R1 >
A21. The relaxation probabilityR1 of the lower laser level j1imust be larger than its
refilling probability A21 by spontaneous transitions from the upper laser level j2i.
In fact, during the laser operation the induced emission mainly contributes to the
population N1 and therefore the more stringent condition R1 > A21 C B21� must
be satisfied. Continuous-wave lasers can therefore be realized on the transitions
j2i ! j1i only if the effective lifetime �eff D 1=R1 of level j1i is smaller than
.A2 C B21�/�1.

When starting a laser, the photon density n increases until the inversion den-
sity 
N has decreased to the threshold density 
Nthr. This can immediately be
concluded from (5.9c), which gives for dn=dt D 0 and d D L


N D ˇ

B21h�
D �

2LB21h�=c
D �

2L

D 
Nthr ; (5.16)
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where the relation (5.8) with

Z
˛.�/d� D 
N
12 D 
N.h�=c/B12 ;

has been used. Note, that
R
g.� � �0/ d� D 1.

Example 5.2
With N2 D 1010=cm3 and .A21CR2/ D 2�107 s�1, the total incoherent loss
rate is 2 � 1017=cm3 � s. In a HeNe laser discharge tube with L D 10 cm and
1mm diameter, the active volume is about 0:075 cm3. The total loss rate of
the last two terms in (5.9c) then becomes 1:5 � 1016 s�1.

For a laser output power of 3mW at � D 633 nm, the rate of emitted
photons is ˇn D 1016 s�1. In this example the total pump rate has to be P D
.1:5C 1/ � 1016s�1 D 2:5 � 1016 s�1, where the fluorescence emitted in all
directions represents a larger loss than the mirror transmission.

5.2 Laser Resonators

In Sect. 2.1 it was shown that in a closed cavity a radiation field exists with a spectral
energy density �.�/ that is determined by the temperature T of the cavity walls
and by the eigenfrequencies of the cavity modes. In the optical region, where the
wavelength � is small compared with the dimensionL of the cavity, we obtained the
Planck distribution (2.13) at thermal equilibrium for �.�/. The number of modes
per unit volume,

n.�/d� D 8�.�2=c3/d� ;

within the spectral interval d� of a molecular transition turns out to be very large
(Example 2.1a). When a radiation source is placed inside the cavity, its radiation
energy will be distributed among all modes; the system will, after a short time, again
reach thermal equilibrium at a correspondingly higher temperature. Because of the
large number of modes in such a closed cavity, the mean number of photons per
mode (which gives the ratio of induced to spontaneous emission rate in a mode) is
very small in the optical region (Fig. 2.7). Closed cavities withL� � are therefore
not suitable as laser resonators.

In order to achieve a concentration of the radiation energy into a small number
of modes, the resonator should exhibit a strong feedback for these modes but large
losses for all other modes. This would allow an intense radiation field to be built
up in the modes with low losses but would prevent the system from reaching the
oscillation threshold in the modes with high losses.
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Assume that the kth resonator mode with the loss factor ˇk contains the radiation
energyWk . The energy loss per second in this mode is then

dWk

dt
D �ˇkWk : (5.17)

Under stationary conditions the energy in this mode will build up to a stationary
value where the losses equal the energy input. If the energy input is switched off at
t D 0, the energy Wk will decrease exponentially since integration of (5.17) yields

Wk.t/ D Wk.0/e
�ˇk t : (5.18)

When we define the quality factor Qk of the kth cavity mode as 2� times the ratio
of energy stored in the mode to the energy loss per oscillation period T D 1=�

Qk D � 2��Wk

dWk=dt
; (5.19)

we can relate the loss factor ˇk and the qualtiy factor Qk by

Qk D �2��=ˇk : (5.20)

After the time � D 1=ˇk , the energy stored in the mode has decreased to 1=e of
its value at t D 0. This time can be regarded as the mean lifetime of a photon
in this mode. If the cavity has large loss factors for most modes but a small ˇk
for a selected mode, the number of photons in this mode will be larger than in the
other modes, even if at t D 0 the radiation energy in all modes was the same. If
the unsaturated gain coefficient ˛.�/L of the active medium is larger than the loss
factor �k D ˇk.2d=c/ per round-trip but smaller than the losses of all other modes,
the laser will oscillate only in this selected mode.

5.2.1 Open Optical Resonators

A resonator that concentrates the radiation energy of the active medium into a few
modes can be realized with open cavities, which consist of two plane or curved
mirrors aligned in such a way that light traveling along the resonator axis may be
reflected back and forth between the mirrors. Such a ray traverses the active medium
many times, resulting in a larger total gain. Other rays inclined against the resonator
axis may leave the resonator after a few reflections before the intensity has reached
a noticeable level (Fig. 5.4).

Besides these walk-off losses, reflection losses also cause a decrease of the energy
stored in the resonator modes. With the reflectivities R1 and R2 of the resonator
mirrors M1 and M2, the intensity of a wave in the passive resonator has decreased
after a single round-trip to

I D R1R2I0 D I0e��R ; (5.21)
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Figure 5.4 Walk-off losses
of inclined rays and reflection
losses in an open resonator

with �R D � ln.R1R2/. Since the round-trip time is T D 2d=c, the decay con-
stant ˇ in (5.18) due to reflection losses is ˇR D �Rc=2d . Therefore the mean
lifetime of a photon in the resonator becomes without any additional losses

� D 1

ˇR
D 2d

�Rc
D � 2d

c ln.R1R2/
: (5.22)

These open resonators are, in principle, the same as the Fabry–Perot interferom-
eters discussed in Chap. 4; we shall see that several relations derived in Sect. 4.2
apply here. However, there is an essential difference with regard to the geometrical
dimensions. While in a common FPI the distance between both mirrors is small
compared with their diameter, the relation is generally reversed for laser resonators.
The mirror diameter 2a is small compared with the mirror separation d . This im-
plies that diffraction losses of the wave, which is reflected back and forth between
the mirrrors, play a major role in laser resonators, while they can be completely
neglected in the conventional FPI.

Figure 5.5 Equivalence of diffraction at an aperture a and at a mirror of equal size (b). The
diffraction pattern of the transmitted light in (a) equals that of the reflected light in (b). The case
�1d D a ! N D 0:5 is shown
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Figure 5.6 a Fresnel zones on mirror M1, as seen from the center A of the other mirror M2; b the
three regions of d=a with the Fresnel number N > 1, N D 1, and N < 1

In order to estimate the magnitude of diffraction losses let us make use of a sim-
ple example. A plane wave incident onto a mirror with diameter 2a exhibits, after
being reflected, a spatial intensity distribution that is determined by diffraction and
that is completely equivalent to the intensity distribution of a plane wave passing
through an aperture with diameter 2a (Fig. 5.5). The central diffraction maximum
at � D 0 lies between the two first minima at �1 D ˙�=2a (for circular apertures
a factor 1.2 has to be included, see, e.g., [306]). About 16% of the total intensity
transmitted through the aperture is diffracted into higher orders with j� j > �=2a.
Because of diffraction the outer part of the reflected wave misses the second mir-
ror M2 and is therefore lost. This example demonstrates that the diffraction losses
depend on the values of a, d , �, and on the amplitude distribution A.x; y/ of the
incident wave across the mirror surface. The influence of diffraction losses can be
characterized by the dimensionless Fresnel number

NF D a2

�d
: (5.23)

The meaning of this is as follows (Fig. 5.6a). If cones around the resonator axis
are constructed with the side length rm D .q C m/�=2 and the apex point A on
a resonator mirror they intersect the other resonator mirror at a distance d D q�=2
in circles with radii rm D 1

2
.qCm/ ��. The annular zone on mirror M1 between two

circles is called Fresnel zone. The quantity NF gives the number of Fresnel zones
[306, 307] across a resonator mirror with diameter 2a, as seen from the center A
of the opposite mirror. For the mirror separation d these zones have radii �m Dp
m�d and the distances rm D 1

2
.mCq/� (m D 0; 1; 2; : : :	 q/ fromA (Fig. 5.6).

If a photon makes n transits through the resonator, the maximum diffraction
angle 2� should be smaller than a=.nd/. With 2� D �=a we obtain the condition
�=a < a=.n � d/ which gives with (5.23)

NF > n : (5.24)
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This states that the diffraction losses of a plane mirror resonator can be neglected if
the Fresnel numberNF is larger than the number n of transits through the resonator.

Example 5.3
a) A plane Fabry–Perot interferometer with d D 1 cm, a D 3 cm, � D
500 nm has a Fresnel number N D 1:8 � 105. The diffraction losses are
completely negligible.

b) The resonator of a gas laser with plane mirrors at a distance d D 50 cm,
a D 0:1 cm, � D 500 nm has a Fresnel numberN D 4. Since n should be
about n D 50, NF 	 n and the diffraction losses are essential.

The fractional energy loss per transit due to diffraction of a plane wave reflected
back and forth between the two plane mirrors is approximately given by

�D � 1

N
: (5.25)

For our first example the diffraction losses of the plane FPI are about 5 � 10�6 and
therefore completely negligible, whereas for the second example they reach 25%
and may already exceed the gain for many laser transitions. This means that a plane
wave would not reach threshold in such a resonator. However, these high diffraction
losses cause nonnegligible distortions of a plane wave and the amplitude A.x; y/
is no longer constant across the mirror surface (Sect. 5.2.2), but decreases towards
the mirror edges. This decreases the diffraction losses, which become, for example,
�Diffr � 0:01 for N 
 20.

It can be shown [308] that all resonators with plane mirrors that have the same
Fresnel number also have the same diffraction losses, independent of the special
choice of a, d , or �.

Resonators with curved mirrors may exhibit much lower diffraction losses than
the plane mirror resonator because they can refocus the divergent diffracted waves
of Fig. 5.5 (Sect. 5.2.5).

5.2.2 Spatial Field Distributions in Open Resonators

In Sect. 2.1 we have seen that any stationary field configuration in a closed cavity
(called a mode) can be composed of plane waves. Because of diffraction, plane
waves cannot give stationary fields in open resonators, since the diffraction losses
depend on the coordinates (x; y) and increase from the z-axis of the resonator to-
wards its edges. This implies that the distribution A.x; y/, which is independent
of x and y for a plane wave, will be altered with each round-trip for a wave trav-
eling back and forth between the mirrors of an open resonator until it approaches
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Figure 5.7 The diffraction of an incident plane wave at successive apertures separated by d is
equivalent to the diffraction by successive reflections in a plane-mirror resonator with mirror sep-
aration d

Figure 5.8 Illustration of
(5.26), showing the relations
�2 D d2 C .x� x0/2 C .y�
y0/2 and cos# D d=�

a stationary distribution. Such a stationary field configuration, called a mode of the
open resonator, is reached when A.x; y/ no longer changes its form, although, of
course, the losses result in a decrease of the total amplitude if they are not compen-
sated by the gain of the active medium.

The mode configurations of open resonators can be obtained by an iterative
procedure using the Kirchhoff–Fresnel diffraction theory [307]. Concerning the
diffraction losses, the resonator with two plane square mirrors can be replaced by
the equivalent arrangement of apertures with size .2a/2 and a distance d between
successive apertures (Fig. 5.7). When an incident plane wave is traveling into the
z-direction, its amplitude distribution is successively altered by diffraction, from
a constant amplitude to the final stationary distribution An.x; y/. The spatial dis-
tribution An.x; y/ in the plane of the nth aperture is determined by the distribution
An�1.x; y/ across the previous aperture.
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From Kirchhoff’s diffraction theory we obtain (Fig. 5.8)

An.x; y/ D � i

�

“
An�1.x0; y0/

1

�
e�ik� cos#dx0dy0 : (5.26)

A stationary field distribution is reached if

An.x; y/ D CAn�1.x; y/ with C D ei	
p
1 � �D : (5.27)

After the stationary state has been reached, the amplitude attenuation factor jC j
does not depend on x and y. The quantity �D represents the diffraction losses and
	 the corresponding phase shift caused by diffraction.

Inserting (5.27) into (5.26) gives the following integral equation for the station-
ary field configuration

A.x; y/ D � i

�
.1 � �D/

�1=2e�i	
“

A.x0; y0/
1

�
e�ik� cos#dx0dy0 : (5.28)

Because the arrangement of successive apertures is equivalent to the planemirror
resonator, the solutions of this integral equation also represent the stationary modes
of the open resonator. The diffraction-dependent phase shifts 	 for the modes are
determined by the condition of resonance. They are chosen in such a way that the
diffracted wave reproduces itself after each round trip through the resonator.

The general integral equation (5.28) cannot be solved analytically, therefore
one has to look for approximate methods. For two identical plane mirrors of
quadratic shape .2a/2, (5.28) can be solved numerically by splitting it into two
one-dimensional equations, one for each coordinate x and y, if the Fresnel number
N D a2=.d�/ is small compared with .d=a/2, which means if a 	 .d3�/1=4. The
integral equation (5.28) can then be solved. The approximation implies � � d

in the denominator and cos# � 1. In the phase term exp.�ik�/, the distance �
cannot be replaced by d , since the phase is sensitive even to small changes in the
exponent. One can, however, for x0; x; y0; y 	 d , expand � into a power series

� D
p
d2 C .x0 � x/2 C .y0 � y/2 � d

"
1C 1

2

�
x0 � x
d

�2
C 1

2

�
y0 � y
d

�2#
:

(5.29)

Inserting (5.29) into (5.28) allows the two-dimensional equation to be separated into
two one-dimensional equations. Such numerical iterations for the “infinite strip”
resonator have been performed by Fox and Li [309]. They showed that stationary
field configurations do exist and computed the field distributions of these modes,
their phase shifts, and their diffraction losses.
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5.2.3 Confocal Resonators

The analysis has been extended by Boyd, Gordon, and Kogelnik to resonators with
confocally-spaced spherical mirrors [310, 311] and later by others to general laser
resonators [312–320]. For the symmetric confocal case (the two foci of the two
mirrors with equal radii R1 D R2 D R coincide, i.e., the mirror separation d is
equal to the radius of curvature R).

For this case (5.28) can be separated into two one-dimensional homogeneous
Fredholm equations that can be solved analytically [310, 314]. The solutions show
that the stationary amplitude distributions for the confocal resonator can be repre-
sented by the product of Hermitian polynomials, a Gaussian function, and a phase
factor:

Amn.x; y; z/ D C �Hm.x
�/Hn.y

�/ exp.�r2=w2/ expŒ�i	.z; r; R/� : (5.30)

Here, C � is a normalization factor. The functionHm is the Hermitian polynomial of
mth order. The last factor gives the phase 	.z0; r/ in the plane z D z0 at a distance
r D .x2C y2/1=2 from the resonator axis. The arguments x� and y� depend on the
mirror separation d and are related to the coordinates x, y by x� D p2x=w and
y� D p2y=w, where

w2.z/ D �d

2�

�
1C .2z=d/2� ; (5.31)

is a measure of the radial intensity distribution. The coordinate z is measured from
the center z D 0 of the confocal resonator.

From the definition of the Hermitian polynomials [321], one can see that the
indices m and n give the number of nodes for the amplitude A.x; y/ in the x- (or
the y-) direction. Figures 5.9 and 5.11 illustrate some of these “transverse electro-
magnetic standing waves,” which are called TEMm;n modes. The diffraction effects
do not essentially influence the transverse character of the waves. While Fig. 5.9a
shows the one-dimensional amplitude distribution A.x/ for some modes, Fig. 5.9b
depicts the two-dimensional field amplitude A.x; y/ in Cartesian coordinates and
A.r; #/ in polar coordinates. Modes with m D n D 0 are called fundamental
modes or axial modes (often zero-order transverse modes as well), while configu-
rations with m > 0 or n > 0 are transverse modes of higher order. The intensity
distribution of the fundamental mode I00 / A00A�

00 (Fig. 5.10) can be derived from
(5.30). With H0.x

�/ D H0.y
�/ D 1 we obtain

I00.x; y; z/ D I0e�2r2=w2

: (5.32)

The fundamental modes have a Gaussian profile. For r D w.z/ the intensity de-
creases to 1=e2 of its maximum value I0 D C �2 on the axis (r D 0) the amplitude
accordingly to 1=e. The value r D w.z/ is called the beam radius or mode radius.
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Figure 5.9 a Stationary one-dimensional amplitude distributions Am.x/ in a confocal resonator;
b two-dimensional presentation of linearly polarized resonator modes TEMm;n.x; y/ for square
and TEMm;n.r; #/ for circular apertures

Figure 5.10 Radial intensity
distribution of the fundamen-
tal TEM00 mode

The smallest beam radiusw0 within the confocal resonator is the beam waist, which
is located at the center z D 0. From (5.31) we obtain with d D R

w0 D .�R=2�/1=2 : (5.33)
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On the mirrors (z D ˙d=2) the beam radius ws D w.d=2/ D
p
2w0 has increased

by a factor
p
2.

Example 5.4
a) For a HeNe laser with � D 633 nm, R D d D 30 cm, (5.33) gives w0 D
0:17mm for the beam waist.

b) For a CO2 laser with � D 10 µm, R D d D 2m is w0 D 1:8mm.

Note that w0 and w do not depend on the mirror size. Increasing the mirror
width 2a reduces, however, the diffraction losses as long as no other limiting aper-
ture exists inside the resonator.

For the phase 	.r; z/ in the plane z D z0, one obtains with the abbreviation
�0 D 2z0=R [310]

	.r; z/ D 2�
�



R

2
.1C �0/C x2 C y2

R

�0

1C �20

�

� .1CmC n/


�

2
� arctan

�
1 � �0
1C �0

��
: (5.34)

Inside the resonator 0 < j�0j < 1, outside j�0j > 1.
The equations (5.30) and (5.34) show that the field distributions Amn.x; y/ and

the form of the phase fronts depend on the location z0 within the resonator.
From (5.34) we can deduce the phase fronts inside the confocal resonator, i.e.,

all points (x; y; z) for which 	.x; y; z/ is constant. For the fundamental mode with
m D n D 0 the amplitude distribution is axially symmetric and the phase 	.r; z/
depends only on r D .x2Cy2/1=2 and z. For points close to the resonator axis, i.e.,
for r 	 R, the variation of the arctan term along the phase front, where z�z0 shows
only a small change with increasing r , can be neglected. We obtain as a condition
for the curved phase front, intersecting the resonator axis at z D z0, that the first
bracket in (5.34) must be constant, i.e., independent of x and y, which means:
Œ: : :�x;y¤0 � Œ: : :�xDyD0 D 0, or

R

2
.1C �/C x2 C y2

R

�

1C �2 D
R

2
.1C �0/ ; (5.35)

with the shorthand � D 2z=R. This yields the equation

z0 � z D x2 C y2
R

�

1C �2 ; (5.36a)

which can be rearranged into the equation

x2 C y2 C .z � z0/2 D R02 (5.36b)
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Figure 5.11 Phase fronts and intensity profiles of the fundamental TEM00 mode at several loca-
tions z in a confocal resonator with the mirrors at z D ˙d=2

of a spherical surface with the radius of curvature

R0 �
ˇ̌
ˇ̌1C �20
2�0

ˇ̌
ˇ̌R D



1

4z0
C
�z0
R

�2�
R : (5.37)

The phase fronts of the fundamental modes inside a confocal resonator close to
the resonator axis can be described as spherical surfaces with a z0-dependent
radius of curvature. For z0 D R=2! �0 D 1) R0 D R. This means that at the
mirror surfaces of the confocal resonator close to the resonator axis the wavefronts
are identical with the mirror surfaces. Due to diffraction this is not quite true at the
mirror edges, (i.e., at larger distances r from the axis), where the approximation
(5.35) is not correct.

At the center of the resonator z D 0 ! �0 D 0 ! R0 D 1. The radius R0
becomes infinite. At the beam waist the constant phase surface becomes a plane
z D 0. This is illustrated by Fig. 5.11, which depicts the phase fronts and intensity
profiles of the fundamental mode at different locations inside a confocal resonator.

5.2.4 General Spherical Resonators

It can be shown [291, 314] that in nonconfocal resonators with large Fresnel num-
bers NF the field distribution of the fundamental mode can also be described by
the Gaussian profile (5.32). The confocal resonator with d D R can be replaced
by other mirror configurations without changing the field configurations if the ra-
dius Ri of each mirror at the position z0 equals the radius R0 of the wavefront in
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(5.37) at this position. This means that any two surfaces of constant phase can be
replaced by reflectors, which have the same radius of curvature as the wave front –
in the approximation outlined above.

For symmetrical resonators with R1 D R2 D R� and the mirror separation d�,
we find from (5.37) with z0 D d�=2! �0 D d�=R

R� D 1C .d�=R/2

2d�=R
R

and solving this equation for d� we obtain for the possible mirror separations

d� D R� ˙
p
R�2 �R2 D R�

h
1˙

p
1 � .R=R�/2

i
: (5.38)

These resonators with mirror separation d� and mirror radiiR� are equivalent, with
respect to the field distribution, to the confocal resonator with the mirror radiiR and
mirror separation d D R.

The beam radii w.z/ on the spot size w2.z/ can be obtained from (5.31) and
(5.38). For the symmetric resonator with R1 D R2 D R we get at the center
(z D 0) and at the mirrors (z D ˙d=2)

w20.z/ D
�
d�

�

�� 

2R � d
4d

�1=2
I w21 D w22 D

�
d�

�

�

R2

2dR � d2
�1=2

:

(5.39a)

With the parameters

g D 1 � d=R
this can be written as

w20.z D 0/ D
d�

�

s
1C g
4.1� g/ I w21 D w22 D

d�

�

s
1

1 � g2 : (5.39b)

The mode waist w20.z D 0/ is minimum for g D 0, i.e., d D R. The confocal
resonator has the smallest beam waist. Also, the spot sizes w21 D w22 are minimum
for g D 0. We therefore obtain the following result:

Of all symmetric resonators with a given mirror separation d the confo-
cal resonator with d D R has the smallest spot sizes at the mirrors and the
smallest beam waist w0.

5.2.5 Diffraction Losses of Open Resonators

The diffraction losses of a resonator depend on its Fresnel number NF D a2=d�

(Sect. 5.2.1) and also on the field distribution A.x; y; z D ˙d=2/ at the mirror.
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Figure 5.12 Diffraction
losses of some modes in
a confocal and in a plane-
mirror resonator, plotted as
a function of the Fresnel
number NF

The fundamental mode, where the field energy is concentrated near the resonator
axis, has the lowest diffraction losses, while the higher transverse modes, where the
field amplitude has larger values toward the mirror edges, exhibit large diffraction
losses. Using (5.31) with z D d=2 and (5.33) the Fresnel number NF D a2=.d�/

can be expressed as

NF D 1

�

�a2

�w2s
D 1

�

effective resonator-mirror surface area

confocal TEM00 mode area on the mirror
; (5.40)

which illustrates that the diffraction losses decrease with increasingNF. Figure 5.12
presents the diffraction losses of a confocal resonator as a function of the Fresnel
number NF for the fundamental mode and some higherorder transverse modes. For
comparison, the much higher diffraction losses of a plane-mirror resonator are also
shown in order to illustrate the advantages of curved mirrors, which refocus the
waves otherwise diverging by diffraction. From Fig. 5.12 it is obvious that higher-
order transverse modes can be suppressed by choosing a resonator with a suitable
Fresnel number, which may be realized, for instance, by a limiting aperture with the
diameter D < 2a inside the laser resonator. If the losses exceed the gain for these
modes they do not reach threshold, and the laser oscillates only in the fundamental
mode.

The confocal resonator with the smallest spot sizes at a given mirror separation d
according to (5.39a), (5.39b) also has the lowest diffraction losses per round-trip,
which can be approximated for circular mirrors and Fresnel numbers NF > 1 by
[291]

�D � 16�2NFe�4�NF : (5.41)
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5.2.6 Stable and Unstable Resonators

In a stable resonator the field amplitude A.x; y/ reproduces itself after each round-
trip apart from a constant factor C , which represents the total diffraction losses but
does not depend on x or y, see (5.27).

The question is now how the field distribution A.x; y/ and the diffraction losses
change with varying mirror radii R1, R2 and mirror separation d for a general res-
onator with R1 ¤ R2. We will investigate this problem for the fundamental TEM00

mode, described by the Gaussian beam intensity profile. For a stationary field dis-
tribution, where the Gaussian beam profile reproduces itself after each round-trip,
one obtains for a resonator consisting of two spherical mirrors with the radii R1,
R2, separated by the distance d , the spot sizes �w21 and �w22 on the mirror surfaces
[291, 314]

�w21 D �d



g2

g1.1 � g1g2/
�1=2

; �w22 D �d



g1

g2.1 � g1g2/
�1=2

; (5.42)

with the parameters gi (i D 1; 2)

gi D 1 � d=Ri : (5.43)

For g1 D g2 (confocal symmetric resonator), (5.42) simplifies to (5.39b). Equa-
tion (5.42) reveals that for g1 D 0 the spot size �w21 becomes 1 at M1 and
�w22 D 0 at M2, while for g2 D 0 the situation is reversed. For g1g2 D 1 both spot
sizes become infinite. This implies that the Gaussian beam diverges: the resonator
becomes unstable. An exception is the confocal resonator with g1 D g2 D 0,
which is “metastable”, because it is only stable if both parameters gi are exactly
zero. For g1g2 > 1 or g1g2 < 0, the right-hand sides of (5.42) become imaginary,
which means that the resonator is unstable. The condition for a stable resonator is
therefore

0 < g1g2 < 1: (5.44)

The beam waist w20 of a confocal nonsymmetric resonator with R1 ¤ R2 is
no longer at the center of the resonator (as for symmetric resonators). Its distance
from M1 is

z1.w0/ D d

1C .�d=�w21/2
I z2 D d � z1 :

With the general stability parameter

G D 2g1g2 � 1
we can distinguish stable resonators: 0 < jGj < 1, unstable resonators: jGj > 1,
metastable resonators: jGj D 1.



5.2 Laser Resonators 277

Table 5.1 Some commonly used optical resonators with their stability parameters gi D 1�d=Ri ,
and the resonator parameters G D 2g1g2 � 1

Type of resonator Mirror radii Stability parameter

Confocal R1 CR2 D 2d g1 C g2 D 2g1g2 jGj � 1

Concentric R1 CR2 D d g1g2 D 1 G D 1

Symmetric R1 D R2 g1 D g2 D g jGj < 1
Symmetric confocal R1 D R2 D d g1 D g2 D 0 G D �1
Symmetric concentric R1 D R2 D 1=2d g1 D g2 D �1 G D 1

Semiconfocal R1 D 2d , R2 D 1 g1 D 1, g2 D 1=2 G D 0

Plane R1 D R2 D 1 g1 D g2 D C1 G D 1

Example 5.5
a) R1 D 0:5m, d D 0:5m. If the active medium close to M1 with a diameter

of 0:6 cm needs to be completely filled with the TEM00 mode, the beam
waist at M1 should be w1 D 0:3 cm. With a Fresnel number NF D 3

the diffraction losses are sufficiently small. The stability parameter for
� D 1 µm

g2 D w21
NF 2d�

is then g2 D 3. This gives forR2: g2 D 1�d=R2) R2 D d=.1�g2/ D
�25 cm.

b) Confocal resonator with d D 1m, � D 500 nm, R1 D R2 D 1m )
w1 D w2 D 0:4mm at both mirrors.

If in a symmetric confocal resonator a plane mirror is placed at the beam waist
(where the phase front is a plane), a semiconfocal resonator results (Fig. 5.14), with
R1 D1, d D R2=2, g1 D 1, g2 D 1=2, w21 D �d=� , w22 D 2� d=� .

In Table 5.1 some resonators are compiled with their corresponding parame-
ters gi . Figure 5.13 displays the stability diagram in the g1–g2-plane. According
to (5.44) the plane resonator (R1 D R2 D 1 ) g1 D g2 D 1) is not stable,
because the spot size of a Gaussian beam would increase after each round-trip. As
was shown above, there are, however, other non-Gaussian field distributions, which
form stable eigenmodes of a plane resonator, although their diffraction losses are
much higher than those of resonators within the stability region. The symmetric
confocal resonator with g1 D g2 D 0 might be called “metastable,” since it is lo-
cated between unstable regions in the stability diagram and even a slight deviation
of g1, g2 into the direction g1g2 < 0 makes the resonator unstable. For illustration,
some commonly used resonators are depicted in Fig. 5.15.
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Figure 5.13 Stability dia-
gram of optical resonators.
The shaded areas represent
stable resonators

Figure 5.14 Semi-confocal
resonator

Figure 5.15 Some examples of commonly used open resonators
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Figure 5.16 a Spherical waves in a symmetric unstable resonator emerging from the virtual focal
points F1 and F2; b asymmetric unstable resonator with a real focal point between the two mirrors

For some laser media, in particular those with large gain, unstable resonators
with g1g2 < 0may be more advantageous than stable ones for the following reason:
in stable resonators the beam waist w0.z/ of the fundamental mode is given by the
mirror radii R1, R2 and the mirror separation d , see (5.33), and is generally small
(Example 5.4). If the cross section of the active volume is larger than �w2, only
a fraction of all inverted atoms can contribute to the laser emission into the TEM00

mode, while in unstable resonators the beam fills the whole active medium. This
allows extraction of the maximum output power. One has, however, to pay for this
advantage by a large beam divergence.

Let us consider the simple example of a symmetric unstable resonator depicted in
Fig. 5.16 formed by two mirrors with radii Ri separated by the distance d . Assume
that a spherical wave with its center atF1 is emerging from mirror M1. The spherical
wave geometrically reflected by M2 has its center in F2. If this wave after ideal
reflection at M1 is again a spherical wave with its center atF1, the field configuration
is stationary and the mirrors image the local point F1 into F2, and vice versa.

For the magnification of the beam diameter on the way from mirror M1 to M2 or
from M2 to M1, we obtain from Fig. 5.16 the relations

M12 D d CR1
R1

; M21 D d CR2
R2

: (5.45)

We define the magnification factor M D M12M21 per round-trip as the ratio of the
beam diameter after one round-trip to the initial one:

M D M12M21 D
�
d CR1
R1

��
d C R2
R2

�
: (5.46)

For Ri > 0 (i D 1; 2) the virtual focal points are outside the resonator and the
magnification factor becomes M > 1 (Fig. 5.16a).

In the resonator of Fig. 5.16a the waves are coupled out of both sides of the res-
onator. The resultant high resonator losses are generally not tolerable and for prac-
tical applications the resonator configurations of Fig. 5.16b and Fig. 5.17 consisting
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Figure 5.17 Two examples of unstable confocal resonators: a g1 � g2 > 1; b g1 � g2 < 0, with
a definition of the magnification factor

of one large and one small mirror are better suited. Two types of nonsymmetric
spherical unstable resonators are possible with g1g2 > 1 ) G > 1 (Fig. 5.17a)
with the virtual beam waist outside the resonator and with g1g2 < 0 ) G < �1
(Fig. 5.17b) where the focus lies inside the resonator.

For these spherical resonators the magnification factor M can be expressed by
the resonator parameter G [315]:

M˙ D jGj ˙
p
G2 � 1 ; (5.47a)

where the C sign holds for g1g2 > 1 and the � sign for g1g2 < 0.
If the intensity profile I.x1; y1; z0/ in the plane z D z0 of the outcoupling mirror

does not change much over the mirror size, the fraction P2=P0 of the power P0
incident on M2 that is reflected back to M1 equals the ratio of the areas

P2

P0
D �w22
�w21

D 1

M2
: (5.47b)

The loss factor per round-trip is therefore

V D P0 � P2
P0

D 1 � 1

M2
D M2 � 1

M2
: (5.48)

Example 5.6
R1 D �0:5m, R2 D C2m, d D 0:6m) g1 D 1 � d=R1 D 2:4; g2 D
1 � d=R2 D 0:7; G D 2g1g2 � 1 D 2:36; Mt D G C pG2 � 1 D 4:49;
V D 1� 1=M2 D 0:95. In these unstable resonators the losses per round trip
are 95%.

For the two unstable resonators of Fig. 5.17 the near-field pattern of the outcou-
pled wave is an annular ring (Fig. 5.18). The spatial farfield intensity distribution
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Figure 5.18 Diffraction pat-
tern of the output intensity
of a laser with an unstable
resonator: a near field
just at the output coupler
and b far-field distribu-
tion for a resonator with
a D 0:66 cm, g1 D 1:21,
g2 D 0:85. The patterns ob-
tained with a circular output
mirror (solid curve) are com-
pared with those of a circular
aperture (dashed curves)

can be obtained as a numerical solution of the corresponding Kirchhoff–Fresnel
integro-differential equation analog to (5.26). For illustration, the near-field and
far-field patterns of an unstable resonator of the type shown in Fig. 5.17a is com-
pared with the diffraction pattern of a circular aperture.

Note that the angular divergence of the central diffraction order in the far field
is smaller for the annular-ring near-field distribution than that of a circular aperture
with the same size as the small mirror of the unstable resonator. However, the
higher diffraction orders are more intense, which means that the angular intensity
distribution has broader wings.

In unstable resonators the laser beam is divergent and only a fraction of the
divergent beam area may be reflected by the mirrors. The losses are therefore high
and the effective number of round-trips is small. Unstable resonators are therefore
suited only for lasers with a sufficiently large gain per round-trip [316–319].

In recent years, specially designed optics with slabs of cylindrical lenses have
been used to make the divergent output beam more parallel, which allows one to
focus the beam into a smaller spot size [320].

5.2.7 Ring Resonators

A ring resonator consists of at least three reflecting surfaces, which may be pro-
vided by mirrors or prisms. Four possible arrangements are illustrated in Fig. 5.19.
Instead of the standing waves in a Fabry–Perot-type resonator, the ring resonator
allows traveling waves, which may run clockwise or counter-clockwise through the
resonator. With an “optical diode” inside the ring resonator unidirectional travel-
ing waves can be enforced. Such an “optical diode” is a device that has low losses
for light passing into one direction but sufficiently high losses to prevent laser os-
cillation for light traveling into the opposite direction. It consists of a Faraday
rotator, which turns the plane of polarization by the angle ˙˛ (Fig. 5.20), a bire-
fringent crystal, which also turns the plane of polarization by ˛, and elements with
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Figure 5.19 Four examples of possible ring resonators, using a three mirrors, b two mirrors and
a Brewster prism, c total reflection: with corner-cube prism reflectors and frustrated total reflection
for output coupling; d three-mirror arrangement with beam-combining prism

Figure 5.20 Optical diode
consisting of a Faraday ro-
tator, a birefringent crystal,
and Brewster windows. Tilt-
ing of the polarization vector
for the forward (a) and back-
ward (b) directions

a polarization-dependent transmission, such as Brewster windows [322]. For the
wanted direction the turning angles �˛ C ˛ D 0 just cancel, and for the other di-
rection they add to 2˛, causing reflection losses at the Brewster windows. If these
are larger than the gain this direction cannot reach the threshold.

The unidirectional ring laser has the advantage that spatial hole burning, which
impedes single-mode oscillation of lasers (Sect. 5.3.3), can be avoided. In the case
of homogeneous gain profiles, the ring laser can utilize the total population in-
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version within the active mode volume contrary to a standing-wave laser, where
the inversion at the nodes of the standing wave cannot be utilized. One therefore
expects larger output powers in single-mode operation than from standing-wave
cavities at comparable pump powers.

5.2.8 Frequency Spectrum of Passive Resonators

The stationary field configurations of open resonators, discussed in the previous
sections, have an eigenfrequency spectrum that can be directly derived from the
condition that the phase fronts at the reflectors have to be identical with the mirror
surfaces. Because these stationary fields represent standing waves in the resonators,
the mirror separation d must be an integer multiple of �=2 and the phase factor in
(5.30) becomes unity at the mirror surfaces. This implies that the phase 	 has to
be an integer multiple of � . Inserting the condition 	 D q� into (5.34) gives
the eigenfrequencies �r D c=�r of the confocal resonator with R D d , �0 D 1,
x D y D 0

�r D c

2d



q C 1

2
.mC nC 1/

�
: (5.49)

The fundamental axial modes TEM00q (m D n D 0) have the frequencies � D
.q C 1

2
/c=2d and the frequency separation of adjacent axial modes is

•� D c

2d
: (5.50)

Equation (5.49) reveals that the frequency spectrum of the confocal resonator is
degenerate because the transverse modes with q D q1 and m C n D 2p have the
same frequency as the axial mode with m D n D 0 and q D q1 C p. Between two
axial modes there is always another transverse mode with mC nC 1 D odd. The
free spectral range of a confocal resonator is therefore

•�confocal D c

4d
: (5.51)

If the mirror separation d deviates slightly from the radius of the mirror cur-
vature R, the degeneracy is removed. We obtain from (5.34) with 	 D q� and
�0 D d=R ¤ 1 for a symmetric nonconfocal resonator with two equal mirror radii
R1 D R2 D R

�r D c

2d

�
q C 1

2
.mC nC 1/



1C 4

�
arctan

�
d �R
d CR

���
: (5.52)

Now the higher-order transverse modes are no longer degenerate with axial modes.
The frequency separation depends on the ratio .d �R/=.d CR/. Figure 5.21 illus-
trates the frequency spectrum of the plane-mirror resonator, the confocal resonator
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Figure 5.21 Degenerate
mode frequency spectrum of
a confocal resonator (d D R)
(a), degeneracy lifting in
a near-confocal resonator
(d D 1:1R) (b), and the
spectrum of fundamental
modes in a plane-mirror res-
onator (c)

(R D d ), and of a nonconfocal resonator where d is slightly larger than R. Due to
higher diffraction losses the amplitudes of the higher transverse modes decrease.

As has been shown in [311] the frequency spectrum of a general resonator with
unequal mirror curvatures R1 and R2 can be represented by

�r D c

2d



q C 1

�
.mC nC 1/ arccos

p
g1g2

�
; (5.53)

where gi D 1�d=Ri (i D 1; 2) are the resonator parameters. The eigenfrequencies
of the axial modes (m D n D 0) are no longer at .c=2d/.q C 1

2
/, but are slightly

shifted. The free spectral range, however, is again •� D c=2d .

Example 5.7
a) Consider a nonconfocal symmetric resonator: R1 D R2 D 75 cm, d D
100 cm. The free spectral range •�, which is the frequency separation of
the adjacent axial modes q and q C 1, is •� D .c=2d/ D 150MHz. The
frequency separation
� between the (q; 0; 0) mode and the (q; 1; 0) mode
is 
� D 87MHz from (5.52).

b) Consider a confocal resonator: R D d D 100 cm. The frequency spec-
trum consists of equidistant frequencies with •� D 75MHz. If, however,
the higher-order transverse modes are suppressed, only axial modes oscil-
late with a frequency separation •� D 150MHz.

Now we briefly discuss the spectral width 
� of the resonator resonances. The
problem will be approached in two different ways.
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Since the laser resonator is a Fabry–Perot interferometer, the spectral distribution
of the transmitted intensity follows the Airy formula (4.61a)–(4.61d). According to
(4.55b), the halfwidth
�r of the resonances, expressed in terms of the free spectral
range •�, is 
�r D •�=F �. If diffraction losses can be neglected, the finesse F �
is mainly determined by the reflectivity R of the mirrors, therefore the halfwidth of
the resonance becomes


� D •�

F � D
c

2d

1 �R
�
p
R
: (5.54)

Example 5.8
With the reflectivity R D 0:98 ) F � D 150. A resonator with d D 1m
has the free spectral range •� D 150MHz. The halfwidth of the resonator
modes then becomes 
�r D 1MHz if the mirrors are perfectly aligned and
have nonabsorptive ideal surfaces.

Generally speaking, other losses such as diffraction, absorption, and scattering
losses decrease the total finesse. Realistic values are F � D 50–100, giving for
Example 5.8 a resonance halfwidth of the passive resonator of about 2MHz.

The second approach for the estimate of the resonance width starts from the
quality factor Q of the resonator. With total losses ˇ per second, the energy W
stored in a mode of a passive resonator decays exponentially according to (5.18).
The Fourier transform of (5.18) yields the frequency spectrum of this mode, which
gives a Lorentzian (Sect. 3.1) with the halfwidth 
�r D ˇ=2� . With the mean
lifetime T D 1=ˇ of a photon in the resonator mode, the frequency width can be
written as


�r D 1

2�T
: (5.55)

If reflection losses give the main contribution to the loss factor, the photon lifetime
is, with R D pR1R2, see (5.22), T D �d=.c lnR/. The width
� of the resonator
mode becomes


�r D cj lnRj
2�d

D •�.j lnRj/
�

; (5.56)

which yields with j lnRj � 1 � R the same result as (5.54), apart from the factorp
R � 1. The slight difference of the two results stems from the fact that in the

second estimation we distributed the reflection losses uniformly over the resonator
length.



286 5 Lasers as Spectroscopic Light Sources

5.3 Spectral Characteristics of Laser Emission

The frequency spectrum of a laser is determined by the spectral range of the active
laser medium, i.e., its gain profile, and by the resonator modes falling within this
spectral gain profile (Fig. 5.22). All resonator modes for which the gain exceeds the
losses can participate in the laser oscillation. The active medium has two effects on
the frequency distribution of the laser emission:

� Because of its index of refraction n.�/, it shifts the eigenfrequencies of the pas-
sive resonator (mode-pulling).

� Due to spectral gain saturation competition effects between different oscillating
laser modes occur; they may influence the amplitudes and frequencies of the
laser modes.

In this section we shall briefly discuss spectral characteristics of multimode laser
emission and the effects that influence it.

Figure 5.22 Gain profile of a laser transition with resonator eigenfrequencies of axial modes

5.3.1 Active Resonators and Laser Modes

Introducing the amplifying medium into the resonator changes the refractive index
between the mirrors and with it the eigenfrequencies of the resonator. We obtain the
frequencies of the active resonator by replacing the mirror separation d in (5.52) by

d� D .d � L/C n.�/L D d C .n � 1/L ; (5.57)

where n.�/ is the refractive index in the active medium with length L. The refrac-
tive index n.�/ depends on the frequency � of the oscillating modes within the gain
profile of a laser transition where anomalous dispersion is found. Let us at first
consider how laser oscillation builds up in an active resonator.
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Figure 5.23 Transmission of an incident wave through an active resonator

If the pump power is increased continuously, the threshold is reached first at
those frequencies that have a maximum net gain. According to (5.5) the net gain
factor per round-trip

G.�; 2d/ D expŒ�2˛.�/L � �.�/� ; (5.58)

is determined by the amplification factor expŒ�2˛.�/L�, which has the frequency
dependence of the gain profile (5.8) and also by the loss factor exp.�2ˇd=c/ D
expŒ��.�/� per round-trip. While absorption or diffraction losses of the resonator
do not strongly depend on the frequency within the gain profiles of a laser transition,
the transmission losses exhibit a strong frequency dependence, which is closely
connected to the eigenfrequency spectrum of the resonator. This can be illustrated
as follows:

Assume that a wave with the spectral intensity distribution I0.�/ traverses an
interferometer with two mirrors, each having the reflectivity R and transmission
factor T (Fig. 5.23). For the passive interferometer we obtain a frequency spec-
trum of the transmitted intensity according to (4.52a), (4.52b). With an amplifying
medium inside the resonator, the incident wave experiences the amplification fac-
tor (5.58) per round-trip and we obtain, analogous to (4.65) by summation over all
interfering amplitudes, the total transmitted intensity

IT D I0 T 2G.�/

Œ1�G.�/�2 C 4G.�/ sin2.	=2/
: (5.59)

The total amplification IT=I0 has maxima for 	 D 2q� , which corresponds to
the condition (5.53) for the eigenfrequencies of the resonator with the modification
(5.57). For G.�/! 1, the total amplification IT=I0 becomes infinite for 	 D 2q� .
This means that even an infinitesimally small input signal results in a finite output
signal. Such an input is always provided, for instance, by the spontaneous emission
of the excited atoms in the active medium. For G.�/ D 1 the laser amplifier con-
verts to a laser oscillator. This condition is equivalent to the threshold condition
(5.7). Because of gain saturation (Sect. 5.3), the amplification remains finite and
the total output power is determined by the pump power rather than by the gain.

According to (5.8) the gain factor G0.�/ D expŒ�2˛.�/L� depends on the line
profile g.���0/ of the molecular transition Ei ! Ek . The threshold condition can
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Figure 5.24 Reflection losses of a resonator (lower curve), gain curve ˛.�/ (upper curve), and
net gain
˛.�/ D �2L˛.�/��.�/ as difference between gain (˛ < 0) and losses (middle curve).
Only frequencies with 
˛.�/ > 0 reach the oscillation threshold

be illustrated graphically by subtracting the frequency-dependent losses from the
gain profile. Laser oscillation is possible at all frequencies �L where this subtraction
gives a positive net gain (Fig. 5.24).

Example 5.9
a) In gas lasers, the gain profile is the Doppler-broadened profile of a molec-

ular transition (Sect. 3.2) and therefore shows a Gaussian distribution with
the Doppler width •!D (see Sect. 3.2),

˛.!/ D ˛.!0/ exp
�
�! � !0
0:6•!D

�2
:

With ˛.!0/ D �0:01 cm�1,L D 10 cm, •!D D 1:3�109 Hz�2� , and � D
0:03, the gain profile extends over a frequency range of •! D 2� � 3GHz
where �2˛.!/L > 0:03. In a resonator with d D 50 cm, the mode
spacing is 300MHz and ten axial modes can oscillate.

b) Solid-state or liquid lasers generally exhibit broader gain profiles because
of additional broadening mechanisms (Sect. 3.7). A dye laser has, for
example, a gain profile with a width of about 1013 Hz. Therefore, in a res-
onator with d D 50 cm about 3� 104 resonator modes fall within the gain
profile.
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The preceding example illustrates that the passive resonance halfwidth of typ-
ical resonators for gas lasers is very small compared with the linewidth of a laser
transition, which is generally determined by the Doppler width. The active medium
inside a resonator compensates the losses of the passive resonator resonances result-
ing in an exceedingly high quality factor Q. The linewidth of an oscillating laser
mode should therefore be much smaller than the passive resonance width.

From (5.59) we obtain for the halfwidth 
� of the resonances for an active res-
onator with a free spectral range •� the expression


�a D •� 1 �G.�/
2�
p
G.�/

D •�=F �
a : (5.60a)

The finesse

F �
a D

2�
p
G.�/

1 �G.�/ (5.60b)

of the active resonator approaches infinity for G.�/ ! 1. Although the laser
linewidth 
�L may become much smaller than the halfwidth of the passive res-
onator, it does not approach zero. This will be discussed in Sect. 5.6.

For frequencies between the resonator resonances, the losses are high and the
threshold will not be reached. In the case of a Lorentzian resonance profile, for
instance, the loss factor has increased to about ten times ˇ.�0/ at frequencies that
are 3
�r away from the resonance center �0.

5.3.2 Gain Saturation

When the pump power of a laser is increased beyond its threshold value, laser os-
cillation will start at first at a frequency where the net gain, that is, the difference
between total gain minus total losses, has a maximum. During the buildup time
of the laser oscillation, the gain is larger than the losses and the stimulated wave
inside the resonator is amplified during each round-trip until the radiation energy
is sufficiently large to deplete the population inversion
N by stimulated emission
down to the threshold value
Nthr. Under stationary conditions the increase of
N
due to pumping is just compensated by its decrease due to stimulated emission. The
gain factor of the active medium saturates from the unsaturated valueG0.I D 0/ at
small intensities to the threshold value

Gthr D e�2L˛sat.�/�� D 1 ; (5.61)

with �2˛L � � D 0 where the gain just equals the total losses per round-trip. This
gain saturation is different for homogeneous and for inhomogeneous line profiles
of laser transitions (Sect. 3.6).



290 5 Lasers as Spectroscopic Light Sources

Figure 5.25 Saturation of
gain profiles: a for a homo-
geneous profile; b for an
inhomogeneous profile

In the case of a homogeneous profile g.� � �0/, all molecules in the upper level
can contribute to stimulated emission at the laser frequency �a with the probability
Bik�g.�a � �0/, see (5.8). Although the laser may oscillate only with a single
frequency �, the whole homogeneous gain profile ˛.�/ D 
N
.�/ saturates until
the inverted population difference 
N has decreased to the threshold value 
Nthr

(Fig. 5.25a). The saturated amplification coefficient ˛sat.�/ at the intracavity laser
intensity I is, according to Sect. 3.6,

˛hom
s .�/ D ˛0.�/

1C S D
˛0.�/

1C I=Is
; (5.62)

where I D Is is the intensity for which the saturation parameter S D 1, which
means that the induced transition rate equals the relaxation rate. For homogeneous
gain profiles, the saturation caused by one laser mode also diminishes the gain for
adjacent modes (mode competition).

In the case of inhomogeneous laser transitions, the whole line profile can be di-
vided into homogeneously broadened subsections with the spectral width 
�hom

(for example, the natural linewidth or the pressure- or power-broadened linewidth).
Only those molecules in the upper laser level that belong to the subgroup in the
spectral interval �L ˙ 1

2

�hom, centered at the laser frequency �L, can contribute

to the amplification of the laser wave. A monochromatic wave therefore causes
selective saturation of this subgroup and burns a hole into the inhomogeneous dis-
tribution 
N.�/ (Fig. 5.25b). At the bottom of the hole, the inversion 
N.�L/
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has decreased to the threshold value
Nthr, but several homogeneous widths
�hom

away from �L, 
N remains unsaturated. According to (3.68), the homogeneous
width 
�hom of this hole increases with increasing saturating intensity as


�s D 
�0
p
1C S D 
�0

p
1C I=Is : (5.63)

This implies that with increasing saturation more molecules from a larger spectral
interval 
�s can contribute to the amplification. The gain factor decreases by the
factor 1=.1CS/ because of a decrease of
N caused by saturation. It increases by
the factor .1CS/1=2 because of the increased homogeneous width. The combination
of both phenomena gives (Vol. 2, Sect. 2.2)

˛inh
s .�/ D ˛0.�/

p
1C S
1C S D ˛0.�/p

1C I=Is

: (5.64)

5.3.3 Spatial Hole Burning

A resonator mode represents a standing wave in the laser resonator with a z-
dependent field amplitude E.z/, as illustrated in Fig. 5.26a. Since the saturation
of the inversion 
N , discussed in the previous section, depends on the intensity
I / jEj2, the inversion saturated by a single laser mode exhibits a spatial modula-
tion 
N.z/, as sketched in Fig. 5.26c. Even for a completely homogeneous gain
profile, there are always spatial regions of unsaturated inversion at the nodes of the
standing wave E1.z/. This may give sufficient gain for another laser mode E2.z/
that is spatially shifted by �=4 against E1.z/, or even for a third mode with a shift
of �=3 of its amplitude maximum (Fig. 5.26b).

If the mirror separation d changes by only one wavelength (e.g., caused by
acoustical vibrations of the mirrors), the maxima and nodes of the standing waves
are shifted and the gain competition, governed by spatial hole burning, is altered.
Therefore, every fluctuation of the laser wavelength caused by changes of the re-
fractive index or the cavity length d results in a corresponding fluctuation of the
coupling strength between the modes and changes the gain relations and the inten-
sities of the simultaneously oscillating modes.

If the length L of the active medium is small compared to the resonator length
(e.g., in cw dye lasers), it is possible to minimize the spatial hole-burning phe-
nomenon by placing the active medium close to one cavity mirror (Fig. 5.26d).
Consider two standing waves with the wavelengths �1 and �2. At a distance a
from the end mirror, their maxima in the active medium are shifted by �=p (p D
2; 3; : : :). Since all standing waves must have nodes at the mirror surface, we obtain
for two waves with the minimum possible wavelength difference
� D �1��2 the
relation

m�1 D a D .mC 1=p/�2 ; (5.65)



292 5 Lasers as Spectroscopic Light Sources

Figure 5.26 Spatial intensity distribution for two standing waves with slightly different wave-
lengths �1 and �2 (a), (b), and their corresponding saturation of the inversion 
N.z/ (c).
Explanation of spatial hole-burning modes in the active medium d with a small length L, close to
a resonator mirror M1 (a 
 b)

or for their frequencies

�1 D mc
a
; �2 D c

a
.mC 1=p/ ) ı�sp D c

ap
: (5.66)

In terms of the spacing •� D c=2d of the longitudinal resonator modes, the spacing
of the spatial hole-burning modes is

•�sp D 2d

ap
•� : (5.67)

Even when the net gain is sufficiently large to allow oscillation of, e.g., up to three
spatially separated standing waves (p D 1; 2; 3), only one mode can oscillate if the
spectral width of the homogeneous gain profile is smaller than .2=3/.d=a/•� [323].

Example 5.10
d D 100 cm, L D 0:1 cm, a D 5 cm, p D 3, •� D 150MHz, •�sp D
2000MHz. Single-mode operation could be achieved if the spectral gain pro-
file is smaller than 2000MHz.
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In gas lasers the effect of spatial hole burning is partly averaged out by diffusion
of the excited molecules from nodes to maxima of a standing wave. It is, how-
ever, important in solid-state and in liquid lasers such as the ruby laser or the dye
laser. Spatial hole burning can be completely avoided in unidirectional ring lasers
(Sect. 5.2.7) where no standing waves exist. Waves propagating in one direction can
saturate the entire spatially distributed inversion. This is the reason why ring lasers
with sufficiently high pump powers have higher output powers than standing-wave
lasers.

5.3.4 Multimode Lasers and Gain Competition

The different gain saturation of homogeneous and inhomogeneous transitions
strongly affects the frequency spectrum of multimode lasers, as can be understood
from the following arguments:

Let us first consider a laser transition with a purely homogeneous line profile.
The resonator mode that is next to the center of the gain profile starts oscillat-
ing when the pump power exceeds the threshold. Since this mode experiences
the largest net gain, its intensity grows faster than that of the other laser modes.
This causes partial saturation of the whole gain profile (Fig. 5.25a), mainly by this
strongest mode. This saturation, however, decreases the gain for the other weaker
modes and their amplification will be slowed down, which further increases the
differences in amplification and favors the strongest mode even more. This mode
competition of different laser modes within a homogeneous gain profile will finally
lead to a complete suppression of all but the strongest mode. Provided that no other
mechanism disturbs the predominance of the strongest mode, this saturation cou-
pling results in single-frequency oscillation of the laser, even if the homogeneous
gain profile is broad enough to allow, in principle, simultaneous oscillation of sev-
eral resonator modes [324].

In fact, such single-mode operation without further frequencyselecting elements
in the laser resonator can be observed only in a few exceptional cases because
there are several phenomena, such as spatial hole burning, frequency jitter, or time-
dependent gain fluctuations, that interfere with the pure case of mode competition
discussed above. These effects, which will be discussed below, prevent the unper-
turbed growth of one definite mode, introduce time-dependent coupling phenomena
between the different modes, and cause in many cases a frequency spectrum of the
laser which consists of a random superposition of many modes that fluctuate in time.

In the case of a purely inhomogeneous gain profile, the different laser modes
do not share the same molecules for their amplification, and no mode competition
occurs if the frequency spacing of the modes is larger than the saturation-broadened
line profiles of the oscillating modes. Therefore all laser modes within that part of
the gain profile, which is above the threshold, can oscillate simultaneously. The
laser output consists of all axial and transverse modes for which the total losses are
less than the gain (Fig. 5.27a).
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Figure 5.27 a Stable multimode operation of a HeNe laser (exposure time: 1 s); b two short-
time exposures of the multimode spectrum of an argon laser superimposed on the same film to
demonstrate the randomly fluctuating mode distribution

Real lasers do not represent these pure cases, but exhibit a gain profile that is
a convolution of inhomogeneous and homogeneous broadening. It is the ratio of
mode spacing •� to the homogeneous width 
�hom that governs the strength of
mode competition and that is crucial for the resulting single- or multi-mode oper-
ation. There is another reason why many lasers oscillate on many modes: if the
gain exceeds the losses for higher transverse modes, mode competition between
the modes TEMm1;n1

and TEMm2;n2
with .m1; n1/ ¤ .m2; n2/ is restricted because

of their different spatial amplitude distributions. They gain their amplification from
different regions of the active medium. This applies to laser types such as solid-state
lasers (ruby or Nd:YAG lasers), flash-lamp-pumped dye lasers, or excimer lasers. In
a nonconfocal resonator the frequencies of the transverse modes fill the gap between
the TEM00 frequencies �a D .q C 1

2
/c=.2nd/ (Fig. 5.21). These transverse modes

lead to a larger divergence of the laser beam, which is no longer a Gaussian-shaped
beam.

The suppression of higher-order TEMm;n modes can be achieved by a proper
choice of the resonator geometry, which has to be adapted to the cross section and
the length L of the active medium (Sect. 5.4.2).

If only the axial modes TEM00 participate in the laser oscillation, the laser
beam transmitted through the output mirrors has a Gaussian intensity profile (5.32),
(5.42). It may still consist of many frequencies �a D qc=.2nd/ within the spec-
tral gain profile. The spectral bandwidth of a multimode laser oscillating on an
atomic or molecular transition is comparable to that of an incoherent source
emitting on this transition!

We illustrate this discussion by some examples:

Example 5.11
HeNe Laser at � D 632:8 nm: The Doppler width of the Ne transition is
about 1500MHz, and the width of the gain profile above the threshold, which
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depends on the pump power, may be 1200MHz. With a resonator length
of d D 100 cm, the spacing of the longitudinal modes is •� D c=2d D
150MHz. If the higher transverse modes are suppressed by an aperture in-
side the resonator, seven to eight longitudinal modes reach the threshold.
The homogeneous width 
�hom is determined by several factors: the nat-
ural linewidth 
�n D 20MHz; a pressure broadening of about the same
magnitude; and a power broadening, which depends on the laser intensity
in the different modes. With I=Is D 10, for example, we obtain with

�0 D 30MHz a power-broadened linewidth of about 100MHz, which is
still smaller than the longitudinal modes spacing. The modes will therefore
not compete strongly, and simultaneous oscillation of all longitudinal modes
above threshold is possible. This is illustrated by Fig. 5.27a, which exhibits
the spectrum of a HeNe laser with d D 1m, monitored with a spectrum ana-
lyzer and integrated over a time interval of 1 s.

Example 5.12
Argon Laser: Because of the high temperature in the high-current discharge
(about 103 A=cm2), the Doppler width of the ArC transitions is very large
(about 8 to 10GHz). The homogeneous width 
�hom is also much larger
than for the HeNe laser for two reasons: the long-range Coulomb inter-
action causes a large pressure broadening from electron–ion collisions and
the high laser intensity (10–100W) in a mode results in appreciable power
broadening. Both effects generate a homogeneous linewidth that is large com-
pared to the mode spacing •� D 125MHz for a commonly used resonator
length of d D 120 cm. The resulting mode competition in combination with
the perturbations mentioned above cause the observed randomly fluctuating
mode spectrum of the multimode argon laser. Figure 5.27b illustrates this by
the superposition of two short-time exposures of the oscilloscope display of
a spectrum analyzer taken at two different times.

Example 5.13
Dye Laser: The broad spectral gain profile of dye molecules in a liquid is
predominantly homogeneously broadened (Sect. 3.7). About 105 modes of
a laser resonator with L D 75 cm fall within a typical spectral width of 20 nm
(¶ 2 � 1013 Hz at � D 600 nm). Without spectral hole burning and fluctu-
ations of the optical length nd of the resonator, the laser would oscillate in
a single mode at the center of the gain profile, despite the large number of
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possible modes. However, fluctuations of the refractive index n in the dye
liquid cause corresponding perturbations of the frequencies and the coupling
of the laser modes, which results in a time-dependent multimode spectrum;
the emission jumps in a random way between different mode frequencies. In
the case of pulsed lasers, the timeaveraged spectrum of the dye laser emission
fills more or less uniformly a broader spectral interval (about 1 nm) around
the maximum of the gain profile. The spatial hole burning may result in os-
cillation of several groups of lines centered around the spatial hole-burning
modes. In this case, the time-averaged frequency distribution generally does
not result in a uniformly smoothed intensity profile I.�/. In order to achieve
tunable single-mode operation, extra wavelength-selective elements have to
be inserted into the laser resonator (Sect. 5.4).

For spectroscopic applications of multimode lasers one has to keep in mind that
the spectral interval 
� within the bandwidth of the laser is, in general, not uni-
formly filled. This means that, contrary to an incoherent source, the intensity I.�/
is not a smooth function within the laser bandwidth but exhibits holes. This is
particularly true for multimode dye lasers with Fabry–Perot-type resonators where
standing waves are present and spatial hole burning occurs (Sect. 5.3.4).

The spectral intensity distribution of the laser output is the superposition

IL.!; t/ D
ˇ̌
ˇ̌
ˇ
X

k

Ak.t/ cosŒ!kt C 	k.t/�
ˇ̌
ˇ̌
ˇ

2

; (5.68)

of the oscillating modes, where the phases 	k.t/ and the amplitudes Ak.t/ may
randomly fluctuate in time because of mode competition and mode-pulling effects.

The time average of the spectral distribution of the output intensity

hI.!/i D 1

T

TZ

0

ˇ̌
ˇ̌
ˇ
X

k

Ak.t/ cosŒ!kt C 	k.t/�
ˇ̌
ˇ̌
ˇ

2

dt ; (5.69)

reflects the gain profile of the laser transition. The necessary averaging time T
depends on the buildup time of the laser modes. It is determined by the unsaturated
gain and the strength of the mode competition. In the case of gas lasers, the average
spectral width h
�i corresponds to the Doppler width of the laser transition. The
coherence length of such a multimode laser is comparable to that of a conventional
spectral lamp where a single line has been filtered out.

If such a multimode laser is used for spectroscopy and is scanned, for instance,
with a grating or prism inside the laser resonator (Sect. 5.5), through the spec-
tral range of interest, this nonuniform spectral structure IL.0/ may cause artificial
structures in the measured spectrum. In order to avoid this problem and to obtain
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a smooth intensity profile IL.�/, the length d of the laser resonator can be wob-
bled at the frequency f > 1=� , which should be larger than the inverse scanning
time � over a line in the investigated spectrum. This wobbling modulates all oscil-
lating frequencies of the laser and results in a smoother time average, particularly,
if � > T .

5.3.5 Mode Pulling

We now briefly discuss the frequency shift (called mode pulling) of the passive
resonator frequencies by the presence of an active medium [325]. The phase shift
for a stationary standing wave with frequency �p and round-trip time Tp through
a resonator with mirror separation d without an active medium is

	p D 2��pTp D 2��p2d=c D m� ; (5.70)

where the integer m characterizes the oscillating resonator mode. On insertion of
an active medium with refractive index n.�/, the frequency �p changes to �a in such
a way that the phase shift per round-trip remains

	a D 2��aTa D 2��an.�a/2d=c D m� : (5.71)

This gives the condition

@	

@�
.�a � �p/C Œ	a.�a/ � 	p.�a/� D 0 : (5.72)

The index of refraction n.�/ is related to the absorption coefficient ˛.�/ of a homo-
geneous absorption profile by the dispersion relation (3.24a, 3.24b)

n.�/ D 1C �0 � �

�m

c

2��
˛.�/ ; (5.73)

where 
�m D �=2� is the linewidth of the amplifying transition in the active
medium. In case of inversion (
N < 0), ˛.�/ becomes negative and n.�/ < 1 for
� < �0, while n.�/ > 1 for � > �0 (Fig. 5.28). Under stationary conditions, the
total gain per pass ˛.�/L saturates to the threshold value, which equals the total
losses � . These losses determine the resonance width 
�r D c�=.4�d/ of the
cavity, see (5.54). We obtain from (5.70, 5.73) the final result for the frequency �a

of a laser mode for laser transitions with homogeneous line broadening 
�m and
center frequency �0 in a resonator with mode-width 
�r

�a D �r
�m C �0
�r


�m C
�r
: (5.74)

The resonance width
�r of gas laser resonators is of the order of 1MHz, while the
homogeneous width of the amplifying medium is about 100MHz. Therefore, when

�r 	 
�m, (5.74) reduces to

�a D �r C 
�r


�m
.�0 � �r/ : (5.75)
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Figure 5.28 Dispersion
curves for absorbing tran-
sitions (
N < 0) and
amplifying transitions
(
N > 0) and phase shifts

	 per round-trip in the pas-
sive and active cavity

This demonstrates that the mode-pulling effect increases proportionally to the dif-
ference of cavity resonance frequency �r and central frequency �0 of the amplifying
medium. At the slopes of the gain profile, the laser frequency is pulled towards the
center.

5.4 Experimental Realization of Single-Mode Lasers

In the previous sections we have seen that without specific manipulation a laser
generally oscillates in many modes, for which the gain exceeds the total losses. In
order to select a single wanted mode, one has to suppress all others by increasing
their losses to such an amount that they do not reach the oscillation threshold. The
suppression of higher-order transverse TEMmn modes demands actions other than
the selection of a single longitudinal mode out of many other TEM00 modes.

Many types of lasers, in particular, gaseous lasers, may reach oscillation thresh-
old for several atomic or molecular transitions. The laser can then simultaneously
oscillate on these transitions [326]. In order to reach single-mode operation, one
has to first select a single transition.

5.4.1 Line Selection

In order to achieve single-line oscillation in laser media that exhibit gain for sev-
eral transitions, wavelength-selecting elements inside or outside the laser resonator
can be used. If the different lines are widely separated in the spectrum, the selec-
tive reflectivity of the dielectric mirrors may already be sufficient to select a single
transition.
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Figure 5.29 Line selection in an argon laser with a Brewster prism a or a Littrow prism reflector
(b). Term diagram of laser transition in ArC (c)

Example 5.14
The He-Ne laser can oscillate at � D 3:39 µm, � D 0:633 µm and several
lines around � D 1:15 µm.

The line at � D 3:39 µm or at � D 0:633 µm can be selected using special
mirrors. The different lines around 1:15 µm cannot be separated solely via the
spectral reflectivity of the mirrors; other measures are required, as outlined
below.

In the case of broadband reflectors or closely spaced lines, prisms, gratings, or
Lyot filters are commonly utilized for wavelength selection. Figure 5.29 illustrates
line selection by a prism in an argon laser. The different lines are refracted by the
prism, and only the line that is vertically incident upon the end mirror is reflected
back into itself and can reach the oscillation threshold, while all other lines are
reflected out of the resonator. Turning the end reflector M2 allows the desired line
to be selected. To avoid reflection losses at the prism surfaces, a Brewster prism
with tan	 D 1=n is used, with the angle of incidence for both prism surfaces being
Brewster’s angle. The prism and the end mirror can be combined by coating the
end face of a Brewster prism reflector (Fig. 5.29b). Such a device is called a Littrow
prism.

Because most prism materials such as glass or quartz absorb in the infrared re-
gion, it is more convenient to use for infrared lasers a Littrow grating (Sect. 4.1)
as wavelength selector in this wavelength range. Figure 5.30 illustrates the line se-
lection in a CO2 laser, which can oscillate on many rotational lines of a vibrational
transition. Often the laser beam is expanded by a proper mirror configuration in
order to cover a larger number of grating grooves, thus increasing the spectral res-
olution (Sect. 4.1). This has the further advantage that the power density is lower
and damage of the grating is less likely.
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Figure 5.30 Selection of
CO2 laser lines correspond-
ing to different rotational
transitions by a Littrow grat-
ing

Figure 5.31 Schematic
level diagram for a laser
simultaneously oscillating on
several lines. While in a the
transitions compete with
each other for gain, those in
b enhance the gain for the
other line

If some of the simultaneously oscillating laser transitions share a common upper
or lower level, such as the lines 1, 2, and 3 in Fig. 5.29c and Fig. 5.31a, gain
competition diminishes the output of each line. In this case, it is advantageous
to use intracavity line selection in order to suppress all but one of the competing
transitions. Sometimes, however, the laser may oscillate on cascade transitions
(Fig. 5.31b). In such a case, the laser transition 1 ! 2 increases the population of
level 2 and therefore enhances the gain for the transition 2 ! 3 [327]. Obviously,
it is then more favorable to allow multiline oscillation and to select a single line by
an external prism or grating. Using a special mounting design, it can be arranged
so that no deflection of the output beam occurs when the multiline output is tuned
from one line to the other [328].

For lasers with a broad continuous spectral gain profile, the preselecting elements
inside the laser resonator restrict laser oscillation to a spectral interval, which is
a fraction of the gain profile.

Some examples illustrate the situation (see also Sect. 5.7):

Example 5.15
HeNe Laser: The HeNe laser is probably the most thoroughly investigated
gas laser [329]. From the level scheme (Fig. 5.32), which uses the Paschen
notation [330], we see that two transitions around� D 3:39 µm and the visible
transitions at � D 0:6328 µm share a common upper level. Suppression of the
3:39 µm lines therefore enhances the output power at 0:6328 µm. The 1:15 µm
and the 0:6328 µm lines, on the other hand, share a common lower level and
also compete for gain, since both laser transitions increase the lower-level
population and therefore decrease the inversion. If the 3.3903-µm transition
is suppressed, e.g., by placing an absorbing CH4 cell inside the resonator, the
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Figure 5.32 Level diagram
of the HeNe laser system in
Paschen notation showing the
most intense laser transitions

population of the upper 3s2 level increases, and a new line at � D 3:3913 µm
reaches the threshold.

This laser transition populates the 3p4 level and produces gain for an-
other line at � D 2:3951 µm. This last line only oscillates together with the
3.3913-µm one, which acts as pumping source. This is an example of cascade
transitions in laser media [327], as depicted in Fig. 5.31b.

The homogeneous width of the laser transitions is mainly determined by
pressure and power broadening. At total pressures of above 5mb and an
intracavity power of 200mW, the homogeneous linewidth for the transition
� D 632:8 nm is about 200MHz, which is still small compared with the
Doppler width 
�D D 1500MHz. In single-mode operation, one can ob-
tain about 20% of the multimode power [331]. This roughly corresponds to
the ratio 
�h=
�D of homogeneous to inhomogeneous linewidth above the
threshold. The mode spacing •� D 1

2
c=d equals the homogeneous linewidth

for d D d� D 1
2
c=
�h. For d < d�, stable multimode oscillation is pos-

sible; for d > d�, mode competition occurs.

Example 5.16
Argon Laser: The discharge of a cw argon laser exhibits gain for more than
15 different transitions. Figure 5.29c shows part of the energy level dia-
gram, illustrating the coupling of different laser transitions. Since the lines
at 514:5 nm, 488:0 nm, and 465:8 nm share the same lower level, suppres-
sion of the competing lines enhances the inversion and the output power of
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Figure 5.33 Level diagram and laser transitions in the CO2 molecule a and normal vibrations
(�1; �2; �3) (b)

the selected line. The mutual interaction of the various laser transitions has
therefore been studied extensively [332, 333] in order to optimize the ouput
power. Line selection is generally achieved with an internal Brewster prism
(Fig. 5.29 and Fig. 5.41b). The homogeneous width 
�h is mainly caused
by collision broadening due to electron–ion collisions and saturation broad-
ening. Additional broadening and shifts of the ion lines result from ion drifts
in the field of the discharge. At intracavity intensities of 350W=cm2, which
correspond to about 1W output power, appreciable saturation broadening in-
creases the homogeneous width, which may exceed 1000MHz. This explains
why the output at single-mode operation may reach 30% of the multimode
output on a single line [334].

Example 5.17
CO2 Laser: A section of the level diagram is illustrated in Fig. 5.33. The
vibrational levels (v1; vl2; v3) are characterized by the number of quanta in the
three normal vibrational modes. The upper index of the degenerate vibra-
tion v2 gives the quantum number of the corresponding vibrational angular
momentum l which occurs when two degenerate bending vibrations �2 where
the nuclei vibrate in orthogonal planes are superimposed [335]. Laser oscil-
lation is achieved on many rotational lines within two vibrational transitions
.v1; v

l
2 ; v3/ D 0001 ! 1000 and 0001 ! 0200 [336–338]. Without line se-

lection, generally only the band around 961 cm�1 (10:6 µm) appears because
these transitions exhibit larger gain. The laser oscillation depletes the pop-
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ulation of the 0001 vibrational level and suppresses laser oscillation on the
second transition, because of gain competition. With internal line selection
(Fig. 5.30), many more lines can successively be optimized by turning the
wavelength-selecting grating. The output power of each line is then higher
than that of the same line in multiline operation. Because of the small Doppler
width (66MHz), the free spectral range •� D 1

2
c=d� is already larger than

the width of the gain profile for d� < 200 cm. For such resonators, the
mirror separation d has to be adjusted to tune the resonator eigenfrequency
�R D 1

2
qc=d� (where q is an integer) to the center of the gain profile. If

the resonator parameters are properly chosen to suppress higher transverse
modes, the CO2 laser then oscillates on a single longitudinal mode.

5.4.2 Suppression of Transverse Modes

Let us first consider the selection of transverse modes. In Sect. 5.2.3 it was shown
that the higher transverse TEMmnq modes have radial field distributions that are less
and less concentrated along the resonator axis with increasing transverse order n
or m. This means that their diffraction losses are much higher than those of the
fundamental modes TEM00q (Fig. 5.12). The field distribution of the modes and
therefore their diffraction losses depend on the resonator parameters such as the
radii of curvature of the mirrors Ri , the mirror separation d , and, of course, the
Fresnel number NF (Sect. 5.2.1). Only those resonators that fulfill the stability
condition [291, 314]

0 < g1g2 < 1 or g1g2 D 0 with gi D .1 � d=Ri /

have finite spot sizes of the TEM00 field distributions inside the resonator
(Sect. 5.2.6). The choice of proper resonator parameters therefore establishes
the beam waist w of the fundamental TEM00q mode and the radial extension of the
higher-order TEMmn modes. This, in turn, determines the diffraction losses of the
modes.

In Fig. 5.34, the ratio �10=�00 of the diffraction losses for the TEM10 and the
TEM00 modes in a symmetric resonator with g1 D g2 D g is plotted for different
values of g as a function of the Fresnel number NF. From this diagram one can
obtain, for any given resonator, the diameter 2a of an aperture that suppresses the
TEM10 mode but still has sufficiently small losses for the fundamental TEM00 mode
with beam radius w. In gas lasers, the diameter 2a of the discharge tube generally
forms the limiting aperture. One has to choose the resonator parameters in such
a way that a ' 3w=2 because this assures that the fundamental mode nearly fills the
whole active medium, but still suffers less than 1% diffraction losses (Sect. 5.2.6).
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Figure 5.34 Ratio �10=�00

of diffraction losses for
the TEM10 and TEM00

modes in symmetric res-
onators as a function of the
Fresnel number NF for dif-
ferent resonator parameters
g D 1� d=R

Because the frequency separation of the transverse modes is small and the
TEM10q mode frequency is separated from the TEM00q frequency by less than the
homogeneous width of the gain profile, the fundamental mode can partly saturate
the inversion at the distance rm from the axis, where the TEM10q mode has its field
maximum. The resulting transverse mode competition (Fig. 5.35) reduces the gain
for the higher transverse modes and may suppress their oscillation even if the unsat-
urated gain exceeds the losses. The restriction for the maximum-allowed aperture
diameter is therefore less stringent. The resonator geometry of many commercial
lasers has already been designed in such a way that “single-transverse-mode” op-
eration is obtained. The laser can, however, still oscillate on several longitudinal
modes, and for true single-mode operation, the next step is to suppress all but one
of the longitudinal modes.

Figure 5.35 Transverse gain competition between the TEM00 and TEM10 modes

5.4.3 Selection of Single Longitudinal Modes

From the discussion in Sect. 5.3 it should have become clear that simultaneous os-
cillation on several longitudinal modes is possible when the inhomogeneous width

�g of the gain profile exceeds the mode spacing 1

2
c=d (Fig. 5.22). A simple way to
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Figure 5.36 Single longi-
tudinal mode operation by
reducing the cavity length d
to a value where the mode
spacing exceeds half of the
gain profile width above
threshold

achieve single-mode operation is therefore the reduction of the resonator length 2d
such that the width 
�g of the gain profile above threshold becomes smaller than
the free spectral range •� D 1

2
c=d [339].

If the resonator frequency can be tuned to the center of the gain profile, single-
mode operation can be achieved even with the double length 2d , because then the
two neighboring modes just fail to reach the threshold (Fig. 5.36). However, this
solution for the achievement of single-mode operation has several drawbacks. Since
the length L of the active medium cannot be larger than d (L � d ), the threshold
can only be reached for transitions with a high gain. The output power, which is
proportional to the active mode volume, is also small in most cases. For single-
mode lasers with higher output powers, other methods are therefore preferable. We
distinguish between external and internal mode selection.

When the output of a multimode laser passes through an external spectral fil-
ter, such as an interferometer or a spectrometer, a single mode can be selected.
For perfect selection, however, high suppression of the unwanted modes and high
transmission of the wanted mode by the filter are required. This technique of ex-
ternal selection has the further disadvantage that only part of the total laser output
power can be used. Internal mode selection with spectral filters inside the laser res-
onator completely suppresses the unwanted modes even when without the selecting
element their gain exceeds their losses. Furthermore, the output power of a single-
mode laser is generally higher than the power in this mode at multimode oscillation
because the total inversion V � 
N in the active volume V is no longer shared by
many modes, as is the case for multimode operation with gain competition.

In single-mode operation with internal mode selection, we can expect output
powers that reach the fraction
�hom=
�g of the multimode power, where
�hom is
the homogeneous width within the inhomogeneous gain profile. This width 
�hom

becomes even larger for single-mode operation because of power broadening by the
more intense mode. In an argon-ion laser, for example, one can obtain up to 30%
of the multimode power in a single mode with internal mode selection.

This is the reason why virtually all single-mode lasers use internal mode selec-
tion. We now discuss some experimental possibilities that allow stable single-mode
operation of lasers with internal mode selection. As pointed out in the previous
section, all methods for achieving single-mode operation are based on mode sup-



306 5 Lasers as Spectroscopic Light Sources

Figure 5.37 Single-mode operation by inserting a tilted etalon inside the laser resonator

Figure 5.38 Gain profile, resonator modes, and transmission peaks of the intracavity etalon
(dashed curve). Also shown are the threshold curves with and without etalon

pression by increasing the losses beyond the gain for all but the wanted mode.
A possible realization of this idea is illustrated in Fig. 5.37, which shows longi-
tudinal mode selection by a tilted plane-parallel etalon (thickness t and refractive
index n) inside the laser resonator [340]. In Sect. 4.2.7, it was shown that such an
etalon has transmission maxima at those wavelengths �m for which

m�m D 2nt cos � ; (5.76)

for all other wavelengths the reflection losses should dominate the gain.
If the free spectral range of the etalon,

•� D 2nt cos �

�
1

m
� 1

mC 1
�
D �m

mC 1 ; (5.77)

is larger than the spectral width j�1��2j of the gain profile above the threshold, only
a single mode can oscillate (Fig. 5.38). Since the wavelength � is also determined
by the resonator length d (2d D q�), the tilting angle � has to be adjusted so that

2nt cos �=m D 2d=q .where q is an integer/

) cos � D m

q
� d
n � t ; (5.78)
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which means that the transmission peak of the etalon has to coincide with an eigen-
resonance of the laser resonator.

Example 5.18
In the argon-ion laser the width of the gain profile is about 8GHz. With a free
spectral range of 
� D c=.2nt/ D 10GHz of the intracavity etalon, single-
mode operation can be achieved. This implies with n D 1:5 a thickness
t D 1 cm.

The finesse F � of the etalon has to be sufficiently high to ensure for the modes
adjacent to the selected mode losses that overcome their gain (Fig. 5.38). Fortu-
nately, in many cases their gain is already reduced by the oscillating mode due to
gain competition. This allows the less stringent demand that the losses of the etalon
must only exceed the saturated gain at a distance
� 
 
�hom away from the trans-
mission peak.

Often a Michelson interferometer coupled by a beam splitter BS to the laser
resonator is used for mode selection (Fig. 5.39). The free spectral range •� D
1
2
c=.L2CL3/ of this Fox–Smith cavity [341] again has to be broader than the width

of the gain profile. With a piezoelement PE, the mirror M3 can be translated by
a few microns to achieve resonance between the two coupled resonators. For the
resonance condition

.L1 C L2/=q D .L2 C L3/=m D �=2 .wherem and q are integers/ ; (5.79)

the partial wave M1 ! BS, reflected by BS, and the partial wave M3 ! BS,
transmitted through BS, interfere destructively. This means that for the resonance
condition (5.79) the reflection losses by BS have a minimum (in the ideal case they
are zero). For all other wavelengths, however, these losses are larger than the gain,
They do not reach threshold and single-mode oscillation is achieved [342].

In a more detailed discussion the absorption losses A2BS of the beam splitter BS
cannot be neglected, since they cause the maximum reflectanceR of the Fox–Smith
cavity to be less than 1. Similar to the derivation of (4.80), the reflectance of the
Fox–Smith selector, which acts as a wavelength-selecting laser reflector, can be
calculated to be [343]

R D T 2BSR2.1 � ABS/
2

1 �RBS
p
R2R3 C 4RBS

p
R2R3 sin2 	=2

: (5.80)

Figure 5.39b exhibits the reflectance Rmax for 	 D 2m� and the additional losses
of the laser resonator introduced by the Fox–Smith cavity as a function of the beam
splitter reflectance RBS. The finesse F � of the selecting device is also plotted for
R2 D R3 D 0:99 and ABS D 0:5%. The spectral width 
� of the reflectivity
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Figure 5.39 Mode selection with a Fox–Smith selector: a experimental setup; b maximum re-
flectivity and inverted finesse 1=F � of the Michelson-type reflector as a function of the reflectivity
RBS of the beam splitter for R2 D R3 D 0:99 and ABS D 0:5%

Figure 5.40 Some possible schemes of coupled resonators for longitudinal mode selection, with
their frequency-dependent losses. For comparison the eigenresonances of the long laser cavity
with a mode spacing 
� D c=2d are indicated

maxima is determined by


� D •�=F � D c=Œ2F �.L2 C L3/� : (5.81)

There are several other resonator-coupling schemes that can be utilized for mode se-
lection. Figure 5.40 compares some of them, together with their frequency-selective
losses [344].

In case of multiline lasers (e.g., argon or krypton lasers), line selection and mode
selection can be simultaneously achieved by a combination of prism and Michelson
interferometers. Figure 5.41 illustrates two possible realizations. The first replaces
mirror M2 in Fig. 5.39 by a Littrow prism reflector (Fig. 5.41a). In Fig. 5.41b, the
front surface of the prism acts as beam splitter, and the two coated back surfaces
replace the mirrors M2 and M3 in Fig. 5.39. The incident wave is split into the
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Figure 5.41 a Simulta-
neous line selection and
mode selection by a com-
bination of prism selector and
Michelson-type interferome-
ter; b compact arrangement

partial beams 4 and 2. After being reflected by M2, beam 2 is again split into 3
and 1. Destructive interference between beams 4 and 3, after reflection from M3,
occurs if the optical path difference 
s D 2n.S2 C S3/ D m�. If both beams
have equal amplitudes, no light is emitted in the direction of beam 4. This means
that all the light is reflected back into the incident direction and the device acts as
a wavelength-selective reflector, analogous to the Fox–Smith cavity [345]. Since
the wavelength � depends on the optical path length n.L2 C L3/, the prism has to
be temperature stabilized to achieve wavelength-stable, single-mode operation. The
whole prism is therefore embedded in a temperature-stabilized oven.

For lasers with a broad gain profile, one wavelength-selecting element alone may
not be sufficient to achieve single-mode operation, therefore one has to use a proper
combination of different dispersing elements. With preselectors, such as prisms,
gratings, or Lyot filters, the spectral range of the effective gain profile is narrowed
down to a width that is comparable to that of the Doppler width of fixed-frequency
gas lasers. Figure 5.42 represents a possible scheme, that has been realized in prac-
tice. Two prisms are used as preselector to narrow the spectral width of a cw dye
laser [346]; two etalons with different thicknesses t1 and t2 are used to achieve sta-
ble single-mode operation. Figure 5.42b illustrates the mode selection, depicting
schematically the gain profile narrowed by the prisms and the spectral transmission
curves of the two etalons. In the case of the dye laser with its homogeneous gain
profile, not every resonator mode can oscillate, but only those that draw gain from
the spatial hole-burning effect (Sect. 5.3.3). The “suppressed modes” at the bottom
of Fig. 5.42 represent these spatial hole-burning modes that would simultaneously
oscillate without the etalons. The transmission maxima of the two etalons have, of
course, to be at the same wavelength �L. This can be achieved by choosing the
correct tilting angles �1 and �2 such that

nt1 cos �1 D m1�L ; and nt2 cos �2 D m2�L : (5.82)

Example 5.19
The two prisms narrow the spectral width of the gain profile above threshold
to about 100GHz. If the free spectral range of the thin etalon 1 is 100GHz
(¶ 
� � 1 nm at � D 600 nm) and that of the thick etalon 2 is 10GHz,
single-mode operation of the cw dye laser can be achieved. This demands
t1 D 0:1 cm and t2 D 1 cm for n D 1:5.
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Figure 5.42 Mode selection in the case of broad gain profiles. The prisms narrow the net gain
profile and two etalons enforce single-mode operation: a experimental realization for a jet stream
cw dye laser; b schematic diagram of gain profile and transmission curves of the two etalons

Commercial cw dye laser systems (Sect. 5.5) generally use a different realiza-
tion of single-mode operation (Fig. 5.43). The prisms are replaced by a birefringent
filter, which is based on the combination of three Lyot filters (Sect. 4.2.11), and
the thick etalon is substituted by a Fabry–Perot interferometer with the thickness t
controllable by piezocylinders (Fig. 5.44). This is done because the walk-off losses
of an etalon increase according to (4.64a), (4.64b) with the square of the tilting
angle ˛ and the etalon thickness t . They may become intolerably high if a large,
uninterrupted tuning range shall be achieved by tilting of the etalon. Therefore
the long intracavity FPI (Fig. 5.43) is kept at a fixed, small tilting angle while its
transmission peak is tuned by changing the separation t between the reflecting sur-
faces.

In order to minimize the air gap between the reflecting surfaces of the FPI, the
prism construction of Fig. 5.44b is often used, in which the small air gap is tra-
versed by the laser beam at Brewster’s angle to avoid reflection losses [347]. This
design minimizes the influence of air pressure variations on the transmission peak
wavelength �L.
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Figure 5.43 Mode selection in the cw dye laser with a folded cavity using a birefringent filter,
a tilted etalon, and a prism FPI (Coherent model 599). The folding angle # is chosen for optimum
compensation of astigmatism introduced by the dye jet

Figure 5.44 Fabry–Perot
interferometer tuned
by a piezocylinder:
a two plane-parallel plates
with inner reflecting surfaces;
b two Brewster prisms with
the outer coated surfaces
forming the FPI reflecting
planes

Figure 5.45 depicts the experimental arrangement for narrow-band operation of
an excimer laser-pumped dye laser; the beam is expanded to fill the whole grating.
Because of the higher spectral resolution of the grating (compared with a prism)

Figure 5.45 Short Hänsch-type dye laser cavity with Littrow grating and mode selection either
with an internal etalon or an external FPI as “mode filter” [348]
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and the wider mode spacing from the short cavity, a single etalon inside or outside
the laser resonator may be sufficient to select a single mode [348].

There are many more experimental possibilities for achieving singlemode oper-
ation. For details, the reader is referred to the extensive literature on this subject,
which can be found, for instance, in the excellent reviews on mode selection and
single-mode lasers by Smith [344] or Goldsborough [349] and in [350, 351].

5.4.4 Intensity Stabilization

The intensity I.t/ of a cw laser is not completely constant, but shows periodic and
random fluctuations and also, in general, long-term drifts. The reasons for these
fluctuations are manifold and may, for example, be due to an insufficiently filtered
power supply, which results in a ripple on the discharge current of the gas laser and
a corresponding intensity modulation. Other noise sources are instabilities of the
gas discharge, dust particles diffusing through the laser beam inside the resonator,
and vibrations of the resonator mirrors. In multimode lasers, internal effects, such
as mode competition, also contribute to noise. In cw dye lasers, density fluctuations
in the dye jet stream and air bubbles are the main cause of intensity fluctuations.

Long-term drifts of the laser intensity may be caused by slow temperature or
pressure changes in the gas discharge, by thermal detuning of the resonator, or by
increasing degradation of the optical quality of mirrors, windows, and other optical
components in the resonator. All these effects give rise to a noise level that is well
above the theoretical lower limit set by the photon noise. Since these intensity
fluctuations lower the signal-to-noise ratio, they may become very troublesome in
many spectroscopic applications, therefore one should consider steps that reduce
these fluctuations by stabilizing the laser intensity.

Of the various possible methods, we shall discuss two that are often used for
intensity stabilization. They are schematically depicted in Fig. 5.46. In the first
method, a small fraction of the output power is split by the beam splitter BS to a de-
tector (Fig. 5.46a). The detector output VD is compared with a reference voltage VR

and the difference 
V D VD � VR is amplified and fed to the power supply of the
laser, where it controls the discharge current. The servo loop is effective in a range
where the laser intensity increases with increasing current.

The upper frequency limit of this stabilization loop is determined by the capaci-
tances and inductances in the power supply and by the time lag between the current
increase and the resulting increase of the laser intensity. The lower limit for this time
delay is given by the time required by the gas discharge to reach a new equilibrium
after the current has been changed. It is therefore not possible with this method to
stabilize the system against fluctuations of the gas discharge. For most applications,
however, this stabilization technique is sufficient; it provides an intensity stability
where the fluctuations are less than 0:5%.

To compensate fast intensity fluctuations, another technique, illustrated in
Fig. 5.46b, is more suitable. The output from the laser is sent through a Pock-
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Figure 5.46 Intensity stabilization of lasers a by controlling the power supply, and b by control-
ling the transmission of a Pockels cell

els cell, which consists of an optically anisotropic crystal placed between two
linear polarizers. An external voltage applied to the electrodes of the crystal causes
optical birefringence, which rotates the polarization plane of the transmitted light
and therefore changes the transmittance through the second polarizer. If part of the
transmitted light is detected, the amplified detector signal can be used to control the
voltage U at the Pockels cell. Any change of the transmitted intensity can be com-
pensated by an opposite transmission change of the Pockels cell. This stabilization
control works up to frequencies in the megahertz range if the feedback-control
electronics are sufficiently fast. Its disadvantage is an intensity loss of 20% to 50%
because one has to bias the Pockels cell to work on the slope of the transmission
curve (Fig. 5.46b).

Figure 5.47 sketches how the electronic system of a feedback control can be
designed to optimize the response over the whole frequency spectrum of the input
signals. In principle, three operational amplifiers with different frequency responses
are put in parallel. The first is a common proportional amplifier, with an upper
frequency determined by the electronic time constant of the amplifier. The second
is an integral amplifier with the output

Uout D 1

RC

TZ

0

Uin.t/ dt :

This amplifier is necessary to bring the signal, which is proportional to the devi-
ation of the intensity from its nominal value, really back to zero. This cannot be
performed with a proportional amplifier. The third amplifier is a differentiating
device that takes care of fast peaks in the perturbations. All three functions can
be combined in a system called PID control [352, 353], which is widely used for
intensity stabilization and wavelength stabilization of lasers.

For spectroscopic applications of dye lasers, where the dye laser has to be tuned
through a large spectral range, the intensity change caused by the decreasing gain
at both ends of the gain profile may be inconvenient. An elegant way to avoid this
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Figure 5.47 Schematic diagram of PID feedback control: a noninverting proportional amplifier;
b integrator; c differentiating amplifier; d complete PID circuit that combines the functions (a–c)

Figure 5.48 Intensity stabilization of a cw dye laser by control of the argon laser power: a ex-
perimental arrangement; b stabilized and unstabilized dye laser output P.�/ when the dye laser is
tuned across its spectral gain profile

change of IL.�/ with � is to stabilize the dye laser output by controlling the argon
laser power (Fig. 5.48). Since the servo control must not be too fast, the stabilization
scheme of Fig. 5.48a can be employed. Figure 5.48b demonstrates how effectively
this method works if one compares the stabilized with the unstabilized intensity
profile I.�/ of the dye laser.

5.4.5 Wavelength Stabilization

For many applications in high-resolution laser spectroscopy, it is essential that
the laser wavelength stays as stable as possible at a preselected value �0. This



5.4 Experimental Realization of Single-Mode Lasers 315

means that the fluctuations 
� around �0 should be smaller than the molecular
linewidths that are to be resolved. For such experiments only single-mode lasers
can, in general, be used, because in most multimode lasers the momentary wave-
lengths fluctuate and only the time-averaged envelope of the spectral output profile
is defined, as has been discussed in the previous sections. This stability of the wave-
length is important both for fixed-wavelength lasers, where the laser wavelength has
to be kept at a time-independent value �0, as well as for tunable lasers, where the
fluctuations
� D j�L��R.t/j around a controlled tunable wavelength �R.t/ have
to be smaller than the resolvable spectral interval.

In this section we discuss some methods of wavelength stabilization with their
advantages and drawbacks. Since the laser frequency � D c=� is directly related to
the wavelength, one often speaks about frequency stabilization, although for most
methods in the visible spectral region, it is not the frequency but the wavelength that
is directly measured and compared with a reference standard. There are, however,
new stabilization methods that rely directly on absolute frequency measurements
(Vol. 2, Sect. 9.7).

In Sect. 5.3 we saw that the wavelength � or the frequency � of a longitudinal
mode in the active resonator is determined by the mirror separation d and the refrac-
tive indices n2 of the active medium with length L and n1 outside the amplifying
region. The resonance condition is

q� D 2n1.d � L/C 2n2L : (5.83)

For simplicity, we shall assume that the active medium fills the whole region be-
tween the mirrors. Thus (5.83) reduces, with L D d and n2 D n1 D n, to

q� D 2nd ; or � D qc=.2nd/ : (5.84)

Any fluctuation of n or d causes a corresponding change of � and �. We obtain
from (5.84)


�

�
D 
d

d
C 
n

n
; or � 
�

�
D 
d

d
C 
n

n
: (5.85)

Example 5.20
To illustrate the demands of frequency stabilization, let us assume that we
want to keep the frequency � D 6� 1014 Hz of an argon laser constant within
1MHz. This means a relative stability of 
�=� D 1:6 � 10�9 and implies
that the mirror separation of d D 1m has to be kept constant within 1:6 nm!

From this example it is evident that the requirements for such stabilization are by
no means trivial. Before we discuss possible experimental solutions, let us consider
the causes of fluctuations or drifts in the resonator length d or the refractive index n.
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Table 5.2 Linear thermal expansion coefficient of some relevant materials at room temperature
T D 20 ıC

Material ˛ [10�6 K�1] Material ˛ [10�6 K�1]

Aluminum 23 BeO 6

Brass 19 Invar 1.2

Steel 11–15 Soda-lime glass 5–8

Titanium 8.6 Pyrex glass 3

Tungsten 4.5 Fused quartz 0:4–0:5

Al2O3 5 Cerodur < 0:1

If we could reduce or even eliminate these causes, we would already be well on the
way to achieving a stable laser frequency. We shall distinguish between long-term
drifts of d and n, which are mainly caused by temperature drifts or slow pressure
changes, and short-term fluctuations caused, for example, by acoustic vibrations
of mirrors, by acoustic pressure waves that modulate the refractive index, or by
fluctuations of the discharge in gas lasers or of the jet flow in dye lasers.

To illustrate the influence of long-term drifts, let us make the following estimate.
If ˛ is the thermal expansion coefficient of the material (e.g., quartz or invar rods),
which defines the mirror separation d , the relative change 
d=d for a possible
temperature change 
T is, under the assumption of linear thermal expansion,


d=d D ˛
T : (5.86)

Table 5.2 compiles the thermal expansion coefficients for some commonly used
materials.

Example 5.21
For invar, with ˛ D 1 � 10�6 K�1, we obtain from (5.86) for 
T D 0:1K
a relative distance change of 
d=d D 10�7, which gives for Example 5.20
a frequency drift of 60MHz.

If the laser wave inside the cavity travels a path length d � L through air at
atmospheric pressure, any change
p of the air pressure results in the change


s D .d � L/.n � 1/
p=p ; with 
p=p D 
n=.n� 1/ ; (5.87)

of the optical path length between the resonator mirrors.
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Example 5.22
With n D 1:00027 and d � L D 0:2d , which is typical for gas lasers, we
obtain from (5.85) and (5.87) for pressure changes of 
p D 3mbar (which
can readily occur during one hour, particularly in air-conditioned rooms)


�=� D �
�=� � .d � L/
n=.nd/ 
 1:5 � 10�7 :

For our example above, this means a frequency change of 
� 
 90MHz. In
cw dye lasers, the length L of the active medium is negligible compared with
the resonator length d , therefore we can take d �L ' d . This implies for the
same pressure change a frequency drift that is five times larger than estimated
above.

To keep these long-term drifts as small as possible, one has to choose distance
holders for the resonator mirrors with a minimum thermal expansion coefficient ˛.
A good choice is, for example, the recently developed cerodur–quartz composition
with a temperature-dependent ˛.T / that can be made zero at room temperature
[354]. Often massive granite blocks are used as support for the optical components;
these have a large heat capacity with a time constant of several hours to smoothen
temperature fluctuations. To minimize pressure changes, the whole resonator must
be enclosed by a pressure-tight container, or the ratio .d �L/=d must be chosen as
small as possible. However, we shall see that such long-term drifts can be mostly
compensated by electronic servo control if the laser wavelength is locked to a con-
stant reference wavelength standard.

A more serious problem arises from the short-term fluctuations, since these may
have a broad frequency spectrum, depending on their causes, and the frequency
response of the electronic stabilization control must be adapted to this spectrum.
The main contribution comes from acoustical vibrations of the resonator mirrors.
The whole setup of a wavelengthstabilized laser should therefore be vibrationally
isolated as much as possible. There are commercial optical tables with pneumatic
damping, in their more sophisticated form even electronically controlled, which
guarantee a stable setup for frequency-stabilized lasers. A homemade setup is con-
siderably cheaper: Fig. 5.49 illustrates a possible table mount for the laser system
as employed in our laboratory. The optical components are mounted on a heavy
granite plate, which rests in a flat container filled with sand to damp the eigenres-
onances of the granite block. Styrofoam blocks and acoustic damping elements
prevent room vibrations from being transferred to the system. The optical system
is protected against direct sound waves through the air, air turbulence, and dust by
a dust-free solid cover resting on the granite plate. A filtered laminar air flow from
a flow box above the laser table avoids dust and air turbulence and increases the
passive stability of the laser system considerably.
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Figure 5.49 Experimental
realization of an acous-
tically isolated table for
a wavelength-stabilized laser
system

The high-frequency part of the noise spectrum is mainly caused by fast fluctu-
ations of the refractive index in the discharge region of gas lasers or in the liquid
jet of cw dye lasers. These perturbations can only be reduced partly by choosing
optimum discharge conditions in gas lasers. In jet-stream dye lasers, density fluctu-
ations in the free jet, caused by small air bubbles or by pressure fluctuations of the
jet pump and by surface waves along the jet surfaces, are the main causes of fast
laser frequency fluctuations. Careful fabrication of the jet nozzle and filtering of the
dye solution are essential to minimize these fluctuations.

All the perturbations discussed above cause fluctuations of the optical path length
inside the resonator that are typically in the nanometer range. In order to keep the
laser wavelength stable, these fluctuations must be compensated by corresponding
changes of the resonator length d . For such controlled and fast length changes in
the nanometer range, piezoceramic elements are mainly used [355, 356]. They con-
sist of a piezoelectric material whose length in an external electric field changes
proportionally to the field strength. Either cylindrical plates are used, where the end
faces are covered by silver coatings that provide the electrodes or a hollow cylinder
is used, where the coatings cover the inner and outer wall surfaces (Fig. 5.50a). Typ-
ical parameters of such piezoelements are a few nanometers of length change per
volt. With stacks of many thin piezodisks, one reaches length changes of 100 nm=V.
When a resonator mirror is mounted on such a piezoelement (Fig. 5.50b,c), the res-
onator length can be controlled within a few microns by the voltage applied to the
electrodes of the piezoelement.

The frequency response of this length control is limited by the inertial mass of the
moving system consisting of the mirror and the piezoelement, and by the eigenres-
onances of this system. Using small mirror sizes and carefully selected piezos, one
may reach the 100 kHz range [357]. For the compensation of faster fluctuations, an
optical anisotropic crystal, such as potassium-dihydrogen-phosphate (KDP), can be
utilized inside the laser resonator. The optical axis of this crystal must be oriented
in such a way that a voltage applied to the crystal electrodes changes its refractive
index along the resonator axis without turning the plane of polarization. This allows
the optical path length nd , and therefore the laser wavelength, to be controlled with
a frequency response up into the megahertz range.

The wavelength stabilization system consists essentially of three elements
(Fig. 5.51):
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Figure 5.50 a Piezocylinders and their (exaggerated) change of length with applied voltage;
b laser mirror epoxide on a piezocylinder; c mirror plus piezomount on a single-mode tunable
argon laser

Figure 5.51 Schematic of
laser wavelength stabilization

a) The wavelength reference standard with which the laser wavelength is com-
pared. One may, for example, use the wavelength �R at the maximum or at
the slope of the transmission peak of a Fabry–Perot interferometer that is main-
tained in a controlled environment (temperature and pressure stabilization). Al-
ternately, the wavelength of an atomic or molecular transition may serve as
reference. Sometimes another stabilized laser is used as a standard and the laser
wavelength is locked to this standard wavelength.

b) The controlled system, which is in this case the resonator length nd defining the
laser wavelength �L.

c) The electronic control system with the servo loop, which measures the deviation

� D �L��R of the laser wavelength �L from the reference value �R and which
tries to bring 
� to zero as quickly as possible (Fig. 5.47).

A schematic diagram of a commonly used stabilization system is shown in
Fig. 5.52. A few percent of the laser output are sent from the two beam split-
ters BS1 and BS2 into two interferometers. The first FPI1 is a scanning confocal
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Figure 5.52 Laser wavelength stabilization onto the transmission peak of a stable Fabry–Perot
interferometer as reference

Figure 5.53 Wavelength
stabilization onto the slope
of the transmission T .�/ of
a stable reference FPI

FPI and serves as spectrum analyzer for monitoring the mode spectrum of the laser.
The second interferometer FPI2 is the wavelength reference and is therefore placed
in a pressure-tight and temperature-controlled box to keep the optical path nd

between the interferometer mirrors and with it the wavelength �R D 2nd=m of the
transmission peak as stable as possible (Sect. 4.2). One of the mirrors is mounted
on a piezoelement. If a small ac voltage with the frequency f is fed to the piezo, the
transmission peak of FPI2 is periodically shifted around the center wavelength �0,
which we take as the required reference wavelength �R. If the laser wavelength �L

is within the transmission range �1 to �2 in Fig. 5.52, the photodiode PD2 behind
FPI2 delivers a dc signal that is modulated at the frequency f . The modulation
amplitude depends on the slope of the transmission curve dIT=d� of FPI2 and the
phase is determined by the sign of �L � �0. Whenever the laser wavelength �L

deviates from the reference wavelength �R, the photodiode delivers an ac amplitude
that increases as the difference �L � �R increases, as long as �L stays within the
transmision range between �1 and �2. This signal is fed to a lock-in amplifier,
where it is rectified, passes a PID control (Fig. 5.47), and a high-voltage amplifier
(HVA). The output of the HVA is connected with the piezoelement of the laser mir-
ror, which moves the resonator mirror M1 until the laser wavelength �L is brought
back to the reference value �R.



5.4 Experimental Realization of Single-Mode Lasers 321

Instead of using the maximum �0 of the transmission peak of IT.�/ as reference
wavelength, one may also choose the wavelength �t at the turning point of IT.�/

where the slope dIT.�/=d� has its maximum (Fig. 5.53). This has the advantage
that a modulation of the FPI transmission curve is not necessary and the lock-in
amplifier can be dispensed with. The cw laser intensity IT.�/ transmitted through
FPI2 is compared with a reference intensity IR split by BS2 from the same partial
beam. The output signals S1 and S2 from the two photodiodes D1 and D2 are fed
into a difference amplifier, which is adjusted so that its output voltage becomes
zero for �L D �t. If the laser wavelength �L deviates from �R D �t, S1 becomes
smaller or larger, depending on the sign of �L � �R; the output of the difference
amplifier is, for small differences �� �R, proportional to the deviation. The output
signal again passes a PID control and a high-voltage amplifier, and is fed into the
piezoelement of the resonator mirror. The advantages of this difference method are
the larger bandwidth of the difference amplifier (compared with a lock-in amplifier),
and the simpler and less expensive composition of the whole electronic control
system. Furthermore, the laser frequency does not need to be modulated which
represents a big advantage for many spectroscopic applications [358]. Its drawback
lies in the fact that different dc voltage drifts in the two branches of the difference
amplifier result in a dc output, which shifts the zero adjustment and, with it, the
reference wavelength �R. Such dc drifts are much more critical in dc amplifiers
than in the ac-coupled devices used in the first method.

The stability of the laser wavelength can, of course, never exceed that of the
reference wavelength. Generally it is worse because the control system is not ideal.
Deviations 
�.t/ D �L.t/ � �R cannot be compensated immediately because the
system has a finite frequency response and the inherent time constants always cause
a phase lag between deviation and response.

Most methods for wavelength stabilization use a stable FPI as reference standard
[359]. This has the advantage that the reference wavelength �0 or �t can be tuned by
tuning the reference FPI. This means that the laser can be stabilized onto any desired
wavelength within its gain profile. Because the signals from the photodiodes D1 and
D2 in Fig. 5.53 have a sufficiently large amplitude, the signal-to-noise ratio is good,
therefore the method is suitable for correcting short-term fluctuations of the laser
wavelength.

For long-term stabilization, however, stabilization onto an external FPI has its
drawbacks. In spite of temperature stabilization of the reference FPI, small drifts of
the transmission peak cannot be eliminated completely. With a thermal expansion
coefficient ˛ D 10�6 of the distance holder for the FPI mirrors, even a temperature
drift of 0:01 ıC causes, according to (5.86), a relative frequency drift of 10�8, which
gives 6MHz for a laser frequency of �L D 6 � 1014 Hz. For this reason, an atomic
or molecular laser transition is more suitable as a long-term frequency standard.
A good reference wavelength should be reproducible and essentially independent
of external perturbations, such as electric or magnetic fields and temperature or
pressure changes. Therefore, transitions in atoms or molecules without permanent
dipole moments, such as CH4 or noble gas atoms, are best suited to serve as refer-
ence wavelength standards (Vol. 2, Chap. 9).
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Figure 5.54 Long-term stabilization of the laser wavelength locked to a reference FPI that in turn
is locked by a digital servo loop to a molecular transition

The accuracy with which the laser wavelength can be stabilized onto the center
of such a transition depends on the linewidth of the transition and on the attainable
signal-to-noise ratio of the stabilization signal. Doppler-free line profiles are there-
fore preferable. They can be obtained by some of the methods discussed in Vol. 2,
Chaps. 2 and 4. In the case of small line intensities, however, the signal-to-noise
ratio may be not good enough to achieve satisfactory stabilization. It is therefore
advantageous to continue to lock the laser to the reference FPI, but to lock the FPI
itself to the molecular line. In this double servo control system, the short-term fluc-
tuations of �L are compensated by the fast servo loop with the FPI as reference,
while the slow drifts of the FPI are stabilized by being locked to the molecular line.

Figure 5.54 illustrates a possible arrangement. The laser beam is crossed perpen-
dicularly with a collimated molecular beam. The Doppler width of the absorption
line is reduced by a factor depending on the collimation ratio (Vol. 2, Sect. 4.1). The
intensity IF.�L/ of the laser-excited fluorescence serves as a monitor for the devia-
tion �L � �c from the line center �c. The output signal of the fluorescence detector
after amplification can be fed directly to the piezoelement of the laser resonator or
to the reference FPI.

To decide whether �t drifts to lower or to higher wavelengths, one must either
modulate the laser frequency or use a digital servo control, which shifts the laser
frequency in small steps. A comparator compares whether the intensity has in-
creased or decreased by the last step and activates accordingly a switch determining
the direction of the next step. Since the drift of the reference FPI is slow, the sec-
ond servo control can also be slow, and the fluorescence intensity can be integrated.
This allows the laser to be stabilized for a whole day, even onto faint molecular
lines where the detected fluorescence intensity is less than 100 photons per second
[360].

Recently, cryogenic optical sapphire resonators with a very high finesse operat-
ing at T D 4K have proven to provide very stable reference standards [361]. They
reach a relative frequency stability of 3 � 10�15 at an integration time of 20 s.

Since the accuracy of wavelength stabilization increases with decreasing molec-
ular linewidth, spectroscopists have looked for particularly narrow lines that could
be used for extremely well-stabilized lasers. It is very common to stabilize onto
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a hyperfine component of a visible transition in the I2 molecule using Doppler-
free saturated absorption inside [362] or outside [363] the laser resonator (Vol. 2,
Sect. 2.3). The stabilization record was held for a long time by a HeNe laser at
� D 3:39 µm that was stabilized onto a Doppler-free infrared transition in CH4

[364, 365].
Using the dispersion profiles of Doppler-free molecular lines in polarization

spectroscopy (Vol. 2, Sect. 2.4), it is possible to stabilize a laser to the line cen-
ter without frequency modulation. An interesting alternative for stabilizing a dye
laser on atomic or molecular transitions is based on Doppler-free two-photon tran-
sitions (Vol. 2, Sect. 2.5) [368]. This method has the additional advantage that the
lifetime of the upper state can be very long, and the natural linewidth may become
extremely small. The narrow 1s � 2s two-photon transition in the hydrogen atom
with a natural linewidth of 1:3Hz provides the best known optical frequency refer-
ence to date [366].

Often the narrow Lamb dip at the center of the gain profile of a gas laser transi-
tion is utilized (Vol. 2, Sect. 2.2) to stabilize the laser frequency [369, 370]. How-
ever, due to collisional line shifts the frequency �0 of the line center slightly depends
on the pressure in the laser tube and may therefore change in time when the pressure
is changing (for instance, by He diffusion out of a HeNe laser tube).

By placing a thin Cs vapour cell inside the resonator of an external cavity diode
laser, the laser can be readily stabilized onto the Lamb dip of the Cs resonance
line [367].

A simple technique for wavelength stabilization uses the orthogonal polarization
of two adjacent axial modes in a HeNe laser [371]. The two-mode output is split by
a polarization beam splitter BS1 in the two orthogonally polarized modes, which
are monitored by the photodetectors PD1 and PD2 (Fig. 5.55). The difference am-
plification delivers a signal that is used to heat the laser tube, which expands until
the two modes have equal intensities (Fig. 5.55a). They are then kept at the fre-
quencies �˙ D �0˙
�=2 D �0˙ c=.4nd/. Only one of the modes is transmitted
to the experiment.

Very high frequency stability can be achieved if the laser frequency is stabilized
to the transition frequency of a single ion that is held in an ion trap under vacuum
(see Vol. 2, Sect. 9.2) [382].

So far we have only considered the stability of the laser resonator itself. In the
previous section we saw that wavelength-selecting elements inside the resonator are
necessary for single-mode operation to be achieved, and that their stability and the
influence of their thermal drifts on the laser wavelength must also be considered.
We illustrate this with the example of single-mode selection by a tilted intracavity
etalon. If the transmission peak of the etalon is shifted by more than one-half of
the cavity mode spacing, the total gain becomes more favorable for the next cavity
mode, and the laser wavelength will jump to the next mode. This implies that the
optical pathlength of the etalon nt must be kept stable so that the peak transmission
drifts by less than c=4d , which is about 50MHz for an argon laser. One can use
either an air-spaced etalon with distance holders with very small thermal expansion
or a solid etalon in a temperature-stabilized oven. The air-spaced etalon is simpler
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Figure 5.55 Schematic diagram of a polarization-stabilized HeNe laser: a symmetric cavity modes
�1 and �2 within the gain profile; b experimental setup

but has the drawback that changes of the air pressure influence the transmission
peak wavelength.

The actual stability obtained for a single-mode laser depends on the laser system,
on the quality of the electronic servo loop, and on the design of the resonator and
mirror mounts. With moderate efforts, a frequency stability of about 1MHz can be
achieved, while extreme precautions and sophisticated equipment allow a stability
of better than 1Hz to be achieved for some laser types [372].

A statement about the stability of the laser frequency depends on the averaging
time and on the kind of perturbations. For short time periods the frequency stability
is mainly determined by random fluctuations. The best way to describe short-term
frequency fluctuations is the statistical root Allan variance. For longer time peri-
ods (
t � 1 s), the frequency stability is limited by predictable and measurable
fluctuations, such as thermal drifts and aging of materials. The stability against
short-term fluctuations, of course, becomes better if the averaging time is increased,
while long-term drifts increase with the sampling time. Figure 5.56 illustrates the
stability of a single-mode argon laser, stabilized with the arrangement of Fig. 5.52.
With more expenditure, a stability of better than 3 kHz has been achieved for this
laser [373], with novel techniques even better than 1Hz (Vol. 2, Sect. 9.7).

The residual frequency fluctuations of a stabilized laser can be represented in an
Allan plot. The Allan variance [372, 374, 376]


 D 1

�

 
NX

iD1

˝
.
�i �
�i�1/2

˛

2.N � 1/

!1=2
(5.88)

is comparable to the relative standard deviation. It is determined by measuring
at N times ti D t0 C i
t (i D 0; 1; 2; 3 : : :) the relative frequency difference

�i=�R between two lasers stabilized onto the same reference frequency �R aver-
aged over equal time intervals 
t . Figure 5.57 illustrates the Allan variance for
different frequency reference devices: the He-Ne laser at � D 3:39 µm, locked to
a vibration–rotation transition of the CH4 molecule, the hydrogen maser at � D
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Figure 5.56 Frequency stability of a single-mode argon laser: a unstabilized; b stabilized with
the arrangement of Fig. 5.52; c additional long-term stabilization onto a molecular transition. Note
the different ordinate scales!

Figure 5.57 Allan variance obtained for different frequency-reference devices [374]

21 cm, two cesium clocks operated at the PTB (Physikalisch-Technische Bunde-
sanstalt) in Braunschweig, Germany, the rubidium atomic clock, the clock based on
the rf transition of the HgC-ion in a trap, and the pulsed hydrogen maser.

In Fig. 5.58 the Allan plot for the frequency stabilities of four Nd:YAG lasers
stabilized onto a transition of the I2 molecule are composed. The different lasers,
called Y1 : : :Y4, use different laser powers and beam diameters, which cause dif-
ferent saturations of the iodine transition.

The best frequency stability in the optical range can be achieved with the opti-
cal frequency-comb technique, which will be discussed in Vol. 2, Sect. 9.7 [377].
The relative frequency fluctuations go down to 
�=�0 < 10�15, which implies an
absolute stability of about 0:5Hz.
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Figure 5.58 Square-root Allan variance of the beat notes between two lasers Y2 �Y3 (�) Y2�Y4

(I) and Y2 � Y1 (�) [375]

Such extremely stable lasers are of great importance in metrology since they can
provide high-quality wavelength or frequency standards with an accuracy approach-
ing or even surpassing that of present-day standards [378]. For most applications
in high-resolution laser spectroscopy, a frequency stability of 100 kHz to 1MHz
is sufficiently good because most spectral linewidths exceed that value by several
orders of magnitude.

For a more complete survey of wavelength stabilization, the reader is referred to
the reviews by Baird and Hanes [379], Ikegami [380], Hall et al. [381], Bergquist
et al. [383] and Ohtsu [384] and the SPIE volume [385].

5.5 Controlled Wavelength Tuning of Single-Mode Lasers

Although fixed-wavelength lasers have proved their importance for many spectro-
scopic applications (Vol. 2, Sect. 1.7 and Vol. 2, Chaps. 3, 5, and 8), it was the
development of continuously tunable lasers that really revolutionized the whole
field of spectroscopy. This is demonstrated by the avalanche of publications on tun-
able lasers and their applications (e.g., [386]). We shall therefore treat in this section
some basic techniques for controlled tuning of single-mode lasers, while Sect. 5.7
gives a survey on tunable coherent sources developed in various spectral regions.

5.5.1 Continuous Tuning Techniques

Since the laser wavelength �L of a single-mode laser is determined by the optical
path length nd between the resonator mirrors,

q� D 2nd ;
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either the mirror separation d or the refractive index n can be continuously varied to
obtain a corresponding tuning of �L. This can be achieved, for example, by a linear
voltage ramp U D U0 C at applied to the piezoelement on which the resonator
mirror is mounted, or by a continuous pressure variation in a tank containing the
resonator or parts of it. However, as has been discussed in Sect. 5.4.3, most lasers
need additional wavelength-selecting elements inside the laser resonator to ensure
singlemode operation. When the resonator length is varied, the frequency � of the
oscillating mode is tuned away from the transmission maximum of these elements
(Fig. 5.38). During this tuning the neighboring resonator mode (which is not yet
oscillating) approaches this transmission maximum and its losses may now become
smaller than those of the oscillating mode. As soon as this mode reaches the thresh-
old, it will start to oscillate and will suppress the former mode because of mode
competition (Sect. 5.3). This means that the single-mode laser will jump back from
the selected resonator mode to that which is next to the transmission peak of the
wavelength-selecting element. Therefore the continuous tuning range is restricted
to about half of the free spectral range •� D 1

2
c=t of the intracavity selecting inter-

ferometer with thickness t , if no additional measures are taken. Similar but smaller
mode hops 
� D c=2d occur when the wavelength-selecting elements are contin-
uously tuned but the resonator length d is kept constant.

Such discontinuous tuning of the laser wavelength will be sufficient if the mode
hops •� D 1

2
c=d are small compared with the spectral linewidths under investiga-

tion. As illustrated by Fig. 5.59a, which shows part of the neon spectrum excited in
a HeNe gas discharge with a discontinuously tuned single-mode dye laser, the mode
hops are barely seen and the spectral resolution is limited by the Doppler width of
the neon lines. In sub-Doppler spectroscopy, however, the mode jumps appear as
steps in the line profiles, as is depicted in Fig. 5.59b, where a single-mode argon
laser is tuned with mode hops through some absorption lines of Na2 molecules in
a slightly collimated molecular beam where the Doppler width is reduced to about
200MHz.

In order to enlarge the tuning range and to achieve truly continuous tuning, the
transmission maxima of the wavelength selectors have to be tuned synchronously
with the tuning of the resonator length. When a tilted etalon with the thickness t
and refractive index n is employed, the transmission maximum �m that, according
to (5.76), is given by

m�m D 2nt cos � ;

can be continuously tuned by changing the tilting angle � . In all practical cases,
� is very small, therefore we can use the approximation cos � � 1 � 1

2
�2. The

wavelength shift 
� D �0 � � is


� D 2nt

m
.1 � cos �/ � 1

2
�0�

2 ; �0 D �.� D 0/ : (5.89)

Equation (5.89) reveals that the wavelength shift 
� is proportional to �2 but is
independent of the thickness t . Two etalons with different thicknesses t1 and t2 can
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Figure 5.59 Discontinuous tuning of lasers: a part of the neon spectrum excited by a single-mode
dye laser in a gas discharge with Doppler-limited resolution, which conceals the cavity mode hops
of the laser; b excitation of Na2 lines in a weakly collimated beam by a single-mode argon laser.
In both cases the intracavity etalon was continuously tilted but the cavity length was kept constant

be mounted on the same tilting device, which may simply be a lever that is tilted
by a micrometer screw driven by a small motor gearbox. The motor simultane-
ously drives a potentiometer, which provides a voltage proprotional to the tilting
angle � . This voltage is electronically squared, amplified, and fed into the piezoele-
ment of the resonator mirror. With properly adjusted amplification, one can achieve
an exact sychronization of the resonator wavelength shift
�L D �L
d=d with the
shift 
�l of the etalon transmission maximum. This can be readily realized with
computer control.

Unfortunately, the reflection losses of an etalon increase with increasing tilting
angle � (Sect. 4.2 and [340, 387]). This is due to the finite beam radius w of the
laser beam, which prevents a complete overlap of the partial beams reflected from
the front and back surfaces of the etalon. These “walk-off losses” increases with
the square of the tilting angle � , see (4.64a), (4.64b) and Fig. 4.42.
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Figure 5.60 a Changing of resonator length by tilting of the Brewster plates inside the resonator;
b temperature-compensated reference cavity with tiltable Brewster plates for wavelength tuning

Example 5.23
With w D 1mm, t D 1 cm, n D 1:5, R D 0:4, we obtain for � D 0:01

(� 0:6ı) transmission losses of 13%. The frequency shift is, see (5.89):

� D 1

2
�0�

2 � 30GHz. For a dye laser with the gain factor G < 1:13 the
tuning range would therefore be smaller than 30GHz.

For wider tuning ranges interferometers with a variable air gap can be used at
a fixed tilting angle � (Fig. 5.44a). The thickness t of the interferometer and with it
the transmitted wavelength �m D 2nt cos �=m can be tuned with a piezocylinder.
This keeps the walk-off losses small. However, the extra two surfaces have to be
antireflection-coated in order to minimize the reflection losses.

An elegant solution is shown in Fig. 5.44b, where the interferometer is formed by
two prisms with coated backsides and inner Brewster surfaces. The air gap between
these surfaces is very small in order to minimize shifts of the transmission peaks
due to changes of air pressure.

The continuous change of the resonator length d is limited to about 5–10 µm if
small piezocylinders are used (5–10 nm=V). A further drawback of piezoelectric
tuning is the hysteresis of the expansion of the piezocylinder when tuning back and
forth. Larger tuning ranges can be obtained by tilting a plane-parallel glass plate
around the Brewster angle inside the laser resonator (Fig. 5.60). The additional
optical path length through the plate with refractive index n at an incidence angle ˛
is

s D .nAB � AC/ D d

cosˇ
Œn � cos.˛ � ˇ/� D d

hp
n2 � sin2 ˛ � cos˛

i
:

(5.90)
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If the plate is tilted by the angle 
˛, the optical path length changes by

•s D ds

d˛

˛ D d sin ˛

�
1 � cos˛p

n2 � sin2 ˛

�

˛ : (5.91)

Example 5.24
A tilting of the plate with d D 3mm, n D 1:5 from ˛ D 51ı to ˛ D 53ı
around the Brewster angle ˛B D 52ı yields with
˛ D 3�10�2 rad a change
•s D 35 µm of the optical pathlength.

The reflection losses per surface from the deviation from Brewster’s angle
are less than 0:01% and are therefore completely negligible.

If the free spectral range of the resonator is •�, the frequency-tuning range
is


� D 2.•s=�/•� � 116 ı� at � D 600 nm : (5.92)

With a piezocylinder with ds=dV D 3 nm=V only a change of
� D 5•� can
be realized at V D 500V.

The Brewster plate can be tilted in a controllable way by a galvo-drive [388],
where the tilting angle is determined by the strength of the magnetic field. In or-
der to avoid a translational shift of the laser beam when tilting the plate, two plates
with ˛ D ˙˛ˇ can be used (Fig. 5.60b), which are tilted into opposite directions.
This gives twice the frequency shift of (5.91). The frequency stability of the refer-
ence interferometer in Fig. 5.60b can be greatly improved by compensating for the
thermal expansion of the quartz distance holder with the opposite expansion of the
mirror holder. With the refractive indices nQ of quartz and nE of the mirror holder,
the condition for exact compensation is:

d

dT
.anQ/� d

dT
.bnE/ D 0 :

For illustration Fig. 5.61 shows a Doppler-free spectrum of naphthalene C10H8

recorded together with frequency markers from a stabilized etalon and an I2-
spectrum providing reference lines [392].

For many applications in high-resolution spectroscopy where the wavelength �.t/
should be a linear function of the time t , it is desirable that the fluctuations of the
laser wavelength �L around the programmed tunable value �.t/ are kept as small
as possible. This can be achieved by stabilizing �L to the reference wavelength �R

of a stable external FPI (Sect. 5.4), while this reference wavelength �R is syn-
chronously tuned with the wavelength-selecting elements of the laser resonator.
The synchronization utilizes an electronic feedback system. A possible realization
is shown in Fig. 5.62. A digital voltage ramp provided by a computer through
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Figure 5.61 Frequency markers from an etalon with n�d D 50 cm, Doppler-limited and Doppler-
free lines of I2 as reference spectrum and a section of the Doppler-free spectrum of the naphthalene
molecule, taken in a cell with about 5mbar [392]

a digital–analog converter (DAC) activates the galvo-drive and results in a con-
trolled tilting of the Brewster plates in a temperature-stabilized FPI. The laser
wavelength is locked via a PID feedback control (Sect. 5.4.4) to the slope of the
transmission peak of the reference FPI (Fig. 5.52). The output of the PID con-
trol is split into two parts: the low-frequency part of the feedback is applied to
the galvo-plate in the laser resonator, while the high-frequency part is given to
a piezoelement, which translates one of the resonator mirrors.

5.5.2 Wavelength Calibration

An essential goal of laser spectroscopy is the accurate determination of energy
levels in atoms or molecules and their splittings due to external fields or internal
couplings. This goal demands the precise knowledge of wavelengths and distances
between spectral lines while the laser is scanned through the spectrum. There are
several techniques for the solution of this problem: part of the laser beam is sent
through a long FPI with mirror separation d , which is pressure-tight (or evacu-
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Figure 5.62 Schematic diagram of computer-controlled laser spectrometer with frequency marks
provided by two FPI with slightly different free spectral ranges and a lambdameter for absolute
wavelength measurement

ated) and temperature stabilized. The equidistant transmission peaks with distances
•� D 1

2
c=.nd/ serve as frequency markers and are monitored simultaneously with

the spectral lines (Fig. 5.62).
Most tunable lasers show an optical frequency �.V / that deviates to a varying

degree from the linear relation � D ˛V C b between laser frequency � and input
voltage V to the scan electronics. For a visible dye laser the deviations may reach
100MHz over a 20-GHz scan. These deviations can be monitored and corrected for
by comparing the measured frequency markers with the linear expression

� D �0 Cmc=.2nd/ .m D 0; 1; 2; : : :/ :
For absolute wavelength measurements of spectral lines the laser is stabilized

onto the center of the line and its wavelength � is measured with one of the
wavemeters described in Sect. 4.4. For Doppler-free lines (Vol. 2, Chaps. 2–6), one
may reach absolute wavelength determinations with an uncertainty of smaller than
10�3 cm�1 (¶ 20 pm at � D 500 µm).

Often calibration spectra that are taken simultaneously with the unknown spec-
tra are used. Examples are the I2 spectrum, which has been published in the iodine
atlas by Gerstenkorn and Luc [389] in the range of 14;800 to 20;000 cm�1 or with
Doppler-free resolution by H. Kato [391]. Figure 5.61 illustrates this using the ex-
ample of absorption lines of naphthalene molecules [392]. For wavelengths below
500 nm, thorium lines [390] measured in a hollow cathode by optogalvanic spec-
troscopy (Vol. 2, Sect. 1.5) or uranium lines [393] can be utilized.



5.5 Controlled Wavelength Tuning of Single-Mode Lasers 333

Figure 5.63 Scheme for wavelength determination according to (5.93c)

If no wavemeter is available, two FPIs with slightly different mirror separa-
tions d1 and d2 can be used for wavelength determination (Fig. 5.62b). Assume
d1=d2 D p=q equals the ratio of two rather large integers p and q with no common
divisor and both interferometers have a transmission peak at �1:

m1�1 D 2d1
m2�1 D 2d2

�
with

m1

m2

D p=q : (5.93a)

Let us assume that �1 is known from calibration with a spectral line. When the laser
wavelength is tuned, the next coincidence appears at �2 D �1 C
� where

.m1 � p/�2 D 2d1 and .m2 � q/�2 D 2d2 : (5.93b)

From (5.93a, 5.93b) we obtain


�

�1
D p

m1 � p D
q

m2 � q ) �2 D �1 m1

m1 � p D �1
m2

m2 � q ;

where p and q are known integers that can be counted by the number of transmis-
sion maxima when � is tuned from �1 to �2.

Between these two wavelengths �1 and �2 the maximum of a spectral line with
the unknown wavelength �x may appear in a linear wavelength scan at the dis-
tance ıx from the position of �1. Then we obtain from Fig. 5.63

�x D �1 C ıx

ı

� D �1

�
1C ıx

ı

p

m1 � p
�
: (5.93c)

With the inputs for �1, p, q, d1, and d2 a computer can readily calculate �x from
the measured value ıx .

For a very precise measurement of small spectral invervals between lines a side-
band technique is very useful. In this technique part of the laser beam is sent through
a Pockels cell (Fig. 5.64), which modulates the transmitted intensity and generates
sidebands at the frequencies �R D �L ˙ f . When �C

R D �L C f is stabilized onto
an external FPI, the laser frequency �L D �C

R � f can be continuously tuned by
varying the modulation frequency f . This method does not need a tunable interfer-
ometer and its accuracy is only limited by the accuracy of measuring the modulation
frequency f [394]a.
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Figure 5.64 Optical sideband technique for precise tuning of the laser wavelength �: a experi-
mental setup; b stabilization of the sideband �R onto the transmission peak of the FPI

5.5.3 Frequency Offset Locking

This controllable shift of a laser frequency �L against a reference frequency �R can
be also realized by electronic elements in the stabilization feedback circuit. This
omits the Pockels cell of the previous method. A tunable laser is “frequency-offset
locked” to a stable reference laser in such a way that the difference frequency f D
�L��R can be controlled electronically. The experimental arrangement is shown in
Fig. 5.65. The stable reference laser is a methane-stabilized He-Ne laser (see Vol. 2,
Chap. 2) whose wavelength is stabilized on a rotational line in the vibrational band
of the CH4 molecule. The tunable frequency-offset laser is scanned through the
spectral range of interest by stabilizing the difference frequency of the two lasers on
a variable frequency, which is controlled by a frequency generator. This technique
has been described by Hall [394b] and is used in many laboratories. More details
will be discussed in Vol. 2, Chap. 2.

D1
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detectorpiezoHe - Ne CH4

P1

P2

stabilizer

frequency
offset lock
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reference laser
ω0
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ω0 – ω

beam
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reflector

Figure 5.65 Schematic diagram of the frequency offset laser spectrometer
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5.6 Linewidths of Single-Mode Lasers

In the previous sections we have seen that the frequency fluctuations of single-mode
lasers caused by fluctuations of the product nd of the refractive index n and the
resonator length d can be greatly reduced by appropriate stabilization techniques.
The output beam of such a single-mode laser can be regarded for most applications
as a monochromatic wave with a radial Gaussian amplitude profile, see (5.32).

For some tasks in ultrahigh-resolution spectroscopy, the residual finite linewidth

�L, which may be small but nonzero, still plays an important role and must there-
fore be known. Furthermore, the question why there is an ultimate lower limit for
the linewidth of a laser is of fundamental interest, since this leads to basic problems
of the nature of electromagnetic waves. Any fluctuation of amplitude, phase, or
frequency of our “monochromatic” wave results in a finite linewidth, as can be seen
from a Fourier analysis of such a wave (see the analogous discussion in Sects. 3.1
and 3.2). Besides the “technical noise” caused by fluctuations of the product nd ,
there are essentially three noise sources of a fundamental nature, which cannot be
eliminated, even by an ideal stabilization system. These noise sources are, to a dif-
ferent degree, responsible for the residual linewidth of a single-mode laser.

The first contribution to the noise results from the spontaneous emission of ex-
cited atoms in the upper laser level Ei . The total power Psp of the fluorescence
spontaneously emitted on the transition Ei ! Ek is, according to Sect. 2.3, propor-
tional to the population density Ni , the active mode volume Vm, and the transition
probability Aik , i.e.,

Psp D NiVmAik : (5.94)

This fluorescence is emitted into all modes of the EM field within the spectral width
of the fluorescence line. According to Example 2.1 in Sect. 2.1, there are about
3 � 108 modes=cm3 within the Doppler-broadened linewidth 
�D D 109 Hz at
� D 500 nm. The mean number of fluorescence photons per mode is therefore
small.

Example 5.25
In a HeNe laser the stationary population density of the upper laser level is
Ni ' 1010 cm�3. With Aik D 108 s�1, the number of fluorescence photons
per second is 1018 s�1cm�3, which are emitted into 3 � 108 modes. Into each
mode a photon flux 	 D 3 � 109 photons=s is emitted, which corresponds to
a mean photon density of hnphi D 	=c � 10�1 in one mode. This has to
be compared with 107 photons per mode due to induced emission inside the
resonator at a laser output power of 1mW through a mirror with R D 0:99.

When the laser reaches threshold, the number of photons in the laser mode
increases rapidly by stimulated emission and the narrow laser line grows from
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Figure 5.66 Linewidth
of a single-mode laser
just above threshold with
Doppler-broadened back-
ground due to spontaneous
emission. Note the logarith-
mic scale!

the weak but Doppler-broadened background radiation (Fig. 5.66). Far above the
threshold, the laser intensity is larger than this background by many orders of mag-
nitude and we may therefore neglect the contribution of spontaneous emission to
the laser linewidth.

The second contribution to the noise resulting in line broadening is due to am-
plitude fluctuations caused by the statistical distribution of the number of photons
in the oscillating mode. At the laser output power P , the average number of pho-
tons that are transmitted per second through the output mirror is n D P=h� . With
P D 1mW and h� D 2 eV (¶ � D 600 nm), we obtain n D 8 � 1015. If the laser
operates far above threshold, the probability p.n/ that n photons are emitted per
second is given by the Poisson distribution [304, 305]

p.n/ D e�n.nn/
nŠ

: (5.95)

The average number n is mainly determined by the pump power Pp (Sect. 5.1.3).
If at a given value of Pp the number of photons increases because of an amplitude
fluctuation of the induced emission, saturation of the amplifying transition in the
active medium reduces the gain and decreases the field amplitude. Thus saturation
provides a self-stabilizing mechanism for amplitude fluctuations and keeps the laser
field amplitude at a value Es � .n/1=2.

The main contribution to the residual laser linewidth comes from phase fluc-
tuations. Each photon that is spontaneously emitted into the laser mode can be
amplified by induced emission; this amplified contribution is superimposed on the
oscillating wave. This does not essentially change the total amplitude of the wave
because these additional photons decrease the gain for the other photons (by gain
saturation) such that the average photon number n remains constant. However, the
phases of these spontaneously initiated photon avalanches show a random distribu-
tion, as does the phase of the total wave. There is no such stabilizing mechanism
for the total phase as there is for the amplitude. In a polar diagram, the total field
amplitude E D Aei' can be described by a vector with the amplitude A, which is
restricted to a narrow range •A, and a phase angle ' that can vary from 0 to 2�
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Figure 5.67 Polar diagram
of the amplitude vector A
of a single-mode laser, for
illustration of phase diffusion

(Fig. 5.67). In the course of time, a phase diffusion ' occurs that can be described
in a thermodynamic model by the diffusion coefficient D [395, 396].

For the spectral distribution of the laser emission in the ideal case in which all
technical fluctuations of nd are totally eliminated, this model yields from a Fourier
transform of the statistically varying phase the Lorentzian line profile

jE.�/j2 D E2
0

.D=2/2

.� � �0/2 C .D=2/2 ; with E0 D E.�0/ ; (5.96)

with the center frequency �0, which may be compared with the Lorentzian line
profile of a classical oscillator broadened by phase-perturbing collisions.

The full halfwidth 
� D D of this intensity profile I.�/ / jE.�/j2 decreases
with increasing output power because the contributions of the spontaneously ini-
tiated photon avalanches to the total amplitude and phase become less and less
significant with increasing total amplitude.

Furthermore, the halfwidth 
�c of the resonator resonance must influence the
laser linewidth, because it determines the spectral interval where the gain exceeds
the losses. The smaller the value of
�c, the smaller is the fraction of spontaneously
emitted photons (which are emitted within the full Doppler width) with frequencies
within the interval
�c that find enough gain to build up a photon avalanche. When
all these factors are taken into account, one obtains for the theoretical lower limit

�L D D for the laser linewidth the relation [397]


�L D �h�L.
�c/
2.Nsp CNth C 1/
2PL

; (5.97)

where Nsp is the number of photons spontaneously emitted per second into the
oscillating laser mode,Nth is the number of photons in this mode due to the thermal
radiation field, and PL is the laser output power. At room temperature in the visible
region,Nth 	 1 (Fig. 2.7). WithNsp D 1 (at least one spontaneous photon starts the
induced photon avalanche), we obtain from (5.97) the famous Schwalow–Townes
relation [397]


�L D �h�L
�
2
c

PL
: (5.98)
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Example 5.26
a) For a HeNe laser with �L D 5 � 1014 Hz, 
�c D 1MHz, P D 1mW, we

obtain 
�L D 1:0 � 10�3 Hz.
b) For an argon laser with �L D 6 � 1014 Hz, 
�c D 3MHz, P D 1W, the

theoretical lower limit of the linewidth is 
�L D 1:1 � 10�5 Hz.

However, even for lasers with a very sophisticated stabilization system, the resid-
ual uncompensated fluctuations of nd cause frequency fluctuations that are large
compared with this theoretical lower limit. With moderate efforts, laser linewidths
of
�L D 104–106 Hz have been realized for gas and dye lasers. With very great ef-
fort, laser linewidths of a few Hertz or even below 1Hz [372, 398] can be achieved.
However, several proposals have been made how the theoretical lower limit may be
approached more closely [399, 400].

This linewidth should not be confused with the attainable frequency stability,
which means the stability of the center frequency of the line profile. For dye lasers,
stabilities of better than 1Hz have been achieved, which means a relative stability

�=� � 10�15 [372]. For gas lasers, such as the stabilized HeNe laser or specially
designed solid-state lasers, even values of 
�=� � 10�16 are possible [401, 402].

5.7 Tunable Lasers

In this section we discuss experimental realizations of some tunable lasers, which
are of particular relevance for spectroscopic applications. A variety of tuning
methods have been developed for different spectral regions, which will be illus-
trated by several examples. While semiconductor lasers, color-center lasers, and
vibronic solid-state lasers are the most widely used tunable infrared lasers to date,
the dye laser in its various modifications and the titanium:sapphire laser are still
by far the most important tunable lasers in the visible region. Great progress has
recently been made in the development of new types of ultraviolet lasers as well
as in the generation of coherent UV radiation by frequency-doubling or frequency-
mixing techniques (Chap. 6). In particular, great experimental progress in optical
parametric oscillators has been made; they are discussed in Sect. 6.7 in more detail.
Meanwhile, the whole spectral range from the far infrared to the vacuum ultraviolet
can be covered by a variety of tunable coherent sources. Of great importance for
basic research on highly ionized atoms and for a variety of applications is the
development of X-ray lasers, which is briefly discussed in Sect. 5.7.7.

This section can give only a brief survey of those tunable devices that have
proved to be of particular importance for spectroscopic applications. For a more
detailed discussion of the different techniques, the reader is referred to the literature
cited in the corresponding subsections. A review of tunable lasers that covers the
development up to 1974 has been given in [404], while more recent compilations
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can be found in [386, 405]. For a survey on infrared spectroscopy with tunable
lasers see [406–408].

5.7.1 Basic Concepts

Tunable coherent light sources can be realized in different ways. One possibility,
which has already been discussed in Sect. 5.5, relies on lasers with a broad gain
profile. Wavelength-selecting elements inside the laser resonator restrict laser oscil-
lation to a narrow spectral interval, and the laser wavelength may be continuously
tuned across the gain profile by varying the transmission maxima of these elements.
Dye lasers, color-center lasers, and excimer lasers are examples of this type of tun-
able device.

Another possibility of wavelength tuning is based on the shift of energy levels in
the active medium by external perturbations, which cause a corresponding spectral
shift of the gain profile and therefore of the laser wavelength. This level shift may
be effected by an external magnetic field (spin-flip Raman laser and Zeeman-tuned
gas laser) or by temperature or pressure changes (semiconductor laser).

A third possibility for generating coherent radiation with tunable wavelength
uses the principle of optical frequency mixing, which is discussed in Chap. 6.

The experimental realization of these tunable coherent light sources is, of course,
determined by the spectral range for which they are to be used. For the particular
spectroscopic problem, one has to decide which of the possibilities summarized
above represents the optimum choice. The experimental expenditure depends sub-
stantially on the desired tuning range, on the achievable output power, and, last
but not least, on the realized spectral bandwidth 
�. Coherent light sources with
bandwidths 
� ' 1MHz to 30GHz (3 � 10�5–1 cm�1), which can be continu-
ously tuned over a larger range, are already commercially available. In the visible

Figure 5.68 Spectral ranges of different tunable coherent sources
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region, single-mode dye lasers are offered with a bandwidth down to about 1MHz.
These lasers are continuously tunable over a restricted tuning range of about 30GHz
(1 cm�1). Computer control of the tuning elements allows a successive continua-
tion of such ranges. In principle, “continuous” scanning of a single-mode laser over
the whole gain profile of the laser medium, using automatic resetting of all tuning
elements at definite points of a scan, is now possible. Examples are single-mode
semiconductor lasers, dye lasers, or vibronic solid-state lasers.

We briefly discuss the most important tunable coherent sources, arranged ac-
cording to their spectral region. Figure 5.68 illustrates the spectral ranges covered
by the different devices.

5.7.2 Semiconductor-Diode Lasers

Many of the most widely used tunable coherent infrared sources use various semi-
conductor materials, either directly as the active laser medium (semiconductor
lasers) or as the nonlinear mixing device (frequency-difference generation).

The basic principle of semiconductor lasers [409–413] may be summarized as
follows. When an electric current is sent in the forward direction through a p–
n semiconductor diode, the electrons and holes can recombine within the p–n
junction and may emit the recombination energy in the form of electromagnetic
radiation (Fig. 5.69). The linewidth of this spontaneous emission amounts to sev-
eral cm�1, and the wavelength is determined by the energy difference between the
energy levels of electrons and holes, which is essentially determined by the band
gap. The spectral range of spontaneous emission can therefore be varied within
wide limits (about 0:4–40 µm) by the proper selection of the semiconductor mate-
rial and its composition in binary compounds (Fig. 5.70).

Figure 5.69 Schematic level diagram of a semiconductor diode: a unbiased p–n junction and
b inversion in the zone around the p–n junction and recombination radiation when a forward
voltage is applied
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Figure 5.70 a Spectral ranges of laser emission for different semiconductor materials [411]; b de-
pendence of the emission wave number on the composition x of Pb1�xSnxTe, Se, or S–lead-salt
lasers (courtesy of Spectra-Physics)

Figure 5.71 Schematic diagram of a diode laser: a geometrical structure; b concentration of the
injection current in order to reach high current densities in the inversion zone

Above a certain threshold current, determined by the particular semiconductor
diode, the radiation field in the junction becomes sufficiently intense to make the
induced-emission rate exceed the spontaneous or radiationless recombination pro-
cesses. The radiation can be amplified by multiple reflections from the plane end
faces of the semiconducting medium and may become strong enough that induced
emission occurs in the p–n junction before other relaxation processes deactivate the
population inversion (Fig. 5.71a).

In order to increase the density of the electric current, one of the electrodes is
formed as a small stripe (Fig. 5.71b). Continuous laser operation at room temper-
ature has become possible with heterostructure lasers (Fig. 5.72), where both the
electric current and the radiation are spatially confined by utilising a stack of thin
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a b

c

Figure 5.72 Heterostructure diode lasers. a Composition of p- and n-doped material with metal
contacts; b refractive index profile; c laser field amplitude in the different layers

layers with different refractive indices (Fig. 5.72a), which cause an index-guided
electromagnetic wave within a small volume. This enhances the photon density and
therefore the probability of induced emission.

The wavelengths of the laser radiation are determined by the spectral gain profile
and by the eigenresonances of the laser resonator (Sect. 5.3). If the polished end-
faces (separated by d ) of a semiconducting medium with refractive index n are used
as resonator mirrors, the free spectral range

•� D c

2nd .1C .�=n/dn=d�/
; or •� D �2

2nd .1 � .�=n/dn=d�/
; (5.99)

is very large, because of the short resonator length d . Note that •� depends not only
on d but also on the dispersion dn=d� of the active medium.

Example 5.27
With d D 0:5mm, n D 2:5 and .�=n/dn=d� D 1:5, the free spectral range is
•� D 48GHz ¶ 1:6 cm�1, or •� D 0:16 nm at � D 1 µm.

This illustrates that only a few axial resonator modes fit within the gain profile,
which has a spectral width of several cm�1 (Fig. 5.73a).

For wavelength tuning, all those parameters that determine the energy gap be-
tween the upper and lower laser levels may be varied. A temperature change
produced by an external cooling system or by a current change is most frequently
utilized to generate a wavelength shift (Fig. 5.73b). Sometimes an external mag-



5.7 Tunable Lasers 343

Figure 5.73 a Axial resonator modes within the spectral gain profile; b temperature tuning of
the gain maximum; and c mode hops of a quasi-continuously tunable cw PbSnTe diode laser in
a helium cryostat. The points correspond to the transmission maxima of an external Ge etalon with
a free spectral range of 1:955GHz [408]

netic field or a mechanical pressure applied to the semiconductor is also employed
for wavelength tuning. In general, however, no truly continuous tuning over the
whole gain profile is possible. After a continuous tuning over about one wavenum-
ber, mode hops occur because the resonator length is not altered synchronously with
the maximum of the gain profile (Fig. 5.73c). In the case of temperature tuning this
can be seen as follows:

The temperature difference 
T changes the energy difference Eg D E1 � E2
between upper and lower levels in the conduction and valence band, and also the
index of refraction by
n D .dn=dT /
T , and the length L of the cavity by
L D
.dL=dT /
T .

The frequency �c D mc=.2nL/ (m: integer) of a cavity mode is then shifted by


�c D @�c

@n

dn

dT

T C @�c

@L

dL

dT

T D ��

�
1

n

dn

dT
C 1

L

dL

dT

�

T ; (5.100)

while the maximum of the gain profile is shifted by


�g D 1

h

@Eg

@T

T : (5.101)

Although the first term in (5.100) is much larger than the second, the total shift

�c=
T amounts to only about 10–20% of the shift 
�g=
T .

As soon as the maximum of the gain profile reaches the next resonator mode,
the gain for this mode becomes larger than that of the oscillating one and the laser
frequency jumps to this mode (Fig. 5.73c).

For a realization of continuous tuning over a wider range, it is therefore neces-
sary to use external resonator mirrors with the distance d that can be independently
controlled. Because of technical reasons this implies, however, a much larger dis-
tance d than the small length L of the diode and therefore a much smaller free
spectral range. To achieve single-mode oscillation, additional wavelength-selecting
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Figure 5.74 Tunable single-mode diode laser with external cavity. The etalon allows single-mode
operation and the Brewster plate tunes the optical length of the cavity synchronized with etalon tilt
and gain profile shift [416]

elements, such as optical reflection gratings or etalons, have to be inserted into the
resonator. Furthermore, one end face of the semiconducting medium must be an-
tireflection coated because the large reflection coefficient of the uncoated surfaces
(with n D 3:5 the reflectivity becomes 0.3) causes large reflection losses. Such
single-mode semiconductor lasers have been built [414–416].

An example is presented in Fig. 5.74. The etalon E enforces single-mode op-
eration (see Sect. 5.4.3). The resonator length is varied by tilting a Brewster plate
and the maximum of the gain profile is synchronously shifted through a change of
the diode current. The laser wavelength is stabilized onto an external Fabry–Perot
interferometer and can be controllably tuned by tilting a galvo-plate in this external
cavity. Tuning ranges up to 100GHz without mode hops have been achieved for
a GaAlAs laser around 850 nm [416].

Another realization of tunable single-mode diode lasers uses a Littrow grating,
which couples part of the laser output back into the gain medium (Fig. 5.75) [417].
When the grating with a groove spacing dg is tilted by an angle
˛, the wavelength
shift is according to (4.21a)


� D .2dg/ cos˛ �
˛ : (5.102)

Tilting of the grating is realized by mounting the grating on a lever of length L. If
the tilting axisA in Fig. 5.75 is chosen correctly, the change
dc D L �cos˛ �
˛ of
the cavity length dc results in the same wavelength change
� D .
dc=dc/� of the
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a b

Figure 5.75 Continuously tunable diode laser with Littrow grating: a experimental setup, and
b geometric condition for the location of the tilting axis for the grating. The rotation around
point R1 compensates only in first order, around R2 in second order [418]

cavity modes, as given by (5.102). This gives the condition dc=L D sin ˛, which
shows that the tilting axis should be located at the crossing of the plane through
the grating surface and the plane indicated by the dashed line that intersects the
resonator axis at a distance dc D d1 C n � d2 from the grating, where n is the
refractive index of the diode (Fig. 5.75b).

An improved version with a fixed Littman grating configuration and a tiltable
end mirror (Fig. 5.76) allows a wider tuning range up to 500GHz, which is only
limited by the maximum expansion of the piezo used for tilting the mirror lever

Figure 5.76 External-cavity widely tunable single-mode diode laser with Littman resonator
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Figure 5.77 External-cavity
diode laser with transmission
Littrow grating

[418a]. A novel compact external-cavity diode laser with a transmission grating
(Fig. 5.77 in Littrow configuration allows an extremely compact mechanical design
with a good passive frequency stability [418b].

Tilting of the etalon or grating tunes the laser wavelength across the spectral
gain profile G.�/, where the maximum G.�m/ is determined by the temperature.
A change 
T of the temperature shifts this maximum �m. Temperature changes
are used for coarse tuning, whereas the mechanical tilting allows fine-tuning of the
single-mode laser.

A complete commercial diode laser spectrometer for convenient use in infrared
spectroscopy is depicted in Fig. 5.78.

Meanwhile tunable diode lasers in the visible region down to below 0:4 µm are
available [419].

Besides their applications as tunable light sources, diode lasers are more and
more used as pump lasers for tunable solid-state lasers and optical parametric am-
plifiers. Monolithic diode laser arrays can now deliver up to 100W cw pump powers
[420].

Figure 5.78 Schematic diagram of a diode laser spectrometer tunable from 3 to 200 µm with
different diodes (courtesy of Spectra-Physics)
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5.7.3 Tunable Solid-State Lasers

The absorption and emission spectra of crystalline or amorphous solids can be var-
ied within wide spectral ranges by doping them with atomic or molecular ions
[421–423]. The strong interaction of these ions with the host lattice causes broad-
enings and shifts of the ionic energy levels. The absorption spectrum shown in
Fig. 5.79b for the example of alexandrite depends on the polarization direction of
the pump light. Optical pumping of excited states generally leads to many over-
lapping fluorescence bands terminating on many higher “vibronic levels” in the
electronic ground state, which rapidly relax by ion–phonon interaction back into
the original ground state (Fig. 5.79a). These lasers are therefore often called vi-
bronic lasers. If the fluorescence bands overlap sufficiently, the laser wavelength
can be continously tuned over the corresponding spectral gain profile (Fig. 5.79c).

Vibronic solid-state laser materials are, e.g., alexandrite (BeAl2O4 with Cr3C
ions) titanium–sapphire (Al2O3:TiC) fluoride crystals doped with transition metal
ions (e.g., MgF2:CoCC or CsCaF3:V2C) [405, 422–425].

The tuning range of vibronic solid-state lasers can be widely varied by a proper
choice of the implanted ions and by selecting different hosts. This is illustrated
in Fig. 5.80a, which shows the spectral ranges of laser-excited fluorescence of the
same Cr3C ion in different host materials [424] while Fig. 5.80b shows the tuning
ranges of laser materials where different metal ions are doped in a MgF2 crystal.

Table 5.3 compiles the operational modes and tuning ranges of different tun-
able vibronic lasers. A particularly efficient cw vibronic laser is the emerald laser

Figure 5.79 a Level scheme of a tunable “four-level solid-state vibronic laser”; b absorption
spectrum for two different polarization directions of the pump laser; c output power Pout.�/ for
the example of the alexandrite laser
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Figure 5.80 Spectral ranges of fluorescence for Cr3C ions in different host materials (a) and
different metal ions in MgF2 (b)

Table 5.3 Characteristic data of some tunable solid-state lasers

Laser Composition Tuning range
[nm]

Operation
temperature
[K]

Pump

Ti:sapphire Al2O3:Ti3C 670–1100 300 Ar laser

Alexandrite BeAl2O4:Cr3C 710–820 300–600 Flashlamp

720–842 300 Kr laser

Emerald Be3Al2.SiO3/6:Cr3C 660–842 300 KrC laser

Olivine Mg2SiO4:Cr4C 1160–1350 300 YAG laser

Flouride laser SrAlF5:Cr3C 825–1010 300 Kr laser

KZnF3:Cr3C 1650–2070 77 cw Nd:YAG laser

Magnesium fluoride Ni:MgF2 1600–1740 77 YAG laser

FC

2 F-center NaCl=FC

2 1400–1750 77 cw Nd:YAG laser

Holmium laser Ho:YLF 2000–2100 300 Flashlamp

Erbium laser Er:YAG 2900–2950 300 Flashlamp

Erbium laser Er:YLF 2720–2840 300 Diode laser

Thulium laser Tm:YAG 1870–2160 300 Diode laser

(Be3Al2Si6O18:Cr3C). When pumped by a 3.6-W krypton laser at �p D 641 nm, it
reaches an output power of up to 1:6W and can be tuned between 720 and 842 nm
[427]. The slope efficiency dPout=dPin reaches 64%! The erbium:YAG laser, tun-
able around � D 2:8 µm, has found a wide application range in medical physics.

A very important vibronic laser is the titanium:sapphire (Ti:sapphire) laser,
which has a large tuning range between 670 nm and 1100 nm when pumped by
an argon laser. The effective tuning range is limited by the reflectivity curve of
the resonator mirrors, and for an optimum output power over the whole spectral
range three different sets of mirrors are used. For spectral ranges with � > 700 nm,
the Ti:sapphire laser is superior to the dye laser (Sect. 5.7.4) because it has higher
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Figure 5.81 Experimental setup of a Ti:sapphire laser (courtesy of Schwartz Electro-Optics)

Figure 5.82 Tuning ranges
of some vibronic solid-state
lasers. Black: cw operation,
grey: pulsed operation

output power, better frequency stability and a smaller linewidth. The experimental
setup of a titanium-sapphire laser is depicted in Fig. 5.81.

The different vibronic solid-state lasers cover the red and near-infrared spectral
range from 0.65 to 2:5 µm (Fig. 5.82). Most of them can run at room temperature
in a pulsed mode, some of them also in cw operation.

The future importance of these lasers is derived from the fact that many of them
may be pumped by diode laser arrays. This has already been demonstrated for
Nd:YAG and alexandrite lasers, where very high total energy conversion efficiencies
were achieved. For the diode laser-pumped Nd:YAG laser, values of � D 0:3 for
the ratio of laser output power to electrical input power have been reported (30%
plug-in efficiency) [428].

Intracavity frequency doubling of these lasers (Chap. 6) covers the visible and
near-ultraviolet range [429]. Although dye lasers are still the most important tun-
able lasers in the visible range, these compact and handy solid-state devices present
attractive alternatives and have started to replace dye lasers for many applications.

For more details about tunable solid-state lasers and their pumping by high-
power diode lasers, the reader is referred to [405, 430–433].
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5.7.4 Color-Center Lasers

Color centers in alkali halide crystals are based on a halide ion vacancy in the crys-
tal lattice of rock-salt structure (Fig. 5.83). If a single electron is trapped at such
a vacancy, its energy levels result in new absorption lines in the visible spectrum,
broadened to bands by the interaction with phonons. Since these visible absorption
bands, which are caused by the trapped electrons and which are absent in the spec-
trum of the ideal crystal lattice, make the crystal appear colored, these imperfections
in the lattice are called F-centers (from the German word “Farbe” for color) [434].
These F-centers have very small oscillator strengths for electronic transitions, there-
fore they are not suited as active laser materials.

If one of the six positive metal ions that immediately surround the vacancy is
foreign (e.g., a NaC ion in a KCl crystal, Fig. 5.83b), the F-center is specified as an
FA-center [435], while FB -centers are surrounded by two foreign ions (Fig. 5.83c).
A pair of two adjacent F-centers along the (110) axis of the crystal is called an F2-
center (Fig. 5.83d). If one electron is taken away from an F2-center, an FC

2 -center
is created (Fig. 5.83e).

The FA- and FB -centers can be further classified into two categories according
to their relaxation behavior following optical excitation. While centers of type I
retain the single vacancy and behave in this respect like ordinary F-centers, the
type-II centers relax to a double-well configuration (Fig. 5.84) with energy levels
completely different from the unrelaxed counterpart. The oscillator strength for an
electric-dipole transition between upper level jki and lower level jii in the relaxed
double-well configuration is quite large. The relaxation times TR1 and TR2 for the
transitions to the upper level jki and from the lower level jii back to the initial con-
figuration are below 10�12 s. The lower level jii is therefore nearly empty, which
also allows sufficient inversion for cw laser operation. All these facts make the FA-
and FB-type-II color centers – or, in shorthand, FA(II) and FB(II) – very suitable for
tunable laser action [436–438].

The quantum efficiency � of FA(II)-center luminescence decreases with increas-
ing temperature. For a KCl:Li crystal, for example, � amounts to 40% at liquid
nitrogen temperatures (77K) and approaches zero at room temperature (300K).
This implies that most color-center lasers must be operated at low temperatures,

Figure 5.83 Color centers in alkali halides: a F-center; b FA-center; c FB-center; d F2-center;
and e FC

2 -center
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Figure 5.84 Structural
change and level diagram of
optical pumping, relaxation,
and lasing of a FA(II)-center

generally at 77K. However, recently cw-operation has been observed at room tem-
perature for diode-laser-pumped LiF:F2-colour center lasers [438].

Two possible experimental arrangements of color-center lasers are shown
schematically in Fig. 5.85. The folded astigmatically compensated three-mirror
cavity design is identical to that of cw dye lasers of the Kogelnik type [439]
(Sect. 5.7.5). A collinear pump geometry allows optimum overlap between the
pump beam and the waist of the fundamental resonator mode in the crystal. The
mode-matching parameter (i.e., the ratio of pump-beam waist to resonator-mode
waist) can be chosen by appropriate mirror curvatures. The optical density of the
active medium, which depends on the preparation of the FA centers [436], has to
be carefully adjusted to achieve optimum absorption of the pump wavelength. The
crystal is mounted on a cold finger cooled with liquid nitrogen in order to achieve
a high quantum efficiency �.

Coarse wavelength tuning can be accomplished by turning mirror M3 of the
resonator with an intracavity dispersing sapphire Brewster prism. Because of the
homogeneous broadening of the gain profile, single-mode operation would be ex-
pected without any further selecting element (Sect. 5.3). This is, in fact, observed
except that neighboring spatial hole-burning modes appear, which are separated
from the main mode by


� D c

4a
;

where a is the distance between the end mirror M1 and the crystal (Sect. 5.3). With
one Fabry–Perot etalon of 5-mm thickness and a reflectivity of 60–80%, stable
single-mode operation without other spatial hole-burning modes can be achieved
[440]. With a careful design of the low-loss optical components inside the cavity
(made, e.g., of sapphire or of CaF2), single-mode powers up to 75% of the multi-
mode output can be reached, since the gain profile is homogeneous.
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Figure 5.85 Two possible resonator designs for cw color-center lasers: a folded linear resonator
with astigmatic compensation; and b ring resonator with optical diode for enforcing only one
direction of the traveling laser wave and tuning elements (birefringent filter and etalon) [441]

Spatial hole burning can be avoided in the ring resonator (Fig. 5.85b). This facil-
itates stable single-mode operation and yields higher output powers. For example,
a NaCl:OH color-center laser with a ring resonator yields 1:6W output power at
� D 1:55 µm when pumped by 6W of a cw YAG laser at � D 1:065 µm [441].

When an FA(II)- or FC
2 -color-center laser is pumped by a linearly polarized cw

YAG laser, the output power degrades within a few minutes to a few percent of its
initial value. The reason for this is as follows: many of the laser-active color centers
possess a symmetry axis, for example, the (110) direction. Two-photon absorption
of pump photons brings the system into an excited state of another configuration.
Fluorescence releases the excited centers back into a ground state that, however,
differs in its orientation from the absorbing state and therefore does not absorb
the linearly polarized pump wave. This optical pumping process with changing
orientation leads to a gradual bleaching of the original ground-state population,
which could absorb the pump light. This orientation bleaching can be avoided when
the crystal is irradiated during laser operation by the light of a mercury lamp or an
argon laser, which “repumps” the centers with “wrong” orientation back into the
initial ground state [437].
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Figure 5.86 Spectral ranges
of emission bands for differ-
ent color-center crystals

With different color-center crystals the total spectral range covered by existing
color-center lasers extends from 0:65–3:4 µm. The luminescence bands of some
color-center alkali halide crystals are exhibited in Fig. 5.86. Typical characteris-
tics of some commonly used color-center lasers are compiled in Table 5.3 and are
compared with some vibronic solid-state lasers. Recently room-temperature color-
center lasers have been realized which are pumped by diode lasers [438].

The linewidth 
� of a single-mode color-center laser is mainly determined by
fluctuations of the optical path length in the cavity (Sect. 5.4). Besides the contri-
bution 
�m caused by mechanical instabilities of the resonator, temperature fluctu-
ations in the crystal, caused by pump power variations or by temperature variations
of the cooling system, further increase the linewidth by adding contributions 
�p

and 
�t. Since all three contributions are independent, we obtain for the total fre-
quency fluctuations


� D
q

�2m C
�2p C
�2t : (5.103)

The linewidth of the unstabilized single-mode laser has been measured to be smaller
than 260 kHz, which was the resolution limit of the measuring system [440]. An
estimated value for the overall linewidth 
� is 25 kHz [442]. This extremely small
linewidth is ideally suited to perform high-resolution Doppler-free spectroscopy
(Vol. 2, Chaps. 2–5).

More examples of color-center lasers in different spectral ranges are given in
[443–445]. Good surveys on color-center lasers can be found in [437, 445] and, in
particular, in [386], Vol. 2, Chap. 1. All these lasers, which provide tunable sources
with narrow bandwidths, have serious competition from cw optical parametric os-
cillators (see Sect. 6.7), which are now available within the tuning range 0:4–4 µm.

5.7.5 Dye Lasers

Although tunable solid-state lasers and optical parametric oscillators are more and
more competitive, dye lasers in their various modifications in the visible and UV
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Figure 5.87 Spectral gain profiles of different laser dyes, illustrated by the output power of pulsed
lasers (a) and cw dye lasers (b) (Lambda Physik and Spectra-Physics information sheets)

range are still the most widely used types of tunable lasers. Dye lasers were in-
vented independently by P. Sorokin and F.P. Schäfer in 1966 [446]. Their active
media are organic dye molecules solved in liquids. They display strong broadband
fluorescence spectra under excitation by visible or UV light. With different dyes,
the overall spectral range where cw or pulsed laser operation has been achieved
extends from 300 nm to 1:2 µm (Fig. 5.87). Combined with frequency-doubling or
mixing techniques (Chap. 6), the range of tunable devices where dye lasers are in-
volved ranges from the VUV at 100 nm to the infrared at about 4 µm. In this section
we briefly summarize the basic physical background and the most important exper-
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Figure 5.88 a Schematic energy level scheme and pumping cycle in dye molecules; b absorption
and fluorescence spectrum of rhodamine 6G dissolved in ethanol; c structure of rhodamone 6G;
d triplet absorption

imental realizations of dye lasers used in high-resolution spectroscopy. For a more
extensive treatment the reader is referred to the laser literature [291, 298, 447, 448].

When dye molecules in a liquid solvent are irradiated with visible or ultra-violet
light, higher vibrational levels of the first excited singlet state S1 are populated
by optical pumping from thermally populated rovibronic levels in the S0 ground
state (Fig. 5.88). Induced by collisions with solvent molecules, the excited dye
molecules undergo very fast radiationless transitions into the lowest vibrational
level v0 of S1 with relaxation times of 10�11 to 10�12 s. This level is depopu-
lated either by spontaneous emission into the different rovibronic levels of S0, or by
radiationless transitions into a lower triplet state T1 (intersystem crossing). Since
the levels populated by optical pumping are generally above v0 and since many flu-
orescence transitions terminate at higher rovibronic levels of S0, the fluorescence
spectrum of a dye molecule is redshifted against its absorption spectrum. This is
shown in Fig. 5.88b for rhodamine 6G (Fig. 5.88c) the most widely used laser dye.
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Because of the strong interaction of dye molecules with the solvent, the closely
spaced rovibronic levels are collision broadened to such an extent that the differ-
ent fluorescence lines completely overlap. The absorption and fluorescence spec-
tra therefore consist of a broad continuum, which is homogeneously broadened
(Sect. 3.3).

At sufficiently high pump intensity, population inversion may be achieved
between the level v0 in S1 and higher rovibronic levels vk in S0, which have
a negligible population at room temperature, due to the small Boltzmann factor
expŒ�E.vk/=kT �. As soon as the gain on the transition v0.S1/ ! vk.S0/ ex-
ceeds the total losses, laser oscillation starts. The lower level vk.S0/, which now
becomes populated by stimulated emission, is depleted very rapidly by collisions
with the solvent molecules. The whole pumping cycle can therefore be described
by a four-level system.

According to Sect. 5.2, the spectral gain profile G.�/ is determined by the pop-
ulation difference N.v0/ – N.vk/, the absorption cross section 
0k.�/ at the fre-
quency � D E.�0/�E.�k/=h, and the length L of the active medium. The net gain
coefficient at the frequency � is therefore

�2˛.�/L D C2LŒN.v0/�N.vk/�
Z

0k.� � �0/d�0 � �.�/ ;

where �.�/ is the total losses per round-trip, which may depend on the frequency �.
The spectral profile of 
.�/ is essentially determined by the Franck–Condon

factors for the different transitions (v0 ! vk). The total losses are determined by
resonator losses (mirror transmission and absorption in optical components) and by
absorption losses in the active dye medium. The latter are mainly caused by two
effects:

a) The intersystem crossing transitions S1 ! T1 not only diminish the popu-
lation N.v0/ and therefore the attainable inversion, but they also lead to an
increased population N.T1/ of the triplet state. The triplet absorption spec-
trum due to the transitions T1 ! Tm into higher triplet states Tm partly overlaps
with the singlet fluorescence spectrum (Fig. 5.88d). This results in additional
absorption losses N.T1/˛T.�/L for the dye laser radiation. Because of the long
lifetimes of molecules in this lowest triplet state, which can only relax into the S0
ground state by slow phosphorescence or by collisional deactivation, the popu-
lation density N.T1/ may become undesirably large. One therefore has to take
care that these triplet molecules are removed from the active zone as quickly
as possible. This may be accomplished by mixing triplet-quenching additives
to the dye solution. These are molecules that quench the triplet population ef-
fectively by spin-exchange collisions enhancing the intersystem crossing rate
T1 ! S0. Examples are O2 or cyclo-octotetraene (COT). Another solution
of the triplet problem is mechanical quenching, used in cw dye lasers. This
means that the triplet molecules are transported very rapidly through the active
zone. The transit time should be much smaller than the triplet lifetime. This
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is achieved, e.g., by fast-flowing free jets, where the molecules pass the active
zone in the focus of the pump laser in about 10�6 s.

b) For many dye molecules the absorption spectra S1 ! Sm, corresponding to
transitions from the optically pumped singlet state S1 to still higher states Sm,
partly overlap with the gain profile of the laser transition S1 ! S0. These
inevitable losses often restrict the spectral range where the net gain is larger
than the losses [447].

The essential characteristic of dye lasers is their broad homogeneous gain profile.
Under ideal experimental conditions, homogeneous broadening allows all excited
dye molecules to contribute to the gain at a single frequency. This implies that
under single-mode operation the output power should not be much lower than the
multimode power (Sect. 5.3), provided that the selecting intracavity elements do not
introduce large additional losses.

The experimental realizations of dye lasers employ either flashlamps, pulsed
lasers, or cw lasers as pumping sources. Recently, several experiments on pumping
of dye molecules in the gas phase by high-energy electrons have been reported
[449–451].

We now present the most important types of dye lasers in practical use for high-
resolution spectroscopy.

a) Flashlamp-Pumped Dye Lasers

Flashlamp-pumped dye lasers [452, 453] have the advantage that they do not need
expensive pump lasers. Figure 5.89 displays two commonly used pumping arrange-
ments. The linear flashlamp, which is filled with xenon, is placed along one of the
focal lines of a cylindric reflector with elliptical cross section. The liquid dye solu-
tion flowing through a glass tube in the second focal line is pumped by the focused
light of the flashlamp. The useful maximum pumping time is again limited by the
triplet conversion rate. By using additives as triplet quenchers, the triplet absorp-
tion is greatly reduced and long pulse emission has been obtained. Low-inductance
pulsed power supplies have been designed to achieve short flashlamp pulses below
1 µs. A pulse-forming network of several capacitors is superior to the single energy
storage capacitor because it matches the circuit impedance to that of the lamps,
therefore a constant flashlight intensity over a period of 60–70 µs can be achieved
[454]. With two linear flashlamps in a double-elliptical reflector, a reliable rho-
damine 6G dye laser with 60-µs pulse duration, and a repetition rate up to 100Hz,
an average power of 4W has been demonstrated. With the pumping geometry of
Fig. 5.89b, which takes advantage of four linear flashlamps, a very high collection
efficiency for the pump light is achieved. The light rays parallel to the plane of the
figure are collected into an angle of about 85ı by the rear reflector, the aplanatic lens
directly in front of the flashlamp, the condenser lens, and the cylindrical mirrors.
An average laser output power of 100W is possible with this design [455].
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Figure 5.89 Two possible pumping designs for flashlamp-pumped dye lasers: a elliptical reflec-
tor geometry for pumping of a flowing dye solution by one linear xenon flashlamp; b side view
showing the cylindrical mirror with elliptical cross-section with flashlamp and dye cell in the focal
lines; c arrangement of four flashlamps for higher pump powers [455]

Similar to the laser-pumped dye lasers, reduction of the linewidth and wave-
length tuning can be accomplished by prisms, gratings, interference filters [456],
Lyot filters [457], and interferometers [458, 459].

One drawback of flashlamp-pumped dye lasers is the bad optical quality of the
dye solution during the pumping process. Local variations of the refractive in-
dex due to schlieren in the flowing liquid, and temperature gradients due to the
nonuniform absorption of the pump light deteriorate the optical homogeneity. The
frequency jitter of narrow-band flashlamp-pumped dye lasers is therefore gener-
ally larger than the linewidth obtained in a single shot and they are mainly used in
multimode operation. However, with three FPI inside the laser cavity, single-mode
operation of a flashlamp-pumped dye laser has been reported [460]. The linewidth
achieved was 4MHz, stable to within 12MHz. A better and more reliable solu-
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tion for achieving single-mode operation is injection seeding. If a few milliwatts
of narrow-band radiation from a single-mode cw dye laser is injected into the res-
onator of the flashlamp-pumped dye laser, the threshold is reached earlier for the
injected wavelength than for the others. Due to the homogeneous gain profile, most
of the induced emission power will then be concentrated at the injected wavelength
[461].

A convenient tuning method of flashlamp-pumped dye lasers is based on intra-
cavity electro-optically tunable Lyot filters (Sect. 4.2), which have the advantage
that the laser wavelength can be tuned in a short time over a large spectral range
[462, 463]. This is of particular importance for the spectroscopy of fast tran-
sient species, such as radicals formed in intermediate stages of chemical reactions.
A single-element electro-optical birefringent filter can be used to tune a flashlamp-
pumped dye laser across the entire dye emission band. With an electro-optically
tunable Lyot filter (Sect. 4.2.11) in combination with a grating a spectral bandwidth
of below 10�3 nm was achieved even without injection seeding [457].

b) Pulsed Laser-Pumped Dye Lasers

The first dye laser, developed independently by Schäfer [464] and Sorokin [465]
in 1966, was pumped by a ruby laser. In the early days of dye laser development,
giant-pulse ruby lasers, frequency-doubled Nd:glass lasers, and nitrogen lasers were
the main pumping sources. All these lasers have sufficiently short pulse durations
Tp, which are shorter than the intersystem crossing time constant TIC.S1 ! T1/.

The short wavelength � D 337 nm of the nitrogen laser permits pumping of
dyes with fluorescence spectra from the near UV up to the near infrared. The high
pump power available from this laser source allows sufficient inversion, even in dyes
with lower quantum efficiency [466–470]. At present the most important dye laser
pumps are the excimer laser [471, 472], the frequency-doubled or -tripled output of
high-power Nd:YAG or Nd:glass lasers [473, 474], or copper-vapor lasers [475].

Various pumping geometries and resonator designs have been proposed or
demonstrated [447]. In transverse pumping (Fig. 5.90), the pump laser beam is
focused by a cylindrical lens into the dye cell. Since the absorption coefficient for
the pump radiation is large, the pump beam is strongly attenuated and the maxi-
mum inversion in the dye cell is reached in a thin layer directly behind the entrance
window along the focal line of the cylindrical lens. This geometrical restriction
to a small gain zone gives rise to large diffraction losses and beam divergence.
This divergent beam is converted by a telescope of two lenses into a parallel beam
with enlarged diameter and is then reflected by a Littrow grating, which acts as
wavelength selector (Hänsch-type arrangement) [467].

In longitudinal pumping schemes (Fig. 5.91), the pump beam enters the dye laser
resonator at a small angle with respect to the resonator axis or collinear through one
of the mirrors, which are transparent for the pump wavelength. This arrangement
avoids the drawback of nonuniform pumping, present in the transverse pumping
scheme. However, it needs a good beam quality of the pump laser and is there-
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Figure 5.90 Hänsch-type
dye laser with transverse
pumping and beam expander
[467]. The wavelength is
tuned by turning the Littrow
grating. Light with a different
wavelength �D C 
� is
diffracted out of the resonator

fore not suitable for excimer lasers as pump sources, but is used more and more
frequently for pumping with frequency-doubled Nd:YAG lasers [473].

If wavelength selection is performed with a grating, it is preferable to expand the
dye laser beam for two reasons.

a) The resolving power of a grating is proportional to the productNm of the num-
berN of illuminated grooves times the diffraction orderm (Sect. 4.1). The more
grooves that are hit by the laser beam, the better is the spectral resolution and
the smaller is the resulting laser linewidth.

b) The power density without beam expansion might be high enough to damage
the grating surface.

The enlargement of the beam can be accomplished either with a beam-expanding
telescope (Hänsch-type laser [467, 468], Fig. 5.90) or by using grazing inci-

Figure 5.91 Possible
resonator designs for lon-
gitudinal pumping of dye
lasers [447]
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Figure 5.92 Short dye laser
cavity with grazing incidence
grating. Wavelength tuning
is accomplished by turning
the end mirror, which may
also be replaced by a Littrow
grating

Figure 5.93 Littman laser
with grazing incidence grat-
ing and Littrow grating using
longitudinal pumping

dence under an angle of ˛ ' 90ı against the grating normal (Littman-type laser,
Fig. 5.92). The latter arrangement [476] allows very short resonator lengths (below
10 cm). This has the advantage that even for short pump pulses, the induced dye
laser photons can make several transits through the resonator during the pumping
time. A further, very important advantage is the large spacing •� D 1

2
c=d of

the resonator modes, which allows single-mode operation with only one etalon or
even without any etalon but with a fixed grating position and a turnable mirror M2

(Fig. 5.93) [477, 478]. At the wavelength � the first diffraction order is reflected
from the grazing incidence grating (˛ � 88ı–89ı) into the direction ˇ determined
by the grating equation (4.21)

� D d.sin ˛ C sinˇ/ ' d.1C sinˇ/ :

For d D 4 � 10�5 cm (2500 lines=mm) and � D 400 nm! ˇ D 0ı, which means
that the first diffraction order is reflected normal to the grating surface onto mirror
M2. With the arrangement in Fig. 5.93, a single-shot linewidth of less than 300MHz
and a time-averaged linewidth of 750MHz have been achieved. Wavelength tuning
is accomplished by tilting the mirror M2.

For reliable single-mode operation of the Littman laser longitudinal pumping is
better than transverse pumping, because the dye cell is shorter and inhomogenities
of the refractive index caused by the pump process are less severe [479].

The reflectivity of the grating is very low at grazing incidence and the round-
trip losses are therefore high. Using Brewster prisms for preexpansion of the laser
beam (Fig. 5.94), the angle of incidence ˛ at the grazing incidence grating can be
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Figure 5.94 a Beam expansion by a Brewster prism; b Littman laser with beam-expanding prisms
and grazing incidence grating

decreased from 89ı to 85ı–80ı achieving the same total expansion factor. This
reduces the reflection losses considerably [480, 481].

Example 5.28
Assume a reflectivity of R.˛ D 89ı/ D 0:05 into the wanted first order at
ˇ D 0ı. The attenuation factor per round-trip is then .0:05/2 ' 2:5 � 10�3!
The gain factor per round-trip must be larger than 4 � 102 in order to reach
threshold. With preexpanding prisms and an angle ˛ D 85ı, the reflectivity
of the grating increases to R.˛ D 85ı/ D 0:25, which yields the attenuation
factor 0.06. Threshold is now reached if the gain factor exceeds 16.

In order to increase the laser power the output beam of the dye laser oscillator
is sent through one or more amplifying dye cells, which are pumped by the same
pump laser (Fig. 5.95).

A serious problem in all laser-pumped dye lasers is the spontaneous background,
emitted from the pumped volume of the oscillator and the amplifier cells. This
spontaneous emission is amplified when passing through the gain medium. It rep-
resents a perturbing, spectrally broad background of the narrow laser emission. This
amplified spontaneous emission (ASE) can partly be suppressed by prisms and aper-
tures between the different amplifying cells. An elegant solution is illustrated in
Fig. 5.95. The end face of a prism expander serves as beam splitter. Part of the
laser beam is refracted, expanded, and spectrally narrowed by the Littrow grating
and an etalon [471] before it is sent back into the oscillator traversing the path 3–4–
5–4–3. The spectral bandwidth of the oscillator is thus narrowed and only a small
fraction of the ASE is coupled back into the oscillator. The partial beam 6 reflected



5.7 Tunable Lasers 363

Figure 5.95 Oscillator and preamplifier of a laser-pumped dye laser with beam expander and
grating. The same dye cell serves as gain medium for oscillator and amplifier [courtesy of Lambda
Physik, Göttingen]

Figure 5.96 Excimer laser-pumped dye laser with oscillator and two amplifier stages. This design
suppresses effectively the ASE (Lambda Physik FL 3002) (see text)

at the prism end face is sent to the same grating before it passes through another
part of the first dye cell, where it is further amplified (path: 3–6–7–8). Again only
a small fraction of the ASE can reach the narrow gain region along the focal lines
of the cylindrical lenses used for pumping the amplifiers. The newly developed “-
super pure” design shown in Fig. 5.96 further decreases the ASE by a factor of 10
compared to the former device [482].

For high-resolution spectroscopy the bandwidth of the dye laser should be as
small as possible. With two etalons having different free spectral ranges, single-
mode operation of the Hänsch-type laser (Fig. 5.90) can be achieved. For continu-
ous tuning both etalons and the optical length of the laser resonator must be tuned
synchronously. This can be realized with computer control (Sect. 5.4.5).

A simple mechanical solution for wavelength tuning of the dye laser in Fig. 5.92
without mode hops has been realized by Littman [478] for a short laser cavity
(Fig. 5.97). If the turning axis of mirror M2 coincides with the intersection of the
two planes through mirror M2 and the grating surface, the two conditions for the
resonance wavelength (cavity length l1C l2 D N ��=2 and the diffracted light must
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Figure 5.97 Continuous
mechanical tuning of the
dye laser wavelength with-
out mode hops by tilting
mirror M2 around an axis
through the intersection of
two planes through the grat-
ing surface and the surface
of mirror M2

always have vertical incidence on mirror M2) can be simultaneously fulfilled. In
this case we obtain from Fig. 5.97 the relations:

N� D 2.l1 C l2/ D 2L.sin ˛ C sinˇ/ ; and

� D d.sin ˛ C sinˇ/ ) L D Nd=2 : (5.104)

With such a system single-mode operation without etalons has been achieved. The
wave number � D 1=� could be tuned over a range of 100 cm�1 without mode
hops.

The spectral bandwidth of a single-mode pulsed laser with pulse duration
T is,
in principle, limited by the Fourier limit, that is,


� D a=
T ; (5.105)

where the constant a ' 1 depends on the time profile I.t/ of the laser pulse. This
limit is, however, generally not reached because the center frequency �0 of the laser
pulse shows a jitter from pulse to pulse, due to fluctuations and thermal instabili-
ties. This is demonstrated by Fig. 5.98 where the spectral profile of a Littman-type
single-mode pulsed laser was measured with a Fabry–Perot wavemeter for a single
shot and compared with the average over 500 shots. A very stable resonator de-
sign and, in particular, temperature stabilization of the dye liquid, which is heated
by absorption of the pump laser, decreases both the jitter and the drift of the laser
wavelength.

A more reliable technique for achieving really Fourier-limited pulses is based on
the amplification of a cw single-mode laser in several pulsed amplifier cells. The
expenditure for this setup is, however, much larger because one needs a cw dye
laser with a cw pump laser and a pulsed pump laser for the amplifier cells. Since
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Figure 5.98 Linewidth of a single-mode pulsed laser measured with a Fabry–Perot wavemeter:
a experimental setup; b single shot; and c signal averaged over 500 pulses

the Fourier limit 
� D 1=
T decreases with increasing pulse width 
T , copper-
vapor lasers with 
T D 50 ns are optimum for achieving spectrally narrow and
frequency-stable pulses. A further advantage of copper-vapor lasers is their high
repetition frequency up to f D 20 kHz.

In order to maintain the good beam quality of the cw dye laser during its am-
plification by transversely pumped amplifier cells, the spatial distribution of the
inversion density in these cells should be as uniform as possible. Special designs
(Fig. 5.99) of prismatic cells, where the pump beam traverses the dye several times
after being reflected from the prism end faces, considerably improves the quality of
the amplified laser beam profile.

Example 5.29
When the output of a stable cw dye laser (
� ' 1MHz) is amplified in
three amplifier cells, pumped by a copper-vapor laser with a Gaussian time
profile I.t/with the halfwidth
t , Fourier-limited pulses with
� ' 40MHz
and peak powers of 500 kW can be generated. These pulses are wavelength
tunable with the wavelength of the cw dye laser.
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Figure 5.99 Transversely
pumped prismatic amplifier
cell (Berthune cell) for more
uniform isotropic pumping.
The laser beam should have
a diameter about four times
larger than the bore for the
dye. The partial beam 1 tra-
verses the bore from above,
beam 2 from behind, beam 4
from below, and beam 3 from
the front

c) Continuous-Wave Dye Lasers

For sub-Doppler spectroscopy, single-mode cw dye lasers represent the most impor-
tant laser types besides cw tunable solid-state lasers. Great efforts have therefore
been undertaken in many laboratories to increase the output power, tuning range,
and frequency stability. Various resonator configurations, pump geometries, and
designs of the dye flow system have been successfully tried to realize optimum
dye-laser performance. In this section we can only present some examples of the
numerous arrangements used in high-resolution spectroscopy.

Figure 5.100 illustrates three possible resonator configurations. The pump beam
from an argon or krypton laser enters the resonator either collinearly through the
semitransparent mirror M1 and is focused by L1 into the dye (Fig. 5.100a), or the
pump beam and dye laser beam are separated by a prism (Fig. 5.100b). In both
arrangements the dye laser wavelength can be tuned by tilting the flat end mirror M2.
In another commonly used arrangement (Fig. 5.100c), the pump beam is focused by
the spherical mirror Mp into the dye jet and crosses the dye medium under a small
angle against the resonator axis.

In all these configurations the active zone consists of the focal spot of the pump
laser within the dye solution streaming in a laminar free jet of about 0:5–1-mm
thickness, which is formed through a carefully designed polished nozzle. At flow
velocities of 10m=s the time of flight for the dye molecules through the focus of the
pump laser (about 10 µm) is about 10�6 s. During this short period the intersystem
crossing rate cannot build up a large triplet concentration, and the triplet losses are
therefore small.

For free-running dye jets the viscosity of the liquid solvent must be sufficiently
large to ensure the laminar flow necessary for high optical quality of the gain zone.
Most jet-stream dye lasers use ethylene glycol or propylene glycol as solvents.
Since these alcohols decrease the quantum efficiency of several dyes and also do
not have optimum thermal properties, the use of water-based dye solutions with
viscosity-raising additives can improve the power efficiency and frequency stability
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Figure 5.100 Three possible standing-wave resonator configurations used for cw dye lasers:
a collinear pumping geometry; b folded astigmatically compensated resonator of the Kogelnik
type [439] with a Brewster prism for separation of pump beam and dye-laser beam; and c the
pump beam is focused by an extra pump mirror into the dye jet and is tilted against the resonator
axis

of jet-stream cw dye lasers [483]. Output powers of more than 30W have been
reported for cw dye lasers [484].

In order to achieve a symmetric beam waist profile of the dye laser mode in the
active medium, the astigmatism produced by the spherical folding mirror M3 in the
folded cavity design has to be compensated by the plane-parallel liquid slab of the
dye jet, which is tilted under the Brewster angle against the resonator axis [439].
The folding angle for optimum compensation depends on the optical thickness of
the jet and on the curvature of the folding mirror.

The threshold pump power depends on the size of the pump focus and on the
resonator losses, and varies between 1mW and several watts. The size of the pump
focus should be adapted to the beam waist in the dye laser resonator (mode match-
ing). If it is too small, less dye molecules are pumped and the maximum output
power is smaller. If it is too large, the inversion for transverse modes exceeds
threshold and the dye laser oscillates on several transverse modes. Under optimum
conditions, pump efficiencies (dye laser output=pump power input) up to � D 35%
have been achieved, yielding dye output powers of 2:8W for only 8W pump power.
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Figure 5.101 Birefringent plane-parallel plate as wavelength selector inside the laser resonator.
For wavelength tuning the plate is turned around an axis parallel to the surface normal. This
changes the angle # against the optical axis and thus the difference ne.#/� no.#/

Coarse wavelength tuning can be accomplished with a birefringent filter (Lyot
filter, see Sect. 4.2.11) that consists of three birefringent plates with thicknesses d ,
q1d , q2d (where q1, q2 are integers), placed under the Brewster angle inside the dye
laser resonator (Fig. 5.101). Contrary to the Lyot filter discussed in Sect. 4.2.11, no
polarizers are necessary here because the many Brewster faces inside the resonator
already define the direction of the polarization vector, which lies in the plane of
Fig. 5.101.

When the beam passes through the birefringent plate with thickness d under the
angleˇ against the plate-normal, a phase difference
' D .2�=�/�.ne�no/
s with

s D d= cosˇ develops between the ordinary and the extraordinary waves. Only
those wavelengths �m can reach oscillation threshold for which this phase difference
is 2m� (m D 1; 2; 3; : : :). In this case, the plane of polarization of the incident wave
has been turned by m� and the transmitted wave is again linearly polarized in the
same direction as the incident wave. For all other wavelengths the transmitted wave
is elliptically polarized and suffers reflection losses at the Brewster end faces. The
transmission curve T .�/ of a three-stage birefringent filter is depicted in Fig. 5.102
for a fixed angle # . The laser will oscillate on the transmission maximum that is
closest to the gain maximum of the dye medium [485, 486]. Turning the Lyot filter
around the axis in Fig. 5.101 will shift all these maxima.

For single-mode operation additional wavelength-selecting elements have to be
inserted into the resonator (Sect. 5.4.3). In most designs two FPI etalons with
different free spectral ranges are employed [487, 488]. Continuous tuning of the
single-mode laser demands synchronous control of the cavity length and the trans-
mission maxima of all selecting elements (Sect. 5.5). Figures 5.103a and b show
two commercial versions of a single-mode cw dye laser. The optical path length
of the cavity can be conveniently tuned by turning a tilted plane-parallel glass plate
inside the resonator (galvo-plate). If the tilting range is restricted to a small interval
around the Brewster angle, the reflection losses remain negligible (see Sect. 5.5.1).
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Figure 5.102 Transmission
T .�/ of a birefringent filter
with three Brewster plates
of KDP, with plate thickness
d1 D 0:34mm, d2 D 4d1,
d3 D 16d1 [485]

The scanning etalon can be realized by the piezo-tuned prism FPI etalon in
Fig. 5.44 with a free spectral range of about 10 GHz. It can be locked to the oscil-
lating cavity eigenfrequency by a servo loop: if the transmission maximum �T of
the FPI is slightly modulated by an ac voltage fed to the piezoelement, the laser in-
tensity will show this modulation with a phase depending on the difference �c � �T

between the cavity resonance �c and the transmission peak �T. This phase-sensitive
error signal can be used to keep the difference �c��T always zero. If only the prism
FPI is tuned synchronously with the cavity length, tuning ranges of about 30GHz
(¶ 1 cm�1) can be covered without mode hops. For larger tuning ranges the sec-
ond thin etalon and the Lyot filter must also be tuned synchronously. This demands
a more sophisticated servo system, which can, however, be provided by computer
control.

A disadvantage of cw dye lasers with standing-wave cavities is spatial hole burn-
ing (Sect. 5.3.3), which impedes single-mode operation and prevents all of the
molecules within the pump region from contributing to laser emission. This ef-
fect can be avoided in ring resonators, where the laser wave propagates in only one
direction (Sect. 5.2.7). Ring lasers therefore show, in principle, higher output pow-
ers and more stable single-mode operation [489]. However, their design and their
alignment are more critical than for standing-wave resonators.

In order to avoid laser waves propagating in both directions through the ring
resonator, losses must be higher for one direction than for the other. This can be
achieved with an optical diode [322]. This diode essentially consists of a birefrin-
gent crystal and a Faraday rotator (Fig. 5.20), which turns the bifringent rotation
back to the input polarization for the wave incident in one direction but increases
the rotation for the other direction.

The specific characteristics of a cw ring dye laser regarding output power and
linewidth have been studied in [489]. A theoretical treatment of mode selection in
Fabry–Perot-type and in ring resonators can be found in [490]. Because of the many
optical elements in the ring resonator, the losses are generally slightly higher than
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Figure 5.103 a Commercial version of a single-mode cw ring dye laser (Spectra-Physics), b sin-
gle mode tunable cw ring dye laser (Coherent model CR699-21)

in standing-wave resonators. This causes a higher threshold. Since more molecules
contribute to the gain, the slope efficiency �al D dPout=dPin is, however, higher.
At higher input powers well above threshold, the output power of ring lasers is
therefore higher (Fig. 5.104).

The characteristic data of different dye laser types are compiled in Table 5.4 for
“typical” operation conditions in order to give a survey on typical orders of magni-
tude for these figures. The tuning ranges depend not only on the dyes but also on the
pump lasers. They are slightly different for pulsed lasers pumped by excimer lasers
from that of cw lasers pumped by argon or krypton lasers. Meanwhile, frequency-
doubled Nd:YAG lasers are used more and more frequently as pump sources for
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Figure 5.104 Comparison of
output powers of ring lasers
(full circles and squares) and
standing wave lasers (open
circles and crosses) for two
different laser dyes

Table 5.4 Characteristic parameters of some dye lasers pumped by different sources

Pump Tuning
range
[nm]

Pulse
width
[ns]

Peak
power
[W]

Pulse
energy
[mJ]

Repetition
rate
[s�1]

Average
output
[W]

Excimer laser 370–985 10–200 � 107 � 300 20–200 0:1–30

N2 laser 370–1020 1–10 < 105 < 1 < 103 0:01–0:1

Flashlamp 300–800 300–104 102–105 < 5000 1–100 0:1–200

ArC laser 350–900 cw cw – cw 0:1–10

KrC laser 400–1100 cw cw – 0:1–5

Nd:YAG laser 400–920 10–20 105–107 10–100 10–30 0:1–5

�=2: 530 nm

�=3: 355 nm

Copper-vapor laser 530–890 30–50 ' 104–5 � 1 ' 104 � 10

dye lasers. Many data on dye laser wavelengths, tuning ranges and possible pump
lasers can be found in [296].

5.7.6 Excimer Lasers

Excimers (that is, excited dimers) are molecules that are bound in excited states
but are unstable in their electronic ground states. Examples are diatomic molecules
composed of closed-shell atoms with 1S0 ground states, such as the rare gases,
which form stable excited dimers He�

2 , Ar�
2 , etc., but have a mainly repulsive poten-

tial in the ground state with a very shallow van der Waals minimum (Fig. 5.105).
The well depth � of this minimum is small compared to the thermal energy kT at
room temperature, which prevents the stable formation of ground-state molecules.
Mixed excimers such as KF or XeNa can be formed from combinations of closed-
shell=open-shell atoms (for example, combination of atomic states 1SC2S, 1SC2P,
1S C 3P, etc.), which lead to repulsive ground-state potentials [491, 492].
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Figure 5.105 Schematic
potential energy diagram of
an excimer molecule

These excimers are ideal candidates for forming the active medium of tunable
lasers since inversion between the pumped upper bound state and the dissociat-
ing lower state is automatically maintained because the lower state dissociates
very rapidly (' 10�12–10�13 s) and the frequently occurring bottleneck caused by
a small depletion rate of the lower laser level is prevented. The output power of
excimer lasers mainly depends on the excitation rate of the upper state.

The tunability range depends on the slope of the repulsive potential and on the
internuclear distancesR1 andR2 of the classical turning points in the excited vibra-
tional levels. The spectral gain profile is determined by the Franck–Condon factors
for bound–free transitions. The corresponding intensity distribution I.!/ of the
fluorescence from the upper vibrational levels shows a modulatory structure (see
Fig. 2.21) reflecting the R dependence j vib.R/j2 of the vibrational wave function
in these levels [493].

The gain of the active medium at the frequency ! D .Ek � Ei/=„ is, according
to (5.2), given by

˛.!/ D ŒNi � .gi=gk/Nk�
.!/ ; (5.106)

where the absorption cross section 
.!/ is related to the spontaneous transition
probability Aki D 1=�k [491] by

!2Z

!1


.!/d! D .�=2/2Aki D .�=2/2

�k
: (5.107)

Because of the broad spectral range
! D !1 �!2, the cross section 
.!/ may be
very small in spite of the large overall transition probability indicated by the short
upper-state lifetime �k . Consequently, a high population density Nk is necessary
to achieve sufficient gain. Since the pumping rate Rp has to compete with the
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Table 5.5 Characteristic data of some excimer lasers. (Pulse width: 10–200 µs; repetition fre-
quency: 1–200 s�1, depending on the model; output beam divergence: 2 � 4mrad; jitter of the
pulse energy: 3–10; time jitter: 1–10 µs, depending on the model)

Laser medium F2 ArF KrCl KrF XeCl XeF

Wavelength [nm] 157 193 222 248 308 357

Pulse energy [mJ] 15 � 500 � 60 � 1000 � 600 500

Pulse repetition rate [Hz] 10 20 20 � 300 � 300 � 300

spontaneous transition rate, which is proportional to the third power of the transition
frequency !, the pumping power Rp„! at laser threshold scales at least as the
fourth power of the lasing frequency. Short-wavelength lasers therefore require
high pumping powers [494, 495].

Pumping sources are provided by high-voltage, high-current electron beam
sources, such as the FEBETRON [496] or by fast transverse discharges [497].
The primary step is the excitation of atoms by electron impact. Since the excita-
tion of the upper excimer states needs collisions between these excited atoms and
ground-state atoms (remember that there are no ground-state excimer molecules),
high atom densities are required to form a sufficient number N � of excimers in the
upper state. A typical gas mixture of a XeCl laser is: Xe: 40mbar, HCl: 5mbar,
He: 2000–4000mbar. These high pressures impede a uniform discharge along the
whole active zone in the channel. Preionization by fast electrons or by ultravio-
let radiation is required to achieve a large and uniform density of excimers, and
specially formed electrodes are used [498]. Fast switches, such as magnetically
confined thyratrons have been developed, and the inductances of the discharge
circuits must be matched to the discharge time [499].

Up to now the rare-gas halide excimers, such as KrF, ArF, or XeCl, form the
active medium of the most advanced UV excimer lasers. Similar to the nitrogen
laser, these rare-gas halide lasers can be pumped by fast transverse discharges, and
lasers of this type are the most common commercial excimer lasers (Table 5.5).

Inversion is reached by a sufficiently fast and large population increase of the
upper laser level. This is achieved through a chain of different collision processes
that are still not been completely understood for all excimer lasers. As an example
of the complexity of these processes, some possible paths to inversion in XeCl
excimer lasers, which use a mixture of Xe, HCl, and He or Ne as gas filling, are
given by

XeC e�
�! Xe� C e� ;

! XeC C 2e� ;
Xe� C Cl2 ! XeCl� C Cl ;

Xe� C HCl! XeCl� C H ;

XeC C Cl� CM! XeCl� CM : (5.108)
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All these formation processes of XeCl� occur very rapidly on a time scale of
10�8–10�9 s and have to compete with quenching processes such as

XeCl� C He! XeC ClC He ;

which diminish the inversion.
The pulse width of most excimer lasers lies within 5–20 ns. Recently, long-

pulse XeCl lasers have been developed, which have pulse widths of T > 300 ns
[500]. They allow amplification of single-mode cw dye lasers with Fourier-limited
bandwidths of 
� < 2MHz at peak powers of P > 10 kW. Because of the large
volume of the gain medium, unstable resonators are often used to match the mode
volume to the gain volume (see Sect. 5.2.6).

More details on experimental designs and on the physics of excimer lasers can
be found in [492, 500–502].

5.7.7 Free-Electron Lasers

In recent years a completely novel concept of a tunable laser has been developed
that does not use atoms or molecules as an active medium, but rather “free” elec-

Figure 5.106 a Schematic
arrangement of a free-
electron laser; b radiation
of a dipole at rest (v D 0)
and a moving dipole with
v ' c; c phase-matching
condition
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trons in a specially designed magnetic field. It converts part of the electron kinetic
energy into electromagnetic radiation as stimulated synchrotron radiation. The first
free-electron laser (FEL) was realized by Madey and coworkers [503]. A schematic
diagram of the FEL is shown in Fig. 5.106. The high-energy relativistic electrons
from an accelerator pass along a static, spatially periodic magnetic field B, which
can be realized, for example, by a periodic arrangement of magnets with alternat-
ing directions of the magnetic field perpendicular to the electron beam propagation
(Fig. 5.107) or by a doubly-wound helical superconducting magnet (wiggler) pro-
viding a circularly polarized B field.

The basic physics of the FEL and the process in which FEL radiation origi-
nates can be understood in a classical model, following the representation in [504].
Because of the Lorentz force, the electrons passing through the wiggler undergo
periodic oscillations, resulting in the emission of radiation. For an electron os-
cillating in the x-direction around a point at rest, the angular distribution of such
a dipole radiation is I.�/ D I0 � sin2 � (Fig. 5.106b). In contrast, for the relativis-
tic electron with the velocity v ' c, it is sharply peaked in the forward direction
(Fig. 5.106b) within a cone of solid angle � ' .1 � v2=c2/1=2. For electrons of
energy E D 100MeV, for instance, � is about 2mrad. This relativistic dipole ra-
diation is the analog to the spontaneous emission in conventional lasers and can be
used to initiate induced emission in the FEL.

The wavelength � of the emitted light is determined by the wiggler period �w

and the following phase-matching condition: assume the oscillating electron at the
position z0 in the wiggler emits radiation of all wavelengths. However, the light
moves faster than the electron (velocity vz) in the z-direction. After one wiggler
period at z1 D z0 C�w, there will be a time lag


t D �w

�
1

vz
� 1
c

�
;

Figure 5.107 Principle of the free-electron laser [Institute of Nuclear Physics, Darmstadt]
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between the electron and the light emitted at z0. The light emitted by the electron
in z1 will therefore not be in phase with the light emitted in z0 unless the time
difference
t D n � T D n � �=c is an integer multiple of the light period T . Phase
matching can be therefore only be achieved for certain wavelengths

�n D 
L

n
D �w

n

�
c

vz
� 1

�
.n D 1; 2; 3; : : :/ : (5.109)

Only for these wavelengths �n are the contributions emitted by the electron at
different locations in phase and therefore interfere constructively. The lowest har-
monic �1 (n D 1) of the emitted light has therefore the wavelength �1 D �w.c=vz�
1/ and can be tuned with the velocity vz of the electron.

Example 5.30
With �w D 3 cm, Eel D 10MeV! vz ' 0:999c, we obtain � D 40 µm for
n D 1 and � D 13 µm for n D 3, which lies in the mid-infrared. For Eel D
100MeV ) vz D .1 � 1:25 � 10�5/c and the phase-matching wavelength
has decreased to �1 D 1:25 � 10�5�w D 375 nm, which is in the UV range.

Since the electrons move with nearly the velocity of light, they have to be treated
relativistically. A rigorous relativistic treatment gives instead of (5.109) the correct
relation

�n D �w

2n�2

�
1CK2

	
(5.110)

with the relativistic factor � D .1 � v2=c2/�1=2 and the magnetic field parameter
K D e � B � �=.2� �mc2/, where m is the electron mass and B the magnetic field
strength.

Example 5.31
With K D 1, � D 1000 and � D 3 cm the wavelength � becomes for n D 1
�1 D 30 nm, which is in the soft X-ray region.

When the field amplitude of the radiation emitted by a single electron is Ej , the
total intensity radiated by N independent electrons is

Itot D
ˇ̌
ˇ̌
ˇ̌
NX

jD1
Ej ei'j

ˇ̌
ˇ̌
ˇ̌

2

; (5.111a)
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where the phases 'j of the different contributions may be randomly distributed.
If somehow all electrons emit with the same phase, the total intensity for the case

of equal amplitudes Ej D E0 becomes

I coherent
tot D

ˇ̌
ˇ̌
ˇ̌
NX

jD1
Ej

ˇ̌
ˇ̌
ˇ̌

2

/ jNE0j2 / N2Iel ; (5.111b)

when Iel / E2
0 is the intensity emitted by a single electron. This coherent emission

with equal phases therefore yields N times the intensity of the incoherent emission
with random phases. It is realized in the FEL.

In order to understand how this can be achieved, we first consider a laser beam
with the correct wavelength �m that passes along the axis of the wiggler. Electrons
that move at the critical velocity vc D c�w=.�wCm�m/ are in phase with the laser
wave and can be induced to emit a photon that amplifies the laser wave (stimulated
Compton scattering). The electron loses the emitted radiation energy and becomes
slower. All electrons that are a little bit faster than vc can lose energy by adding
radiation to the laser wave without coming out of phase as long as they are not
slower than vc. On the other hand, electrons that are slower than vc can absorb
photons, which makes them faster until they reach the velocity vc.

This means that the faster electrons contribute to the amplification of the incident
laser wave, whereas the slower electrons attenuate it. This stimulated emission of
the faster electrons and the absorption of photons by the slower electrons leads to
a velocity bunching of the electrons toward the critical velocity vc and enhances
the coherent superposition of their contributions to the radiation field. The energy
pumped by the electrons into the radiation field comes from their kinetic energy and
has to be replaced by acceleration in RF cavities, if the same electrons in storage
rings are to be used for multiple traversions through the wiggler.

This free-electron radiation amplifier can be converted into a laser by providing
reflecting mirrors for optical feedback. Such FELs are now in operation at several
places in the world. Their advantages are their tunability over a large spectral range
from millimeter waves into the VUV region by changing the electron energy. Their
potential high output power represents a further plus for FELs. Their definitive
disadvantage is the large experimental expenditure that demands, besides a delicate
wiggler structure, a high-energy accelerator or a storage ring.

At present FELs with output powers of several kilowatts in the infrared and sev-
eral watts in the visible have been realized. The Stanford FEL reaches, for example,
130 kW at 3:4 µm, whereas from a cooperation between TRW and Stanford Univer-
sity, peak powers of 1:2MW at � D 500mm were reported. During recent years
a large FEL called FLASH has been build at DESY, where part of the linear accel-
erator TESLA is used for the FEL. At electron energies between 0.37 and 1:25GeV
the spectral range covers the soft X-ray region between 4.2 and 45 nm. The param-
eters of this FEL are compiled in Table 5.6.

As shown in Fig. 5.108 a beam switch for the high energy electrons allows the
operation of two FELs.
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Table 5.6 Relevant operation parameters of the FEL Flash at DESY, Hamburg [http://flash.desy.
de/]

Parameter Value

Wavelength range 4.2–45 nm

Average single pulse energy 10–500 µJ

Pulse duration (FWHM) < 50–200 fs

Peak power (from av.) 1–3 GW

Average power
(example from 5000 pulses=sec)

up to 600 mW

Spectral width (FWHM) 0.7–2 %

Photons per pulse 1011–1013

Average brilliance 1017–1021 photons=s=mrad2=mm2=0:1 % bw

Peak brilliance 1029–1031 photons=s=mrad2=mm2=0:1 % bw

Figure 5.108 Schematic experimental setup for the FEL’s Flash 1 and Flash 2 [http://flash2.desy.
de/]

5.7.8 X-Ray Lasers

For many problems in atomic, molecular, and solid-state physics intense sources
of tunable X-rays are required. Examples are inner-shell excitation of atoms and
molecules or spectroscopy of multiply charged ions. Until now, these demands
could only partly be met by X-ray tubes or by synchrotron radiation. The devel-
opment of lasers in the spectral range below 100 nm is therefore of great interest.
Besides the free electron laser, which represents the most powerful but expensive
X-ray laser, there are other possibilities which can realize much less expensive
table top lasers in the X-ray region. They are based on different excitation mecha-
nisms:

a) capillary discharges: A high electric voltage capacitor is discharged through
a few centimetre long capillary filled with a gas at low pressure. This gives a
short (< 10�6 s) high current electrical pulse which ionizes the gas atoms and ex-
cites the multiply charged ions AnC. The recombination radiation from the process
AnC C e� ! A.n�1/C can cover the far UV to the X-ray region. Using argon as

http://flash.desy.de/
http://flash.desy.de/
http://flash2.desy.de/
http://flash2.desy.de/
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Figure 5.109 Experimental setup for realizing X-ray lasers: a production of high-temperature
plasma; b X-ray resonator using Bragg reflection by crystals; c measurement of single-pass gain
and line narrowing

the gas in the capillary radiation at around � D 47 nm can be observed from the
recombination of Ar8C.

b) Plasma obtained from laser irradiation of solid surfaces. Here a high power
laser pulse evaporates part of the solid material and produces a plasma which is
further excited by a second laser pulse generating highly excited multiply charged
ions.

c) Gas breakdown by focussed high power laser pulses. Here a high temperature
plasma is formed by focussing a powerful laser pulse into a gas (gas breakdown).
While the first part of the pulse ionizes the gas, where multiple charged ions are
produced, the rest of the pulse energy excites these ions into high lying states.

The difficulties of experimental realization of X-ray lasers are the following:
According to (2.22), the spontaneous transition probability Ai scales with the

third power �3 of the emitted frequency. The energy losses of the upper-state by
fluorescence are therefore proportional to Aih� / �4! This means that high pump-
ing powers are required to achieve inversion. Therefore only pulsed operation has
a chance to be realized where ultrashort laser pulses with high peak powers are used
as pumping sources. Possible candidates that can serve as active media for X-ray
lasers are highly excited multiply charged ions. They can be produced in a laser-
induced high-temperature plasma (Fig. 5.109) or in a capillary plasma discharge.
If the pump laser beam is focused by a cylindrical lens onto the target, a high-
temperature plasma is produced along the focal line. The q-fold ionized species
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Figure 5.110 An emission
line from an X-ray laser on
a transition between Rydberg
states of nickel-like Pd18C

[508]

Figure 5.111 Level scheme
for inversion by ion–electron
recombination

with nuclear charge Z � e in the plasma plume recombines with electrons to form
Rydberg states of ions with electron chargeQel D �.Z�qC1/. In favorable cases
these high Rydberg levels are more strongly populated than lower states of this ion
and inversion is achieved (Fig. 5.111). The conditions for achieving inversion and
thus amplification of X-ray radiation can only be maintained for very short times
(on the order of picoseconds).

An example of X-ray amplification in nickel-like palladium Pd18C is shown in
Fig. 5.110, where a terawatt laser pulse created a hot plasma from a palladium
surface. By recombining electrons with highly charged palladium ions, inversion
between two Rydberg states of Pd18C could be achieved, resulting in an intense
laser line at � D 14:7 nm [508, 509].

An efficient way to generate inversion is to use double pulses [510], where the
first pulse heats and explodes a thin metal foil, producing a hot plasma. The second
pulse further ionizes the plasma, generating highly charged ions, which can recom-
bine with electrons creating inversion between two Rydberg levels (Fig. 5.111).
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Figure 5.112 Double pulses
for creating and further ioniz-
ing the plasma generated by
the first pulse [510]

In order to improve the efficiency of X-ray lasers below 20 nm, a grazing in-
cidence pumping scheme has been proposed that should allow inversion to be
achieved with pump pulse energies of below 150mJ [510]. A preformed plasma is
first produced in a flat target by a laser pulse in order to generate the optimum gain
region. Then a second short pulse (1 ps, � D 800 nm) is released at a grazing angle
to strongly heat this gain region, producing efficient on-axis X-ray lasing.

Such soft X-ray lasers have already been realized [511–514]. The shortest wave-
length reported to date is 6 nm [513]. Resonators for X-ray lasers can be composed
of Bragg reflectors, which consist of suitable crystals that can be tilted to fulfill the
Bragg condition 2d � sin# D m �� for constructive interference between the partial
waves reflected by the crystal planes with distance d (Fig. 5.109b).

Another way to realize coherent X-ray radiation is based on the generation of
high harmonics of high-power femtosecond laser pulses (see Vol. 2, Chap. 13).
More detailed information on this interesting subject can be found in [512–519].

The historical development of X-ray lasers can be found in [522].

5.8 Problems

5.1 Calculate the necessary threshold inversion of a gas laser transition at � D
500 nm with the transition probability Aik D 5 � 107 s�1 and a homogeneous
linewidth 
�hom D 20MHz. The active length is L D 20 cm and the resonator
losses per round-trip are 5%.

5.2 A laser medium has a Doppler-broadened gain profile of halfwidth 2GHz and
central wavelength � D 633 nm. The homogeneous width is 50MHz, and the
transition probability Aik D 1 � 108 s�1. Assume that one of the resonator modes
(L D 40 cm) coincides with the center frequency �0 of the gain profile. What is
the threshold inversion for the central mode, and at which inversion does oscillation
start on the two adjacent longitudinal modes if the resonator losses are 10%?
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5.3 The frequency of a passive resonator mode (L D 15 cm) lies 0:5
�D away
from the center of the Gaussian gain profile of a gas laser at � D 632:8 nm. Estimate
the mode pulling if the cavity resonance width is 2MHz and 
�D D 1GHz.

5.4 Assume a laser transition with a homogeneous width of 100MHz, while the
inhomogeneous width of the gain profile is 1GHz. The resonator length is d D
200 cm and the active medium with length L 	 d is placed 20 cm from one end
mirror. Estimate the spacing of the spatial hole-burning modes. How many modes
can oscillate simultaneously if the unsaturated gain at the line center exceeds the
losses by 10%?

5.5 Estimate the optimum transmission of the laser output mirror if the unsaturated
gain per round trip is 2 and the internal resonator losses are 10%.

5.6 The output beam from an HeNe laser with a confocal resonator (R D L D
30 cm) is focused by a lens of f D 30 cm, 50 cm away from the output mirror.
Calculate the location of the focus, the Rayleigh length, and the beam waist in the
focal plane.

5.7 A nearly parallel Gaussian beam with � D 500 nm is expanded by a telescope
with two lenses of focal lengths f1 D 1 cm and f2 D 10 cm. The spot size at the
entrance lens is w D 1mm. An aperture in the common focal plane of the two
lenses acts as a spatial filter to improve the quality of the wavefront in the expanded
beam (why?). What is the diameter of this aperture, if 95% of the intensity is
transmitted?

5.8 A HeNe laser with an unsaturated gain of G0.�0/ D 1:3 per round trip at the
center of the Gaussian gain profile with halfwidth 1:5GHz has a resonator length
of d D 50 cm and total losses of 4%. Single-mode operation at �0 is achieved
with a coated tilted etalon inside the resonator. Design the optimum combination of
etalon thickness and finesse.

5.9 An argon laser oscillating at � D 488 nm with resonator length d D 100 cm
and two mirrors with radius R1 D 1 and R2 D 400 cm has an intracavity circular
aperture close to the spherical mirror to prevent oscillation on transversal modes.
Estimate the maximum diameter of the aperture that introduces losses �diffr < 1%
for the TEM00 mode, but prevents oscillation of higher transverse modes, which
without the aperture have a net gain of 10%.
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5.10 A single-mode HeNe laser with resonator length L D 15 cm is tuned by
moving a resonator mirror mounted on a piezo. Estimate the maximum tuning
range before a mode hop will occur, assuming an unsaturated gain of 10% at the
line center and resonator losses of 3%. What voltage has to be applied to the piezo
(expansion 1 nm=V) for this tuning range?

5.11 Estimate the frequency drift of a laser oscillating at � D 500 nm because
of thermal expansion of the resonator at a temperature drift of 1 ıC=h, when the
resonator mirrors are mounted on distance-holder rods (a) made of invar and (b)
made of fused quartz.

5.12 Mode selection in an argon laser is often accomplished with an intra-cavity
etalon. What is the frequency drift of the transmission maximum

a) for a solid fused quartz etalon with thickness d D 1 cm due to a temperature
change of 2 ıC?

b) For an air-space etalon with d D 1 cm due to an air pressure change of 4mb?
c) Estimate the average time between two mode hopes (cavity length L D 100 cm)

for a temperature drift of 1 ıC=h or a pressure drift of 2mbar=h.

5.13 Assume that the output power of a laser shows random fluctuations of
about 5%. Intensity stabilization is accomplished by a Pockels cell with a half-
wave voltage of 600V. Estimate the ac output voltage of the amplifier driving the
Pockels cell that is necessary to stabilize the transmitted intensity if the Pockels cell
is operated around the maximum slope of the transmission curve.

5.14 A single-mode laser is frequency stabilized onto the slope of the transmission
maximum of an external reference Fabry–Perot interferometer made of invar with
a free spectral range of 8GHz. Estimate the frequency stability of the laser

a) against temperature drifts, if the FPI is temperature stabilized within 0:01 ıC,
b) against acoustic vibrations of the mirror distance d in the FPI with amplitudes

of 1 nm.
c) Assume that the intensity fluctuations are compensated to 1% by a difference

amplifier. Which frequency fluctuations are still caused by the residual intensity
fluctuations, if a FPI with a free spectral range of 10GHz and a finesse of 50 is
used for frequency stabilization at the slope of the FPI transmission peak?



Chapter 6
Nonlinear Optics

When an electromagnetic wave interacts with atoms the electrons perform oscilla-
tions around their equilibrium position which results in the emission of radiation. If
the intensity of the wave is sufficiently small the amplitude of these oscillations is
small and the restoring force

F r D �k � r (6.1)

is proportional to the displacement r of the electron from its equilibrium position
r D 0 (Hooke’s Law). This is the regime of linear Optics.

For higher intensities, however, as can be reached with lasers, the amplitude
becomes so large that the restoring force is no longer linearly dependent on the
displacement and higher order terms have to be included in (6.1), which has to be
replaced by the sum

Fr D �
X

ki r
i : (6.2)

Since the force on an electron with charge �e in an electric field E is F D �e �E
and the oscillating charge equals an induced dipole moment, this leads for high
intensities to a nonlinear dependence between electric field amplitude and induced
dipole moment. The radiation emitted by the oscillating electrons contains besides
the fundamental frequency! of the driving field also higher frequencies n�! (higher
harmonics generation).

This harmonics generation is generally realized by focussing a laser beam into
optical crystals with special symmetries. Also gases or metal vapours have been
used although the efficiency of harmonics generation is here lower because of the
much lower atomic densities. The generation of higher harmonics or of sum-and
difference frequencies, (if two lasers with different frequencies are focussed into the
optical crystal) has considerably widened the frequency range for coherent radiation
from the extreme UV to the far infrared region.

We will now study this nonlinear behaviour and the applications of nonlinear
optics in more detail. Several examples shall illustrate the subject [523–534].

385W. Demtröder, Laser Spectroscopy 1, DOI 10.1007/978-3-642-53859-9_6,
© Springer-Verlag Berlin Heidelberg 2014
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6.1 Mathematical Description

The dielectric polarization of a medium

P D
X

pi ;

which is the sum of all induced dipole moments p D e � r can be written as the
expansion in powers of the applied field

P D �0. Q�.1/E C Q�.2/E 2 C Q�.3/E 3 C : : :/ ; (6.3)

where Q�.k/ is the kth-order susceptibility tensor of rank k C 1.

Example 6.1
Consider, for example, the EM wave

E D E 1 cos.!1t � k1z/C E2 cos.!2t � k2z/ ; (6.4)

composed of two components incident on the nonlinear medium. The induced
polarization at a fixed position (say, z D 0) in the crystal is generated by the
combined action of both components. The linear term in (6.3) describes the
Rayleigh scattering. The quadratic term �.2/E2 gives the contributions

P .2/ D �0 Q�.2/E2.z D 0/
D �0 Q�.2/

�
E 2
1 cos2 !1t CE 2

2 cos2 !2t C 2E1E 2 cos!1t � cos!2t
	

D �0 Q�.2/
�
1

2
.E2

1 CE 2
2/C

1

2
E 2
1 cos 2!1t

C1
2

E2
2 cos 2!2t CE1 �E 2Œcos.!1 C !2/t C cos.!1 � !2/t�

�
;

(6.5)

where the trigonometric relations cos2 x D 1
2
.1C cos2x/ and cosx � cosy D

1
2
.cos.x C y/ C cos.x � y// have been used. The summands of this sum

represent dc polarization, ac components at the second harmonics 2!1, 2!2,
and components at the sum or difference frequencies !1 ˙ !2.

Note The direction of the polarization vector P may be different from those
of E1 and E2. The components �ijk are generally complex and the phase of
the polarization differs from that of the driving fields.

Taking into account that the field amplitudes E 1, E 2 are vectors and that the
second-order susceptibility Q�.2/ is a tensor of rank 3 with components �ijk depend-
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ing on the symmetry properties of the nonlinear crystal [529], we can write (6.3) in
the explicit form

P
.2/
i D �0

0

@
3X

kD1
�
.1/

ik Ek C
3X

j;kD1
�
.2/

ijkEjEk

1

A .1 ¶ x; 2 ¶ y; 3 ¶ z/ ; (6.6)

if we restrict the expansion to the linear and quadratic terms.
Here Pi (i D x; y; z) gives the i th component of the dielectric polarization

P D fPx; Py; Pzg.
The components Pi (i D x; y; z) of the induced polarization are determined by

the polarization characteristics of the incident wave (i.e., which of the components
Ex , Ey , Ez are nonzero), and by the components of the susceptibility tensor, which
in turn depend on the symmetries of the nonlinear medium.

Let us first discuss the linear part of (6.6), which can be written as

0

B@
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.1/
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P
.1/
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P
.1/
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1

CA D �0
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1

A

0

@
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Ez

1

A : (6.7a)

One can always choose a coordinate system (� , �, &) in which the tensor �.1/ be-
comes diagonal (principal axis transformation). If we align the crystal in such a way
that the (� , �, &)-axes coincide with the (x, y, z)-axes, (6.7a) simplifies in the prin-
cipal axes system to:

0

B@
P
.1/
x

P
.1/
y

P
.1/
z

1

CA D �0
0

@
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@
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1

A : (6.7b)

This shows that generally P and E are no longer parallel because the 	i may
be different. Using the relation "i D 1C �i we can replace the susceptibility � by
the relative dielectric constant �, which is related to the refractive index n through
� D n2. In nonlinear optical crystals there are generally three different refractive
indices n1, n2 and n3 along the three principal axes. We call the corresponding
refractive indices the principal indices. This can be visualized by plotting vectors
with length n D �1=2 in all directions in a principal coordinate system (n1, n2, n3)
from its origin. The endpoints of these vectors form an ellipsoid, called the index
ellipsoid, which can be described by the equation

n2x

n21
C n2y

n22
C n2z

n23
D 1 : (6.8)

For uniaxial crystals, two of the n (n1 D n2) are equal and the index ellipsoid
has rotational symmetry around the principal axis, called the optical axis of the
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Figure 6.1 a Index ellipsoid for uniaxial birefringent optical crystals. b Cutting through the
ellipsoid in a plane that contains the optical axis and the propagation direction k

uniaxial crystal, which we choose to be the z-axis of our laboratory coordinate
system (Fig. 6.1a).

An incident wave E D E0ei.!t�kr/ with a small amplitude E D fEx;Ey;Ezg
generates a polarization P D fn1=21 Ex; n

1=2
1 Ey; n

1=2
3 Ezg in the optical material.

If the wave vector k forms an angle � ¤ 0 or 90ı with the optical axis, the
wave in the crystal splits into an ordinary beam (refractive index n1 D n2 D n0)
where the phase velocity is independent of � , and an extraordinary wave (refractive
index ne) where ne and therefore the phase velocity does depend on the direction �
(Fig. 6.1b).

In such birefringent crystals, the direction k of the wave propagation and
the direction of the Poynting vector S D c 
0.E � B/, which is the direction of
energy flow, do not coincide (Fig. 6.2). Only in the directions parallel or perpen-
dicular to the optical axis the two vectors point into the same direction.

Now we turn to the second term in (6.6) with the nonlinear susceptibility ten-
sor �.2/. We assume that the incident wave contains only two frequencies!1 and!2.
With ! D .!1 ˙ !2/ we have the detailed description

0

B@
P
.2/
x .!/

P
.2/
y .!/

P
.2/
z .!/

1

CA D �0

0

B@
�
.2/
xxx �

.2/
xxyz : : : �

.2/
xzz

�
.2/
yxx �

.2/
yxy : : : �

.2/
yzz

�
.2/
zxx �

.2/
zxy : : : �

.2/
zzz

1

CA

0

BBBBBBBBB@

Ex.!1/ �Ex.!2/
Ex.!1/ �Ey.!2/
Ex.!1/ �Ez.!2/
Ey.!1/ �Ex.!2/
Ey.!1/ �Ey.!2/

:::
:::

Ez.!1/ �Ez.!2/

1

CCCCCCCCCA

: (6.9)



6.1 Mathematical Description 389

Figure 6.2 Directions of
electric field E , polariza-
tion P , magnetic field B,
wave propagation k, and en-
ergy flow S in a birefringent
crystal

Equation (6.6) demonstrates that the components of the induced polarization P

are determined by the tensor components �ijk and the components of the incident
fields. Since the sequenceEjEk produces the same polarization asEkEj , we obtain

�ijk D �ikj :

This reduces the 27 components of the susceptibility tensor Q�.2/ to 18 independent
components.

In isotropic media the reflection of all vectors at the origin should not change the
nonlinear susceptibility. This yields �ijk D ��ijk , which can be only fulfilled by
�ijk � 0. In all media with an inversion center the second-order susceptibility
tensor vanishes! This means, for instance, that optical frequency doubling in
gases is not possible.

In order to reduce the number of indices in the formulas, the components �ijk are
often written in the reduced Voigt notation. For the first index the convention x D 1,
y D 2, z D 3 is used, whereas the second and third indices are combined as
follows: xx D 1, yy D 2, zz D 3, yz D zy D 4, xz D zx D 5, xy D yx D 6.
The coefficients in this Voigt notation are named dim. Equation (6.6) can then be
written as:
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Figure 6.3 Coordinate sys-
tem for the description of
nonlinear optics in a uniaxial
birefringent crystal. An inci-
dent wave with wavevector
k� and k D .kx ; ky ; 0/

electric field vector E D
fEx ; Ey ; 0g generates in
a KDP crystal the polariza-
tion P D f0; 0; Pz.2!/g

Example 6.2
In potassium dihydrogen phosphate (KDP) the only nonvanishing compo-
nents of the susceptibility tensor are

�.2/xyz D d14 D �.2/yxz D d25 and �.2/zxy D d36 :

The components of the induced polarization are therefore with d25 D d14
Px D 2�0d14EyEz ; Py D 2�0d14ExEz ; Pz D 2�0d36ExEy :

Suppose there is only one incident wave traveling in a direction k with the
polarization vector E normal to the optical axis of a uniaxial birefringent
crystal, which we choose to be the z-axis (Fig. 6.3). In this case, Ez D 0 and
the only nonvanishing component of P.2!/,

Pz.2!/ D 2�0d36Ex.!/Ey.!/ ;

is perpendicular to the polarization plane of the incident wave.

Example 6.3
We will consider another example, the GaAs crystal with Td symmetry, where
the dij tensor is

dij D
0

@
0 0 0 d14 0 0

0 0 0 0 d14 0

0 0 0 0 0 d14

1

A :
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Figure 6.4 Second harmonic
generation in a GaAs crystal,
where the propagation of
fundamental and SH waves
are perpendicular to each
other

According to (6.10), this gives the polarization components

Px D 2d14EyEz
Py D 2d14EzEx
Pz D 2d14ExEy :

For a fundamental wave (Ex;Ey; 0) traveling in z-direction, the only compo-
nent¤ 0 isPz . Since the propagation of the second harmonic is perpendicular
to P , this shows that the second harmonic signal will be always perpendicular
to the propagation of the fundamental wave (Fig. 6.4) and an efficient gener-
ation of second harmonic waves is not possible. This material is therefore not
suited for second harmonic generation.

In gases the susceptibility has maxima for resonance frequencies !0 of atoms or
molecules. One obtains

�res D A

! � !0 C i�=2

whereA is proportional to the transition matrix element and � is the full linewidth of
the transition. Choosing the fundamental frequency close to a resonance frequency
therefore enhances the efficiency of harmonic generation. The disadvantage is that
also the absorption of the fundamental wave increases.
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6.2 Phase Matching

The nonlinear polarization induced in an atom or molecule acts as a source of new
waves at frequencies ! D !1˙!2, which propagate through the nonlinear medium
with the phase velocity vph D !=k D c=n.!/. However, the microscopic contribu-
tions generated by atoms at different positions (x; y; z) in the nonlinear medium can
only add up to a macroscopic wave with appreciable intensity if the phase velocities
of incident inducing waves and the polarization waves are properly matched. This
means that the phases of the contributions P i .!1˙!2; r i / to the polarization wave
generated by all atoms at different locations r i within the pump beam must be equal
at a given point within the pump beam. In this case, the amplitudes E i .!1 ˙ !2/
add up in phase in the direction of the pump beam and the intensity increases with
the length of the interaction zone. This phase-matching condition can be written as

k.!1 ˙ !2/ D k.!1/˙ k.!2/ ; (6.11)

which may be interpreted as momentum conservation for the three photons partici-
pating in the mixing process.

The phase-matching condition (6.11) is illustrated by Fig. 6.5. If the angles
between the three wave vectors are too large, the overlap region between focused
beams becomes too small and the efficiency of the sum- or difference-frequency
generation decreases. Maximum overlap is achieved for collinear propagation of
all three waves. In this case, k1jjk2jjk3 and we obtain with c=n D !=k and !3 D
!1 ˙ !2 the condition

n3!3 D n1!1 ˙ n2!2 ) n3 D n1 D n2 ; (6.12)

for the refractive indices n1, n2, and n3.
This condition can be fulfilled in unaxial birefringent crystals that have two dif-

ferent refractive indices no and ne for the ordinary and the extraordinary waves. The
ordinary wave is polarized in the x–y-plane perpendicular to the optical axis, while
the extraordinary wave has its E -vector in a plane defined by the optical axis and

Figure 6.5 Phase-matching
condition as momentum con-
servation for a noncollinear
and b collinear propagation
of the three waves
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Figure 6.6 a Index ellipsoid
and refractive indices no

and ne for two directions
of the electric vector of the
wave in a plane perpendicular
to the wave propagation k.
b Dependence of no and ne

on the angle � between the
wave vector k and the optical
axis of a uniaxial positive
birefringent crystal

the incident beam. While the ordinary index no does not depend on the propagation
direction, the extraordinary index ne depends on the directions of both E and k.
The refractive indices no, ne and their dependence on the propagation direction
in uniaxial birefringent crystals can be illustrated by the index ellipsoid (6.8). If
we specify a propagation direction k, we can illustrate the refractive indices no

and ne experienced by the EM wave E D E 0 cos.!t � k � r/ in the following way
(Fig. 6.6a): consider a plane through the center of the index ellipsoid with its nor-
mal in the direction of k. The intersection of this plane with the ellipsoid forms an
ellipse. The principal axes of this ellipse give the ordinary and extraordinary indices
of refraction no and ne, respectively. These principal axes are plotted in Fig. 6.6b
as a function of the angle � between the optical axis and the wave vector k. If
the angle � between k and the optical axis (which is assumed to coincide with the
z-axis) is varied, no remains constant, while the extraordinary index ne.�/ changes
according to

1

n2e.�/
D cos2 �

n2o
C sin2 �

n2e.� D �=2/
: (6.13)

The uniaxial crystal is called positively birefringent if ne 
 no and negatively bire-
fringent if ne � no (Fig. 6.7). It is possible to find nonlinear birefringent crystals
where the phase-matching condition (6.12) for collinear phase matching can be ful-
filled if one of the three waves at !1, !2, and !1˙!2 propagates as an extraordinary
wave and the others as ordinary waves through the crystal in a direction � specified
by (6.13) [530].

One distinguishes between type-I and type-II phase-matching depending on
which of the three waves with !1, !2, !3 D !1 ˙ !2 propagates as an ordinary or
as an extraordinary wave. Type I corresponds to (1! e, 2! e, 3! o) in positive
uniaxial crystals and to (1 ! o, 2 ! o, 3 ! e) in negative uniaxial crystals,
whereas type II is characterized by (1! o, 2! e, 3! o) for positive and (1! e,
2 ! o, 3 ! e) for negative uniaxial crystals [533]. Let us now illustrate these
general considerations with some specific examples.
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a b

Figure 6.7 Index ellipsoid for a positive b negative birefingent uniaxial optical crystals

6.3 Second-Harmonic Generation

For the case !1 D !2 D !, the phase-matching condition (6.11) for second-
harmonic generation (SHG) becomes

k.2!/ D 2k.!/ ) vph.2!/ D vph.!/ ; (6.14)

which implies that the phase velocities of the incident and SH wave must be equal.
This can be achieved in a negative birefringent uniaxial crystal (Fig. 6.8) in a certain
direction �p against the optical axis if in this direction the extraordinary refractive
index ne.2!/ for the SH wave equals the ordinary index no.!/ for the fundamental
wave. When the incident wave propagates as an ordinary wave in this direction �p

through the crystal, the local contributions of P.2!; r/ can all add up in phase and
a macroscopic SH wave at the frequency 2! will develop as an extraordinary wave.
The polarization direction of this SH wave is orthogonal to that of the fundamental
wave. In uniaxial positive birefringent crystals, the phase-matching condition can
be fulfilled for type-I phase matching when the fundamental wave at ! travels as an
extraordinary wave through the crystal and the second harmonic at 2! travels as an
ordinary wave.

In favorable cases phase-matching is achieved for � D 90ı. This has the ad-
vantage that both the fundamental and the SH beams travel collinearly through the
crystal, whereas for � ¤ 90ı the power flow direction of the extraordinary wave
differs from the propagation direction ke. This results in a decrease of the overlap
region between both beams.

Let us estimate how a possible slight phase mismatch 
n D n.!/ � n.2!/
affects the intensity of the SH wave. The nonlinear polarization P.2!/ generated
at the position r by the driving field E0 cosŒ!t � k.!/ � r� can be deduced from
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Figure 6.8 Index matching
for SHG in a uniaxial nega-
tively birefringent crystal

(6.5) as

P.2!/ D 1
2
�0�

.2/

effE
2
0 .!/Œ1C cos.2!t/� : (6.15)

This nonlinear polarization generates a wave

P.2!; r/ D E0.2!/ � cos.2!t � k.2!/ � r/ ;

with amplitude E.2!/, which travels with the phase velocity v.2!/ D 2!=k.2!/

through the crystal. The effective nonlinear coefficient �.2/eff depends on the nonlin-
ear crystal and on the propagation direction.

Assume that the pump wave propagates in the z-direction. Over the path length z
a phase difference


' D 
k � z D Œ2k.!/� k.2!/� � z ; (6.16)

between the fundamental wave at ! and the second-harmonic wave at 2! has de-
veloped. If the field amplitude E.2!/ always remains small compared to E.!/
(low conversion efficiency), we may neglect the decrease of E.!/ with increas-
ing z. Therefore we obtain the total amplitude of the SH wave summed over the
path length z D 0 to z D L through the nonlinear crystal by integration over the mi-
croscopic contribution dE.2!; z/ generated by P.2!; z/. From (6.15), one obtains
with 
k D j2k.!/� k.2!/j and dE.2!/=dz D Œ2!=�0nc�P.2!/ [533]

E.2!;L/ D
LZ

zD0
�
.2/

eff .!=nc/E
2
0 .!/ cos.
kz/dz

D �.2/eff .!=nc/E
2
0 .!/

sin
kL


k
: (6.17a)

The intensity I D .nc�0=2n/ jE.2!/j2 of the SH wave is then

I.2!;L/ D I 2.!/2!
2j�.2/eff j2L2
n3c3�0

sin2.
kL/

.
kL/2
: (6.17b)
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If the length L exceeds the coherence length

Lcoh D �

2
k
D �

4.n2! � n!/ ; (6.18)

the fundamental wave (�) and the SH wave (�=2) have a phase difference 
' >
�=2, and destructive interference begins, which diminishes the amplitude of the SH
wave. The difference n2! � n! should therefore be sufficiently small to provide
a coherence length larger than the crystal length L.

According to the definition at the end of Sect. 6.2, type-I phase matching is
achieved in uniaxial negatively birefringent crystals when ne.2!; �/ D no.!/. The
polarizations of the fundamental wave and the SH wave are then orthogonal. From
(6.13) and the condition ne.2!; �/ D no.!/, we obtain the phase-matching angle �
as

sin2 � D v2o.!/� v2o.2!/
v2e .2!; �=2/� v2o.2!/

: (6.19a)

For type-II phase matching the polarization of the fundamental wave does not fall
into the plane defined by the optical axis and the k-vector. It therefore has one
component in the plane, which travels with v D c=no, and another component with
v D c=ne perpendicular to the plane. The phasematching condition now becomes

ne.2!; �/ D 1
2
Œne.!; �/C no.!/� : (6.19b)

The choice of the nonlinear medium depends on the wavelength of the pump
laser and on its tuning range (Table 6.1). For SHG of lasers around � D 1 µm, 90ı
phase matching can be achieved with LiNbO3 crystals, while for SHG of dye lasers
around � D 0:5–0:6 µm, KDP crystals or ADA can be used. Figure 6.9 illustrates
the dispersion curves no.�/ and ne.�/ of ordinary and extraordinary waves in KDP
and LiNbO3, which show that 90ı phase matching can be achieved in LiNbO3 for
�p D 1:06 µm and in KDP for �p ' 515 nm [530].

Since the intensity I.2!/ of the SH wave is proportional to the square of the
pump intensity I.!/, most of the work on SHG has been performed with pulsed
lasers, which offer high peak powers.

Focusing of the pump wave into the nonlinear medium increases the power den-
sity and therefore enhances the SHG efficiency. However, the resulting divergence
of the focused beam decreases the coherence length because the wave vectors kp

are spread out over an interval 
kp, which depends on the divergence angle. The
partial compensation of both effects leads to an optimum focal length of the focus-
ing lens, which depends on the angular dispersion dne=d� of the refractive index ne

and on the spectral bandwidth 
!p of the pump radiation [539].
If the wavelength �p of the pump laser is tuned, phase matching can be main-

tained either by turning the crystal orientation � against the pump beam propaga-
tion kp (angle tuning) or by temperature control (temperature tuning), which relies
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Table 6.1 Characteristic data of nonlinear crystals used for frequency doubling or sum-frequency
generation [537, 538]

Material Transparency
range [nm]

Spectral range of
phase matching of
type I or II

Damage
threshold
[GW=cm2]

Relative
doubling effi-
ciency

Reference

ADP 220–2000 500–1100 0.5 1.2 [295]

KD�P 200–2500 517–1500 (I) 8.4 1.0 [556]

732–1500 (II) 8.4

Urea 210–1400 473–1400 (I) 1.5 6.1 [567]

BBO 197–3500 410–3500 (I) 9.9 26.0 [540–546]

750–1500 (II)

LiJO3 300–5500 570–5500 (I) 0.06 50.0 [550, 568]

KTP 350–4500 1000–2500 (II) 1.0 215.0 [566]

LiNbO3 400–5000 800–5000 (II) 0.05 105.0 [556]

LiB3O5 160–2600 550–2600 18.9 3 [557]

CdGeAs2 1–20 µm 2–15 µm 0.04 9 [572]

AgGaSe2 3–15 µm 3:1–12:8 µm 0.03 6

Te 3:8–32 µm 0.045 270 [556]

Table 6.2 Abbreviations
for some commonly used
nonlinear crystals

ADP = Ammonium dihydrogen phosphate NH4H2PO4

KDP = Potassium dihydrogen phosphate KH2PO4

KD�P = Potassium dideuterium phosphate KD2PO4

KTP = Potassium titanyl phosphate KTiOPO4

KNbO3 = Potassium niobate KNbO3

LBO = Lithium triborate LiB3O5

LiIO3 = Lithium iodate LiIO3

LiNbO3 = Lithium niobate LiNbO3

BBO = Beta-barium borate “-BaB2O4

on the temperature dependence 
n.T; �/ D no.T; �/ � ne.T; �=2/. The tuning
range 2!˙
2! of the SH wave depends on that of the pump wave (!˙
1!) and
on the range where phase matching can be maintained. Generally, 
2! < 2
1!

because of the limited phase-matching range. With frequency-doubled pulsed dye
lasers and different dyes the whole tuning range between � D 195–500 nm can be
completely covered. The strong optical absorption of most nonlinear crystals below
220 nm causes a low damage threshold, and the shortest wavelength achieved by
SHG is, at present, � D 200 nm [534, 539–543].

Example 6.4
The refractive indices no.�/ and ne.�/ of ADP (ammonium dihydrogen phos-
phate) for � D 90ı are plotted in Fig. 6.10, together with the phasematching
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Figure 6.9 Refractive indices no.�/ and ne.�/: a for � D 90ı in LiNbO3 [533] and b for � D
50ı and 90ı KDP [529]. Collinear phase matching can be achieved in LiNbO3 for � D 90ı and
� D 1:06 µm (NdC laser) and in KDP for � D 50ı at � D 694 nm (ruby laser) or for � D 90ı at
� D 515 nm (argon laser)

Figure 6.10 Wavelength
dependence for no and ne

in ADP at � D 90ı and
temperature dependence of
the phase-matching condition

n.T; �/ D no.T; �/ �
ne.T; �=2/ D 0

curve: 
.T; �/ D no.T; �/ � ne.T; �=2/ D 0. This plot shows that at
T D �11 ıC, the phase-matching condition 
.T; �/ D 0 is fulfilled for
� D 514:5mm, and thus 90ı phase matching for SHG of the powerful green
argon laser line at � D 514:5 nm is possible.

Limitations of the SH output power generated by pulsed lasers are mainly set
by the damage threshold of available nonlinear crystals. Very promising new crys-
tals are the negative uniaxial BBO (beta-barium borate) ˇ-BaB2O4 [541–545] and
lithium borate LiBO, which have high damage thresholds and which allow SHG
from 205 nm to above 3000 nm.
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Figure 6.11 External ring
resonator for efficient optical
frequency doubling. The mir-
rors M2 and M4 are highly
reflective, while mirror M1

transmits the fundamental
wave and mirror M3 trans-
mits the second-harmonic
wave

Example 6.5
The five nonvanishing nonlinear coefficients of BBO are d11, d22, d31, d13,
d14, where the largest coefficient d11 is about 6 times larger than d36 of KDP.
The transmission range of BBO is 195–3500 nm. It has a low temperature
dependence of its birefringence and a high optical homogeneity. Its damage
threshold is about 10GW=cm2.

Type-I phase matching is possible in the range 410–3500 nm, type-II
phase-matching in the range 750–1500 nm.

The effective nonlinear coefficient for type-I phase-matching is

deff D d31 sin � C .d11 cos 3	 � d22 sin 3	/ cos	 ;

where � and 	 are the polar angles between the k-vector of the incident wave
and the z.D c/-axis and the x.D a/-axis of the crystal, respectively. For
	 D 0 deff becomes maximum.

With cw dye lasers in the visible (output power� 1W), generally UV powers of
only a few milliwatts are achieved by frequency doubling. The doubling efficiency
� D I.2!/=I.!/ can be greatly enhanced when the doubling crystal is placed
inside the laser cavity where the power of the fundamental wave is much higher
[548–552]. The auxiliary beam waist in a ring laser resonator is the best location
for placing the crystal (Fig. 5.103). With an intracavity LiIO3 crystal, for example,
UV output powers in the range 20–50mW have been achieved at �=2 D 300 nm
[550].

If the dye laser must be used for visible as well as for UV spectroscopy, a daily
change of the configuration is troublesome, therefore it is advantageous to apply
an extra external ring resonator for frequency doubling [553–555]. This resonator
must, of course, always be kept in resonance with the dye laser wavelength �L and
therefore must be stabilized by a feedback control to the wavelength �L when the
dye laser is tuned.
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Figure 6.12 Low-loss ring resonator with wide tuning range for optical frequency doubling with
astigmatic compensation [533]

One example is illustrated in Fig. 6.11. In order to avoid feedback into the laser,
ring resonators are used and the crystal is placed under the Brewster angle in the
beam waist of the resonator. Since the enhancement factor for I.!/ depends on the
resonator lasers, the mirrors should be highly reflective for the fundamental wave,
but the output mirror should have a high transmission for the second-harmonic
wave. An elegant solution is shown in Fig. 6.12, where only two mirrors and
a Brewster prism form the ring resonator. The resonator length can be conveniently
tuned by shifting the prism with a piezo-translating device in the z-direction.

Many more examples of external and intracavity frequency doubling with dif-
ferent nonlinear crystals [556] can be found in the literature [558–560]. Table 6.1
compiles some optical properties of commonly utilized nonlinear crystals.

6.4 Quasi Phase Matching

Recently, optical frequency doubling devices have been developed that consist of
many thin slices of a crystal with periodically varying directions of their optical
axes. This can be achieved by producing many thin electrodes with lithographic
techniques on the two side faces of the crystal and then placing the crystal at higher
temperatures in a spatially periodic electric field. This results in a corresponding
anisotropy of the charge distribution (induced electric dipole moments), which de-
termines the optical axis of the crystal (Fig. 6.13a). If there is a phase mismatch


k D 2�

�
Œn.2! � n.!//� ; (6.20a)

the phases of fundamental and second-harmonic waves differ by � after the coher-
ence length

Lc D �

k.2!/� 2k.!/ D
�

2Œn.2!/� n.!/� : (6.20b)
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Figure 6.13 Quasi phase matching: a periodic poling of crystal orientation; b array of crystals
with different period lengths for choosing the optimum doubling efficiency for a given wavelength;
c second-harmonic output power as a function of total length L D n �Lc for one crystal with slight
phase mismatch (curve a), for a periodically poled crystal (curve b), and for a single crystal with
ideal phase matching

A nonlinear crystal with a length L � Lc shows the output power P.2!/ of the
second-harmonic wave as a function of the propagation length z depicted by curve a
in Fig. 6.13c. After one coherence length the power decreases again because of
destructive interference between the second-harmonic and the out-of-phase funda-
mental wave.

If, however, the crystal has length L D Lc followed by a second crystal with
L D 2Lc but opposite orientation of its optical axis, then the phase mismatch is
reversed and the phase difference decreases from � to �� . Now the next layer
follows with the orientation of the first one and the phase difference again increases
from �� toC� , and so on. This yields the output power of the second harmonic as
shown in Fig. 6.13c, curve b.

For comparison, the curve c of a perfectly phase-matched long crystal is shown
in Fig. 6.13c. This demonstrates that the quasi-phase-matching device gives a lower
output power than the perfectly matched crystal, but a much larger power than for
a single crystal in the case of slight phase mismatches. The advantage of this quasi-
phase-matching is the possible larger spectral range of the fundamental wave, which
can be frequency-doubled.

For frequency doubling of tunable lasers, it is difficult to maintain perfect phase
matching for all wavelengths; therefore phase mismatches cannot be avoided. Fur-
thermore, for angle tuning of the crystal, noncollinear propagation of the fundamen-
tal and the second-harmonic wave occurs. This limits the effective interaction length
and therefore the doubling efficiency. With correctly designed quasi-phase-matched
devices, collinear noncritical phase matching can be realized, which allows long in-
teraction lengths. Furthermore, fundamental and second-harmonic waves can have
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the same polarization; therefore one can use the largest nonlinear coefficient for the
doubling efficiency by choosing the correct electro-optic poling of the slices. The
greatest advantage is the large tuning range, where either temperature tuning can
be utilized or an array of periodic slices with different slice thicknesses L D Lc

adapted to the wavelength-dependent phase mismatch is used (Fig. 6.13b). In the
latter case the different devices, all on the same chip, can be shifted into the laser
beam by a translational stage.

For these reasons many modern nonlinear frequency-doubling or mixing devices,
in particular, optical parametric oscillators, use quasi phase matching [562, 563].
Gallium arsenide has a very high nonlinear coefficient and a wide transparency
range of 0:7–17 µm. It is therefore very attractive for widely tunable optical para-
metric oscillators in the mid-infrared. It is now possible to fabricate orientation-
patterned GaAs which can be used as quasi-phase-matched material.

The advantages of quasi-phase-matching can be summarized as follows:

a) Unlike birefringent crystals, where the propagation direction and polarization of
the fundamental wave are severely constrained, both of these parameters can be
chosen to maximize the effective nonlinear coefficient deff.

b) The Poynting vector has the same direction for fundamental and harmonic
waves. There is no walk-off as in birefringent crystals for � ¤ 90.

c) Any wavelength within the transparency range of the material can be phase-
matched, whereas in birefringent crystals only a narrow wavelength range can
be phase-matched for a given direction with respect to the optical axis.

6.5 Sum-Frequency Generation

In the case of laser-pumped dye lasers, it is often more advantageous to gener-
ate tunable UV radiation by optical mixing of the pump laser and the tunable dye
laser outputs rather than by frequency doubling of the dye laser. Since the intensity
I.!1C!2/ is proportional to the product I.!1/I � .!2/, the larger intensity I.!1/ of
the pump laser allows enhanced UV intensity I.!1 C !2/. Furthermore, it is often
possible to choose the frequencies !1 and !2 in such a way that 90ı phase match-
ing can be achieved. The range (!1 C !2) that can be covered by sum-frequency
generation is generally wider than that accessible to SHG. Radiation at wavelengths
too short to be produced by frequency doubling can be generated by the mixing of
two different frequencies !1 and !2. This is illustrated by Fig. 6.14, which de-
picts possible wavelength combinations �1 and �2 that allow 90ı phase-matched
sum-frequency mixing in KDP and ADP at room temperature or along the b-axis
of biaxial KB5 crystals [564].

Some examples are given to demonstrate experimental realizations of the sum-
frequency mixing technique [565–576].
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Figure 6.14 Possible com-
binations of wavelength
pairs (�1; �2) that allow
90ı phase-matched sum-
frequency generation in ADP,
KDP, and KB5 [565, 571]

Example 6.6
a) The output of a cw rhodamine 6G dye laser pumped with 15W on all lines

of an argon laser is mixed with a selected line of the same argon laser
(Fig. 6.15). The superimposed beams are focused into the temperature-
stabilized KDP crystal. Tuning is accomplished by simultaneously tuning
the dye laser wavelength and the orientation of the KDP crystal. The entire
wavelength range from 257 to 320 nm can be covered by using different
argon lines with a single Rhodamine 6G dye laser without changing dyes
[565].

b) The generation of intense tunable radiation in the range 240–250 nm has
been demonstrated by mixing in a temperature-tuned 90ı phase-matched
ADP crystal the second harmonic of a ruby laser with the output of an
infrared dye laser pumped by the ruby laser’s fundamental output [564].

c) UV radiation tunable between 208 and 259 nm has been generated ef-
ficiently by mixing the fundamental output of a Nd:YAG laser and the
output of a frequency-doubled dye laser. Wavelengths down to 202 nm
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Figure 6.15 Experimental arrangement for sum-frequency generation of cw radiation in a KDP
crystal [565]

can be obtained with a refrigerated ADP crystal because ADP is particu-
larly sensitive to temperature tuning [572].

d) In lithium borate (LBO) noncritical phase-matched sum-frequency gener-
ation at � D 90ı can be achieved over a wide wavelength range. Starting
with �1 < 220 nm and �2 
 1064 nm, sum-frequency radiation down to
wavelengths of �3 D .1=�1 C 1=�2/�1 D 160 nm can be generated. The
lower limit is set by the transmission cutoff of LBO [574].

e) After frequency doubling of the Ti:sapphire wavelength 920–960 nm in
a LBO crystal, and sum-frequency mixing of the fundamental ! with the
second harmonic 2! in another 90%-phase-matched LBO, the third har-
monic 3! could be obtained with an overall efficiency of 35%, tunable
between 307–320 nm [575].

A novel device for efficiently generating intense radiation at wavelengths around
202 nm is shown in Fig. 6.16. A laser diode-pumped NdWYVO4 laser is frequency
doubled and delivers intense radiation at � D 532 nm, which is again frequency
doubled to � D 266 nm in a BBO crystal inside a ring resonator. The output from
this resonator is superimposed in a third enhancement cavity with the output from
a diode laser at � D 850 nm to generate radiation at � D 202 nm by sum-frequency
mixing. This 202-nm radiation is polarized perpendicularly to that at the two other
waves and can be therefore efficiently coupled out of the cavity by a Brewster plate
[576].

The lower-wavelength limit for nonlinear processes in crystals (SHG or sum-
frequency mixing) is generally given by the absorption (transmission cutoff) of the
crystals.

For shorter wavelengths sumfrequency mixing or higher-harmonic generation in
homogeneous mixtures of rare gases and metal vapors can be achieved. Because
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Figure 6.16 Sum-frequency generation in an enhancement cavity down to � D 202 nm [576]

in centro-symmetric media the second-order susceptibility must vanish, SHG is not
posssible, but all third-order processes can be utilized for the generation of tunable
ultraviolet radiation. Phase matching is achieved by a proper density ratio of raregas
atoms to metal atoms. Several examples illustrate the method.

Example 6.7
a) Third-harmonic generation of Nd:YAG laser lines around � D 1:05 µm

can be achieved in mixtures of xenon and rubidium vapor in a heat pipe.
Figure 6.17 is a schematic diagram for the refractive indices n.�/ for Xe
and rubidium vapor. Choosing the proper density ratio N.Xe/=N.Rb/,
phase matching is obtained for n.!/ D n.3!/, where the refractive index
n D n.Xe/ C n.Rb/ is determined by the rubidium and Xe densities.
Figure 6.17 illustrates that this method utilizes the compensation of the
normal dispersion in Xe by the anomalous dispersion for rubidium [577].

b) A second example is the generation of tunable VUV ratiation between
110 and 130 nm by phase-matched sum-frequency generation in a xenon–
krypton mixture [578]. This range covers the Lyman-˛ line of hydrogen
and is therefore particularly important for many experiments in plasma
diagnostics and in fundamental physics. A frequency-doubled dye laser at
!UV D 2!1 and a second tunable dye laser at!2 are focused into a cell that
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Figure 6.17 Schematic
diagram of the refractive
indices n.�/ for rubidium
vapor and xenon, illustrating
phase matching for third-
harmonic generation

contains a proper mixture of Kr=Xe. The sum frequency !3 D 2!UVC!2
can be tuned by synchronous tuning of !2 and the variation of the Kr=Xe
mixture.

Because of the lower densities of gases compared with solid crystals, the effi-
ciency I.3!/=I.!/ is much smaller than in crystals. However, there is no short-
wavelength limit as in crystals, and the spectral range accessible by optical mixing
can be extended far into the VUV range [579].

The efficiency may be greatly increased by resonance enhancement if, for exam-
ple, a resonant two-photon transition 2„!1 D E1 ! Ek can be utilized as a first
step of the sum-frequency generation ! D 2!1 C !2. This is demonstrated by an
early experiment shown in Fig. 6.18. The orthogonally polarized outputs from two
N2 laser-pumped dye lasers are spatially overlapped in a Glan–Thompson prism.
The collinear beams of frequencies !1 and !2 are then focused into a heat pipe
containing the atomic metal vapor. One laser is fixed at half the frequency of an
appropriate two-photon transition and the other is tuned. For a tuning range of the
dye laser between 700 and 400 nm achievable with different dyes, tunable VUV

Figure 6.18 Generation of tunable VUV radiation by resonant sum-frequency mixing in metal
vapors: a level scheme; b experimental arrangement
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Figure 6.19 Generation of VUV radiation by resonant frequency mixing in a jet [586]

radiation at the frequencies ! D 2!1 C !2 is generated, which can be tuned over
a large range. Third-harmonic generation can be eliminated in this experiment by
using circularly polarized !1 and !2 radiation, since the angular momentum will
not be conserved for frequency tripling in an isotropic medium under these condi-
tions. The sum frequency ! D 2!1C!2 corresponds to an energy level beyond the
ionization limit [580–585].

Windows cannot be used for wavelengths below 120 nm because all materials
absorb the radiation, therefore apertures and differential pumping is needed. An
elegant solution is the VUV generation in pulsed laser jets (Fig. 6.19), where the
density of wanted molecules within the focus of the incident lasers can be made
large without having too much absorption for the generated VUV radiation because
the molecular density is restricted to the small path length across the molecular
jet close to the nozzle [586, 587]. The output of a tunable dye laser is frequency
doubled in a BBO crystal. Its UV radiation is then focused into the gas jet where
frequency tripling occurs. The VUV radiation is now collimated by a parabolic
mirror and imaged into a second molecular beam within the same vacuum chamber,
where the experiment is performed.

An intense coherent tunable Fourier-transform-limited narrow-band all-solid-
state vacuum-ultraviolet (VUV) laser system has been developed by Merkt and
coworkers [573]. Its bandwidth is less than 100MHz and the tuning range cov-
ers a wide spectral interval around 120;000 cm�1 (15 eV). At a repetition rate of
20Hz the output reaches 108 photons per pulse, which corresponds to an energy
of 0:25 nJ per pulse, a peak power of 25mW for a pulse length of 10 ns, and an
average power of 5 nW. For these short VUV wavelengths of around � D 80 nm
this is remarkable and is sufficient for many experiments in the VUV.

Its principle is illustrated in Fig. 6.20: The setup consists of two cw Ti:sapphire
near-infrared single-mode ring lasers with wavenumbers �1 and �2. The output
radiation of these lasers is amplified by nanosecond pump laser pulses, result-
ing in amplified Fourier-limited pulses in the near IR. Tunable VUV radiation
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Figure 6.20 Narrow-band VUV laser source. The upper part displays the generation of amplified
NIR pulses from two cw ring Ti:sapphire lasers with pulse amplification in a multipass amplifier
arrangement. The middle part shows the KDP and BBO crystals for sum-frequency generation.
The VUV radiation is generated in a Xe jet shown in the lower part [589]

with wavenumbers �V UV = 2(�3/C �2 was produced by resonance-enhanced sum-
frequency mixing in a supersonic jet of xenon, using the two-photon resonance
.5p/6S0 ! .5p/56p.1=2/ (J D 0) at 2�3 D 80;119 cm�1. The tripled wavenumber
�3 D 3�1 was produced by generating the third harmonics of �1 in successive KDP
and BBO crystals. While the wavenumber �3 was fixed, the infrared wavenumber �2
could be tuned between 12;000–13;900 cm�1, and therefore the VUV wavenumber
could be tuned over 1900 cm�1.

Although second harmonic generation is not possible in centro-symmetric me-
dia, such as gases, the symmetry is broken at the plane surface of solid materials.
Therefore efficient SHG has been found at the boundary between a solid and a gas
or vapour. Molecules in a thin layer at solid state surfaces can be studied with
SHG or sum frequency mixing, even if the have centro-symmetry. This surface en-
hanced spectroscopy has been already successfully used for Raman spectroscopy
(see Vol. 2, Chap. 3) [591].
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More information on the generation of VUV radiation by nonlinear mixing tech-
niques can be found in [574–590].

6.6 Difference-Frequency Spectrometer

While generation of sum frequencies yields tunable ultraviolet radiation by mixing
the output from two lasers in the visible range, the phase-matched generation of
difference frequencies allows one to construct tunable coherent infrared sources.
One early example is the difference-frequency spectrometer of Pine [591], which
has proved to be very useful for highresolution infrared spectroscopy.

Two collinear cw beams from a stable single-mode argon laser and a tunable
single-mode dye laser are mixed in a LiNbO3 crystal (Fig. 6.21). For 90ı phase
matching of collinear beams, the phase-matching condition

k.!1 � !2/ D k.!1/ � k.!2/ ; (6.21a)

can be written as jk.!1 � !2/j D jk.!1/j � jk.!2/j, which gives for the refractive
index n D c.k=!/ the relation

n.!1 � !2/ D !1n.!1/ � !2n.!2/
!1 � !2 : (6.21b)

The whole spectral range from 2.2 to 4:2 µm can be continuously covered by
tuning the dye laser and the phase-matching temperature of the LiNbO3 crystal
(�0:12 ıC=cm�1). The infrared power is, according to (6.6), (6.17b), proportional
to the product of the incident laser powers and to the square of the coherence length.
For typical operating powers of 100mW (argon laser) and 10mW (dye laser), a few
microwatts of infrared radiation is obtained. This is 104 to 105 times higher than
the noise equivalent input power of standard IR detectors.

The spectral linewidth of the infrared radiation is determined by that of the
two pump lasers. With frequency stabilization of the pump lasers, a linewidth of
a few megahertz has been reached for the difference-frequency spectrometer. In

Figure 6.21 Difference-frequency spectrometer [592]
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Figure 6.22 Difference-frequency spectrometer based on mixing a cw Ti:sapphire ring laser with
a single-frequency III–V diode laser in the nonlinear crystal AgGaS2 [593]

combination with a multiplexing scheme devised for calibration, monitoring, drift
compensation, and absolute stabilization of the difference spectrometer, a continu-
ous scan of 7:5 cm�1 has been achieved with a reproducibility of better than 10MHz
[592].

A very large tuning range has been achieved with a cw laser spectrometer based
on difference-frequency generation in AgGaS2 crystals. By mixing the output of
two single-mode tunable dye lasers, infrared powers up to 250 µW have been gener-
ated in the spectral range 4–9 µm (Fig. 6.22) [594]. Widely tunable diode lasers in
the near infrared, mixed with the output of a fixed frequency high power Nd:YAG
laser produces a highly efficient difference frequency spectrometer (Fig. 6.23).
Even more promising is the difference-frequency generation of two tunable diode
lasers (Fig. 6.23), which allows the construction of a very compact and much
cheaper difference-frequency spectrometer [593, 594, 596].

A simple and portable DFG-spectrometer for in-field trace gas analysis was con-
structed by P. Hering and his group [597].

Using quasi-phase matching in a periodically poled LiNbO3 waveguide struc-
ture, a DFG-device with high output power tunable around 1:5 µm was reported
in [598], where a Ti:sapphire laser at � D 748 nm and a tunable erbium fiber laser
were mixed in the nonlinear crystal.

Of particular interest are tunable sources in the far infrared region where no
microwave generators are available and incoherent sources are very weak. With
selected crystals such as proustite (Ag3AsS3), LiNbO3, or GaAs, phase matching
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Figure 6.23 Difference-frequency spectrometer with diode lasers [569]

for difference-frequency generation can be achieved for the middle infrared using
CO2 lasers and spin-flip Raman lasers. The search for new nonlinear materials will
certainly enhance the spectroscopic capabilities in the whole infrared region [599].

A very useful frequency-mixing device is the MIM diode (Sect. 4.5.2), which
allows the realization of continuously tunable FIR radiation covering the difference-
frequency range from the microwave region (GHz) to the submillimeter range (THz)
[600–602]. It consists of a specially shaped tungsten wire with a very sharp tip
that is pressed against a nickel surface covered with a thin layer of nickel oxide
(Fig. 4.99). If the beams of two lasers with freqencies �1 and �2 are focused onto
the contact point (Fig. 6.24), frequency mixing due to the nonlinear response of
the diode occurs. The tungsten wire acts as an antenna that radiates waves at the
difference frequency (�1��2) into a narrow solid angle corresponding to the antenna
lobe. These waves are collimated by a parabolic mirror with a focus at the position
of the diode.

Using CO2 lasers with different isotope mixtures, laser oscillation on several
hundred lines within the spectral range between 9 and 10 µm can be achieved. This
laser oscillation can be fine-tuned over the pressure-broadened gain profiles. There-
fore their difference frequencies cover the whole FIR region with only small gaps.
These gaps can be closed when the radiation of a tunable microwave generator is
additionally focused onto the MIM mixing diode. The waves at frequencies

� D �1 � �2 ˙ �MW
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Figure 6.24 Generation
of tunable FIR radiation by
frequency mixing of two
CO2 laser beams with a mi-
crowave in a MIM diode

represent continuous tunable collimated coherent radiation, which can be used for
absorption spectroscopy in the far infrared [602, 603]. An interesting technique
for the difference frequency generation in the far infrared region (terahertz frequen-
cies) was reported by Belkin et al. [604]. They used the active region of a quantum
cascade laser inside a resonator as highly nonlinear medium with a giant second
order nonlinear susceptibility. When the two input beams in the mid infrared at
�1 D 8:9 µm and �2 D 10:5 µm were mixed in the cascade laser a difference
frequency output at � D 60 µm was obtained with output powers of 7 µW at a tem-
perature of 80 K and 0.3 µW at room temperature.

6.7 Optical Parametric Oscillators

The optical parametric oscillator (OPO) [604–606, 608–611] is based on the para-
metric interaction of a strong pump wave Ep cos.!pt � kp � r/ with molecules in
a crystal that have a sufficiently large nonlinear susceptibility. This interaction can
be described as an inelastic scattering of a pump photon „!p by a molecule where
the pump photon is absorbed and two new photons „!s and „!i are generated. Be-
cause of energy conservation, the frequencies !i and !s are related to the pump
frequency !p by

!p D !i C !s : (6.22)

Analogous to the sum-frequency generation, the parametrically generated pho-
tons !i and !s can add up to a macroscopic wave if the phase-matching condition

kp D ki C ks (6.23)
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is fulfilled, which may be regarded as the conservation of momentum for the three
photons involved in the parametric process. Simply stated, parametric generation
splits a pump photon into two photons that satisfy conservation of energy and
momentum at every point in the nonlinear crystal. For a given wave vector kp

of the pump wave, the phase-matching condition (6.23) selects, out of the infi-
nite number of possible combinations !1 C !2 allowed by (6.22), a single pair
(!i;ki) and (!s;ks) that is determined by the orientation of the nonlinear crystal
with respect to kp. The two resulting macroscopic waves Es cos.!st � ks � r/ and
Ei cos.!it � ki � r/ are called the signal wave and idler wave. The most efficient
generation is achieved for collinear phase matching where kpjjkijjks. For this case,
the relation (6.12) between the refractive indices gives

np!p D ns!s C ni!i : (6.24)

If the pump is an extraordinary wave, collinear phase matching can be achieved
for some angle � against the optical axis, if np.�/, defined by (6.13), lies be-
tween no.!p/ and ne.!p/.

The gain of the signal and idler waves depends on the pump intensity and on
the effective nonlinear suceptibility. Analogous to the sum- or difference-frequency
generation, one can define a parametric gain coefficient per unit pathlength � D
Is=Ip or Ii=Ip

� D !i!sjd j2jEpj2
ninsc2

D 2!i!sjd j2Ip

ninsnp�0c3
; (6.25)

which is proportional to the pump intensity Ip and the square of the effective non-

linear susceptibility jd j D �
.2/
eff . For !i D !s, (6.25) becomes identical with the

gain coefficient for SHG in (6.17b).
If the nonlinear crystal that is pumped by the incident wave Ep is placed in-

side a resonator, oscillation on the idler or signal frequencies can start when the
gain exceeds the total losses. The optical cavity may be resonant for both the idler
and signal waves (doubly-resonant oscillator) or for only one of the waves (singly-
resonant oscillator) [608]. Often, the cavity is also resonant for the pump wave in
order to increase Ip and thus the gain coefficient � .

Figure 6.25 shows schematically the experimental arrangement of a collinear
optical parametric oscillator. Due to the much higher gain, pulsed operation is gen-
erally preferred where the pump is a Q-switched laser source. The threshold of
a doubly-resonant oscillator occurs when the gain equals the product of the signal
and idler losses. If the resonator mirrors have high reflectivities for both the signal
and idler waves, the losses are small, and even cw parametric oscillators can reach
threshold [612]. For singly-resonant cavities, however, the losses for the nonreso-
nant waves are high and the threshold increases.
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Figure 6.25 Optical parametric oscillator: a schematic diagram of experimental arrangement;
b pairs of wavelengths (�1; �2) for idler and signal wave for collinear phase matching in LiNbO3

as a function of angle � [606]

Example 6.8
For a 5-cm long 90ı phase-matched LiNbO3 crystal pumped at �p D
0:532 µm, threshold is at 38-mW pump power for the doubly-resonant cav-
ity with 2% losses at !i and !s. For the singly-resonant cavity, threshold
increases by a factor of 100 to 3:8W [609].

Tuning of the OPO can be accomplished either by crystal rotation or by con-
trolling the crystal temperature. The tuning range of a LiNbO3 OPO, pumped by
various frequency-doubled wavelengths of a Q-switched NdWYAG laser, extends
from 0.55 to about 4 µm. Turning the crystal orientation by only 4ı covers a tuning
range between 1.4 and 4:4 µm (Fig. 6.25b). Figure 6.26 shows temperature tuning
curves for idler and signal waves generated in LiNbO3 by different pump wave-
lengths. Angle tuning has the advantage of faster tuning rates than in the case of
temperature tuning.

Previously, one of the drawbacks of the OPO was the relatively low damage
threshold of available nonlinear crystals. The growth of advanced materials with
high damage thresholds, large nonlinear coefficients, and broad transparency spec-
tral ranges has greatly aided the development of widely tunable and stable OPOs
[610]. Examples are BBO (“-barium borate) and lithium borate (LBO) [611]. For
illustration of the wide tuning range, Fig. 6.27 displays wavelength tuning of the
BBO OPO for different pump wavelengths.
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Figure 6.26 Temperature tuning curves of signal and idler wavelengths for a LiNbO3 optical
parametric oscillator pumped by different pump wavelengths [608]

Figure 6.27 Wavelengths
of signal and idler waves in
BBO as a function of the
phase-matching angle #
for different pump wave-
lengths �p [611]
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Figure 6.28 Three-mirror resonator for tunable cw OPO, resonant for pump and idler with polar-
ization beam splitter and separately controlled cavity lengths M1M2 and M3M2 [616]

The bandwidth of the OPO depends on the parameters of the resonator, on the
linewidth of the pump laser, on the pump power, and, because of the different slopes
of the tuning curves in Figs. 6.26 and 6.27, also on the wavelength. Typical band-
widths are 0:1–5 cm�1. Detailed spectral properties depend on the longitudinal
mode structure of the pump and on the resonator mode spacing 
� D .c=2L/

for the idler and signal standing waves. For the singly-resonant oscillator the cav-
ity has to be adjusted to only one frequency, while the nonresonant frequency can
be adjusted so that !p D !i C !s is satisfied. There are several ways to narrow
the bandwidths of the OPO. With a tilted etalon inside the resonator of a singly-
resonant cavity, single-mode operation can be achieved. Frequency stability of
a few MHz has been demonstrated [613]. Another possibility is injection seeding.
Stable single-mode operation was, for example, obtained by injecting the beam of
a single-mode NdWYAG pumplaser into the OPO cavity [614]. Using a single mode
cw dye laser as the injection seeding source, tunable pulsed OPO-radiation with
linewidths below 500MHz have been achieved. A seed power of 0:3mW(!) was
sufficient for stable single-mode OPO operation. The pump threshold can be low-
ered with a doubly-resonant resonator. However, the simple cavity of Fig. 6.25
cannot be kept in resonance for two different wavelengths, if these wavelengths
are tuned. Here the three-mirror cavity of Fig. 6.28 solves this problem. Since
the polarizations of the pump wave and the idler wave are generally orthogonal,
a polarization beam splitter PBS splits both waves, which now experience reso-
nant enhancement in the resonator M1M2 or M3M2. When the pump wavelength
�p (a dye laser is used as pump source) is tuned, both cavities can be controlled
by piezos to keep in resonance [616]. Frequency stabilities of below the 1 kHz
level can be achieved [617]. The tuning range for collinear phase matching can be
greatly extended by quasi phase matching in periodically poled LiNbO3 (PPLN)
(Fig. 6.29). Meanwhile, cw OPOs are commercially available [618].

Impressive progress has been achieved with femtosecond optical parametric am-
plifiers, which can be used as ultrashort pulse generators with wavelengths tunable
over a wide spectral range. They will be discussed in Vol. 2, Chap. 6.
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Figure 6.29 High-power
cw OPO with periodically
poled LiNbO3 crystal with
temperature control in a ring
cavity [618]

An interesting realization of a widely tunable OPO is a fiber OPO pumped by
a fiber laser. One example is the sub-1 µm operation of a fiber OPO in a fiber ring
resonator, pumped by an all-fiber master oscillator plus power amplifier based on
a photonic crystal fiber as gain medium [592]. A conversion efficiency of 8:6 %
from the pump at 1079 nm to the anti-Stokes signal at 715 nm. This means a fre-
quency shift of 142 THz between pump and anti-Stokes signal.

Summary: Optical parametric oscillators are coherent devices similar to lasers.
There are, however, important differences. While lasers can be pumped by inco-
herent sources, OPOs require coherent pump sources. Often diode laser-pumped
solid state lasers are used. While in lasers coherent amplification can last until the
inversion in the active medium has fallen below threshold, in OPO’s the time de-
pendence of the coherent output is directly coupled to that of the pump laser. Since
the pump photon is split into signal and idler photon with !p D !sC!i, the energy
of the output equals that of the input i.e. there is no energy, i.e. heat deposited in
the active crystal. The spectral tuning range is by far wider than for tunable lasers.
Most OPOs operate in the near infrared but can be tuned from the visible region to
the far infrared.

A good survey on different aspects of OPOs can be found in [615].

6.8 Tunable Raman Lasers

The tunable “Raman laser” may be regarded as a parametric oscillator based on
stimulated Raman scattering. Since stimulated Raman scattering is discussed in
more detail in Vol. 2, Sect. 3.3, we here summarize only very briefly the basic con-
cept of these devices.

The ordinary Raman effect can be described as an inelastic scattering of pump
photons „!p by molecules in the energy level Ei . The energy loss „.!p � !s/ of
the scattered Stokes photons „!s is converted into excitation energy (vibrational,
rotational, or electronic energy) of the molecules

„!p CM.Ei/!M �.Ef /C „!s ; (6.26)

where Ef � Ei D „.!p � !s/. For the vibrational Raman effect this process can
be interpreted as parametric splitting of the pump photon „!p into a Stokes photon
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Figure 6.30 a Term diagram of Raman processes with several Stokes and anti-Stokes lines at
frequencies � D �p ˙m�v; b spectral distribution of Raman lines and their overtones

„!s and an optical phonon „!v representing the molecular vibrations (Fig. 6.30a).
The contributions „!s from all molecules in the interaction region can add up to
macroscopic waves when the phase-matching condition

kp D ks C kv ;

is fulfilled for the pump wave, the Stokes wave, and the phonon wave. In this case,
a strong Stokes wave Es cos.!st � ks � r/ develops with a gain that depends on the
pump intensity and on the Raman scattering cross section. If the active medium is
placed in a resonator, oscillation arises on the Stokes component as soon as the gain
exceeds the total losses. Such a device is called a Raman oscillator or Raman laser,
although, strictly speaking, it is not a laser but a parametric oscillator.

Those molecules that are initially in excited vibrational levels can give rise to
superelastic scattering of anti-Stokes radiation, which has gained energy .„!s �
„!p/ D .Ei �Ef / from the deactivation of vibrational energy.

The Stokes and the anti-Stokes radiation have a constant frequency shift against
the pump radiation, which depends on the vibrational eigenfrequencies !v of the
molecules in the active medium.

!s D !p � !v ; !as D !p C !n : : : :

If the Stokes or anti-Stokes wave becomes sufficiently strong, it can again produce
another Stokes or anti-Stokes wave at !.2/s D !.1/s �!v D !p�2!v and!.2/as D !pC
2!v. Therefore, several Stokes and anti-Stokes waves are generated at frequencies
!
.n/
s D !p � n!v: !.n/as D !p C n!v (n D 1; 2; 3; : : :) (Fig. 6.30b). Tunable lasers

as pumping sources therefore allow one to transfer the tunability range (!p ˙
!)
into other spectral regions (!p ˙
! ˙ n!v).

The experimental realization uses a high-pressure cell filled with a molecular
gas (H2, N2, CO, etc.) at pressures of up to 100 bar. The pump laser is either
focussed into the gas cell with a lens of long focal length or a waveguide structure
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Figure 6.31 Infrared Raman waveguide laser in compressed hydrogen gas H2, pumped by a tun-
able dye laser. The frequency-doubled output beam of a Nd:YAG laser is split by BS in order
to pump a dye laser oscillator and amplifier. The dye laser oscillator is composed of mirror M,
grating G, and beam-expanding prism BEP. The different Stokes lines are separated by the prism
P (ODC: oscillator dye cell) [620]

is used (Fig. 6.31) where the pump laser beam is totally reflected at the walls of the
waveguide, thus increasing the pathlength in the gain medium.

Stimulated Raman scattering (SRS) of dye laser radiation in hydrogen gas can
cover the whole spectrum between 185 and 880 nm without any gaps, using three
different laser dyes and frequency doubling the dye laser radiation [619]. A broadly
tunable IR waveguide Raman laser pumped by a dye laser can cover the infrared
region from 0.7 to 7 µm without gaps, using SRS up to the third Stokes order (!s D
!p � 3!v) in compressed hydrogen gas. Energy conversion efficiencies of several
percent are possible and output powers in excess of 80 kW for the third Stokes
component (!p � 3!v) have been achieved [620].

Instead of a high-pressure gas cell, solid bulk crystals can also be used as Raman
gain medium. Because of their high density, the gain per cm is much higher and
shorter pathlengths can be sufficient to obtain a high conversion efficiency. This can
be further enhanced if the crystal is placed inside the pump laser resonator where
the pump power is much higher.

If the gain medium is an optical fiber a long pathlength can be realized and the
threshold is therefore low, which means that a low-power pump laser can be used.
Since the most of the pump power is confined inside the core of the fiber by total
reflection at the boundary between cladding and core (Fig. 6.32), the pump intensity
inside the core is high. Even cw operation of Raman lasers has been demonstrated
with silicon as the gain medium [621].
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Figure 6.32 Optical fiber as Raman gain medium

The pump radiation can be also coupled into the cladding of the optical fiber,
from where it can enter the core. Such cladding-pumped fiber Raman lasers can
deliver higher output powers [622, 623].

Fiber Raman lasers play an important role in telecommunication networks,
where optical fibers are used as pump sources for the signal wave [625].

For infrared spectroscopy, Raman lasers pumped by the numerous intense lines
of CO2, CO, HF, or DF lasers may be advantageous. Besides the vibrational Raman
scattering, the rotational Raman effect can be utilized, although the gain is much
lower than for vibrational Raman scattering, due to the smaller scattering cross
section. For instance, H2 and D2 Raman lasers excited with a CO2 laser can produce
many Raman lines in the spectral range from 900 to 400 cm�1, while liquid N2

and O2 Raman lasers pumped with an HF laser cover a quasi-continuous tuning
range between 1000 and 2000 cm�1. With high-pressure gas lasers as pumping
sources, the small gaps between the many rotational–vibrational lines can be closed
by pressure broadening (Sect. 3.3) and a true continuous tuning range of IR Raman
lasers in the far infrared region becomes possible. Recently, a cw tunable Raman
oscillator has been realized that utilizes as active medium a 650-m long single-
mode silica fiber pumped by a 5-W cw Nd:YAG laser. The first Stokes radiation is
tunable from 1.08 to 1:13 µm, the second Stokes from 1.15 to 1:175 µm [627]. With
stimulated Raman scattering up to the seventh anti-Stokes order, efficient tunable
radiation down to 193 nm was achieved when an excimer-laser pumped dye laser
tunable around 440 nm was used [628].

A more detailed presentation of IR Raman lasers may be found in the review by
Grasiuk et al. [629] and in [630–633].



Chapter 7
Optics of Gaussian Beams

In most textbooks on optics generally plane waves and their transformation by op-
tical elements are treated. Since the fundamental modes in the laser output have
a Gaussian beam profile (see Sect. 5.2), some knowledge about imaging and fo-
cusing of Gaussian beams are important for proper applications of laser beams.
Although a nearly parallel laser beam is in many aspects similar to a plane wave,
it shows several features that are different but that are important when laser beams
are imaged by optical elements.

In this chapter we will discuss the basic characteristics of Gaussian beams and
their transformation by optical elements such as lenses, mirrors, prisms and optical
gratings. The following presentation follows that of the recommendable review by
Kogelnik and Li [314].

7.1 Basic Characteristics of Gaussian Beams

A laser beam traveling into the z-direction can be represented by the field amplitude

E D A.x; y; z/e�i.!t�kz/ with k D !

c
: (7.1)

While A.x; y; z/ is constant for a plane wave, it is a slowly varying complex func-
tion for a Gaussian beam. Since every wave obeys the general wave equation


E C k2E D 0 ; (7.2)

we can obtain the amplitude A.x; y; z/ of our particular laser wave by inserting
(7.1) into (7.2). We assume the trial solution

A D C � e�iŒ'.z/C.k=2q/r2� ; (7.3)

where r2 D x2 C y2, and '.z/ represents a complex phase shift. In order to under-
stand the physical meaning of the complex parameter q.z/, we express it in terms

421W. Demtröder, Laser Spectroscopy 1, DOI 10.1007/978-3-642-53859-9_7,
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of two real parameters w.z/ and R.z/

1

q
D 1

R
� i

�

�w2
: (7.4)

With (7.4) we obtain from (7.3) the amplitude A.x; y; z/ in terms of R, w, and '

A D C � exp

�
� r

2

w2

�
exp



�i

kr2

2R.z/
� i'.z/

�
(7.5)

with

C D w0

w.z/
w0 D w.z D 0/ :

This illustrates that R.z/ represents the radius of curvature of the wavefronts in-
tersecting the axis at z (Fig. 7.1), and w.z/ gives the distance r D .x2 C y2/1=2
from the axis where the amplitude has decreased to 1=e and thus the intensity has
decreased to 1=e2 of its value on the axis (Sect. 5.2.3 and Fig. 5.11). Inserting (7.5)
into (7.2) and comparing terms of equal power in r yields the relations

dq

dz
D 1 ; and

d'

dz
D �i=q ; (7.6)

which can be integrated and gives, with R.z D 0/ D1 from (7.4)

q.z/ D q0 C z D i
�w20
�
C z ; (7.7a)

where q0 D q.z D 0/ and w0 D w.z D 0/ (Fig. 7.1) and when we measure z from
the beam waist at z D 0.

From (7.7a) we obtain:

1

q.z/
D 1

q0 C z D
1

z C i�w20=�
: (7.7b)

Multiplying nominator and denominator with z � i�w20=� yields

1

q.z/
D z

z2 C ��w20=�
	2 � i

�

�w20

�
1C ��z=�w20

	2�

D 1

R
� i

�

�w2
(7.7c)

where the last line equals (7.4).
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Figure 7.1 a Gaussian beam with beam waist w0 and phase-front curvature R.z/; b radial de-
pendence of the amplitude A.r/ with r D .x2 C y2/1=2 [314]

This gives for the beam waistw.z/ and the radius of curvatureR.z/ the relations:

w2.z/ D w20
"
1C

�
�z

�w20

�2#
; (7.8)

R.z/ D z
"
1C

�
�w20
�z

�2#
: (7.9)

Integration of the phase relation (7.6)

d'

dz
D �i=q D � i

z C i�w20=�
;

yields the z-dependent phase factor

i'.z/ D ln
q
1C .�z=�w20/� i arctan.�z=�w20/ : (7.10)

The second term in (7.10) is called the Gouy-phase. It describes the fact, that
a Gaussian beam acquires an additional phase (besides the normal Phase exp.ikz/)
when it passes through a focus (beam waist w0). It can be written as ˚G D
arctan.z=zR/ where zR D �w20=� is the Rayleigh length (see below (7.26)).

Having found the relations between ', R, and w, we can finally express the
Gaussian beam (7.1) by the real beam parameters R and w. From (7.10) and (7.5),
we get

E D C1w0
w

e.�r2=w2/eŒik.z�r2=2R/�i	�e�i!t : (7.11)

The first exponential factor gives the radial Gaussian distribution, the second the
phase, which depends on z and r . We have used the abbreviation

	 D arctan.�z=�w20/ :
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Figure 7.2 Radial intensity
profile of a Gaussian beam

The factor C1 is a normalization factor. When we compare (7.11) with the field
distribution (5.30) of the fundamental mode in a laser resonator, we see that both
formulas are identical for m D n D 0.

The radial intensity distribution (Fig. 7.2) is

I.r; z/ D c�0

2
jEj2 D C2w

2
0

w2
exp

�
�2r

2

w2

�
: (7.12)

The normalization factor C2 allows

1Z

rD0
2�rI.r/dr D P0 (7.13)

to be normalized, which yields C2 D .2=�w20/P0, where P0 is the total power in
the beam. This yields

I.r; z/ D 2P0

�w2
exp

�
� 2r2

w.z/2

�
: (7.14)

The peak intensity Ip is reached for r D 0 and we obtain from (7.14) Ip D
2P0=

�
�w2

	
. Since the average intensity is I D P0=

�
�w2

	
the peak intensity

in a Gaussian beam is just twice the average intensity.
When the Gaussian beam is sent through an aperture with diameter 2a, the frac-

tion

Pt

Pi
D 2

�w2

aZ

rD0
2r�e�2r2=w2

dr D 1 � e�2a2=w2

; (7.15)

of the incident power is transmitted through the aperture. Figure 7.3 illustrates this
fraction as a function of a=w. For a D .3=2/w 99% of the incident power is
transmitted, and for a D 2w more than 99:9% of the incident power is transmitted.
In this case diffraction losses are therefore negligible.
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Figure 7.3 Fraction Pt=Pi

of the incident power Pi of
a Gaussian beam transmitted
through an aperture with
radius a

7.2 Imaging of Gaussian Beams by Lenses

A Gaussian beam can be imaged by lenses or mirrors, and the imaging equations
are similar to those of spherical waves. When a Gaussian beam passes through
a focusing thin lens with focal length f , the spot size ws is the same on both sides
of the lens (Fig. 7.4). The radius of curvatureR of the phase fronts changes fromR1
to R2 in the same way as for a spherical wave, so that

1

R2
D 1

R1
� 1

f
: (7.16)

The beam parameter q therefore satisfies the imaging equation

1

q2
D 1

q1
� 1

f
: (7.17)

If q1 and q2 are measured at the distances d1 and d2 from the lens, we obtain from
(7.17) and (7.7a)–(7.7c) the relation

q2 D .1 � d2=f /q1 C .d1 C d2 � d1d2=f /
.1 � d1=f / � q1=f ; (7.18)

which allows the spot size w and radius of curvature R at any distance d2 behind
the lens to be calculated.

If, for instance, the laser beam is focused into the interaction region with ab-
sorbing molecules, the beam waist of the laser resonator has to be transformed into
a beam waist located in this region. The beam parameters in the waists are purely
imaginary, because in the focal plane is R D 1; that is, from (7.4) we obtain

q1 D i�w21=� ; q2 D i�w22=� : (7.19)

The beam diameters in the waists are 2w1 and 2w2, and the radius of curvature is
infinite. Inserting (7.19) into (7.18) and equating the imaginary and the real parts
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Figure 7.4 Imaging of a Gaussian beam by a thin lens

yields the two equations

d1 � f
d2 � f D

w21
w22

; (7.20)

.d1 � f /.d2 � f / D f 2 � f 2
0 ; with f0 D �w1w2=� : (7.21)

Since d1 > f and d2 > f , this shows that any lens with f > f0 can be used. For
a given f , the position of the lens is determined by solving the two equations for d1
and d2,

d1 D f ˙ w1

w2

q
f 2 � f 20 ; (7.22)

d2 D f ˙ w2

w1

q
f 2 � f 20 : (7.23)

From (7.20) we obtain the beam waist radius w2 in the collimated region

w2 D w1
�
d2 � f
d1 � f

�1=2
: (7.24)

When the Gaussian beam is mode-matched to another resonator, the beam parame-
ter q2 at the mirrors of this resonator must match the curvature R of the mirror and
the spot size w in (5.39a), (5.39b). From (7.18), the correct values of f , d1, and d2
can be calculated.

We define the collimated or waist region as the range jzj � zR around the beam
waist at z D 0, where at z D ˙zR the spot size w.z/ has increased by a factor ofp
2 compared with the value w0 at the waist. Using (7.8) we obtain

w.z/ D w0
"
1C

�
�zR

�w20

�2#1=2
D p2w0 ; (7.25)

which yields for the waist length or Rayleigh length

zR D �w20=� : (7.26)



7.2 Imaging of Gaussian Beams by Lenses 427

Figure 7.5 Beam waist
region and Rayleigh length
zR of a Gaussian beam

The waist region extends about one Rayleigh distance on either side of the waist
(Fig. 7.5). The length of the Rayleigh distance depends on the spot size and there-
fore on the focal length of the focusing lens. Figure 7.6 depicts the dependence of
the full Rayleigh length 2zR on w0 for two different wavelengths.

Gaussian beams do not diverge linearly as conventional light beams. Within the
Raleigh length around the focus the divergence is very small (near field). Farther
away from the focus the beam becomes more and more a spherical wave (far field)
and the divergence angel approaches the constant asymptotic limit �G (Fig. 7.8)

If the beam is not a pure Gaussian beam but contains admixtures of higher order
modes, the beam quality can be defined by the parameter

M2 D w.R/ � �=.w0�G/

where w is the actual spot size of the beam and w0 that of a pure Gaussian beam.
For a pure Gaussian beam is M D 1, for admixtures of higher order modes is
M > 1. At large distances z � zR from the waist, the Gaussian beam wavefront is
essentially a spherical wave emitted from a point source at the waist. This region is
called the far field. The divergence angle � (far-field half angle) of the beam can be

Figure 7.6 Full Rayleigh
lengths 2zR as a function
of the beam waist w0 for
two different wavelengths
�1 D 632:8 nm (HeNe laser)
and �2 D 10:6 µm (CO2

laser)

Figure 7.7 Focusing of
a Gaussian beam by a lens
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Figure 7.8 Divergence of
a focused Gaussian beam.
The extrapolations of the far-
field light rays towards x D 0

merge into a point

2w0

x=0
nearfield R(x)

2w(x)

πw0
θ = λ

x

Far field

obtained from (7.8) and Fig. 7.1 with z � zR as

� D w.z/

z
D �

�w0
: (7.27)

Note, however, that in the near-field region the center of curvature does not coincide
with the center of the beam waist (Fig. 7.1). When a Gaussian beam is focused by
a lens or a mirror with focal length f , the spot size in the beam waist is for f � ws

w0 D f �

�ws
; (7.28)

where ws is the spot size at the lens (Fig. 7.7).
To avoid diffraction losses the diameter of the lens should be d 
 3ws.
In order to reach a minimum beam waist, diffraction should be small. This means

the beam should have a large diameter before the lens. With uncorrected lenses such
a large beam diameter will cause spherical aberration which distorts the focus and
widens the beam waist. Therefore corrected microscope objectives should be used
to reach the diffraction limited focus diameter.

Example 7.1
A lens with f D 5 cm is imaging a Gaussian beam with a spot size of ws D
0:2 cm at the lens. For � D 623 nm the focal spot has the waist radius w0 D
5 µm.

In order to achieve a smaller waist radius, one has to increase ws or de-
crease f (Fig. 7.7).

7.3 Mode Cleaning of Gaussian Beams

Often the output of lasers consists of an overlap of several transverse modes
TEMmnq with m;n > 0. Even if nearly all of the output power is contained in the
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I(r)

ra r

gaussian
beam profile

scattered
light

diffractionTEM11

Figure 7.9 Suppression of higher-order modes and scattered light by an aperture with radius ra.
The intensity of the TEM11 mode and of scattered light are not to scale but enlarged

fundamental mode with m D n D 0, spurious admixtures of higher order modes
will detoriate the quality of the output beam. Other perturbations of Gaussian
beams are due to dust particles on lenses or mirrors which give rise to scattered
light which shows interference patterns and overlaps the pure Gaussian beam. Also
the diffraction by lenses or apertures causes an intensity distribution which contains
besides the central diffraction maximum higher diffraction orders which spoil the
pure Gaussian intensity distribution. In order to obtain the minimum spot size in
the focus the beam has to be cleaned from all unwanted admixtures. This can be
achieved with spatial filtering by a narrow circular aperture in the focal area of the
imaging lens. This aperture transmits most of the Gaussian beam but suppresses
higher order modes and scattered light (Fig. 7.9). If the radius ra of the aperture
is chosen correctly to be equal to the minimum in the diffraction pattern of the
Gaussian beam, the diffraction of the Gaussian beam is minimized while that of the
overlapping light is larger. The best filtering of the Gaussian beam with the radial
intensity distribution I.r/ D I0 � exp.�2r2=w2/ and w D f � �=.�ws/ can be
achieved for ra D 1=e2I0, i.e. the radius r must be equal to the spot size w, which
depends on the focal length f of the imaging lens and the beam radius ws at the
lens.
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Chapter 2

1. a) With ˇ D 1=.kT /)
1X

qD0
q � h�e�qh��ˇ D � @

@ˇ

0

@
1X

qD0
e�qh�ˇ

1

A

D � @
@ˇ

�
1

1 � e�h�ˇ

�
D h�e�h�ˇ
�
1 � e�h�ˇ	2 :

b) 1X

qD0
e�qh�ˇ D 1

1 � e�h�ˇ
a

b
D h�

eh�=.kT / � 1 :

2. a) The spot size on the output mirror is

dA D � w2s D �.0:1/2 cm2 D 3 � 10�2 cm2 :

The irradiance at the mirror is then

I1 D 1

� 10�2 W=cm2 � 30W=cm2 D 3 � 105 W=m2 :

The solid angle d˝ into which the laser beam is emitted is:

d˝ D �4 � 10�3	2 =4� D 1:3 � 10�6 sr :

The radiance L of the laser is:

L D 1

dA d˝
D 2 � 1011 W m�2 sr�1 :
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At a surface at a distance z D 1m from the mirror, the spot size is:

A2 D dAC z2d˝ D 4:4 � 10�2 cm2 :

The intensity at the surface is:

I2 D 1

4:4 � 10�2
W

cm2
D 23W=cm2 D 2:3 � 105 W=m2 :

b) For a spectral width •� D 1MHz, the spectral power density at the mirror
is:

�1 D .I1=c/=•� D 10�9 Ws2=m3 :

This should be compared with the visible part of the solar radiation on Earth,
I � 103 W=m2, •� D 3� 1016 s�1 ) �SR D 10�22 Ws2=m3, which is smaller
by 13 orders of magnitude.

3. I D I0 e�˛d

Ik D I0 e�100�0:1 D I0 e�10 D 4:5 � 10�5I0
I? D I0 e�5�0:1 D I0 e�0:5 D 0:6I0 :

4. I D P0

4�r2
D 100

4�.0:02/2
W

m2
D 2 � 104 W=m2

I� D I


�
:

For

� D 100 nm

� D 400 nm

)
) j
�j D c

�2

�

D 1:8 � 1014 s�1

I� D 2 � 104
1:8 � 1014

Ws

m2
D 1:1 � 10�10 Ws m�2

�� D I�=c D 3:6 � 10�19 Ws2 m�3 :

The spectral mode density is

n.�/ D 8��2

c3
:

Within the volume of the sphere with r D 2 cm

V D 4

3
�r3 D 3:3 � 10�5 m3
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are

N D n.�/ V 
� D 8��2

c3

� V D 8�

c �2

� V D 3 � 1015 modes :

The energy per mode is

Wm D �� 
� V

N
D 7 � 10�25 Ws=mode :

The energy of a photon at � D 400 nm is

E D h� D h c
�
D 4:95 � 10�19 Ws D 3:1 eV

) The average number of photons per mode is

nph D Wm

h�
D 1:5 � 10�6 :

The average number of photons per mode is therefore very small.
5. I D I0 e�˛x D 0:9I0

) ˛x D � ln 0:9) ˛x D 0:1 :

With x D 5 cm) ˛ D 0:02 cm�1

˛ D N
 ) N D ˛



D 0:02

10�14 cm�3 D 2 � 1012 cm�3 :

6. a) �i D 1P
Ain
D 1

13 � 107 s D 7:7 ns

dNn
dt
D NiAin �NnAn :

For stationary conditions dNn=dt D 0

) Nn

Ni
D Ain

An
D Ain�n W

N1

Ni
D 3 � 107 � 5 � 10�7 D 15

N2

Ni
D 1 � 107 � 6 � 10�9 D 0:06

N3

Ni
D 5 � 107 � 10�8 D 0:5 :
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b) With g0 D 1, gi D 3 we obtain:

B
.0/

0i D
gi

g0
Bi0 D 3Bi0 D 3c3

8�h�3
Ai0

D 4:6 � 1020 m3 W�1 s�3 :

If the absorption rate and total emission rate of level jii should be equal, we
obtain:

B
.�/
0i �� D Ai D 1:3 � 108 s�1

) �� D 1:3 � 108
4:6 � 1020 Ws2=m3 D 2:8 � 10�13 Ws2=m3 :

With a laser bandwidth of 
�2 D 10MHz, the energy density is

� D
Z
�� d� � �� 
�2 D 2:8 � 10�6 Ws=m3

) I D c� D 6:3 � 102 W=m2 D 63mW=cm2 :

c) B.�/
0i D

c

h�

Z

0i d� � c

h�

0i 
�a .

With 
�a D 1=�i ) 
�a D 1=.2��i / for the absorption linewidth, the ab-
sorption cross-section becomes:


0i D 4:3 � 10�14 m2 D 4:3 � 10�10 cm2 :

7. The Rabi flopping frequency for the resonance case ! D !i2 is

˝ D
p
.Di2E0=„/2 C .�=2/2

where Di2 is the dipole matrix element and � D .�i C �2/=2.
The relation between Di2 and the spontaneous transition probability Ai2 is

Ai2 D 16�2�3

3�0hc3
jDi2j 2 D 16�2

3�0h�3
jDi2j 2 :

This gives for ˝:

˝2 D jDi2j 2E2
0=„2 C .�=2/2 D

3�0�
3Ai2

4h
C .�=2/2 :

With � D 600 nm, Ai2 D 10�7 s�1 �=2 D 1
4
. 1
�i
C 1

�2
/ D 7:7 � 107 s�1 we

obtain:

˝2 D �2:17 � 109E2
0 � 5:5 � 1015

	
s�2 
 1

�22
D 2:8 � 1016 s�2

) E2
0 
 1:5 � 107 V2=m2 ) E0 
 3:9 � 103 V=m :
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The intensity of the inducing field is then

I D c�0E2
0 D 4 � 1014 W=m2

and the energy density

� D I=c D �0E2
0 D 1:33 � 106 Ws=m3 :

This can be compared with the intensity of the Sun’s radiation on Earth, which
is Isun � 103 W=m2.

8. Dust particles on the lens L1 cause scattering of light in all directions. This
light is not focussed by L1, and therefore only a tiny fraction can pass through
the aperture. The same is true for imperfections of lenses or mirror surfaces.
Without the aperture the superposition of scattered light or light with deformed
wavefronts with the incident light causes interference patterns. The aperture
therefore “cleans” the Gaussian laser beam.

9. For coherent illumination of the slits, the following condition holds:

b2d2=r2 � �2) d2 � r2�2=b2

where b D source diameter, d D slit separation, and r D distance between
source and slits.

a) b D 1mm, r D 1m, � D 400 nm

) d2 � 1 � 16 � 10�14

10�6 D 16 � 10�8 m2

) d � 0:4mm :

b) b D 109 m, � D 500 nm, r D 4Ly D 3:78 � 1016 m

) d2 � 357m2 ) d � 19m :

c) Here the maximum slit separation d is limited by the coherence lengthLc of
the laser beam, which depends on the spectral width
�L of the laser radiation.
With 
�L D 1MHz we obtain


sc D c

2�
�L
D 47:7m :

10. Induced and spontaneous transition probabilities are equal when the radiation
field contains one photon per mode. This means:

n D 1

eh�=kT � 1 D 1) eh�=kT D 2

) T D h�

k ln 2
D hc

�k ln 2
:
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a) For � D 589 nm we obtain for a thermal radiation field:

T D 3:53 � 104 K :

If a laser beam is sent through a cavity with V D 1 cm3, the condition Bik� D
Aik can be fulfilled at modest laser intensities. This can be estimated as fol-
lows:
The number of modes in the cavity within the frequency interval 
�L D
10MHz (natural linewidth of the 3P –3S transition of Na) is

n d� D 8�

c�2
d� D 2:4 � 106 =cm3 :

The energy of a photon at � D 589 nm is h� D 3:36 � 10�19 Ws. With 1
photon per mode, the radiation density in the cavity with V D 1 cm3 is:

� D 8:06 � 10�13 Ws=cm3 :

The intensity of a laser beam with a spectral width of 10MHz is then inside
the cavity

I D �c D 24 � 10�3 W=cm2 D 24mW=cm2 :

b) For � D 1:77 � 109 s�1 we obtain

T D 0:12K :

The energy density � of the thermal field within the natural linewidth d� D
0:15 s�1 at T D 0:12K is

� D �� d� D n.�/ h� d� :

With n.�/ D 8��2

c3 D 2:9 � 10�12 =cm3

) � D 5 � 10�37 Ws=cm3 :

This is 24 orders of magnitude smaller than the visible radiation in a).

11.
1

�eff
D 1

�sp
C n
v .

At p D 10mb the atomic density is n D 3 � 1017 cm�3,
At T D 400K the mean relative velocity is

v D
s
8kT

��
with � D mN2

�mNa

mN2
CmNa

D 12:6AMU



Solutions 437

1AMU D 1:66 � 10�27 kg

) v D 820m=s D 8:2 � 104 cm=s

) 1

�eff
D 109

16
C 3 � 1017 � 4 � 10�15 � 8:2 � 104 s�1

D 1:62 � 108 s�1

) �eff D 6:2 ns D 0:388�sp with �sp D 16 ns :

Chapter 3

1. The natural linewidth is


�n D 1

2�

�
1

�.3s2/
C 1

�.2p4/

�

D 1

2�
.1:7 � 107 C 5:6 � 107/ s�1

D 11:6MHz :

The Doppler width is


�D D 7:16 � 10�7�0
p
T=M

With �0 D c=� D 4:74 � 1014 s�1, T D 400K, M D 20AMU
) 
�D D 1:52 � 109 s�1 D 1:52GHz .
The pressure broadening has two contributions:

a) by collisions with He atoms.


�p D 1

2�
.nHe
B.Ne � He/v :

At p D 2mb and T D 400K

) nHe D p=.kT / D 3:6 � 1016 cm�3


B.Ne � He/ D 6 � 10�14 cm2, v D 1:6 � 105 cm=s

) 
�p D 5:5 � 107 s�1 D 55MHz.

b) by collisions Ne � Ne (resonance broadening)

v.Ne � Ne/ D 8:8 � 104 cm=s


B.Ne � Ne/ D 1 � 10�13 cm2

nNe D 3:6 � 1015 cm�3

) 
�p.Ne � Ne/ D 5MHz :
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The line shift is


�s.Ne � Ne/ D 0:5MHz :

The total pressure broadening is


�p D 55C 5 D 60MHz :

The total shift is


�s D 9C 0:5 D 9:5MHz :

2. n D p=kT
with p D 1mb ¶ 102 Pa) n D 2:4 � 1022 m�3

v D
s
8kT

��
� D 44 � 14z

191
AMU

) v D 433m=s :

a) The pressure-broadened linewidth is


�p D 1

2�
n
bv

with 
b D 5 � 10�14 cm2 ) 
�p D 8:3 � 106 s�1 D 8:3MHz.
The saturation broadening of the homogeneous linewidth 
�p is


�s D 
�p

p
1C S :

The saturation parameter S is defined as the ratio of induced emission rate
Bik�� d� within the spectral interval d� to the total relaxation rate � D 1=�eff.
Because Bik�� d� D I
a=h� we can write:

S D I
a

h��
D I
a

h� 2� 
�p

where

I D 50W

� 1
4
10�2 cm2

D 6:4 � 103 W=cm2

is the laser intensity in the focal plane.
With 
a D 10�14 cm2, � D 2�
�p D 2� � 8:3 � 106 s�1 D 5:2 � 107 s�1

h� D 1:9 � 10�20 Ws)
S D 64 :

The saturation broadening is then:


�s D 
�p

p
65 D 8:06
�p D 66:9MHz :
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The Doppler width is


�D D 7:16 � 10�7 .c=�/
p
T=M .T=K and M=AMU/ :

With M D 32C 6 � 19 D 146AMU for SF6 and T D 300K we obtain


�D D 30MHz :

Saturation broadening is dominant.
b) At the temperature T D 10K, the Doppler width is, for � D 21 cm and
M D 1AMU,


�D D 7:16 � 10�7.c=�/
p
T=M

D 3:23 � 103 s�1 D 3:23 kHz :

The natural linewidth is


�n D Aik=2� C .4=2�/10�15 s�1 D 6:4 � 10�16 s�1 :

For the Lyman-˛ transition at � D 121:6 nm it is


�D D 5:6 � 109 s�1 D 5:6GHz I 
�n D 1:5 � 108 s�1 :

The absorption coefficient is ˛ D n
ik. The absorption cross-section is related
to the spontaneous transition probability by


ik D �

8
�2Aik=
�n D �2

4
�2 D 1:09 � 103 cm2 � 1 � 103 cm2 :

We can assume the star radiation to consist of many spectral intervals with
width 
�n. Each of these spectral parts is absorbed only by H atoms within
the velocity group vz D .� � �0/ � � ˙ 
vz with 
vz D � � 
�n inside the
Doppler-absorption profile with width 
�D. This is the fraction 
�n=
�D of
all H atoms.
The absorption coefficient is therefore

˛ D n
ik
�n=
�D

D 10 � 103�6:4 � 10�16=3:23� 103
D 2 � 10�16 cm�1 :

The radiation has decreased to 10% I0 for

e�˛L D 0:1) ˛L D 2:3) L D 2:3

2 � 10�16 cm D 1:15 � 1016 cm

L D 1:15 � 1011 km D 0:012Ly :



440 Solutions

For the Lyman-˛ radiation the absorption cross-section is


ik D �2

4
�2 D 3:7 � 10�10 cm2

) ˛ D n
ik
�n=
�D D 1 � 10�10 cm�1

L D 2:3

˛
D 2:3 � 1010 cm D 2:3 � 105 km :

c) With � D 20�s, the natural linewidth is:


�n D 1

2��
D 8 kHz :

With � D 3:39 � 10�6 m, M D 16AMU the Doppler width is


�D D 7:16 � 10�7.c=�/
p
T=M D 270MHz :

The pressure broadened linewidth is


�p D n
bv D .p=kT /
bv D 17MHz :

The transit time broadening is


�tr D 0:4v=w

with w D 0:5 cm, v D 700m=s) 
�tr D 56 kHz.
d) In order to fulfill 
�tr < 
�n )

0:4v=w <
1

2��
) w > 0:8��v D 3:51 cm

) diameter 2w > 7 cm :

The saturation broadening is


�S D 
�p

p
1C S :

For 
a D 10�10 cm2 and with I D 10�2

0:52�

W
cm2 D 1:27� 10�2 W

cm2 we obtain (see
Problem 3.2a)

S D I
a

h� 2� 
�p
D 2:2 � 10�1D 0:22

) 
�S D 17MHz � 1:09 D 18:62MHz :

Saturation broadening plays here a minor role.
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3. a) The Lorentzian and the Gaussian profiles intersect for IL.!/ D IG.!/. The
normalization IL.!0/ D IG.!0/ D I0 requires:

I0.�=2/
2

.! � !0/2 C .�=2/2 D I0e
�.!�!0/2

0:36•!2
0

) ln
�
.! � !0/2 C .�=2/2

� � 2 ln.�=2/ D .! � !0/2
0:36•!20

:

With: •!0 D 2�•�D D 1 � 1010 s�1

� D 2� � 107 s�1 D 6:3 � 107 s�1

we obtain

ln
�
.! � !0/2 C 9:9 � 1014

� � 34:5 D .! � !0/2
0:36 � 1020

) .! � !0/ D 2:18 � 1010 s�1 I � � �0 D 3:47GHz :

This is 347 times the natural linewidth.
b) At the intersection point !c the intensity has decreased to

I D I0e
�2:182

�1020

0:36�1020 D I0 � 1:85 � 10�6 :

c) At .! � !0/ D 0:1.! � !c/ the Lorentzian profile has decreased to

IL D I0 .�=2/2

Œ0:1.! � !c/�2 C .�=2/2 D I0
3:152 � 1014

2:182 � 1018 C 3:152 � 1014
D 2 � 10�4I0 :

The Doppler profile has only decreased to

ID D 0:876I0 :

d) 
!S D 
!n

p
1C S D 0:5•!D

with 
!n D 2� � 107 s�1 and •!D D 1 � 1010 s�1

)p1C S D 80) S D 7:9 .
The saturation parameter is related to the absorption cross-section by

S D 
aI=h�

�
with 
a D �2

4
�2

) I D �Sh�=
a
with � D 589 nm) 
a D 8:56 � 10�13 m2 D 8:56 � 10�9 cm2

) I D 195W=m2 D 19:5mW=cm2 .
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4. a) At 1 bar the atomic density is

n D p=kT D 1:4 � 1019 cm�3 :

According to Fig. 3.12 the line broadening is


�p D 1

2�
� 2 cm�1 ¶ 10GHz :

Table 3.1 gives 9:1GHz.
b) For resonant broadening (Li+Li collisions) the linewidth is

�res D 2�
�p D ne2fik
4� �0m0!ik

:

For n.Li/ D 1:4 � 1016 cm�3, fik D 0:65, !ik D 2�c=� D 2:8 � 1015 s�1

) 
�p D 1:3 � 108 s�1 D 130MHz. At n D 1:4 � 1019) 
�p D 130GHz.
This is about 13 times larger then for LiC Ar collisions.

5. The mean flight time between two collisions is Ntc D �=v where � D 1
n


is

the mean free pathlength, and v D p
8kT=�� is the mean relative velocity

between the collision partners.
The effective lifetime is

1

�eff
D 1

�sp
n
v) �eff D �sp C n
v :

The natural linewidth is doubled for

n
v D �sp D 1=�sp

) Ntc D 1

n
v
D �sp :

For v D 820m=s (see Problem 2.11); 
 D 4 � 10�15 cm2

�sp D 16 ns) n D 1:9 � 1017 cm�3

) p D nkT D 1 � 103 Pa D 10mbar :

At a pressure p D 10mbar of N2 the linewidth of the Na(3S–3P ) transition
is doubled; i.e., the homogeneous linewidth is then 20MHz, compared to the
much larger inhomogeneous Doppler width of about 1GHz.

6. The Doppler width is


�D D 7:16� 10�7.c=�/
p
T=M D 1:6 � 109 s�1 :

The pressure broadening is, according to Table 3.1


�p=p D 8MHz=torr :



Solutions 443

At 10mbar ¶ 7:6 torr)

�p.10mbar/ D 60:8MHz.
On the other hand is 
�p D 1

2�
n
bv

) 
b D 2�
�p=.nv/.

At p D 10mbar) n D 2:1 � 1018 cm�3.

The broadening cross-section is (due to elastic and inelastic collisions)


b D 2:6 � 10�15 cm2 :

If the broadening of the upper level jki is twice as large as that of the lower
level jii, we obtain with


�p D 1

2�
.�i C �k/

the relaxation parameters

�i D 2�

3

�p D 1:27 � 108 s�1 ; �k D 4�

3

�p D 2:5 � 108 s�1 :

The saturation broadening is at low pressures


�S D 
�n

p
1C S :

In order to exceed the pressure broadening at a Ne pressure of 10mb


�S > 
�p )
p
1C S > 
�p


�n
D 60:8 � 106

6:4 � 106 D 9:5

since the natural linewidth is 
�n D 1
2��sp
D 6:4MHz) S 
 8:5

S D 
aI=h�

�
D �2�2I=h�

4�
) I D 4�h�

�2�2
S

I D 4 � 3:7 � 108 � 2 � 1:6 � 10�19

�2 � 7:692 � 10�14 � 8:5 � 690W=m2 D 69mW=cm2 :

The saturation broadening exceeds the Doppler width for p D 10mbar, when


�S D 
�p

p
1C S > 
�D

)p1C S > 
�D=
�p D 1:6 � 109=6:08 � 107 D 26) S 
 691
I D 588mW=cm2 :

The laser beam has to be focussed to a cross-section

� w2S D
100

588
cm2 D 0:17 cm2 :
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Chapter 4

1. From the equation

�


�
D mN

we obtain with N D 1800 � 100 D 1:8 � 105, m D 1
�=
� D 1:8 � 105.
However, this does not take into account the finite width b of the entrance
slit s1. The two spectral lines at �1 and �2 can be resolved if the images s2.�1/
and s2.�2/ can be resolved. The width of these slit images is


s2 D f2�=aC bf2=f1 :

For a D 10 cm, f2 D f1 D 2m) 
s2 D 20�C 10�m.
For � D 500 nm) 
s2 D 20�m.

The separation of s2.�1/ and s2.�2/ is:

•s2 D f2.dˇ=d�/
� with ˇ D diffraction angle.

From the grating equation for m D 1:

d.sin ˛ C sinˇ/ D �

) dˇ

d�
D
�

d�

dˇ

��1
D 1

d cosˇ

cosˇ D
q
1 � sin2 ˇ D

s

1 �
�
�

d
� sin ˛

�2

) •s2 D f2
�

d cosˇ

 
s2) 
� 
 
s2 d cosˇ

f2
:

For ˛ D 45ı, � D 500 nm, d D .1=18;000/ cm D 5:6 � 10�5 cm D 0:56�m
cosˇ D 0:9825) ˇ D 11ı


� 
 1:1 � 10�11 m) �


�
D 500 � 10�9

1:1 � 10�11 D 4:5 � 104 :

This is three times smaller than mN .
The useful minimum entrance slit width is given by

bmin D 2f1

d
� D 2

0:1
� 5 � 10�7 m

D 10�5 m D 10�m :
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2. The optimum blaze angle is

� D .˛ � ˇ/=2

with ˛ D 20ı, � D 500 nm, ˇ can be obtained from the grating equation with
m D 1:

d.sin ˛ C sinˇ/ D �

) sinˇ D C sin ˛ � �=d where d D 1

18;000
cm D 560 nm

D C0:34� 0:89 D �0:55) ˇ D �33:5ı

) � D .20C 33:5/=2 D 26:7ı

3. The condition for a Littrow grating to first order is:

2d sin ˛ D �

) d D �

2 sin ˛
D 488 nm

2 � 0:42 D 580:9 nm

) number of grooves: 1721 =mm :

4. d1= cos˛ D d2= cos �

) d2

d1
D cos �

cos˛
:

For � D 60ı ) cos˛ D 0:1 cos � D 0:05

) ˛ D 87ı : Fig. A1. Beam expanding prism

The incident beam has an angle of 90ı � ˛ D 3ı against the prism surface.
5. The spectral resolution is

�


�
D 600

10�4 D 50

s

�
) 
s D 6 � 106

50
� D 7:2 � 10�2 m D 7:2 cm :

6. The maximum transmission is

IT=I0 D T 2

.T C A/2 D
.1 �R � A/2
.1 �R/2 :

With R D 0:98, A D 0:003)

IT=I0 D 0:0172

0:022
D 0:72 :
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The reflectivity finesse is F �
R D �

p
R

1�R D 155:5.

The flatness finesse is: F �
f D 50. According to (4.57)

1

F �2
total

D 1

F �2
R

C 1

F �2
f

D 4:4 � 10�4) F �
tot D 47:6 :

The spectral resolution is

�


�
D F �
s

�
:

For d D 5 nm) 
s D 1 cm

) �


�
D 47:6 � 10�2

5 � 10�7 D 9:5 � 105 :

7. For 
� D 10�2 nm and � D 500 nm the spectral resolution has to be at least:

�


�

 500

10�2 D 5 � 104 :

The effective finesse of the FPI in Problem 4.6 is

F �
total D 47:6 :

The plate separation then has to be

d D 1

2

s D 1

2

�2


�F � D 0:26mm :

The free spectral range is

•� D c

2d
) j•�j D C c

�2
j•�j D �2

2d
D 3:8 � 10�10 m D 0:38 nm :

The spectral interval 
� transmitted by the spectrograph should be smaller
than •� in order to avoid the overlap of different orders. This means that the
spectral resolution of the spectrograph


� D d�

dx

s � 0:38 nm

with a linear dispersion of d�=dx D 5 � 10�2 nm=mm

) 
s � 0:38

5 � 10�1 mm D 0:76mm :
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8. The free spectral range must be

•� > 200 nm

) •� D �2

2d

 200 nm) d � 625 nm :

If the bandwidth is 5 nm, the finesse must be

F � D •�=
� D j•�=
�j D 625

5
D 125 :

If the finesse is solely determined by the reflectivity R

) F � D �
p
R

1 �R ) R D 0:9753 :

9. For �	 r the free spectral range is

•� D c

4d
) d D c

4•�
D 3 � 108
4 � 3 � 109 m D 2:5 � 10�2 m D 2:5 cm

F � D •�


�
D 3 � 109

107
D 300

1

F �2 D
1

F 2
R

C 1

F 2
f

) FR D F � � Ffq
F 2

f � F �2
D 375

) R D 0:9916 D 99:16%:

10. T .�/ D T0 cos2
�
�
nL1

�

�
cos2

�
�
nL2

�

�

with 2% absorption losses T0 D 0:98.

a) T .�/ D 0:98 cos2
�
0:05� � 10�3

� Œm�

�
cos2

�
0:05� � 4 � 10�3

� Œm�

�

Transmission peaks appear for the condition

5 � 10�5�
�

D m1� and
2 � 10�4�

�
D m2� .m1;m2 2 N/

) �1 D 5 � 10�5

m1

and �2 D 2 � 10�4

m2

:

For � D 500 nm we obtain:

m1 D 100 and m2 D 400 :



448 Solutions

For m1 D 101) � D 495 nm .
The thin plate has a free spectral range 
� D 5 nm.

For m2 D 401) � D 498:75 nm :

The thick plate has 
� D 1:25 nm :

b) T .˛; �/ D T0


1 � sin2

�
2�

�

nL

�
sin2 2˛

�

Where � D 2
nL
m

is the first factor 0 and T .˛; �max/ has a maximum trans-
mission T0, independent of ˛. For � D 2
nL

mC 1
2

this factor becomes 1 and the

transmission is

T .˛/ D T0.1 � sin2 2˛/ :

The contrast is then:

Tmax

Tmin
D 1

1 � sin2 2˛
:

11. The output voltage VS is

VS D R

RCR1 V0 D
1

1CR1=r V0 :

R is the parallel circuit of R2 and C :

1

R
D 1

1=i!C
C 1

R2
D 1

R2
� i!C ) R D R2

1 � i!R2C

) VS D V0

1C R1

R2
.1 � i!CR2/

D 1�
1C R1

R2

�
� i!CR1

V0

) jVSj D R2=.R1 C R2/r
1C !2C 2 R2

1
=R2

2

.R1CR2/
2

V0 :

For ! D 0) jVS.0/j D R2

R1 CR2 V0

) jVS.!/j D VS.0/r
1C

�
!C R1R2

R1CR2

�2 D
VS.0/p
1C .!�/2 :



Solutions 449

The phase shift between VS and V0 is

tan ' D =.VS/

<.VS/
D !CR1

1CR1=R2 D
!CR1R2

R1 CR2 D !� :

12. 
T D ˇP0

G

with ˇ D 0:8; P0 D 10�9 W; G D 10�9 W=K

) 
T D 0:8K :

T D T .0/C ˇP0

G

�
1 � e�.G=H/t 	 :

For
T D 0:9
T1 D 0:9ˇP0
G
) 1 � e�.G=H/t D 0:9) e�.G=H/t D 0:1

) G

H
t D � ln 0:1) t D H

G
� 2:3 D 10�8

10�9 � 2:3 s D 23 s :

The time constant is

� D H=G D 10 s :

The frequency dependence of 
T is


T D aˇP0Gp
G2 C˝2H2

:

For G2 C˝2H2 D 4G2 is 
T.˝/ D 0:5
T .˝ D 0/

) ˝2 D 3G2

H2
D 3 � 10�18

10�16 s�2 D 3 � 10�2 s�2

) ˝ D 1:73 � 10�1 D 0:173 s�1 :

13. The heating current i D 1mA produces at R D 10�3 � a power of P D
R� i � i D Ri2 D 10�3 � 10�6 W D 10�9 W. If the incident radiation brings
an additional power of 10�10 W to the bolometer, the heating power must be
reduced by this amount.

) 
i D .di=dP /
P D 
P

2Ri
D 10�10

2 � 10�3 � 10�3 A D 5 � 10�5 A

) 
i D 50�A
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14. The anode voltage pulse is

Ua.t/ D Q.t/

C
D
0

@ 1

C


tZ

0

iph.t/ dt

1

A � e�t=RC :

a) The time constant � D RC D 103 � 10�11 s D 10�8 s, which governs the
decay of the voltage at C , is long compared with the rise time 
t D 1:5 ns.
Therefore we can neglect the decay during the rise time and obtain for the pulse
maximum

Ua D 1

C
� 106e D 1

C
� 1:6 � 10�13 Coulombs

with C D 10�11 Farads we obtain

Ua.t/ D 1:6 � 10�2 � e�t�108

V :

The peak amplitude is 16mV D Umax.

The halfwidth of the pulse is obtained from

e�108t D 1
2
) 
t1 D 10�8 ln 2 D 6:9 � 10�9 s :

b) For 10�12 W cw radiation at � D 500 nm, the number of photoelectrons per
second is

nPE D �10
�12 W

h�
s�1 D 0:2 � 2:2 � 106 s�1 D 4:5 � 105 s�1 :

With an amplification factor M , the anode current is:

ia D nPE � e �M :

The voltage across the anode resistor R is

Ua D iaR D RnPEeM D 103 � 4:5 � 105 � 1:6 � 10�19 � 106

D 7:2 � 10�5 V D 72�V :
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Note: For cw measurements, a larger resistance of R � 1M� is used because
the time resolution is not important here.

For R D 106 �) Ua D 72mV.

In order to produce 1V output pulses for single photoelectrons, an amplifica-
tion of M2 � 62 of the preamplifier is required.

15. For 10�17 W at � D 500 nm, 25 photons=s fall onto the first cathode. The
human eye can see 20 photons=s ¶ 8 � 10�18 W; with a collection efficiency
of 0:1 the last phosphor screen has to emit at least 8� 10�17 W. With a conver-
sion efficiency of 0:2, the intensity amplification VI has to be

VI D 8 � 10�17

1 � 10�17 � 0:23 D 1000 D 10
3 :

16. Uph.i D 0/ D kT

e



ln

�
iph

id

�
C 1

�

with iph D 50�A and id D 50 nA

) Uph.i D 0/ D 0:2V :

Chapter 5

1. The threshold inversion is


Nthr D �

2
L

� D 5%, round trip lengthD 2 � 20 cm D 40 cm.
The absorption cross-section is related to the Einstein coefficient Bik by

Bik D c

h�

Z

 d� � c

h�


�

with 
� D 20MHz.

With Bik D c3

8�h�3
Aik )


 D h�

c
�
Bik D �2

8�
�
Aik

) 
Nthr D 8�
��

2�2LAik
D 8� � 2 � 107 � 5 � 10�2

2 � 2:25 � 10�14 � 0:4 � 5 � 107 D 2:5 � 10
12 m�3

D 2:5 � 106 cm�3 :
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2. The spacing of the longitudinal modes is


� D c

2d
D 3 � 108

0:8
D 375MHz :

The population density

N.vz/ D N.vz D 0/e�.���0/
2=•�2

with •� D 2 � 109 s�1, .� � �0/ D 375MHz the population density for the
adjacent modes has decreased to

N1 D N0e�0:1875 D 0:83N0 :
If Nthr.vz D 0/ D N0) N1 D 0:83N0.
According to Problem 5.1 the threshold inversion is


Nthr D 8�
��

2�2LAik
D 8� � 5 � 107 � 0:1
2 � 6:332 � 10�14 � 0:8 � 108 D 1:96 � 10

12 m�3

) Oscillation begins at the adjacent modes if threshold is reached for this
mode. Then the inversion at the central mode is (without saturation) 
N0 D

N1=0:83.

3. �a D �r C 
�r


�m
.�0 � �r/

with 
�r D 2MHz, 
�m D 
�D D 1GHz; .�0 � �r/ D 0:5
�D

) �a D �r C 106 s�1 :

The mode is pulled by 1MHz.

4. •�spa D 2d

ap
•� ; p D 2; 3; 4; : : :

•� D c

2d
D 150MHz I d D 2m I a D 0:2m

) •�spa D 1:5 � 109 s�1 D 1:5GHz for p D 2 :
For p D 3) •�spa D 1:0GHz

For a Doppler width of 
�D D 1GHz the gain at the first adjacent spatial hole
burning mode is g D g0e�1=0:36 D 0:06g0. This mode does not reach the
threshold.
The adjacent resonator mode is 150MHz away from the line center. Its unsat-
urated gain is

g D g0e� 0:152

0:36�1 D 0:94g0 :
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Here the net gain is 0:94 � 1:1 D 1:03 without mode competition. The two
adjacent resonator modes reach the threshold. Therefore three longitudinal
modes can oscillate.

5. The total output intensity of a laser with unsaturated gain g0, internal cavity
losses �0, length L of the active medium, and mirror losses T CA D 1�R D
�M is:

Iout D �M



2g0L

�0 C �M
� 1

�
Isat

2
:

Differentiating gives

dIout

d�M
D

�

2g0L

�0 C �M
� 1

�
� �M

2g0L

.�0 C �M/2

�
Isat

2
D 0

) �
opt
M D

p
2g0L�0 � �0 :

With �0 D 0:1 and 2g0L D 2)
�

opt
M D 0:347 D 34:7% D 1 �R :

The output mirror should have a reflectivity of R D 65:3%.
6. The spot size at the center of the resonator is

w0 D
r
�L

2�
D
r
6:33 � 10�7 � 0:3

2�
m D 1:7 � 10�4 m D 0:17mm :

The spot size at the mirror is

w.L=2/ D p2 � w0 D 0:24mm :

The diameter of the beam (distance between 1=e points) is 2w0 and 2w respec-
tively.
The divergence angle of the laser beam is

� D w.L=2/

L=2
D 1:6 � 10�3 rad :

The spot size on the lens is

ws D 30 cm � 1:6 � 10�3 Cw.L=2/
D 4:8 � 10�2 cmC 2:4 � 10�2 cm D 7:2 � 10�2 cm D 0:72mm

and the beam diameter 2ws D 1:44mm.
The location of the focus can be calculated from the lens equation

1

a
C 1

b
D 1

f
with a D 50C 15 cmI b D‹I f D 30 cm

) b D 55:7 cm :
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The focus is 55:7 cm away from the lens, 105:7 cm away from the output mir-
ror.
The beam waist at the focus is

w0 D f �=.�ws/ D 30 � 6:3 � 10�5

� � 0:072 cm D 0:84 � 10�2 cm

D 0:084mm D 84�m :

The Rayleigh length is

zR D �w20
�
D 3:5 cm :

7. The beam waist at the focus is

w0 D f1�

�w
D 1 � 5 � 10�5

� � 0:1 cm D 1:59�m :

The power transmitted through the aperture with radius a is

Pt D Pi
�
1 � e�2a2=w2

0

�
:

For Pt=Pi D 0:95 we obtain

0:05 D e�2a2=.1:592�10�6/ with a in mm

) a2 D �.ln 0:05/ � 1
2
� 1:592 � 10�6 D 3:79 � 10�6 mm2

) a D 1:95 � 10�3 mm) 2a D 39�m D 2:45w0 :

8. The axial modes are separated by


� D c

2d
D 300MHz for d D 50 cm :

The gain factor G follows the Doppler profile

G.�/ D G.�0/e�.���0/
2=.0:36
�2

D/ :

with 
�D D 1:5GHz and �1 � �0 D 300MHz)

G.�1/ D G.�0/e�0:11 D 0:896 :

with G.�0/ D 1:3) G.�1/ D 1:16.
With 4% losses the net gain at �1 is 1:12
) the losses of the etalon at �1 must be at least 12% in order to prevent laser
oscillation at �1.
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The transmission of the etalon with thickness t
and refractive index n D 1:4

T D 1

1C F sin2 	=2
with 	 D 2��
s

c
D 2��

c
2nt :

For � D �0 ) T D 1) 	=2 D m� D 2��0

c
nt .

For � D �1 ) T � 0:88) F sin2 	=2 
 0:12
) sin	1=2 


p
0:12=F :

Since �1 D �0 C 300MHz) 	1 D 	0 C
	

) 
	 D 4�.�1 � �0/
c

nt

) 
	 D 2� 3 � 10
8

3 � 1010 nt with t in cm

D 2� � 10�2nt :

The thickness t of the etalon should be small in order to minimize walk-off
losses by the tilted etalon. If we assume as a reasonable number t D 0:5 cm,
n D 1:4

) 
	 D 2� � 7 � 10�3 D 2:5ı

) sin
	=2 D sin	1=2 D 0:044

) F 
 0:12

0:0442
D 63 :

With F � D �
2

p
F , we obtain for the necessary finesse F � the relation

F � 
 12:5 :

Since F � D �
p
R

1�R ) RE 
 0:78, the etalon reflectivity should be larger than
78%.

9. The resonator with R1 D 1 and R2 D 400 cm and d D 100 cm is equivalent
to a spherically symmetric resonator with d D 200 cm and

R D R1 D R2 D 400 cm :

The spot sizes ws on the mirrors are

ws D
�
�d

�

�1=2 "
2d

R
�
�
d

R

�2#�1=4

D 5:96 � 10�4 m D 0:596mm :
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The transmission of the spherical aperture with radius a in the center of the
resonator is, for the fundamental modes,

T D 1 � e�2a2=w2
s > 0:99

) e�2a2=w2
s � 0:01) a2 
 w2s

2
ln 100

) a 
 0:904mm :

According to Fig. 5.12 the Fresnel number NF should be smaller than 0:8, in
order to increase the losses of the TEM10 mode above 10%. The Fresnel num-
ber is defined as NF D 1

�
�a2

�w2
s

, where ws is the beam waist of the fundamental
mode)

a2 < 0:8 � �w2s D 0:8� � 0:5962 mm2 D 0:89mm2

) a � 0:944mm :

The radius a of the aperture therefore must lie between 0:904 � a �
0:944mm.

10. With L D 15 cm the free spectral range is

•� D c

2d
D 109 s�1

) only one mode can oscillate if this mode is close to the center of the gain
profile.

The unsaturated gain at �0 is 10%. With losses of 3% the net gain is 7%
) G.�0/ D 1:07.
When tuning away from the gain center, the net gain factor should always be
>1.

) G D 1:1 � e�.���0/
2=.0:36
�2

D/ � 0:03 
 1

) e�.���0/
2=0:3
�2

D 
 1:03

1:1
D 0:936

) .� � �0/2 
 0:3
�2D ln
1

0:936
:

With 
�D D 1:5 � 109 s�1)

� � �0 � 2:13 � 108��1 D 213MHz :

The maximum tuning range is from �0 � 213MHz up to �0 C 213MHz.
In order to tune over one free spectral range, the mirror separation must change
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by �=2) •� D 109 s�1, requiring
d D �=2

) � � �0 D 426MHz requiring 
d D .�=2/.� � �0/
•�

D �

2
� 0:426

D 0:213�D 0:135�m at � D 632 nm

) 
V D dV

dx

x D

�
10�9 m

V

��1
� 1:35 � 10�7 m D 135V :

11.

�

�
D 
d

d
D ˛ 
T :

A temperature drift of 1 ıC=h gives, for invar rods (˛ D 1:2 � 10�6 K�1),
a frequency drift per hour of


�

�
D 1:2 � 10�6 :

For � D c=� D 6 � 1014 s�1 ) 
� D 7:2 � 108 s�1=h D 720MHz=h.
For fused quartz (˛ D 0:4–0:5�10�6 K�1 the drift is three times smaller, while
for Cerodur it is more than 12 times smaller.

12. With L D 100 cm the mode spacing is •� D 150MHz.
a) For a solid etalon with t D 1 cm, n D 1:4)


�

�
D 
t

t
C 
n

n
:

The second term is small and can be neglected

) 
�

�
D ˛
T D 2 � 4 � 10�7 D 8 � 10�7

) 
� D 4:9 � 107 s�1 :

b) For an air-spaced etalon we can neglect the first term if the spacers are made
of cerodur or the distance is temperature-compensated.
The optical path due to air at a pressure p is for a length d equal to s D nd

with n .air at p D 1 bar/ D 1:00028.
The change 
s is


s D .n � 1/ d 
p
p

)
ˇ̌
ˇ̌
�
�

ˇ̌
ˇ̌ D 
s

s
D n � 1

n
� 
p
p
D 0:00028� 4

1000
D 1:12 � 10�6 :

For � D 6 � 1014 s�1 ) 
� D 6:72 � 108 s�1 D 672MHz.
This illustrates that an air-spaced etalon is less stable than a solid etalon.
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c) For a temperature drift of 1 ıC=h the solid etalon has a frequency drift of
336MHz=h.

13. The transmission of the Pockels cell is

T D T0 cos2 aV

where V is the applied voltage and a is a constant which depends on the
electro-optic coefficient and the dimensions of the modulator.
For V D 0) T D T0, for V D 600) T D 0) aV D �=2.

The system should operate at the maximum slope of dT=dV .


T D dT

dV

V D �2aT0 cos aV sin aV 
V :

For a fluctuation in intensity of 5% the transmission must change by 
T D
�0:05T0 in order to compensate for the fluctuations.

) 
V D 0:05

2a cos aV sin aV
with a D �

2 � 600 V�1 :

The maximum slope is realized for aV D 45ı

) cos aV D sin aV D 1
2

p
2

) 
V D 2 � 0:05 � 600
�

V D 19V :

14. The free spectral range of the etalon is

•�E D c

2d
D 8 � 109 s�1 ) d D 1:8 cm :

a) The change of d with temperature is for invar (˛ D 1:2 � 10�6 K�1)


d D d˛
T
) 
d

d
D 1:2 � 10�6 � 10�2 D 1:2 � 10�8

)
ˇ̌
ˇ̌
�
�

ˇ̌
ˇ̌ D 
d

d
D 1:2 � 10�8 :

For � D 5 � 1014 s�1 .� D 600 nm/) 
� D 6 � 106 s�1 D 6MHz.

b) If d changes by 1mm due to acoustic vibrations

) 
d

d
D 10�7

1:8
D 5:6 � 10�8 D

ˇ̌
ˇ̌
�
�

ˇ̌
ˇ̌

) 
� D 5:6 � 10�8 � 5 � 1014 D 28MHz :



Solutions 459

c) With a free spectral range •�FPI D 10GHz of the FPI and a finesse F � D 50,
the full halfwidth of the transmission peak is


�FPI D •�=F � D 200MHz :

The transmitted intensity is

It D I0T D I0 1

1C F sin2.	=2/
with F D

�
2

�
F �
�2
D 1 � 103 :

The stabilization system interprets an intensity change of 1% as a transmission
change
T , i.e., a change 
	 of 	, and because

	 D 2�

�

s D 2��

c

s) 
	 D 2�

c

s 
�

also as a change of �.

A rough estimation of 
� proceeds as follows.

A frequency change of 100MHz changes (at a fixed plate separation d D
0:5
s) the transmission by 100% from 0 to 1. A transmission change of 1%
therefore corresponds to a frequency change of 0:01 � 100MHz D 1MHz.
A more elaborate calculation uses the relation


T D dT

d	

d	

d�

� ) 
� D 0:01

dT
d	

d	
d�

because 
T D 0:01

dT

d	
D F sin.	=2/ cos.	=2/

.1C F sin2 	=2/2

d	

d�
D 2� 
s

c
:
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� pulse, 52

A
absolute wavelength measurements, 332
absorption

cross section, 31
spectra, 30

absorption coefficient, 54, 259
absorption profile, 81
accuracy, 194
acoustic isolation, 318
active resonators, 286
Airy formulas, 154
alexandrite laser, 349
Allan plot, 324
Allan variance, 324, 325
amplitude fluctuations, 336
angular dispersion, 119, 120, 127
antireflection coatings, 177
approximation

rotating-wave, 44
weak-field, 44

argon laser, 299, 301
ASE, 362, 363
avalanche diode, 226

B
beam expansion, 362
beam waist, 271, 273, 427
Berthune cell, 366
birefringent filter, 369

finesse, 185
free spectral range, 185

birefringent interferometer, 182
blaze angle, 131
bolometer, 212
Boltzmann constant, 10

Boltzmann distribution, 13
boxcar integrator, 246
Brewster plates, 329

C
calorimeter, 211
capacitor microphone, 215
cascade image intensifier, 242
cavity modes, 6, 7
CCD (charge-coupled device), 229
CCD array, 230
closed cavities, 263
CO2 laser, 299, 302
coherence, 55

function, 62
length, 55, 396
partial, 64
time, 55
volume, 59

coherence of atomic systems, 67
coherent excitation, 68
coherent tunable sources, 338
collision pair, 89
collision radius, 87
collision, elastic, 87
collisional broadening, 87
collisional narrowing, 96
collisions, 87

elastic, 90
inelastic, 90
quenching, 90

color-center laser, 350
computer-controlled tuning, 331
confocal FPI, 169

alignment, 172
comparison with plane FPI, 173
finesse, 172
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free spectral range, 170
radial dispersion, 171
scanning, 171

confocal resonators, 270
continuous spectra, 30
continuous tuning, 327, 363
contrast of fringes, 160
corner-cube reflectors, 196
correlation function, 63
cryogenic resonator, 322
cw dye laser, 366

D
damped oscillation, 77
dark current, 236
decay phenomena, 48
degeneracy parameter, 60
degree of coherence, 63
density matrix, 67
dephasing, 71
detection of light, 206
detectivity, 219
detectors, 206

frequency response of, 207
heat capacity of, 210
noise equivalent input power (NEP), 206
photoemissive, 231
photovoltaic, 217, 220
sensitivity, 206
thermal, 209

Dicke narrowing, 96
dielectric coatings, 174
difference amplifier, 321
difference-frequency spectrometer, 409
diffraction, 121, 122
diffraction losses, 266, 274, 303
diode characteristics, 222
dipole approximation, 42
dipole matrix element, 43
discontinuous tuning, 327
discrete spectra, 30
dispersion, 128
Doppler width, 82
double servo control, 322
dye amplifier, 362
dye laser, 353

multimode, frequency spectrum, 295

E
echelle grating, 136
eigenfrequency, 283
Einstein coefficient, 12, 54
elastic collisions, 90

emerald laser, 348
emission spectra, 30
equivalent resonators, 274
etalon, 160, 179
excess, 164
excimer laser, 371

F
Fabry–Perot, 160

air-spaced, 167
computer-controlled, 201
confocal, 169
interferometer, 190, 310
pressure-tunable, 167
scanning, 171

far field, 427
Faraday rotator, 281, 369
feedback control, 313
FEL, 375
finesse, 157
Fizeau wavemeter, 204
flashlamp pumping, 359
fluorescence, 33

background, 335
folded cavity, 311
four-level laser, 261
Fox–Smith cavity, 307
Fox–Smith selector, 308
fractional interference order, 164
free spectral range, 125, 283

of interferometer, 155
of spectrometer, 140

Free-Electron Laser, 375
frequency

drift, 317
fluctuation, 317
response, 313
spectrum, 283
stabilization, 315

frequency-offset locking, 334
Fresnel number, 266
fringe dispersion, 149
fundamental modes, 270
FWHM, 75

G
gain, 259

coefficient, 260
competition, 293, 304
profile, 290, 306
saturation, 289

Gaussian beams, 421
Golay cell, 212
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grating, 136
equation, 130, 131
ghosts, 137
holographic, 138
monochromator, 115
spectrometer, 130

H
halfwidth of modes, 285
HeNe laser, 300
HeNe laser, radiance, 20
Hermitian polynomials, 270
high-finesse FPI, 172
Hänsch-type dye laser, 311, 360
holographic gratings, 138
homogeneous gain profile, 290
homogeneous line broadening, 101
hook method, 149

I
image curvature, 124
image intensifier, 241
index ellipsoid, 393
induced absorption, 12
induced birefringence, 186
induced emission, 13
inelastic collisions, 90, 101
inhomogeneous line broadening, 101
intensity, 18

stabilization, 312
interference

filters, 179
multiple-beam, 151
order, 164
plane-parallel plate, 153
rings, 163
signal, 145
two-beam, 141

interferogram, 148
interferometer, 139

birefringent, 182
Fizeau, 204
Mach–Zehnder, 146
Michelson, 141
resolving power, 159
transmittance, 154
tunable, 187

intersystem crossing, 355
intracavity etalon, 307
inversion of population, 258
iodine atlas, 331
irradiance, 18

J
Jones vector, 21

K
KDP, 184, 318, 390
Kirchhoff’s diffraction theory, 269

L
Lamb-dip stabilization, 323
Lambert’s law, 18
laser

Argon, 295
color center, 350
dye, 295, 353
excimer, 371
flashlamp-pumped, 357
HeNe, 294
laser-pumped, 359
linewidth, 336
operation condition, 263
resonators, 263
Ti:sapphire, 347
tunable, 338, 347
vibronic, 347

LBO, 404
Lennard–Jones potential, 89, 95
lifetimes, 38, 80

spontaneous, 38
light detection, 206
light-gathering power, 116, 191
limiting aperture, 127
line

kernel, 75
selection, 298, 299
spectra, 30
strength, 47, 54
wing, 75

line broadening
collisional, 87
homogeneous, 101
inhomogeneous, 101
transit-times, 97

linear dispersion, 120
linear Doppler shift, 83
linewidth, 79, 335

of color-center lasers, 353
Littman laser, 361
Littrow grating, 131, 344
Littrow prism, 299
longitudinal modes, 304
longitudinal pumping, 360
long-term stability, 321
Lorentzian profile, 77, 78
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loss factor, 280
Lyot filter, 140, 182

M
Mach–Zehnder interferometer, 146
maximum path difference, 189
mechanical quenching, 356
Michelson interferometer, 56, 141, 190

spectral resolving power, 145
Michelson wavemeter, 196
MIM diode, 225
mixing frequencies, 386
mode competition, 304
mode pulling, 297
mode radius, 271
mode selection, 302
mode suppression, 309
monochromator, 113
multilayer coatings, 178
multilayer mirror, 177
multimode lasers, 293
multiple-beam interference, 151

N
narrowing, collisional, 96
natural linewidth, 76, 80
NEA, 233
negative electron affinity, 233
NEP, 206
net gain, 260
net gain coefficient, 356
nonlinear coefficients, 399
normalized line profile, 78

O
étendue, 173, 191
OMA, 229
open optical resonators, 264
optical axis, 186
optical delay line, 143
optical diode, 281, 369
optical materials, 118
optical multichannel analyzer, 229
optical oscilloscope, 250
optical parametric oscillator, 412
optical path difference, 189
optical sideband technique, 334
order of interference, 133
orientation bleaching, 352
OSA, 229
oscillator strength, 54
oscillator-amplifier design, 362

P
partial coherence, 64
partition function, 10
phase

diffusion, 337
-front curvature, 423
front of resonator modes, 273
locked loop, 198
matching, 375, 392
-matching angle, 415
mismatch, 394
-perturbing collisions, 90
space cell, 61

photocathodes, 232
photocells, photoconductive, 219
photoconductive detector, 219
photodiode, 217, 222

array, 227
frequency response, 223

photoemissive detectors, 231
photometric quantities, 16
photomultiplier, 234
photon, 10

counting, 245
photovoltaic detectors, 220
PID control, 313
PID feedback control, 314
piezocylinders, 319
piezoelements, 318
PIN diode, 223
Planck distribution, 263
Planck’s radiation law, 11
plane FPI, 161
polarization

interferometer, 140
stabilization, 324

polarized light
circularly, 21
linearly, 21

population inversion, 258
positively birefringece, 393
power broadening, 106
precision, 193
pressure broadening, 90
pressure changes, 316
pressure tuning, 187
prism refraction, 126
prism spectrograph, 114
prism spectrometer, 126
probability amplitudes, 42
pumping geometries, 359

Q
Q-factor, 264
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quadratic Doppler effect, 83
quality factor, 264
quantum

efficiency, 229
quasi phase matching, 400
quenching collisions, 90

R
Rabi flopping frequency, 51
radiance, 17, 20
radiant energy, 16
radiant power, 40
radiation field, 6
radiationless transitions, 38
Raleigh criterion, 159
Raman lasers, 417
rate equations, 261
Rayleigh length, 426
Rayleigh–Jeans law, 10
Rayleigh’s criterion, 119
reflection losses, 264, 288
reflectivity, 175
refractive index, 128
relaxation, 70
resolving power, 119, 136, 159
resonator

concentric, 279
designs, 366
equivalent, 274
losses, 265
modes, 271, 286
spherical, 273
stable, 276
symmetric, 279
unstable, 279

rhodamine 6G, 355
ring dye laser, 369
ring resonators, 281
round-trip gain, 259

S
sampling system, 247
Satellites, 95
saturation, 289

parameter, 104
Schottky diode, 226
Schwalow–Townes relation, 337
second-harmonic generation, 394
semiconductor, 218
semiconductor laser, 340

free spectral range, 342
mode hops, 343
temperature tuning, 343

servo loop, 319
shot noise, 237
sigmameter, 200
single-mode lasers, 298
single-mode operation, 306
single-mode selection, 304
spatial coherence, 57, 58
spatial field distributions, 267
spatial hole burning, 291
spectra, 30

continuous, 30, 31
discrete, 30, 31
line, 30

spectral density, 17
spectral energy density, 12
spectral gain profiles, 354
spectral lines, 75
spectral mode density, 8
spectral resolving power, 119, 145, 173, 188
spectral sensitivity, 232, 233
spectral transmission, 118
spectrograph, 114
spectrometer, 115
spectrum analyzer, 187
speed of light, 193
spherical resonators, 273
spontaneous emission, 13
spontaneous lifetimes, 38
spot size, 274
SRS, 419
stable resonator, 276
standard deviation, 193
standing-wave resonator, 367
Stark effect, 96
Stern–Vollmer plot, 41
stimulated emission, 13
stimulated Raman scattering, 419
Stokes photon, 417
sum-frequency generation, 402
suppressed modes, 309

T
TEMm;n modes, 270
temporally coherent, 55
thermal detectors, 209
thermal radiation, 9, 11, 14
thermocouple, 211
third-harmonic generation, 405
threshold condition, 258, 260
tilted etalon, 306
titanium:sapphire laser, 347
transient recorder, 249
transition probability, 13, 38, 46, 49, 54
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transitions
collision-induced, 40
radiationless, 38, 40

transit-time broadening, 97
transmission filter, 161
transmission maxima, 155
transmittance, 118
transverse modes, 303
triplet quenching, 356
tunable diode laser, 345
tunable lasers, 338
tuning by Brewster plates, 330
tuning of interferometers, 187

U
uncertainty principle, 80

V
vibrational isolation, 317
vibronic laser, 347
visibility, 66

Voigt notation, 389
Voigt profile, 86
VUV radiation, 406

W
waist region, 426
walk-off losses, 162, 264, 328
wave-front curvature, 100
wavelength

calibration, 331
measurement, 192
stabilization, 314, 319, 323
tuning, 326

wavemeters, 195

X
X-ray lasers, 378

Y
Young’s double-slit, 57, 58
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