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Alright everyone, welcome. Today we embark on a fascinating and absolutely 
crucial topic in laser spectroscopy, which is Chapter 2, Section 9, focusing on 
the Coherence Properties of Radiation Fields. Understanding coherence is 
fundamental, not just for appreciating how lasers work, but for 
comprehending a vast array of spectroscopic techniques that rely on the 
wave nature of light and its ability to interfere. 

These lecture slides were prepared by Distinguished Professor Doctor M. A. 
Gondal for the Physics 608 Laser Spectroscopy course at King Fahd University 
of Petroleum and Minerals. We'll be diving deep into what makes a light 
source coherent or incoherent, and what the quantitative measures of these 
properties are. This understanding will underpin much of what we discuss 
later in the course when we look at specific laser systems and their 
applications. 
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So, let's start with a Big Picture Overview of Coherence Properties of 
Radiation Fields. The first bullet point gives us a very good working definition: 
Coherence is the ability of different portions of an electromagnetic, or E 
M, field to maintain a well-defined phase relationship. 

Now, what do we mean by "different portions" of an E M field? This is key. It 
can refer to the field at the same point in space but at different times, or it can 
refer to the field at different points in space at the same time. This distinction 
naturally leads us to two complementary aspects of coherence. 

These two complementary aspects are: 

First, Temporal coherence, which is also sometimes called longitudinal 
coherence. This describes the correlation in time at a fixed point. Imagine 
you're sitting at one specific location, and you're observing an 



electromagnetic wave passing by. Temporal coherence tells you how well you 

can predict the phase of the wave arriving now, based on the phase of the 

wave that arrived a short time ago. If the phase relationship is maintained over 

long durations, the source has high temporal coherence. If the phase jumps 
around randomly and unpredictably very quickly, it has low temporal 
coherence. Think of it as the wave's "memory" of its own phase at a given 
point. 
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Continuing our overview, the second complementary aspect is: 2. Spatial 
coherence, which is also referred to as transverse coherence. This 
describes the correlation in space at a fixed instant. So, now, instead of 
looking at one point over time, we freeze time – take a snapshot – and look at 
the phase of the electromagnetic field at two different points in space, 
typically transverse to the direction of propagation. If the phase difference 
between these two points remains constant or varies in a predictable way 
across a wavefront, then the field has high spatial coherence over that region. 
If the phases at nearby points are completely random with respect to each 
other, it has low spatial coherence. 

The next bullet point highlights the immense practical importance of these 
concepts: 

* Both aspects govern interference and diffraction phenomena, which are 
absolutely central to laser spectroscopy. Why? Because many, if not most, 
spectroscopic techniques rely on making light interfere – whether it's in an 
interferometer to measure wavelength precisely, or in a diffraction grating to 
disperse light, or even in the interaction of multiple laser beams with a 
sample. Interference can only produce stable, observable patterns if the 
interfering waves possess some degree of coherence. Without it, the 
interference patterns would fluctuate wildly and average out to nothing. 



To quantify these ideas, we will need to develop some Key quantities: 

1. Coherence time, denoted as 𝛥𝑡c (that's capital Delta, t, subscript c), 
measured in seconds [s]. This will give us a timescale over which the phase of 
the wave remains predictable. 

2. Coherence length, denoted as 𝛥𝑠c (capital Delta, s, subscript c). This is 

related to the coherence time by the simple equation 

𝛥𝑠c = 𝑐 × 𝛥𝑡c 

where 𝑐 is the speed of light. It's measured in meters [m]. Physically, this is 
the spatial extent, or the length of the "wave train," over which the wave 
maintains its phase predictability. If you try to make a wave interfere with a 
copy of itself that's been delayed by a path longer than the coherence length, 
you won't see fringes. 

3. Coherence surface, denoted as 𝑆c (capital S, subscript c), measured in 
square meters [m²]. This quantity will relate to spatial coherence, defining an 
area over which the wavefront has a well-defined phase. 
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And the fourth key quantity we will develop is: 

4. Coherence volume, denoted as 𝑉c (capital V, subscript c), measured in 

cubic meters [m3]. As the name suggests, this will combine the concepts of 
coherence length (longitudinal) and coherence surface (transverse) to define 
a three-dimensional volume within which the electromagnetic field can be 
considered coherent. 

Now, for our Road-map: Our approach will be to derive each of these 
quantities from the fundamental superposition of partial waves emitted 
by an extended source. This is a very physical and intuitive way to build up 
the concepts. Real light sources, unlike idealized point sources or perfect 



plane waves, always have some finite physical extent. Different points on an 
extended source, especially a thermal source like an incandescent bulb, can 
emit light independently. It's the summation of these many individual 
wavelets, each with potentially different initial phases, that determines the 
overall coherence properties of the light field observed at some distant point. 
So, we'll start by considering how these partial waves add up. 
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This slide provides a wonderful visual illustration of the Coherence 
Properties of Radiation Fields, contrasting an incoherent source with a 
coherent one. 

Let's first look at the top part, labeled "Incoherent Source (e.g., Lamp)". We 
see a depiction of a "Large Source" on the left, visualized as a yellowish 
circular area. From this source, numerous wavy orange lines emanate, 
representing light waves. Notice how these wave trains look rather short and 
irregular. 

There are two key annotations here: 

First, "Poor Temporal Coherence (Short phase-locked trains 𝛥𝑡)". This is 

indicated by a double-headed blue arrow along one of the wiggly wave trains, 

implying that the length 𝛥𝑡 (or rather, 𝑐𝛥𝑡) over which the phase is predictable 
is short. For a typical lamp, light emission comes from many individual atoms 
undergoing spontaneous emission. Each emission event is independent and 
produces a short burst of light, a wave packet, with a random initial phase. 
So, the resulting field is a jumble of these short, phase-uncorrelated wave 
trains. 

Second, "Poor Spatial Coherence (Random phases across area)". This is 
indicated by a vertical double-headed blue arrow suggesting a comparison of 
phases across different wave trains emanating from different parts of the 



large source. Because the emission from different parts of an extended 
thermal source is uncorrelated, the phases at different points on an emergent 
wavefront will be random. You can't predict the phase at one point by knowing 
it at another nearby point. 

Now, let's contrast this with the bottom part, labeled "Coherent Source (e.g., 
Laser)". Here, we see a "Narrow Beam" originating from what looks like a 
laser aperture on the left. The emitted waves are depicted as very regular, 
long, sinusoidal red lines. 

The annotations are: 

First, "Good Temporal Coherence (Long phase-locked trains 𝛥𝑡)". The 

horizontal double-headed blue arrow spans a much longer distance along 
these wave trains, indicating that the phase remains predictable over a much 
longer duration or length. Lasers achieve this through stimulated emission, 
where emitted photons are in phase with the stimulating photons, leading to a 
continuous, long wave train with a well-defined phase. 

Second, "Good Spatial Coherence (Phases locked across beam 𝑆)". The 
vertical double-headed blue arrow now indicates that across the entire 

transverse profile of the beam (denoted 𝑆), the phases are locked together. 
This results in a smooth, uniform wavefront. Lasers achieve this due to the 
resonant cavity and mode selection mechanisms, which ensure that only 
certain spatial field distributions can oscillate and be amplified. 

So, this diagram gives us a very intuitive feel for the difference. Incoherent 
light is like a chaotic jumble of short, independent waves. Coherent light, 
particularly from a laser, is like a highly disciplined army of waves, all 
marching in step over long distances and wide fronts. And as we'll see, these 
properties are what make lasers such powerful tools for spectroscopy. 
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Now, let's begin to formalize these ideas. We'll start with the Superposition 
of Partial Waves – Setting Up the Problem, which is the foundation of our 
road-map. 

* Consider an extended optical source 𝑆 with many infinitesimal surface 

elements 𝑑𝑆. Imagine our light source, whatever it may be – a hot filament, a 

gas discharge, the surface of a star. We can think of this source as being 
made up of a vast number of tiny, independent emitting regions, each of 

which we'll call 𝑑𝑆. This is very much in the spirit of Huygens' principle, where 
each point on a wavefront can be considered as a source of secondary 
spherical wavelets. 

* Each element emits a spherical elementary (partial) wave. This is a key 

simplifying assumption. We're saying that each tiny bit 𝑑𝑆 of our source acts 
like a point source, sending out light in spherical waves. 

* The complex field amplitude at element 𝑛, let's say the 𝑛-th infinitesimal 

element, can be written as: 𝐴𝑛0 𝑒
𝑖𝜙𝑛0(𝑡). That is, 𝐴𝑛0 𝑒

𝑖𝜙𝑛0(𝑡). Here, 𝐴𝑛0 

represents the amplitude of the wave emitted by the 𝑛-th element, and 𝜙𝑛0(𝑡) 

represents its phase at the source element itself, at time 𝑡. Using complex 
notation is incredibly convenient because it allows us to handle both 
amplitude and phase in a single quantity. The actual electric field would be 
the real part of this complex amplitude. 

* 𝐴𝑛0 is the real amplitude at the source surface, and it has units of Volts per 

meter V m−1. This is the strength of the electric field component of the light 

wave right at the surface of that little 𝑛-th element. 

So, we're building a model where our extended source is a collection of tiny 
emitters, each launching its own spherical wave. The next step will be to see 
how these waves add up at some distant observation point. 
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Continuing with our setup for the superposition of partial waves: 

* The phase term from the previous page, phi sub n zero of t (𝛷𝑛0(𝑡)), is given 

by 𝜔𝑡 + 𝛷n(0). This represents the initial phase. Let's break this down: * 

'omega t' (𝜔𝑡) is the standard time-varying part of the phase for a wave of 

angular frequency 𝜔. This describes the rapid oscillations of the field. * 'phi 

sub n of zero' (𝛷n(0)) is the initial phase of the n-th element at time 𝑡 = 0. This 

term is absolutely critical. If these initial phases, 𝜙n(0), are random and 
uncorrelated for different elements 'n' (as in a thermal source), the overall 
field will tend to be incoherent. If they are all the same, or have a fixed, well-
defined relationship (as in a laser), then the field can be coherent. 

* Next, we define an Observation point P, which is at a distance 𝑟n from 

element n. So, each little wave from element 'n' has to travel a distance 𝑟n to 

reach our detector or observation point P. 

* Now, we can write the Total complex field amplitude at point P. This is 

where the superposition principle comes in. The total field 𝐴(𝑃) is the sum of 

the contributions from all the 𝑁 elements (or, in the limit, an integral over the 

source surface). The equation is: 𝐴(𝑃) equals the sum, from 𝑛 = 1 to infinity 

(or 𝑁 for 𝑁 elements), of: 𝐴𝑛0, times 1
𝑟n

, times 𝑒𝑖[𝛷𝑛0(𝑡)+
2𝜋𝑟n

𝜆
]. 

𝐴(𝑃) = ∑ 𝐴𝑛0

∞

𝑛=1

 
1

𝑟n
 𝑒

𝑖[𝛷𝑛0(𝑡)+
2𝜋𝑟n

𝜆
] 

Let's deconstruct this sum term by term: * A sub n zero (𝐴𝑛0): This is the 

amplitude of the wave as it leaves the n-th source element. * 1 over r sub n 

( 1

𝑟n
): This factor accounts for the decrease in amplitude of a spherical wave as 

it propagates. The amplitude falls off as one over the distance. * e to the 
power of (i times [phi sub n zero of t + 2 pi r sub n / lambda]): This is the 

complex phase factor. phi sub n zero of t (𝛷𝑛0(𝑡)): This is the phase of the 



wave at the source element n at time t*. * 2 pi r sub n over lambda (2𝜋𝑟n

𝜆
): This 

is the additional phase accumulated by the wave as it travels the distance 𝑟n 

from the source element to the observation point P. You'll recognize 2𝜋

𝜆
 as the 

wave number 𝑘. So this term is just 𝑘 𝑟n. It tells us how many wavelengths fit 

into the path 𝑟n, and thus what the phase shift is. 

Finally, some Notation & units to be clear: 

* omega (𝜔) equals 2 pi nu (2𝜋𝜈), which is the angular frequency, and its units 

are radians per second (rad s−1). 'nu' (𝜈) here is the linear frequency in Hertz. 

This summation is the heart of understanding how extended sources produce 

fields with varying degrees of coherence. The properties of 𝛷𝑛0(𝑡) and the 

variations in 𝑟n will determine everything. 
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Continuing with our notation and the setup: 

* 𝜆 =
2𝜋𝑐

𝜔
. This is the vacuum wavelength of the light, measured in meters [m]. 

Here, 𝑐 is the speed of light in vacuum, and 𝜔 is the angular frequency we just 
defined. This is a standard relationship. 

* The next point is important for transitioning from a conceptual sum over 
discrete elements to a more realistic continuous source: The summation 

approximates an integral over the entire radiating surface. If our source 𝑆 

is truly continuous, and the infinitesimal elements 𝑑𝑆 are indeed infinitesimal, 
then this sum becomes an integral. This is the basis of the Huygens-Fresnel 
principle, which is a very powerful tool for calculating wave propagation and 

diffraction. We would integrate the contributions from all 𝑑𝑆 elements over 

the entire surface of the source 𝑆. 

Now, the slide indicates "[IMAGE REQUIRED: Geometry diagram similar to 

Fig. 2.29 – source surface elements, distances 𝑟n, and phase increments 



illustrated.]" Since we don't have the image directly, let me describe what it 

would typically show. Imagine an extended light source, let's call it 𝑆, which 
could be a flat surface or a curved one. We would then pick an arbitrary 

infinitesimal element on this source, perhaps labeled 𝑑𝑆 or identified as 

originating from a point 𝑄 on the source. Then, we'd have our observation 

point 𝑃 located some distance away. The crucial distance 𝑟n (or 𝑟Q if we use 𝑄) 

would be a line segment drawn from this element 𝑑𝑆 (or point 𝑄) on the 

source to the observation point 𝑃. 

The diagram would likely show several such elements on the source, each 

with its own path 𝑟n to the same observation point 𝑃. This immediately 

highlights that for an extended source, the distance 𝑟n will generally be 

different for different parts of the source. This variation in 𝑟n leads to different 

propagation phase shifts 2𝜋𝑟n

𝜆
, which is a key factor in determining spatial 

coherence. The "phase increments illustrated" would refer to how this 2𝜋𝑟n

𝜆
 

term changes as the wave propagates. This kind of diagram is essential for 
visualizing the geometry that underlies our calculations of coherence. 

The three hyphens below just indicate the end of this section of text on the 
slide. 
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Alright, let's move on to Phase Accumulation Along Propagation. This 
concept is critical for understanding how interference patterns are formed 
and how coherence plays a role. 

The slide states: For each element 𝑛, the full phase at the observation point 𝑃 

is given by 

𝛷n(𝑟n, 𝑡) = 𝛷𝑛0(𝑡) +
2𝜋𝑟n

𝜆
. 

 



That is, 𝛷n(𝑟n, 𝑡) = 𝛷𝑛0(𝑡) +
2𝜋𝑟n

𝜆
. 

Let's break this down carefully: 

𝛷n(𝑟n, 𝑡) is the total phase of the wavelet originating from the 𝑛-th source 

element, measured at the observation point 𝑃 (which is at distance 𝑟n) at time 

𝑡. 

𝛷𝑛0(𝑡), which is labeled "at source", is the phase of that wavelet as it leaves 

the 𝑛-th source element at time 𝑡. Remember, this 𝛷𝑛0(𝑡) itself contains the 

initial phase 𝜙n(0) plus 𝜔𝑡. 

2𝜋𝑟n

𝜆
, labeled the "propagation term", is the phase acquired by the wavelet 

simply due to traveling the distance 𝑟n from the source element to the 

observation point 𝑃. As we noted, this is essentially 𝑘 times 𝑟n, where 𝑘 is the 
wave number. 

Now for some Important observations stemming from this: 

1. Propagation adds a deterministic phase proportional to distance. 

The term 2𝜋𝑟n

𝜆
 is "deterministic" in the sense that if we know the wavelength 𝜆 

and the path length 𝑟n, we can calculate this phase shift precisely. It's purely a 

consequence of geometry and the wave nature of light. There's nothing 

random about this part of the phase accumulation, given 𝑟n and 𝜆. The 

randomness, if any, comes from the 𝛷𝑛0(𝑡) term, specifically the initial 

phases 𝜙n(0) contained within it. 

Page 10: 

Continuing with our important observations about phase accumulation: 

2. Initial phases, 𝜙n(0), may be random (as in a thermal source) or constant 
(or highly correlated, as in a laser). 



This is a point we've touched on before, but it's so fundamental it bears 
repeating. 

* For a thermal source, like an incandescent bulb or a flame, the individual 
atoms or molecules emit light through spontaneous emission. These 
emission events are independent and uncoordinated. Thus, the initial phase 

𝜙n(0) associated with each conceptual source element 'n' will be random 
and uncorrelated with the phases of other elements. This randomness is the 
root cause of the incoherence of thermal light. 

* For a laser, on the other hand, the emission process is predominantly 
stimulated emission. Stimulated photons are in phase with the stimulating 

photons. This process, occurring within a resonant cavity, leads to a highly 

ordered state where the initial phases 𝜙n(0) from different parts of the 
emitting medium (or different effective source elements) are locked together, 
or at least have a very well-defined and stable relationship. This is the origin of 
the high coherence of laser light. 

3. Interference at point 𝑃 follows from the coherent sum of all such 
contributions. 

"Coherent sum" means we add the complex amplitudes of all the wavelets 

arriving at 𝑃, taking their phases into account. The resultant intensity at 𝑃 is 

then the squared magnitude of this total complex amplitude. If the phases 
add up constructively, we get high intensity. If they add up destructively, we 
get low intensity. This is interference. 

* This leads to a crucial insight: If phase relationships are stable across 'n' 
(meaning, across different source elements) AND stable over time, then 
interference fringes will persist. 

* "Stable across n": This refers to spatial coherence. If the relative phases of 
contributions from different parts of the source are well-defined and 



unchanging as they arrive at the observation region, then stable spatial 
interference patterns (like Young's fringes) can form. 

* "Stable over time": This refers to temporal coherence. If the phase of the 
wave at a given point is predictable from one moment to the next, then effects 
that depend on comparing the wave with a time-delayed version of itself (like 
in a Michelson interferometer) will produce stable fringes. 

* And as a preview: The next slides will focus on quantifying what we mean 
by "stable" through the development of formal criteria for temporal and 
spatial coherence. We need mathematical conditions to define these 
properties. 
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Now we begin to formalize these ideas, starting with Defining Temporal 
Coherence – Phase Stability in Time. 

The Key Criterion for temporal coherence involves looking at how the phase 
of a wave, from a single source element, changes over time at a fixed 
observation point. 

* So, we first state: At a fixed position 𝑃, consider two observation instants, 

𝑡1 and 𝑡2. We are camping at one spot and watching the wave go by at two 
different moments. 

* Next, we look at the Phase change for element n during this time interval: 
Delta phi sub n equals capital Phi sub n of (P, comma t sub 1) minus 
capital Phi sub n of (P, comma t sub 2). 

𝛥𝜙n = 𝛷n(𝑃, 𝑡1) − 𝛷n(𝑃, 𝑡2) 

Here, 𝛷n(𝑃, 𝑡) is the full phase of the wavelet from the n-th source element 

arriving at point 𝑃 at time 𝑡, which we defined on page 9 as 𝛷𝑛0(𝑡arrival) +
2𝜋𝑟n

𝜆
. 

Since 𝑃 and 𝑟n are fixed, the 2𝜋𝑟n

𝜆
 term is constant. So, 𝛥𝜙n is really about the 



change in 𝛷𝑛0(𝑡arrival) between the two arrival times corresponding to 𝑡1 and 

𝑡2 at the observation point. If the light left the source at 𝑡′1 and 𝑡′2 to arrive at 

𝑃 at 𝑡1 and 𝑡2 respectively, then this 𝛥𝜙n is 𝛷𝑛0(𝑡′1) − 𝛷𝑛0(𝑡′2). 

* With this definition of phase change, we can now state the condition: 
Temporal coherence exists when... and this condition will be specified on 
the next page. The idea is that for the wave to be temporally coherent, this 

phase change 𝛥𝜙n should not be too large or too random over a certain time 
window. 

Page 12: 

Continuing with our definition of temporal coherence, the condition is: 

* For all 𝑛 (∀𝑛): the absolute value of 𝛥𝜙n is less than 𝜋 ( |𝛥𝜙n| < 𝜋 ). 

This condition must hold for all the partial waves contributing to the field at P, 
assuming we are considering the coherence of the individual wave trains. 

What does this mean? 𝜋 radians is 180 degrees. So, we are saying that for the 

wave to be considered temporally coherent over the time interval 𝛥𝑡 = 𝑡2 −

𝑡1, the phase of any contributing wavelet should not drift by more than 180 

degrees. Why this specific value of 𝜋? If the phase drifts by, say, exactly 𝜋, 
then a part of the wave that would have interfered constructively now 

interferes destructively. If phase drifts are kept significantly less than 𝜋, the 
wave maintains a more predictable character, allowing for stable interference 
when combined with a time-shifted version of itself (as in a Michelson 

interferometer). A drift of much more than 𝜋 would mean the phase has 
become essentially random relative to its earlier value. 

* So, the Meaning is: all partial waves drift in phase by less than 180 

degrees (𝜋 radians) over the time window 𝛥𝑡 = 𝑡2 − 𝑡1. (Delta t equals t two 
minus t one). 

From this criterion, we derive some important Derived Quantities: 



* The maximum 𝛥𝑡 that satisfies the above condition (|𝛥𝜙n| < 𝜋) defines the 

coherence time, denoted 𝛥𝑡c (𝛥𝑡c), in seconds [s]. 

So, 𝛥𝑡c is the longest duration over which the wave's phase, on average, 

remains predictable enough (doesn't change by more than 𝜋) to allow for 
interference. 

* The corresponding distance that light travels in this coherence time is 

the coherence length, 𝛥𝑠c (𝛥𝑠c). 

The formula is 𝛥𝑠c = 𝑐𝛥𝑡c (𝛥𝑠c = 𝑐𝛥𝑡c), where 'c' is the speed of light. This 𝛥𝑠c 
is often visualized as the average length of the "wave trains" that constitute 

the light. Within one such wave train of length 𝛥𝑠c, the phase is well-behaved. 
If you try to interfere parts of the wave separated by a distance greater than 

𝛥𝑠c (by introducing a path difference larger than 𝛥𝑠c in an interferometer), the 

phase relationship will be lost, and interference fringes will have poor visibility 
or disappear altogether. 

* And a crucial relationship: A smaller spectral bandwidth leads to a slower 

phase drift, which in turn means a larger coherence length 𝛥𝑠c. 

This is a manifestation of the time-frequency uncertainty principle (or more 
accurately, the relationship between the duration of a signal and its 
bandwidth via the Fourier transform). A perfectly monochromatic wave (zero 
bandwidth) would have an infinitely slow phase drift (its phase evolves 

perfectly predictably as 𝜔𝑡) and thus an infinite coherence time and length. 

Conversely, a wave with a broad range of frequencies (large bandwidth) will 
have its different frequency components drifting out of phase with each other 
very quickly, leading to a short coherence time and length. We will see this 
quantified soon. 
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Now let's turn our attention to the other aspect of coherence, with Defining 
Spatial Coherence – Phase Stability in Space. 

The approach is analogous to temporal coherence, but now we look at phase 
relationships between different points in space at the same instant. 

* First, we Fix the time 𝑡; and then inspect two different spatial points, 𝑃1 and 

𝑃2. Imagine taking a snapshot of the wave field and looking at the phase at 

these two locations. 

* Next, we consider the Phase difference of the total field between these 

two points: Delta phi equals phi of (𝑃1, 𝑡) minus phi of (𝑃2, 𝑡). 

𝛥𝜙 = 𝜙(𝑃1, 𝑡) − 𝜙(𝑃2, 𝑡) 

Here, 𝜙(𝑃, 𝑡) refers to the phase of the total electromagnetic field at point 𝑃 

and time 𝑡, which is the result of the superposition of all partial waves from 

the source. We're asking: at a given moment, how does the phase at 𝑃1 relate 

to the phase at 𝑃2? 

* With this, we state the condition for spatial coherence: Spatial coherence 
exists when the absolute value of this phase difference, Delta phi, is less 

than pi ( |𝛥𝜙| < 𝜋 ) for all times 𝑡. The logic is similar to the temporal case: if 

the phase difference between these two points is less than 180∘, then light 

from these two regions can interfere effectively (e.g., if 𝑃1 and 𝑃2 were two 

slits in a Young's experiment). The condition "for all 𝑡" is important. It means 

this phase relationship must be stable over time. If 𝛥𝜙 randomly fluctuated 

between 0 and 2𝜋 over time, even if at some instants it was less than 𝜋, we 
wouldn't observe stable interference fringes. So, spatial coherence implies a 
persistent, well-defined phase relationship across a region of space. 
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Continuing our discussion on spatial coherence: 



A set of points satisfying the above inequality (|𝛥𝜙| < 𝜋) for a given source 
forms what we call the "coherence volume". 

Actually, if we fix the distance from the source and look at a transverse plane, 

the set of points (𝑃2, 𝑃3, etc.) that are spatially coherent with a reference point 

𝑃1 would define a coherence area or coherence surface 𝑆c on that plane. If 
we then consider the extent along the propagation direction over which 

temporal coherence is maintained (the coherence length 𝛥𝑠c), the 
combination of this coherence area and coherence length defines the 

coherence volume 𝑉c. Within this volume, the field's phase is, in a sense, 

well-behaved and predictable both spatially and temporally. 

Now, let's consider the practical implications: 

Practically, spatial coherence dictates whether Young-type interference 
can be observed. 

This is the quintessential experiment for demonstrating spatial coherence. In 
Young's double-slit experiment, light passes through two closely spaced 
pinholes or slits. If the light illuminating these two slits is spatially coherent 
(meaning the phase difference between the light at slit 1 and slit 2 is stable 
and not too large), then clear interference fringes will be observed on a screen 
placed beyond the slits. If the illumination is spatially incoherent over the 
distance separating the slits, no fringes will be seen. 

And critically: Spatial coherence is strongly linked to the angular size of 
the source and the propagation distance. 

   

Angular size of the source: Generally, for a source of a given physical size, 
the smaller its angular size as seen from the observation plane (i.e., the 
farther away it is, or the smaller its physical extent), the higher the spatial 
coherence of its radiation will be in that plane. This is described by the Van 



Cittert-Zernike theorem, which we'll touch upon. Think of a very distant star: 
even though it's physically enormous, its angular size is tiny, and its light is 
spatially coherent over considerable distances on Earth. Conversely, a large, 
nearby source (like a frosted light bulb) will produce light with very limited 
spatial coherence. 

   

Propagation distance: As light propagates away from an extended 
incoherent source, its spatial coherence tends to increase. The wavefronts 
become smoother and more correlated over larger transverse distances. This 
is why, even for a source that is not perfectly point-like, at a sufficient 
distance, a significant degree of spatial coherence can develop. 
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Let's do a Quick Contrast between Temporal and Spatial Coherence to 
solidify our understanding of these two distinct yet related concepts. 

First, let's focus on Temporal Coherence: 

* One key aspect is that it Relates to spectral purity: a narrow angular 

frequency spread, 𝛥𝜔, implies a long coherence time, 𝛥𝑡c. This is perhaps 

the most important takeaway for temporal coherence. A light source that is 
highly monochromatic (very pure color, very narrow range of frequencies) will 
have a very long coherence time and coherence length. Think of it this way: if 
all the frequency components are almost identical, they will march in step for 
a very long time before their tiny frequency differences cause them to drift out 
of phase. This is intrinsically linked to the Fourier transform relationship 
between the time domain representation of the wave (its duration or 
coherence time) and its frequency domain representation (its spectral 
bandwidth). A perfectly sinusoidal wave of a single frequency (zero 
bandwidth) lasts forever and has infinite coherence time. 



* Temporal coherence is typically Measured with path-difference devices, 
for example, a Michelson interferometer. In a Michelson interferometer, a 
beam of light is split into two paths, and then these two paths are 
recombined. By changing the length of one path relative to the other, a time 

delay (equal to path difference

𝑐
) is introduced between the two recombined 

beams. The visibility of the interference fringes observed as this path 
difference is varied gives a direct measure of the temporal coherence of the 
source for that corresponding time delay. 

Now, for Spatial Coherence: 

* It Relates to the geometric size and the distance of the source. As we 
discussed, a smaller (or more distant) source generally leads to higher spatial 
coherence at an observation plane. It's about how "point-like" the source 
appears from the region where coherence is being assessed. 
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Continuing our contrast, specifically for Spatial Coherence: 

* Spatial coherence is Measured with double-slit or pinhole experiments, 
such as Young's experiment. In these experiments, we take two samples of 
the light field at two spatially separated points (the slits or pinholes) and 
observe whether they can produce interference fringes. The visibility of these 
fringes directly indicates the degree of spatial coherence between those two 
points for the incident light. If you can see clear fringes, the light at the two 
slits is spatially coherent. 

And a very important unifying point: 

* Both temporal and spatial coherence can be treated within a unified 
correlation framework using what's called the mutual coherence 
function. We'll introduce this in later slides. While we've defined them 
somewhat separately for clarity, they are not entirely independent concepts. 



The mutual coherence function, often denoted 𝛤12(𝜏) (Gamma sub one two of 
tau), is a more general quantity that describes the correlation between the 

field at a point 𝐫1 at time 𝑡 and the field at another point 𝐫2 at time 𝑡 + 𝜏. 

* If 𝐫1 = 𝐫2, then 𝛤11(𝜏) describes temporal coherence (correlation at the 
same point but different times). 

* If 𝜏 = 0, then 𝛤12(0) describes spatial coherence (correlation at different 
points at the same time). 

So, this function provides a comprehensive way to characterize the 
coherence of a light field. 
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Let's delve into one of the classic instruments for studying coherence: the 
Michelson Interferometer, focusing on its Fundamental Geometry. 

* As noted earlier, this is the Classic apparatus for probing temporal 
coherence. Its invention by Albert A. Michelson in the 1880s was a landmark, 

enabling precise measurements of wavelengths and, through Fourier 
transform spectroscopy, the study of spectral line shapes, all of which are 
deeply connected to temporal coherence. 

* We need to define some Components & notation, and the slide says to 
refer to the next figure, which we'll see shortly. The main components are: 

* A Beam splitter (BS), which divides the incoming beam of light into two 
separate beams, ideally with equal intensity. This is typically a partially 

silvered mirror or a dielectric coating designed for, say, 50% transmission and 

50% reflection. 

* Two Mirrors, M sub 1 (𝑀1) and M sub 2 (𝑀2), which retro-reflect the partial 

beams. This means they send the beams back along (or parallel to) their 



incident paths. One of these mirrors is usually fixed, while the other is 
mounted on a precision translation stage, allowing its position to be varied. 

* An Observation plane (𝐵), which receives the recombined fields. After the 

two beams are reflected by 𝑀1 and 𝑀2, they travel back to the beam splitter, 

where they are again partially transmitted and reflected. A portion of each 
beam will then overlap and travel towards the observation plane (which could 

be a screen, a photodetector, or the input of a spectrometer). It is here, at 𝐵, 
that interference between the two beams is observed. 
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Continuing with the Michelson interferometer's geometry and defining the 
path lengths: 

We need to consider the Optical path lengths for the two arms of the 

interferometer. Let 𝑆 be the point on the beam splitter where the beam is 
divided and also where the returning beams are recombined to go to the 

detector 𝐵. 

   

Arm 1: The path length is 𝑆𝑀1 + 𝑀1 𝐵. This represents the distance from the 

beam splitter (𝑆) to mirror 𝑀1 and then from 𝑀1 back to the beam splitter 

(effectively to point 𝐵 for the recombined beam going to the detector). If 𝐿1 is 

the distance from BS to 𝑀1, then this round trip path is 2 𝐿1. 

   

Arm 2: Similarly, the path length is 𝑆𝑀2 + 𝑀2 𝐵. If 𝐿2 is the distance from BS 

to 𝑀2, this round trip path is 2 𝐿2. 

The slide notation "SM₁ + M₁B" usually simplifies if we consider 𝐿1 as the BS-

𝑀1 distance, then the light travels 𝐿1 to 𝑀1, and 𝐿1 back. So the path length in 

arm 1 is 2 𝐿1, and in arm 2 is 2 𝐿2. 



The crucial quantity is the Path difference between these two arms. If one 

mirror, say 𝑀2, is movable, changing its position will change 𝐿2 and thus the 

path difference. The path difference, 𝛥𝑠 (delta s), is often defined as: 

𝛥𝑠 = 2(𝑆𝑀1 − 𝑆𝑀2) 

If 𝑆𝑀1 is 𝐿1 (the distance from beamsplitter to mirror 𝑀1) and 𝑆𝑀2 is 𝐿2 (the 

distance from beamsplitter to mirror 𝑀2), then the path difference is 𝛥𝑠 =

2(𝐿1 − 𝐿2). 

The factor of 2 is critical: if you move mirror 𝑀2 by a distance 𝑥, the path 

length of arm 2 changes by 2 𝑥 because the light has to travel to the mirror and 

back. This path difference 𝛥𝑠 directly corresponds to a time delay 𝜏 =
𝛥𝑠

𝑐
 

between the two wave trains when they recombine. By varying this 𝛥𝑠 (and 

thus 𝜏), we can probe the temporal coherence of the light. 
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Here we have the diagram illustrating the Michelson Interferometer: 
Fundamental Geometry. 

Let's walk through it: 

* On the far left, we have S (Light Source), emitting a beam of light that travels 
horizontally to the right. * This beam encounters the BS (Beam Splitter), 
which is shown as a tilted, partially transmissive plate (often a cube in 
practice, but a plate is fine for illustration). * At the beam splitter, the light is 

divided: * A portion is Transmitted (to 𝑀1), traveling vertically upwards to 𝑀1 

(Fixed Mirror). The distance from the center of BS to 𝑀1 is labeled 𝐿1. The light 

reflects off 𝑀1 and travels back down to BS. * A portion is Reflected (to 𝑀2), 

traveling horizontally to the right to 𝑀2 (Movable Mirror). The distance from the 

center of BS to 𝑀2 is labeled 𝐿2. 𝑀2 is shown with a double-headed arrow 

beneath it, indicating it can be moved horizontally, thus changing 𝐿2. Light 

reflects off 𝑀2 and travels back to the left, towards BS. * The two beams, one 



returning from 𝑀1 and one from 𝑀2, meet again at the beam splitter. Here, a 

portion of the beam from 𝑀1 is reflected downwards, and a portion of the 

beam from 𝑀2 is transmitted downwards. These two portions are now 
Recombined Beams and travel downwards together. * These recombined 
beams then fall on B (Screen/Detector), where interference can be observed. 

At the bottom of the slide, the crucial formula is reiterated: 

Optical Path Difference: 𝛥𝑠 equals 2 times (𝐿1 minus 𝐿2). (𝛥𝑠 = 2(𝐿1 − 𝐿2)). 

𝛥𝑠 = 2(𝐿1 − 𝐿2) 

This 𝛥𝑠 is the difference in the total distance traveled by light in arm 1 (2 𝐿1) 

versus arm 2 (2 𝐿2). It is this path difference that determines the relative 
phase of the two beams when they recombine at the detector B, and thus 
whether they interfere constructively or destructively. By systematically 

varying 𝐿2 (by moving 𝑀2), we vary 𝛥𝑠 and can map out the fringe visibility, 
which, as we'll see, relates directly to the temporal coherence of the source 
S. 
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Now that we have the Michelson interferometer setup and the path difference 

𝛥𝑠, let's look at the Interference Condition & Visibility in the Michelson. 

* For a given wavelength lambda (𝜆) of the light: 

* Constructive interference occurs when the two recombined beams are in 

phase. This happens when the path difference 𝛥𝑠 is an integer multiple of the 

wavelength: 𝛥𝑠 = 𝑚𝜆, where 𝑚 is an integer (𝑚 ∈ ℤ, the set of all integers: ..., 

-2, -1, 0, 1, 2, ...). When this condition is met, crests align with crests, troughs 
with troughs, and we get maximum intensity. 

* Destructive interference occurs when the two beams are out of phase by 

180 degrees (or 𝜋 radians). This happens when the path difference 𝛥𝑠 is a 



half-integer multiple of the wavelength: 𝛥𝑠 =
(2 𝑚+1)𝜆

2
. Here, 2 𝑚 + 1 ensures 

an odd number, so we have 1
2
𝜆, 3

2
𝜆, 5

2
𝜆, etc. Crests align with troughs, leading 

to minimum intensity (ideally zero if the amplitudes are equal). 

* The Fringe contrast (how distinct the bright and dark fringes are) is 
quantified by a very important parameter called visibility, V (capital Vee). It's 

defined as: 𝑉 =
𝐼max−𝐼min

𝐼max+𝐼min
. (𝑉 =

𝐼max−𝐼min

𝐼max+𝐼min
). * 𝐼max is the intensity at the peak of a 

bright fringe (constructive interference). * 𝐼min is the intensity at the minimum 

of a dark fringe (destructive interference). * If 𝐼min is zero (perfect destructive 

interference) and 𝐼max is some positive value, then 𝑉 =
𝐼max

𝐼max
= 1. This 

represents perfect, 100% contrast. * If 𝐼min = 𝐼max (no variation in intensity as 

𝛥𝑠 changes), then 𝑉 = 0. This means no fringes are visible. The visibility 𝑉 is 
not just an arbitrary measure; it is directly related to the degree of temporal 

coherence of the light source for the specific path difference 𝛥𝑠 (which 

corresponds to a time delay 𝜏 =
𝛥𝑠

𝑐
). If the source is highly coherent over that 

path difference, 𝑉 will be close to 1. If it's incoherent, 𝑉 will be close to 0. 
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Continuing with interference and visibility in the Michelson: 

* A key Experimental observation is that the visibility 𝑉 decays as the 

absolute value of the path difference, |𝛥𝑠|, exceeds the coherence length, 

𝛥𝑠c. This is the practical manifestation of temporal coherence. When the path 

difference 𝛥𝑠 is small (much less than 𝛥𝑠c), the two recombined wave trains 

are still well-correlated in phase, and we get high-contrast fringes (𝑉 ≈ 1). 

However, as we increase the path difference 𝛥𝑠 (by moving one of the 

mirrors), we are trying to interfere a wave train with a version of itself that 

originated much earlier in time. If 𝛥𝑠 becomes comparable to or greater than 

the coherence length 𝛥𝑠c, the phase relationship between these two "older" 



and "newer" segments of the wave is lost, and the fringe visibility 𝑉 drops, 

eventually to zero. The coherence length 𝛥𝑠c is essentially the maximum path 

difference over which discernible interference can be observed. 

* There's an Empirical relation connecting the spectral width, 𝛥𝜔, of the 

light source to its coherence length, 𝛥𝑠c. This is given in the box: 𝛥𝑠c is 

approximately equal to 𝑐

𝛥𝜔
, which is also equal to 𝑐

2𝜋𝛥𝜈
. 

𝛥𝑠c ≈
𝑐

𝛥𝜔
=

𝑐

2𝜋𝛥𝜈
. 

* 𝑐 is the speed of light. * 𝛥𝜔 is the bandwidth of the source in terms of 

angular frequency (radians per second). * 𝛥𝜈 is the bandwidth of the source in 
terms of linear frequency (Hertz). 

This relationship is profoundly important. It tells us that sources with a very 

narrow spectral width (small 𝛥𝜔 or 𝛥𝜈, i.e., very monochromatic light) will 

have a very long coherence length 𝛥𝑠c. Conversely, sources with a broad 

spectral width (large 𝛥𝜔 or 𝛥𝜈, i.e., "whiter" or less monochromatic light) will 
have a short coherence length. This is a direct consequence of the Fourier 
relationship between the temporal characteristics of a wave (like its 

coherence time 𝛥𝑡c =
𝛥𝑠c

𝑐
) and its spectral characteristics (its bandwidth 𝛥𝜔). 

* And just to clarify the notation: 𝛥𝜈 equals 𝛥𝜔

2𝜋
 – this is the bandwidth in Hertz. 

The slight inconsistency in the use of 2𝜋, which I noted in my thoughts when 
preparing, often arises from different definitions of bandwidth (e.g., Full Width 

at Half Maximum vs. 1/𝑒 width) and the precise form of the Fourier 

uncertainty relation (e.g., 𝛥𝜔𝛥𝑡 ∼ 1 or 𝛥𝜔𝛥𝑡 ∼ 2𝜋). For our purposes, the 
inverse relationship between coherence length and bandwidth is the crucial 
concept. 
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Let's explore the Physical Interpretation of this relationship, 𝛥𝑠𝑐 =
𝑐

𝛥𝜔
. Why 

does this connection between coherence length and spectral bandwidth 
arise? 

* The first point is that a Finite bandwidth source is actually a 
superposition of many quasi-monochromatic components. No real light 
source is perfectly monochromatic (except an ideal laser, perhaps). A source 

with a spectral bandwidth 𝛥𝜔 is emitting light not just at a single frequency 

𝜔0, but over a range of frequencies from roughly 𝜔0 −
𝛥𝜔

2
 to 𝜔0 +

𝛥𝜔

2
. We can 

think of the light field as a sum (or integral) of many pure sinusoidal waves, 

each with a slightly different frequency 𝜔n within this band 𝛥𝜔. 

* Now, Each individual frequency component, 𝜔n, produces a perfect 
sinusoid. However, because these components have slightly different 
frequencies, they will drift out of phase with respect to each other over time. 

Imagine two waves starting in phase, but one has a frequency 𝜔1 and the 

other 𝜔2. The rate at which their phase difference changes is 𝜔1 − 𝜔2. Over a 

time interval 𝛥𝑡, their relative phase will shift by (𝜔1 − 𝜔2)𝛥𝑡. The slide states 

that these components drift out of phase over a time 𝛥𝑡 which is 

approximately 1 divided by 𝛥𝜔 (𝛥𝑡 ≈
1

𝛥𝜔
). This 𝛥𝑡 is essentially our coherence 

time, 𝛥𝑡c. It's the time it takes for the collection of different frequency 
components that make up the wave packet to become significantly dephased 
from each other, typically by about one radian or so, such that their coherent 
superposition starts to break down. 

* The Result of this is that the light can be thought of as a wave train (or wave 

packet) of finite spatial extent. This extent is the coherence length: 𝛥𝑠𝑐 =

𝑐𝛥𝑡, which is approximately 𝑐

𝛥𝜔
. (𝛥𝑠𝑐 = 𝑐𝛥𝑡 ≈

𝑐

𝛥𝜔
). So, the light from a source 

with bandwidth 𝛥𝜔 behaves as if it's composed of a series of these wave 

packets, each of length 𝛥𝑠𝑐. Within each packet, the phase is reasonably 
well-defined. But the phase relationship between one packet and the next can 



be random, especially for thermal sources. This "packet" picture helps 

visualize why interference is lost when path differences exceed 𝛥𝑠𝑐. 
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Building on this physical interpretation of wave trains: 

* When the interferometer arm difference, 𝛥𝑠, is greater than the 

coherence length, 𝛥𝑠c (𝛥𝑠 > 𝛥𝑠c): This means we are trying to make a wave 
packet interfere with a version of itself that has been delayed by a distance 
longer than the length of the packet itself. 

* In this scenario, the Split wave packets do not overlap upon 
recombination. Imagine you have two identical short pulses of light (our 
wave packets). If you send them down two paths in a Michelson 
interferometer, and the path difference is larger than the length of the pulses, 
then when they arrive at the detector, one pulse will have already passed 
through before the other one arrives. They won't be at the detector at the 
same time to interfere. 

* Consequently, the Interference term averages to zero, and the visibility 
collapses. When the wave packets don't overlap, you just get the sum of their 
individual intensities at the detector, averaged over time. The cross-term in 
the intensity calculation, which gives rise to interference, will average to zero 
because there's no consistent phase relationship between the non-
overlapping packets arriving from the two arms. Thus, you see no fringes, and 

the visibility 𝑉 becomes zero. This is the fundamental reason why the 

coherence length limits the path differences over which interference can be 
observed. 
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Let's look at some Numerical Examples to Contrast Different Sources and 
get a feel for typical coherence lengths. 



Example 1 – A Mercury 546 nanometer (nm) line: 

This is a common line from a mercury discharge lamp, often used in labs. The 

wavelength is 546 × 10−9 meters. 

 • Such a line from a thermal discharge source is not perfectly 
monochromatic. It will be broadened, primarily by the Doppler effect due to 
the thermal motion of the emitting mercury atoms. The slide gives a typical 

Doppler Full Width at Half Maximum (FWHM) bandwidth as 𝛥𝜈𝐷 = 4 × 109 
Hz, or 4 Gigahertz. This is a substantial frequency spread. 

 • Now, let's calculate the Coherence length, 𝛥𝑠𝑐:   The formula used 

here seems to be 𝛥𝑠𝑐 is approximately 𝑐 divided by 2𝜋𝛥𝜈𝐷 (𝑐/(2𝜋𝛥𝜈𝐷)), and 

the result is given as approximately 8 centimeters (≈ 8 cm).   Let's verify 

this: 𝑐 (speed of light) is about 3 × 108 meters per second. 

   

𝛥𝑠𝑐 ≈
3 × 108 m/s

2𝜋 × 4 × 109 Hz
 

   

𝛥𝑠𝑐 ≈
3 × 108 m/s
8𝜋 × 109 s−1

 

   

𝛥𝑠𝑐 ≈ (
3

8𝜋
) × 10−1 meters 

  Since 8𝜋 is roughly 8 × 3.14159 = 25.13, 

   

𝛥𝑠𝑐 ≈
3

25.13
× 0.1 meters ≈ 0.119 × 0.1 meters ≈ 0.0119 meters, 

  which is about 1.2 centimeters. 



  The slide says “≈ 8 cm”. This value of 8 cm would be obtained if the 

formula used was 𝛥𝑠𝑐 ≈
𝑐

𝛥𝜈𝐷
 (without the 2𝜋 factor), as 

   

3 × 108 m/s
4 × 109 Hz

= 0.075 m = 7.5 cm. 

  It's common to see slight variations in the exact formula (presence or 

absence of 2𝜋) depending on how bandwidth and coherence time are 
precisely defined (e.g., 1/e point vs. FWHM). The key point is the order of 
magnitude. For a typical atomic emission line from a lamp, the coherence 
length is on the order of centimeters. This means if you set up a Michelson 
interferometer with this mercury lamp, you'd only see clear fringes if the path 
difference between the arms is kept within a few centimeters. 

Example 2 – A Single-mode Helium-Neon (He-Ne) laser: 

This is a very common type of laser, often emitting red light at 632.8 nm. 
“Single-mode” means it's designed to lase on a single longitudinal and 
transverse mode, which makes its output highly coherent. 

 • The Bandwidth, 𝛥𝜈, for such a laser is vastly smaller, typically around 

1 × 106 Hz, or 1 Megahertz. Compare this to the 4 Gigahertz for the mercury 
lamp – that's a factor of 4000 narrower! 

The calculation for the He-Ne laser's coherence length is on the next page. 
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Continuing with the numerical examples, for the single-mode Helium-Neon 

laser with a bandwidth 𝛥𝜈 = 1 × 106 Hz: 

* The Coherence length, 𝛥𝑠c (𝛥𝑠c), is calculated using the formula: 𝛥𝑠c is 

approximately 𝑐

2𝜋𝛥𝜈
. With 𝛥𝜈 = 1 × 106 Hz, this gives: 



𝛥𝑠c ≈
3 × 108 m/s

2𝜋 × 1 × 106 Hz
 

𝛥𝑠c ≈
3 × 108 m/s

6.283 × 106 s−1
 

𝛥𝑠c ≈ 47.7 meters 

The slide gives the result as approximately 50 meters (≈ 50 m). This is 
consistent. The contrast is dramatic: the mercury lamp had a coherence 

length of a few centimeters (let's say 1.2 cm if using the 2𝜋 factor 

consistently, or 7.5 cm if not). The single-mode He-Ne laser has a coherence 
length of about 50 meters! This is thousands of times longer. This is a direct 
consequence of the laser's extremely narrow spectral bandwidth. 

* The Key takeaway from these examples is profoundly important: 
coherence length increases inversely with bandwidth. A spectrally purer 
source (smaller bandwidth) is more temporally coherent (longer coherence 
length). Lasers excel at producing light with extremely small bandwidths. 

Now, the slide indicates "[IMAGE REQUIRED: Graph of fringe visibility vs. 

𝛥𝑠 depicting rapid decay for lamp, slow decay for laser.]" 

Let me describe what this graph would show: 

* The horizontal axis would be the path difference, 𝛥𝑠, in an interferometer. 

* The vertical axis would be the fringe visibility, 𝑉, ranging from 0 to 1. 

* There would be two curves plotted: 1. For the lamp (like the mercury 

lamp): This curve would start at 𝑉 ≈ 1 when 𝛥𝑠 = 0. However, it would decay 

very rapidly as 𝛥𝑠 increases, perhaps falling to near zero for 𝛥𝑠 values of just a 

few centimeters. The "width" of this visibility curve along the 𝛥𝑠 axis would 

correspond to the short coherence length (e.g., ∼ 1.2 cm if using the 2𝜋 factor 

consistently, or ∼ 7.5 cm if not) of the lamp. 2. For the laser (like the He-Ne 

laser): This curve would also start at 𝑉 ≈ 1 when 𝛥𝑠 = 0. But, it would decay 



much, much more slowly as 𝛥𝑠 increases. You would have to extend the 𝛥𝑠 
axis out to tens of meters before the visibility drops significantly. The width of 

this curve would represent the very long coherence length (e.g., ∼ 50 m) of the 

laser. 

This visual comparison would powerfully illustrate the vastly superior 
temporal coherence of a typical laser compared to a thermal lamp source. 
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Alright, we've spent a good deal of time on temporal coherence. Now let's 
shift our focus to spatial coherence, and the classic experiment to test it: 
Young's Double-Slit experiment, which serves as a Basic Spatial 
Coherence Test. 

Let's describe the Setup: 

• We have an extended light source of width 𝑏. This is not an ideal point 
source, but a source with some physical dimension. 

• This source illuminates two slits, 𝑆1 (𝑆1) and 𝑆2 (𝑆2), which are separated 

by a distance 𝑑. These slits are typically narrow and parallel, acting as 
secondary sources. 

• Beyond the slits, there's an Observation screen placed at a distance 𝑟 
from the plane of the slits. Interference fringes may form on this screen. 

Now, a key concept for understanding how the extended nature of the source 
affects fringe visibility is the Path difference for light from a generic source 

point 𝑄. 

Let 𝑄 be any arbitrary point on the surface of our extended source. Light from 

𝑄 travels to slit 𝑆1 and to slit 𝑆2. If the light reaching 𝑆1 and 𝑆2 from the source 

is spatially coherent, then 𝑆1 and 𝑆2 will act as coherent secondary sources, 

producing interference fringes on the screen. 



The slide mentions: 𝛥𝑠𝑄 = 𝑄𝑆1 − 𝑄𝑆2. 

This 𝛥𝑠𝑄 represents the difference in path lengths from a single point 𝑄 on the 

source to the two slits 𝑆1 and 𝑆2. The variation of this quantity for different 

points 𝑄 across the source is what determines the degree of spatial 

coherence of the illumination at the slits. If all points 𝑄 on the source produce 

waves that arrive at 𝑆1 and 𝑆2 with a stable, well-defined phase relationship 

(meaning 𝛥𝑠𝑄  varies in a controlled way, or is nearly constant), then the 

illumination is spatially coherent. 

However, the context for 𝛥𝑠𝑚𝑎𝑥  on the next slide usually refers to path 
differences related to how different parts of the source contribute to the 
interference pattern on the screen. Let's clarify that. The critical factor for 

spatial coherence in Young's experiment is whether the fields at 𝑆1 and at 𝑆2 

maintain a constant phase difference over time. This depends on the angular 

size of the source 𝑏 as seen from the slits at distance 𝑟𝑠𝑜𝑢𝑟𝑐𝑒_to_slits. 
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Continuing with Young's double-slit experiment and the effect of an extended 
source: 

• The first bullet says: Largest 𝛥𝑠𝑄 (𝛥𝑠𝑄) occurs for extreme points 𝑅1, 𝑅2 at 

source edges.   This 𝛥𝑠𝑄 was 𝑄𝑆1 − 𝑄𝑆2. This refers to the path difference 

from a point on the source to the two slits. The variation in this quantity, as Q 

moves from one edge of the source (say 𝑅1) to the other edge (𝑅2), is what 
matters. If this variation is too large (comparable to a wavelength), then 

different parts of the source will cause the phase relationship between 𝑆1 and 

𝑆2 to vary too much, washing out the fringes. 

• The next bullet introduces an approximation: Approximate geometry, 

𝑏 ≪ 𝑟 (𝑏 ≪ 𝑟), leads to Delta s sub max approximately b sine theta (𝛥𝑠max ≈

𝑏sin𝜃).   Here:    • '𝑏' is the width of the source.    • '𝑟' is 



typically the distance from the source to the slits.    • '𝜃' (theta) is the 

angle subtended by the slit separation '𝑑' at the source. So, sin𝜃 ≈ 𝜃 ≈
𝑑

𝑟
 (if 𝑟 

is source-to-slit distance).    • So, 𝛥𝑠max ≈ 𝑏 (
𝑑

𝑟
).   This 𝛥𝑠max 

represents the maximum difference in path lengths for light rays coming from 

the opposite edges of the source (width 𝑏) and passing through the two slits 

(separation 𝑑) on their way to form the central interference fringe on the 
screen. More precisely, it's the extra path that light from one edge of the 
source travels compared to light from the other edge, in reaching the two slits 
in such a way that they would constructively interfere at the screen center. 

• The crucial condition for observing clear interference fringes is then: If this 

𝛥𝑆max (Delta S sub max) is greater than lambda over 2 (𝜆/2), then the phase 

differences introduced by different parts of the extended source exceed pi (𝜋) 

radians, and as a result, the fringes wash out.   If 𝛥𝑠max >
𝜆

2
, it means that 

light from one edge of the source might be trying to produce a bright fringe at a 
certain location on the screen, while light from the other edge of the source is 
trying to produce a dark fringe (or something significantly phase-shifted) at 
the same location. These contributions from different parts of the incoherent 
source will average out, leading to a loss of fringe visibility.   So, for good 

fringes, we need 𝛥𝑠max <
𝜆

2
, which means 𝑏 (

𝑑

𝑟
) <

𝜆

2
, or more commonly, the 

condition is relaxed to 𝑏 (
𝑑

𝑟
) < 𝜆. This is the famous condition for spatial 

coherence in Young's experiment with an extended incoherent source. 
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This brings us to Slide 12: Criterion for Spatial Coherence Between Two 
Apertures. This formalizes the condition we just discussed. 

* The Coherent illumination condition is given first as: 

𝑏sin(𝜃/2) < 𝜆/2 



Here, 'b' is the source width. 𝜃 (theta) is the angular separation of the two 

apertures (slits) as viewed from the source. So, 𝜃 ≈
𝑑

𝑟
, where 'd' is the slit 

separation and 'r' is the distance from source to slits. 

For small angles, sin(𝜃/2) ≈ 𝜃/2. So the condition becomes 𝑏(𝜃/2) < 𝜆/2, or 

𝑏𝜃 < 𝜆. 

If 𝜃 =
𝑑

𝑟
, then 𝑏 (

𝑑

𝑟
) < 𝜆. This is consistent with our previous discussion. This 

form, 𝑏sin(𝜃/2) < 𝜆/2, is related to Zernike's precise formulation for the 

visibility. 

* The slide then says: Using the small-angle relation 2sin𝜃 ≈
𝑑

𝑟
: 

This seems a bit unorthodox as a "small-angle relation." Usually, sin𝜃 ≈ 𝜃. If 

they mean 𝜃 ≈
𝑑

𝑟
, and are using the 𝜃 from the previous formula (where it was 

angular separation of apertures), this is slightly confusing. 

However, the important resulting condition is presented in the box, and it's 
the one most commonly used: 

𝑏𝑑

𝑟
< 𝜆 

Let's clearly define the terms in this critical formula: * b: The width of the 
(assumed incoherent) light source. * d: The separation distance between the 
two apertures (e.g., the slits in Young's experiment). * r: The distance from the 
source to the plane containing the two apertures. * λ: The wavelength of the 
light. 

This inequality, 𝑏𝑑

𝑟
< 𝜆, tells us that for the illumination at the two apertures to 

be spatially coherent enough to produce good interference fringes, the 
product of the source width 'b' and the slit separation 'd', divided by the 

source-to-slit distance 'r', must be less than the wavelength 𝜆. 



Alternatively, 𝑏
𝑟

 is the angular size of the source as seen from the slits. Let's 

call this 𝜃source ≈
𝑏

𝑟
. Then the condition is 𝜃source ⋅ 𝑑 < 𝜆. This is a very 

standard and useful form. 
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Let's look at the Interpretation of this crucial spatial coherence criterion, 
𝑏𝑑

𝑟
< 𝜆. 

* Larger source size '𝑏' or larger slit separation '𝑑' reduces spatial coherence. 

This is evident from the formula. If you increase '𝑏' (a physically wider source) 

or '𝑑' (move the slits further apart), the left side of the inequality 𝑏𝑑

𝑟
 increases. 

To maintain the condition 𝑏𝑑

𝑟
< 𝜆, you would then need to compensate, for 

example, by increasing '𝑟' or using a shorter wavelength. If '𝑏' or '𝑑' becomes 
too large, the condition will be violated, and spatial coherence will be lost, 
meaning interference fringes will disappear. 

* Increasing the distance '𝑟' from the source to the apertures increases the 

coherence area at the observation plane (the plane of the slits). If '𝑟' 

increases, then for a fixed source width '𝑏' and wavelength 𝜆, the permissible 

slit separation '𝑑' (from 𝑑 <
𝜆𝑟

𝑏
) can be larger. This means the light is spatially 

coherent over a larger transverse distance '𝑑'. The "coherence area" (roughly 

𝑑2) over which the field is coherent grows as 𝑟 increases. This is why very 
distant sources, like stars, can exhibit significant spatial coherence over large 
areas on Earth, even if the stars themselves are physically enormous. 

The slide then indicates: "[IMAGE REQUIRED: Adapted Fig. 2.32 showing 
path differences from central vs. edge source points.]" 

Let me describe what such an image would typically illustrate to make this 
concept clearer: 



* Imagine an extended source of width '𝑏'. 

* At some distance '𝑟' away, you have two slits, 𝑆1 and 𝑆2, separated by '𝑑'. 

* Consider light rays originating from the very center of the source. One ray 

goes to 𝑆1, another to 𝑆2. These will have some relative phase when they 

arrive at 𝑆1 and 𝑆2. 

* Now consider rays from one extreme edge of the source (say, the "top" 

edge). Again, one ray goes to 𝑆1, another to 𝑆2. These will also have a relative 

phase at 𝑆1 and 𝑆2, but this relative phase might be different from that 
produced by the center of the source, due to the different path lengths 

involved from the source edge to 𝑆1 versus 𝑆2. 

The condition 𝑏𝑑

𝑟
< 𝜆 essentially ensures that the maximum change* in this 

relative phase (between 𝑆1 and 𝑆2) as you consider contributions from all 
points across the source (from one edge, through the center, to the other 

edge) does not exceed roughly 2𝜋 radians (or that the path difference 

variation doesn't exceed 𝜆). 

* If this change is too large, the contributions from different parts of the 
source will effectively "smear out" any consistent phase relationship between 

𝑆1 and 𝑆2, destroying the interference. 

Page 30: 

Now we move to the Coherence Surface & Solid Angle Formulation, which 
provides a more general and elegant way to express spatial coherence. 

* First, let's Define the source area, A sub s (𝐴s), as b squared (𝐴s = 𝑏2). 

We're simplifying here by assuming a square source of side 𝑏. For a circular 

source of radius 𝑅, 𝐴s would be 𝜋𝑅2. The exact shape factor isn't crucial for 
the principle. 



* Next, we define the Coherence surface at the observation plane (the 

plane of the slits, for instance) as A sub c (𝐴c) equals d squared (𝐴c = 𝑑2). 

Here, 𝑑 is the maximum separation between two points in that plane for 
which the light is still considered spatially coherent. From our previous 

condition 𝑏𝑑

𝑟
< 𝜆, we have 𝑑 <

𝜆𝑟

𝑏
. So, the maximum 𝑑 is roughly 𝜆𝑟

𝑏
. Therefore, 

the coherence area 𝐴c would be approximately (𝜆𝑟

𝑏
)
2

. 

* The slide then says: From the previous inequality: b squared d squared, 

all divided by r squared, is less than or equal to lambda squared (𝑏
2𝑑2

𝑟2
≤

𝜆2). This is obtained by squaring our condition 𝑏𝑑

𝑟
< 𝜆 and taking the limit as 

equality. We can rewrite this using 𝐴s = 𝑏2 and 𝐴c = 𝑑2: 𝐴s𝐴c

𝑟2
≤ 𝜆2. 

* Now, a key step: Recognize the solid angle subtended by 𝐴c. The solid 

angle, let's call it 𝑑𝛺 (d Omega or delta Omega), subtended by the coherence 

area 𝐴c when viewed from the source (at distance 𝑟) would be 

𝑑𝛺 ≈
𝐴c

𝑟2
 

Alternatively, and perhaps more standardly for this formulation, 𝑑𝛺 is the 

solid angle into which the source radiates, or the solid angle "seen" by the 
detector system from a point on the source. If we are interested in coherence 

over an area 𝐴c = 𝑑2 at distance 𝑟, this area subtends a solid angle 

𝑑𝛺 =
𝐴c

𝑟2
=

𝑑2

𝑟2
 

from the source. 

Let's see how the next slide uses this. 
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Continuing with the solid angle formulation: 



* The slide defines d Omega (𝑑𝛺) equals d squared divided by r squared 

(𝑑𝛺 =
𝑑2

𝑟2
). This 𝑑𝛺 is the solid angle subtended by an area 𝑑2 (which is our 

coherence area 𝐴c) at a distance 'r'. So, this is the solid angle associated with 
the region over which we are demanding coherence. 

* With this, the Spatial coherence condition can be expressed very 

compactly as: 𝐴s𝑑𝛺 ≤ 𝜆2. Let's check this. We have 𝐴s = 𝑏2 and 𝑑𝛺 =
𝑑2

𝑟2
. 

So, 𝐴s𝑑𝛺 = 𝑏2 (
𝑑2

𝑟2) = (
𝑏𝑑

𝑟
)
2

. The condition (𝑏𝑑

𝑟
)
2
≤ 𝜆2 is what we had on the 

previous page. So, this compact form 𝐴s𝑑𝛺 ≤ 𝜆2 is indeed equivalent. This is 
a very beautiful and general result. It states that the product of the source 

area (𝐴s) and the solid angle (𝑑𝛺) over which coherence is required (or into 

which the light is collected/observed) must be less than or on the order of the 

wavelength squared. This product 𝐴s𝑑𝛺 is related to the "étendue" or 
"throughput" of an optical system. For coherent operations, this étendue is 

limited by 𝜆2. 

* From this, we can find the Limiting solid angle (𝑑𝛺max) within which 

radiation from a source of area 𝐴s remains spatially coherent: d Omega max 

(𝑑𝛺max) equals lambda squared divided by A sub s (𝑑𝛺max =
𝜆2

𝐴s
). This tells us 

that for a source of a given area 𝐴s and wavelength 𝜆, there's a maximum solid 

angle 𝑑𝛺max. If you collect light from this source only within this solid angle, 

the light will be spatially coherent. This is extremely important for applications 
like coupling light into a single-mode optical fiber, which can only accept light 
from a very small solid angle (related to its numerical aperture) and requires 
spatially coherent input. If $d\Omega_{\text{source\_\text{to}\_\text{fiber}}} > 
\frac{\lambda^2}{A_{s,\text{source}}}$, you won't efficiently couple coherent 
light. 
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Continuing our discussion on the solid angle formulation of spatial 
coherence: 

* A very important limiting case is that of a Point source. 

If the source area 𝐴s approaches zero (𝐴s → 0), then what happens to our 

limiting solid angle 𝑑𝛺max =
𝜆2

𝐴s
? 

As 𝐴s goes to zero, 𝑑𝛺max goes to infinity. 

This means that for an ideal point source, coherence extends over the full 

4𝜋 steradians (4𝜋 sr) solid angle. 

In other words, a true point source emits perfectly spatially coherent light in 
all directions. This is, of course, an idealization, as no real source is a perfect 
mathematical point. However, if a source is physically very small compared 
to the wavelength and observation distances, it can approximate a point 
source and exhibit very high spatial coherence. 

The two hyphens just denote the end of this thought on the slide. This concept 
underscores why sources that are "effectively point-like" (either physically 
small or very far away, making their angular size tiny) are good for experiments 
requiring high spatial coherence. 
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Slide 14: Distance Dependence – Astronomical Relevance. 

* The Coherence surface (or coherence area), 𝐴c, grows quadratically with 

distance 𝑟. We had the limiting solid angle for coherence 𝑑𝛺max =
𝜆2

𝐴s
. The 

coherence area 𝐴c at a distance '𝑟' from the source is simply this solid angle 

multiplied by 𝑟2: 𝐴c equals 𝑑𝛺max times 𝑟2, which equals 𝜆
2

𝐴s
𝑟2. 



𝐴c = 𝑑𝛺max 𝑟
2 =

𝜆2

𝐴s
 𝑟2 

This clearly shows that 𝐴c is proportional to 𝑟2. As you move further away 
from the source, the area over which the light maintains spatial coherence 
increases as the square of the distance. 

* This has profound Astronomical Relevance, particularly for Stars: Stars, 

despite having a large physical diameter (meaning 𝐴s, their actual surface 

area, is enormous), are at such an enormous distance '𝑟' from Earth that the 

𝑟2 factor in the 𝐴c equation dominates. This makes the coherence area 𝐴c of 
starlight on Earth very large, often exceeding the aperture (diameter) of typical 
telescopes. For example, the Sun is huge, but if it were much further away 

(like other stars), the 𝑟2 term would make its light appear spatially coherent 
over large areas on Earth. 

* The Consequence of this is that starlight is spatially coherent across a 
telescope mirror. This allows for stellar interferometry. Because the 
incoming starlight wavefront has a well-defined phase relationship across the 
entire diameter of a telescope's primary mirror (or across even larger 
baselines if multiple telescopes are used as an interferometer), astronomers 
can make these wavefronts interfere. Albert A. Michelson, along with Francis 
Pease, famously used this principle with the stellar interferometer at Mount 
Wilson Observatory to make the first direct measurements of stellar 
diameters (for Betelgeuse in 1920). By varying the separation of two apertures 
collecting starlight and observing the visibility of the interference fringes, they 
could deduce the angular size of the star, which, combined with its 

(estimated) distance, gave its physical diameter. This was a triumph of 
understanding and applying coherence principles. 
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Now, let's synthesize our understanding of temporal and spatial coherence by 
Putting Temporal & Spatial Together to define the Coherence Volume on 
Slide 15. 

• We need to Combine the longitudinal coherence length, 𝛥𝑠c, with the 

transverse coherence surface, 𝑆c. 

  (Note: the slide uses 𝑆c here for coherence surface, whereas previously it 

used 𝐴c. They represent the same concept: the transverse area over which 
the field is spatially coherent.) 

  • Recall, 𝛥𝑠c ≈
𝑐

𝛥𝜔
, which characterizes coherence along the direction of 

propagation (temporal coherence). 

  • And 𝑆c ≈
𝜆2𝑟2

𝐴s
, which characterizes coherence in a plane transverse to 

the propagation direction (spatial coherence). 

• The Resulting coherence volume, 𝑉c, is simply the product of these two: 

  The formula in the box is: 

      

𝑉c = 𝑆c𝛥𝑠c =
𝜆2𝑟2𝑐

𝛥𝜔𝐴s
 

  𝑉c = 𝑆c𝛥𝑠c =
𝜆2𝑟2𝑐

𝛥𝜔𝐴s
. 

  Let's verify this product: 

  𝑆c =
𝜆2𝑟2

𝐴s
 (using the limiting case for spatial coherence area). 

  𝛥𝑠c =
𝑐

𝛥𝜔
 (temporal coherence length). 

  Multiplying them gives (𝜆2𝑟2

𝐴s
) × (

𝑐

𝛥𝜔
) =

𝜆2𝑟2𝑐

𝐴s𝛥𝜔
. This matches the slide. 



  This 𝑉c represents a three-dimensional volume in space. Within this 
“coherence volume,” the electromagnetic field can be thought of as having 
well-defined phase correlations, both in the direction of propagation (over 

length 𝛥𝑠c) and in the transverse plane (over area 𝑆c). It's a region where the 

wave behaves coherently. 
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Let's elaborate on the significance of this coherence volume, 𝑉c. 

* The Physical meaning of the coherence volume is that it's a region of 
space-time where the electromagnetic (EM) field maintains fixed phase 

correlations. "Space-time" is appropriate here because 𝑉c involves both 

spatial dimensions (through 𝑆c) and a temporal dimension (through 𝛥𝑠c =

𝑐𝛥𝑡c, where 𝛥𝑡c is the coherence time). If you pick any two points within this 
coherence volume, their phases will have a predictable relationship. If you 

consider the field at one point within 𝑉c at two different times (separated by 

less than 𝛥𝑡c), their phases will be correlated. 

* The second bullet point is a very important teaser for later concepts: This 
coherence volume will later connect to quantized "modes" of the 
electromagnetic field and to photon statistics. This is a profound 
connection. In quantum optics, the electromagnetic field can be quantized 
into modes. Each mode can be thought of as a sort of "container" for photons. 

The coherence volume 𝑉c turns out to be closely related to the volume 
occupied by a single mode of the radiation field. Furthermore, the average 
number of photons found within one coherence volume (or per mode) is a 
crucial parameter called the "degeneracy parameter" or "occupation 

number." This parameter, often denoted 𝑛‾  (n̄ ), tells us whether the light is 

"classical-like" (many photons per mode, 𝑛‾ ≫ 1) or "quantum-like" (few 

photons per mode, 𝑛‾ ≤ 1). Lasers can achieve very high 𝑛‾, while thermal 



sources at optical frequencies typically have 𝑛‾ ≪ 1. We'll likely explore this in 
more detail soon. 

--- 
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Slide 16: Photon Statistics Inside a Coherence Volume. 

Now we delve into Slide 16: Photon Statistics Inside a Coherence Volume. 
This builds directly on the previous point. 

* First, let's define Spectral radiance, 𝐿𝜔 (with units of W m−2 sr−1 rad−1). 

This 𝐿𝜔 describes the power (Watts) emitted from a unit area of the source 

(per m2) into a unit solid angle (per sr) per unit of angular frequency 

bandwidth (per rad s−1). It's a measure of the "brightness" of the source at a 

particular angular frequency 𝜔. 

* Next, we want the Number flux density of photons per Hertz per steradian 

from unit area. The slide gives this as 𝐿𝜔 divided by ℎ𝜈 (𝐿𝜔

ℎ𝜈
). Let's be careful 

with units and terms here:  𝐿𝜔 is radiance per unit angular* frequency 𝜔.  ℎ𝜈 is 

the energy of a photon, where 𝜈 is the linear* frequency (𝜈 =
𝜔

2𝜋
) and ℎ is 

Planck's constant. Alternatively, photon energy is ℏ𝜔. * If 𝐿𝜔 is energy/(time × 

area × solid\_angle × angular\_frequency\_bandwidth), then to get photon 

number, we should divide by photon energy, ℏ𝜔. * So, number flux density 

would be 𝐿𝜔

ℏ𝜔
. * If 𝐿𝜔

ℎ𝜈
 is used, it implies either 𝐿𝜔 was actually 𝐿𝜈

2𝜋
 (radiance per 

linear frequency, converted), or some factors of 2𝜋 are being absorbed. * 

Let's assume 𝐿𝜔 refers to the spectral radiance in terms of angular frequency, 

and ℎ𝜈 is simply shorthand for the photon energy 𝐸photon. For consistency, if 𝐿 

is in terms of 𝜔, the photon energy should be ℏ𝜔. If we use ℎ𝜈, then 𝐿 should 

be 𝐿𝜈. * Given 𝑛‾ =
1

exp(
ℎ𝜈

𝑘𝑇
)−1

 later for thermal sources, it seems calculations 



are often done with 𝜈. Let's proceed assuming the formula 𝐿𝜔

ℎ𝜈
 yields the 

correct photon number density for the 𝐿𝜔 defined by the subsequent math. 

* Now, the Total average number of photons in a coherence volume, 𝑛‾, is 

given by: 𝑛‾  equals 𝐿𝜔

ℎ𝜈
 times 𝐴s, times 𝛥𝛺, times 𝛥𝜔, times 𝛥𝑡c. 𝑛‾ =

𝐿𝜔

ℎ𝜈
⋅ 𝐴s ⋅

𝛥𝛺 ⋅ 𝛥𝜔 ⋅ 𝛥𝑡c. Let's break this down: * 𝐿𝜔

ℎ𝜈
: Photons per unit time, per unit 

source area, per unit solid angle, per unit angular frequency bandwidth. * 𝐴s: 

The area of the source. So 𝐿𝜔

ℎ𝜈
⋅ 𝐴s is photons per unit time, per unit solid angle, 

per unit angular frequency bandwidth, from the whole source. * 𝛥𝛺: The solid 

angle of coherence (𝑑𝛺max from page 31, which was 𝜆
2

𝐴s
). * 𝛥𝜔: The spectral 

bandwidth over which coherence is considered. * 𝛥𝑡c: The coherence time 

(𝛥𝑡c ≈
1

𝛥𝜔
). The product 𝐴s ⋅ 𝛥𝛺 ⋅ 𝛥𝜔 ⋅ 𝛥𝑡c effectively defines the "number of 

available slots" or "modes" within the coherence volume originating from 

source 𝐴s, within solid angle 𝛥𝛺, bandwidth 𝛥𝜔, and coherence time 𝛥𝑡c. So, 

𝑛‾  is indeed the average number of photons found in such a spatio-temporal-

spectral cell, i.e., per mode or per coherence volume. This is the degeneracy 
parameter. 
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Let's continue with the calculation of 𝑛‾, the average number of photons in a 
coherence volume. 

* We need to Substitute 𝛥𝛺 =
𝜆2

𝐴s
 and 𝛥𝑡c =

1

𝛥𝜔
. * 𝛥𝛺 =

𝜆2

𝐴s
 (capital Delta 

Omega equals lambda squared over 𝐴s) is the limiting solid angle for spatial 

coherence derived earlier. * 𝛥𝑡c =
1

𝛥𝜔
 (Delta 𝑡c equals 1 over Delta 𝜔) is the 

coherence time related to the spectral bandwidth 𝛥𝜔 (this is an order-of-

magnitude relationship; sometimes a 2𝜋 factor appears depending on 
definitions, but it often cancels). 



Plugging these into the expression for 𝑛‾  from the previous page: 

𝑛‾ = (
𝐿𝜔

ℎ𝜈
)𝐴s 𝛥𝛺 𝛥𝜔 𝛥𝑡c 

𝑛‾ = (
𝐿𝜔

ℎ𝜈
)𝐴s (

𝜆2

𝐴s
)𝛥𝜔 (

1

𝛥𝜔
) 

We can see some nice cancellations: * The source area 𝐴s in the numerator 

cancels with 𝐴s in the denominator (from the 𝛥𝛺 substitution). * The spectral 

bandwidth 𝛥𝜔 in the numerator cancels with 𝛥𝜔 in the denominator (from the 

𝛥𝑡c substitution). 

This leaves us with a remarkably simple expression, shown in the box: 𝑛‾  

equals (𝐿𝜔

ℎ𝜈
) 𝜆2. (i.e., 𝑛‾ = (

𝐿𝜔

ℎ𝜈
) 𝜆2). 

* The slide then makes a crucial point: Remarkably, 𝑛‾  is independent of 𝛥𝜔 

or 𝑟. Independence from 𝛥𝜔 (spectral bandwidth): This might seem 

surprising at first, but it's because the definitions of coherence time (𝛥𝑡c ∼
1

𝛥𝜔
) and coherence volume (which involves 𝛥𝑡c) scale inversely with 𝛥𝜔. So, 

while a larger bandwidth means a smaller coherence volume, the number of 
photons per coherence volume* remains characterized by this simpler 

formula. * Independence from 𝑟 (distance from the source): This also seems 

remarkable. 𝐿𝜔 is the spectral radiance of the source. ℎ𝜈 and 𝜆 are properties 

of the light. This implies that 𝑛‾, the number of photons per coherence volume 

(or per mode), is an intrinsic property of the radiation field generated by the 
source, not dependent on how far away you observe it. This is true as long as 

𝐿𝜔 is understood as the source radiance and the coherence volume is 

correctly defined at distance 𝑟 (recall 𝑆c or 𝐴c depended on 𝑟, but 𝛥𝛺 =
𝑆c

𝑟2
 and 

𝐴s𝛥𝛺 = 𝜆2 were key relations). 

This 𝑛‾  is a fundamental quantity in radiation physics, known as the photon 

degeneracy parameter, or the mean occupation number of a radiation mode. 
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Now, let's apply this to a very important case: Slide 17: Degeneracy 
Parameter for Thermal Radiation. We'll use Planck's law. 

* First, the Planck spectral radiance (for a single polarization state) is given 
as: 

𝐿𝜈 =
ℎ𝜈3

𝑐2 (exp (
ℎ𝜈
𝑘𝑇

) − 1)
 

( 𝐿𝜈 =
ℎ𝜈3

𝑐2
 /  (exp (

ℎ𝜈

𝑘𝑇
) − 1) ). 

 𝐿𝜈  here is the spectral radiance per unit linear* frequency 𝜈 (in Hz). Units: 

Watts per meter squared per steradian per Hertz (W m−2 sr−1 Hz−1). * ℎ is 

Planck's constant. * 𝜈 is the linear frequency. * 𝑐 is the speed of light. * 𝑘 is 

Boltzmann's constant. * 𝑇 is the absolute temperature of the thermal source 

(a black body). * exp( ) is the exponential function. 

This formula describes the emitted power spectrum of an ideal black body. 
For a single polarization, we take half the value of the unpolarized Planck's 
law. 

* Next, we need to Convert 𝐿𝜈  to 𝐿𝜔 because our formula for 𝑛‾  used 𝐿𝜔. The 

relationship is based on energy conservation: the power in a frequency 

interval 𝑑𝜈 must equal the power in the corresponding angular frequency 

interval 𝑑𝜔. 

So, 

𝐿𝜔  𝑑𝜔 = 𝐿𝜈  𝑑𝜈. 

Since 𝜔 = 2𝜋𝜈, we have 𝑑𝜔 = 2𝜋 𝑑𝜈. 

Therefore, 



𝐿𝜔 = 𝐿𝜈  
𝑑𝜈

𝑑𝜔
=

𝐿𝜈

2𝜋
. 

* Now, we Insert this into our formula for 𝑛‾, which was 

𝑛‾ = (
𝐿𝜔

ℎ𝜈
) 𝜆2. 

Let's do this step-by-step: 1. 𝐿𝜔 =
1

2𝜋
⋅ 𝐿𝜈 =

1

2𝜋
⋅

ℎ𝜈3

𝑐2(exp(
ℎ𝜈

𝑘𝑇
)−1)

. 2. 

𝑛‾ = [
1

2𝜋
⋅

ℎ𝜈3

𝑐2 (exp (
ℎ𝜈
𝑘𝑇

) − 1)
] ⋅

1

ℎ𝜈
⋅ 𝜆2. 

3. The ℎ𝜈 term in the denominator cancels one ℎ𝜈 from ℎ𝜈3 in the numerator, 

leaving 𝜈
2

𝑐2
. 

𝑛‾ = [
1

2𝜋
⋅

𝜈2

𝑐2 (exp (
ℎ𝜈
𝑘𝑇

) − 1)
] ⋅ 𝜆2. 

4. We know that wavelength 𝜆 =
𝑐

𝜈
, so 𝜆2 =

𝑐2

𝜈2
. 5. Substitute 𝜆2: 

𝑛‾ = [
1

2𝜋
⋅

𝜈2

𝑐2 (exp (
ℎ𝜈
𝑘𝑇

) − 1)
] ⋅

𝑐2

𝜈2
. 

6. The terms 𝜈
2

𝑐2
 and 𝑐

2

𝜈2
 cancel out perfectly! This leaves: 

𝑛‾ =
1

2𝜋
⋅

1

(exp (
ℎ𝜈
𝑘𝑇

) − 1)
. 

However, the slide gives the result for 𝑛‾  directly as: 𝑛‾ =
1

exp(
ℎ𝜈

𝑘𝑇
)−1

. This implies 

that the 𝐿𝜔 in the formula 𝑛‾ = (
𝐿𝜔

ℎ𝜈
) 𝜆2 on page 37 was actually 



𝐿𝜔 =
ℎ𝜈

2𝜋𝜆2
⋅

1

exp (
ℎ𝜈
𝑘𝑇

) − 1
 

for a thermal source, or that the 2𝜋 factor was absorbed differently. If we 

assume the final 𝑛‾  result is correct (which it is, it's the Bose-Einstein 

distribution), then the 𝐿𝜔 used to derive it must have been 

𝐿𝜔 =
ℎ𝜈

𝜆2
⋅

1

exp (
ℎ𝜈
𝑘𝑇

) − 1
. 

Let's re-check the derivation of 𝑛‾  from page 36-37 using standard definition of 

𝐿𝜔 from Planck's law. Planck's law for spectral radiance per unit angular 

frequency, for a single polarization, is: 

𝐿𝜔(𝑇) =
ℏ𝜔3

4𝜋2𝑐2 (exp (
ℏ𝜔
𝑘𝑇

) − 1)
 (where ℏ =

ℎ

2𝜋
). 

The formula for 𝑛‾  was 𝑛‾ = (
𝐿𝜔

ℏ𝜔
) 𝜆2 (using ℏ𝜔 as photon energy if 𝐿 is 𝐿𝜔). So, 

𝑛‾ = [
ℏ𝜔3

4𝜋2𝑐2 (exp (
ℏ𝜔
𝑘𝑇

) − 1)
] ⋅

1

ℏ𝜔
⋅ 𝜆2. 

𝑛‾ = [
𝜔2

4𝜋2𝑐2 (exp (
ℏ𝜔
𝑘𝑇

) − 1)
] ⋅ 𝜆2. 

Since 𝜔 = 2𝜋𝜈 and 𝜆 =
𝑐

𝜈
, then 𝜔 =

2𝜋𝑐

𝜆
. So, 

𝜔2 =
4𝜋2 𝑐2

𝜆2
. 

Substitute this into the expression for 𝑛‾: 



𝑛‾ = [

4𝜋2 𝑐2

𝜆2

4𝜋2𝑐2 (exp (
ℏ𝜔
𝑘𝑇

) − 1)
] ⋅ 𝜆2. 

𝑛‾ = [
1

𝜆2 (exp (
ℏ𝜔
𝑘𝑇

) − 1)
] ⋅ 𝜆2. 

𝑛‾ =
1

exp (
ℏ𝜔
𝑘𝑇

) − 1
. 

And since ℏ𝜔 = ℎ𝜈, this becomes 

𝑛‾ =
1

exp (
ℎ𝜈
𝑘𝑇

) − 1
. 

This matches the slide's final result exactly! So the derivation is sound if we 

consistently use 𝐿𝜔 and ℏ𝜔 (or 𝐿𝜈  and ℎ𝜈). The formula on page 37, 𝑛‾ =

(
𝐿𝜔

ℎ𝜈
) 𝜆2, was a slight notational mix if 𝐿𝜔 is radiance per angular frequency and 

ℎ𝜈 is used for energy. However, the derived result here for thermal radiation is 
correct and fundamental. 
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Now for the Interpretation of this degeneracy parameter 𝑛‾ =
1

exp(
ℎ𝜈

𝑘𝑇
)−1

 for 

thermal radiation. 

* This n-bar (𝑛‾) represents the mean photon number per electromagnetic 

mode. It is also known as the degeneracy parameter or the photon 

occupation number. For thermal radiation in equilibrium at temperature 𝑇, 
this formula tells us, on average, how many photons occupy each distinct 
electromagnetic mode (each "slot" in phase space, or each coherence 



volume) that has a frequency 𝜈. This is precisely the Bose-Einstein 
distribution function for a gas of photons, which are bosons. 

Let's look at two important limits: 

* Low-frequency (Rayleigh-Jeans) limit: This occurs when ℎ𝜈 is much less 

than 𝑘𝑇 (ℎ𝜈 ≪ 𝑘𝑇), meaning the photon energy is small compared to the 

characteristic thermal energy. In this case, the exponential term exp (
ℎ𝜈

𝑘𝑇
) can 

be approximated as 1 +
ℎ𝜈

𝑘𝑇
. So, 𝑛‾ ≈

1

(1+
ℎ𝜈

𝑘𝑇
)−1

=
1
ℎ𝜈

𝑘𝑇

=
𝑘𝑇

ℎ𝜈
. Since ℎ𝜈 ≪ 𝑘𝑇, then 

𝑘𝑇

ℎ𝜈
 is much greater than 1 (𝑛‾ ≫ 1). This means that in the low-frequency (long 

wavelength, e.g., radio waves or far-infrared at room temperature) limit, there 
are many photons per mode. The modes are highly populated. This is the 

regime where classical wave descriptions of electromagnetism (like the 
Rayleigh-Jeans law itself) work well because the quantum discreteness of 
photons is less apparent due to their sheer number. 

* High-frequency (Wien) limit: This occurs when ℎ𝜈 is much greater than 𝑘𝑇 

(ℎ𝜈 ≫ 𝑘𝑇), meaning the photon energy is large compared to the thermal 

energy. In this case, exp (
ℎ𝜈

𝑘𝑇
) is much greater than 1. So, 𝑛‾ ≈

1

exp(
ℎ𝜈

𝑘𝑇
)
=

exp (−
ℎ𝜈

𝑘𝑇
). Since ℎ𝜈 ≫ 𝑘𝑇, the negative exponent is large and negative, so 𝑛‾  

is much less than 1 (𝑛‾ ≪ 1). This means that in the high-frequency (short 

wavelength, e.g., visible or UV light at room temperature) limit, there are very 
few photons per mode, typically much less than one on average. The modes 
are sparsely populated. This is a distinctly quantum regime where the particle 
nature of light (photons) becomes dominant. It's hard to "build up" a classical 
wave if you don't even have one photon per mode on average. 

This parameter 𝑛‾  is crucial for understanding lasers. A laser achieves its 

special properties because it can generate a light field where 𝑛‾  is extremely 

large (𝑛‾ ≫ 1) even at optical frequencies where thermal 𝑛‾  would be 



vanishingly small. This means lasers produce highly populated, non-thermal 
states of light. 
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Now we explore a fascinating connection on Slide 18: Coherence Volume ↔ 
Elementary Phase-Space Cell. This links coherence to one of the most 
fundamental concepts in quantum mechanics, the Heisenberg Uncertainty 
Principle. 

* First, let's recall the Heisenberg uncertainty principle in 3-Dimensions (3-
D): 

𝛥𝑝x𝛥𝑝y𝛥𝑝z𝛥𝑥𝛥𝑦𝛥𝑧 ≥ ℏ3. 

* 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 are the uncertainties in the position coordinates of a particle. * 

𝛥𝑝x, 𝛥𝑝y, 𝛥𝑝z are the uncertainties in the corresponding momentum 

components. * ℏ (h-bar) is the reduced Planck constant (ℎ/2𝜋). 

This principle states that the volume occupied by a quantum state in 6-
dimensional phase space (3 position, 3 momentum coordinates) cannot be 

smaller than approximately ℏ3. Each such minimal volume, ℏ3, represents 

one "elementary cell" or one quantum state. (Sometimes ℎ3 is used, 

depending on convention; ℏ is more common in this context). 

* Now, let's consider photons escaping an aperture of size 'b'. For 

simplicity, let's assume a square aperture of side length 'b' in the x-y plane. 

* The Position uncertainties in the transverse directions, 𝛥𝑥 and 𝛥𝑦, are 
determined by the size of the aperture: 

𝛥𝑥 ≈ 𝑏, and 𝛥𝑦 ≈ 𝑏. 

The photon, as it passes through the aperture, is localized within this 
transverse extent. 
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Continuing our connection between coherence volume and phase-space 
cells: 

• When light passes through an aperture, it undergoes diffraction. The 

Diffraction-limited divergence angle, theta (𝜃), is approximately lambda 

divided by 𝑏 (𝜃 ≈ 𝜆/𝑏). This divergence gives rise to a spread in the transverse 

momentum components of the photon. The transverse momentum spread, 

for example 𝛥𝑝x, can be estimated. The momentum of a photon is 𝑝 =
ℎ

𝜆
= ℏ𝑘. 

The uncertainty in its direction by an angle 𝜃 leads to a transverse momentum 

component 𝑝x ≈ 𝑝𝜃. So, 𝛥𝑝x ≈ 𝑝 (𝜆/𝑏) = (
ℎ

𝜆
) (𝜆/𝑏) = ℎ/𝑏. Or, using ℏ: 𝛥𝑝x ≈

ℏ𝑘 (𝜆/𝑏) = ℏ(2𝜋/𝜆)(𝜆/𝑏) = ℏ(2𝜋/𝑏) = ℎ/𝑏. The slide gives an intermediate 

step: 𝛥𝑝x is approximately (ℎ/𝜆)(𝜆/(2𝜋𝑏)), which equals ℏ/𝑏 (𝛥𝑝x ≈

(ℎ/𝜆)(𝜆/(2𝜋𝑏)) = ℏ/𝑏). This result 𝛥𝑝x ≈ ℏ/𝑏 is what we get if the 

characteristic angular spread is taken as 𝜆/(2𝜋𝑏), which is related to the 1/e 
width for a Gaussian beam rather than the first minimum of a slit. However, 

the product 𝛥𝑥𝛥𝑝x ≈ 𝑏 (ℏ/𝑏) = ℏ. This is consistent with the uncertainty 

principle for one dimension. Similarly, 𝛥𝑦𝛥𝑝y ≈ ℏ. 

• Next, the Spectral width, Delta omega (𝛥𝜔), of the light adds a 

longitudinal momentum spread, 𝛥𝑝z. The longitudinal momentum of a photon 

is 𝑝z = ℏ𝑘z = ℏ(𝜔/𝑐). So, the uncertainty in 𝑝z due to an uncertainty 𝛥𝜔 in 

angular frequency is: 𝛥𝑝z = ℏ𝛥𝜔/𝑐. This is correct. 

• Now, the crucial step: Insert these uncertainties into the uncertainty 

product. The claim is that the spatial cell volume reproduces 𝑉c (the 
coherence volume). Let's look at the spatial volume element defined by our 

uncertainties: 𝛥𝑉spatial = 𝛥𝑥 𝛥𝑦 𝛥𝑧. 

  • 𝛥𝑥 ≈ 𝑏   • 𝛥𝑦 ≈ 𝑏   • 𝛥𝑧 is the uncertainty in the photon's 

longitudinal position. This is precisely the coherence length 𝛥𝑠c, which we 



found to be related to the coherence time 𝛥𝑡c ≈ 1/𝛥𝜔 (or more precisely, 

𝛥𝜔𝛥𝑡c ≈ 2𝜋, or related to spectral line shape). If we use 𝛥𝑠c ≈ 𝑐/𝛥𝜔, then 

𝛥𝑧 ≈ 𝑐/𝛥𝜔. 

So, the spatial cell volume is 

𝛥𝑉spatial ≈ 𝑏 ⋅ 𝑏 ⋅ (
𝑐

𝛥𝜔
) =

𝑏2𝑐

𝛥𝜔
. 

Let's recall our coherence volume 𝑉c from page 34: 𝑉c = 𝑆c𝛥𝑠c. If the 

transverse coherence area 𝑆c is determined by the aperture size 𝑏, then 𝑆c ≈

𝑏2. And the longitudinal coherence length 𝛥𝑠c ≈ 𝑐/𝛥𝜔. So, 𝑉c ≈ 𝑏2 (𝑐/𝛥𝜔). 

Indeed, the spatial cell volume 𝛥𝑥 𝛥𝑦 𝛥𝑧, as derived from uncertainty 
considerations related to diffraction and spectral bandwidth, is identical to 

our expression for the coherence volume 𝑉c! 

The full phase-space volume is 

(𝛥𝑥 𝛥𝑝x)(𝛥𝑦 𝛥𝑝y)(𝛥𝑧 𝛥𝑝z) ≈ (ℏ)(ℏ) (𝛥𝑧 ⋅
ℏ𝛥𝜔

𝑐
). 

If 𝛥𝑧 ≈ 𝑐/𝛥𝜔, then 

𝛥𝑧 𝛥𝑝z ≈ (
𝑐

𝛥𝜔
)(

ℏ𝛥𝜔

𝑐
) = ℏ. 

So the total phase space volume is indeed ℏ3. The "spatial cell volume 

reproduces 𝑉c" means that the 𝛥𝑥 𝛥𝑦 𝛥𝑧 part of the ℏ3 phase space cell is 
exactly the coherence volume. 

Page 42: 

This leads to the profound Conclusion on this slide: 

* The coherence volume equals one elementary photon phase-space cell. 



To be perfectly precise, the coherence volume 𝑉c is a real-space volume 
(𝛥𝑥𝛥𝑦𝛥𝑧). The elementary phase-space cell has a phase-space volume of ℏ3 

(or ℎ3 by some conventions). 

The connection is that the photons occupying one coherence volume 𝑉c =

𝛥𝑥𝛥𝑦𝛥𝑧 also simultaneously occupy a corresponding volume in momentum 

space, 𝛥𝑃vol = 𝛥𝑝x𝛥𝑝y𝛥𝑝z, such that the product 𝑉c ⋅ 𝛥𝑃vol ≈ ℏ3. 

So, one coherence volume 𝑉c can be associated with a single quantum state, 

or a single "mode" of the electromagnetic field. 

This is an incredibly deep and unifying concept. It tells us that coherence, 
which we initially defined in terms of classical wave interference, has a 
fundamental quantum underpinning related to the discrete nature of phase 
space. 

The degeneracy parameter 𝑛‾  we discussed earlier is then the average number 
of photons occupying this single phase-space cell, or mode, defined by the 
coherence volume. 
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This slide presents a diagram beautifully illustrating Diffraction, Coherence 
Volume, and the Phase-Space Cell. 

Let's break down the diagram: 

On the Left Side: "Real Space: Diffraction" 

• We see an Aperture (size 𝑏 × 𝑏), depicted as a slit in a gray barrier. The 

dimension “𝑏” is indicated as the height of the aperture. 

• A beam of light (yellow arrows) is incident on this aperture from the left. 

• As the light passes through, it diffracts, spreading out into a cone. The 

angular spread is indicated by 𝜃 ≈
𝜆

𝑏
. 



• The longitudinal position uncertainty, or coherence length, 𝛥𝑧, would be 
along the propagation direction (labeled “z”). The transverse position 

uncertainty 𝛥𝑦 ≈ 𝑏 is shown. (And similarly 𝛥𝑥 ≈ 𝑏 into the page). 

• The shaded blue region represents the diffracted beam. The coherence 

volume 𝑉c would be like a “sausage” or “cylinder” with transverse area 

roughly 𝑏 × 𝑏 (or more precisely, the coherence area 𝑆c) and length 𝛥𝑧 (the 

coherence length 𝛥𝑠c). 

On the Right Side: "Momentum Space (p-space)" 

• This depicts the corresponding uncertainties in momentum. 

• A small green cuboid represents the volume element in momentum 

space, 𝛥𝑝x  𝛥𝑝y 𝛥𝑝z.   • The transverse momentum spreads are labeled: 

𝛥𝑝y ≈
ℎ

𝑏
 and 𝛥𝑝x ≈

ℎ

𝑏
. (Note: the diagram uses ℎ, not ℏ. If so, then 𝛥𝑥 𝛥𝑝x ≈ ℎ, 

etc.)   • The longitudinal momentum spread is labeled: 𝛥𝑝z ≈
ℎ

𝑐
𝛥𝜔. 

• The axes are 𝑝x, 𝑝y, and 𝑝z. 

At the bottom, a crucial statement: "Heisenberg Uncertainty Principle links 
real & momentum space volumes." 

And the formula: 

𝛥𝑥 𝛥𝑝x 𝛥𝑦 𝛥𝑝y 𝛥𝑧 𝛥𝑝z ≥ ℏ3 

(using ℏ here). 

Let's reconcile the ℎ vs ℏ. 

If we use the diagram's 

𝛥𝑝x =
ℎ

𝑏
, 𝛥𝑝y =

ℎ

𝑏
, 𝛥𝑝z =

ℎ

𝑐
𝛥𝜔: 

and 



𝛥𝑥 = 𝑏, 𝛥𝑦 = 𝑏, 𝛥𝑧

=
𝑐

𝛥𝜔
 (coherence length as 𝑐 × coherence time, where 𝛥𝑡

≈
1

𝛥𝜔
), 

then 

(𝛥𝑥 𝛥𝑝x) = 𝑏 ×
ℎ

𝑏
= ℎ. 

(𝛥𝑦 𝛥𝑝y) = 𝑏 ×
ℎ

𝑏
= ℎ. 

(𝛥𝑧 𝛥𝑝z) =
𝑐

𝛥𝜔
×

ℎ

𝑐
𝛥𝜔 = ℎ. 

So the product 

(𝛥𝑥 𝛥𝑝x)(𝛥𝑦 𝛥𝑝y)(𝛥𝑧 𝛥𝑝z) = ℎ × ℎ × ℎ = ℎ3. 

The coherence volume 

𝑉c = 𝛥𝑥 𝛥𝑦 𝛥𝑧 = 𝑏 × 𝑏 ×
𝑐

𝛥𝜔
. 

The momentum volume 

𝛥𝑉p = 𝛥𝑝x 𝛥𝑝y 𝛥𝑝z =
ℎ

𝑏
×

ℎ

𝑏
×

ℎ

𝑐
𝛥𝜔 =

ℎ3

𝑏2 𝑐
𝛥𝜔. 

So 

𝑉c × 𝛥𝑉p = [
𝑏2 𝑐

𝛥𝜔
] × [

ℎ3

𝑏2 𝑐
𝛥𝜔] = ℎ3. 

This is perfectly consistent. The coherence volume 𝑉c is the real-space 

volume associated with a single ℎ3 cell in phase space. This diagram 
elegantly ties together diffraction (which gives transverse momentum spread 



from spatial confinement) and spectral bandwidth (which gives longitudinal 
momentum spread and coherence length/time). 
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Slide 19: Mutual Coherence Function – Formal Definition. 

We now transition to a more formal mathematical description with Slide 19: 
Mutual Coherence Function – Formal Definition. This framework, 
developed by Emil Wolf and others, allows for a rigorous treatment of partial 
coherence. 

* First, we represent the Complex electric field at position 𝐫 (vector r) and 

time 𝑡 as: 𝐸(𝐫, 𝑡) equals 𝐴0 times 𝑒 to the power of 𝑖 times (𝜔𝑡 − 𝐤 ⋅ 𝐫), plus 

c.c. 

𝐸(𝐫, 𝑡) = 𝐴0𝑒
𝑖(𝜔𝑡−𝐤⋅𝐫) + c.c. 

* This is a representation of a monochromatic plane wave. 𝐴0 is its amplitude. 

𝜔 is angular frequency, 𝐤 is the wave vector. * "c.c." stands for "complex 

conjugate." The physical electric field is real. Often, in coherence theory, we 
work with the "analytic signal," which is a complex representation whose real 
part is the physical field. For the analytic signal, the c.c. term is often omitted, 

and 𝐸(𝐫, 𝑡) itself is complex. Let's assume 𝐸(𝐫, 𝑡) here is the analytic signal. 

* We then consider Two spatial points, 𝑆1 (S₁) and 𝑆2 (S₂), and introduce a 

time delay, 𝜏 (τ). These could be, for example, the locations of two pinholes in 
an interference experiment. 

* The Mutual coherence function, which describes first-order correlation, 

is defined as: Capital Gamma sub 1 2 of 𝜏, equals the angle brackets of, 

𝐸1(𝑡 + 𝜏) times 𝐸2
∗(𝑡), close angle brackets. 

𝛤12(𝜏) = ⟨𝐸1(𝑡 + 𝜏) 𝐸2
∗(𝑡)⟩. 



Let's parse this: * 𝛤12(𝜏) is the mutual coherence function between points 1 

and 2, for a time delay 𝜏. * 𝐸1(𝑡 + 𝜏) represents the complex electric field at 

point 𝑆1 at time (𝑡 + 𝜏). (The point 𝑆1 is implicit in 𝐸1.) \(E_2^(t)\) represents 

the complex conjugate of the electric field at point 𝑆2 at time 𝑡. (Point 𝑆2 is 

implicit in 𝐸2.) * The angle brackets ⟨… ⟩ denote a temporal average. This 

function 𝛤12(𝜏) quantifies the correlation between the field at 𝑆1 (at a certain 

time) and the field at 𝑆2 (at a time 𝜏 earlier, or later depending on convention if 

𝜏 can be negative). It's a measure of how similar the fields are at these two 

space-time points, averaged over time. 

* Crucially: Angle brackets denote temporal average over an interval much 

much greater than 𝛥𝑡c (Δt_c), the coherence time of the source. This 
averaging is essential for statistically stationary fields, which is often 
assumed for partially coherent light. The averaging time needs to be long 
enough to capture the representative statistical behavior of the field 

fluctuations. If the field is perfectly coherent (𝛥𝑡c → ∞), then the averaging 

may not be strictly necessary as the product 𝐸1(𝑡 + 𝜏) 𝐸2
∗(𝑡) would be 

deterministic. 
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Continuing with the Mutual Coherence Function, 𝛤12(𝜏): 

* A key property is that it Encodes simultaneous spatial and temporal 
correlations. Let's see how: * Spatial correlation: This is encoded because 

𝐸1 and 𝐸2 refer to the fields at two generally different spatial points, 𝑆1 and 𝑆2. 

If 𝑆1 is different from 𝑆2, 𝛤12(𝜏) tells us about the relationship between fields 

at these distinct locations. Temporal correlation: This is encoded by the time 

delay 𝜏. 𝛤12(𝜏) measures how the field at 𝑆1 is related to the field at 𝑆2 after a 

time delay 𝜏 has been introduced in one of them*. 

Special cases help illustrate this: 



If 𝑆1 = 𝑆2 (so 𝐸1 = 𝐸2 = 𝐸), then \(\Gamma_{11}(\tau) = \langle E(t+\tau)E^(t) 
\rangle\). This is called the auto-coherence function (or temporal coherence 
function) and it describes the temporal coherence of the field at a single 

point. Its behavior with 𝜏 directly relates to the coherence time 𝛥𝑡c. 

If 𝜏 = 0, then \(\Gamma_{12}(0) = \langle E_1(t)E_2^(t) \rangle\). This is called 
the mutual intensity and it describes the spatial coherence between points 

𝑆1 and 𝑆2 at the same instant in time. 

So, the mutual coherence function 𝛤12(𝜏) is a very powerful and general tool, 

capturing both aspects of coherence in a single mathematical object. 

The two hyphens on the slide just indicate the end of the text for this point. 
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Slide 20: Normalized Degree of Coherence 

Now we introduce Slide 20: Normalized Degree of Coherence. While the 

mutual coherence function 𝛤12(𝜏) contains all the first-order coherence 
information, its magnitude depends on the intensities of the fields. It's often 
more convenient to work with a normalized quantity. 

* First, let's define the Self-coherence functions at each aperture (or point 

𝑆1 and 𝑆2), evaluated at zero time delay (𝜏 = 0): * Capital Gamma sub 1 1 of 

zero (𝛤11(0)) equals the angle brackets of the magnitude of 𝐸1(𝑡), squared 

(⟨|𝐸1(𝑡)|
2⟩). This 𝛤11(0) is proportional to the average intensity, 𝐼1, of the light 

at point 𝑆1. 

* Capital Gamma sub 2 2 of zero (𝛤22(0)) equals the angle brackets of the 

magnitude of 𝐸2(𝑡), squared (⟨|𝐸2(𝑡)|
2⟩). This 𝛤22(0) is proportional to the 

average intensity, 𝐼2, of the light at point 𝑆2. 

* Now, we can Define the normalized complex degree of coherence, little 

gamma sub 1 2 of tau (𝛾12(𝜏)), as shown in the box: 𝛾12(𝜏) equals Capital 



Gamma sub 1 2 of tau (𝛤12(𝜏)) divided by the square root of (Capital Gamma 

sub 1 1 of zero, times Capital Gamma sub 2 2 of zero). 𝛾12(𝜏) =
𝛤12(𝜏)

√𝛤11(0)𝛤22(0)
. 

This 𝛾12(𝜏) is a dimensionless complex number. * The numerator, 𝛤12(𝜏), is 
the mutual coherence function we just defined. The denominator, 

√𝛤11(0)𝛤22(0), is the geometric mean of the intensities (or quantities 

proportional to them) at the two points. This normalization removes the 

dependence on the absolute intensities 𝐼1 and 𝐼2, making 𝛾12(𝜏) a measure of 

the degree* of correlation, ranging from 0 to 1 in magnitude. 

* We will now look at the Properties of this normalized complex degree of 
coherence. 
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Here are the key Properties of the normalized complex degree of coherence, 

𝛾12(𝜏): 

* The magnitude of little gamma sub 1 2 (|𝛾12|) is less than or equal to 1 (≤

1). This is a consequence of the Cauchy-Schwarz inequality applied to the 

definition of 𝛤12(𝜏) and the intensities. This means |𝛾12| is bounded, typically 
varying between 0 and 1. 

* If the magnitude |𝛾12| equals 1, this signifies perfect coherence between 

the fields E1(𝑡 + 𝜏) and E2(𝑡). The two fields are perfectly correlated (or anti-

correlated if the phase of 𝛾12 is 𝜋). 

* If the magnitude |𝛾12| equals 0, this signifies complete incoherence. There 

is no statistical correlation whatsoever between the fields E1(𝑡 + 𝜏) and 

E2(𝑡). 

* The Phase of 𝛾12 (the argument of the complex number 𝛾12(𝜏)) equals the 

average effective phase difference between the fields E1(𝑡 + 𝜏) and E2(𝑡). 



This phase information is crucial for determining the position of interference 
fringes. 

So, 𝛾12(𝜏) is a very convenient quantity: its magnitude tells us "how much" 
coherence there is, and its phase tells us "what the phase relationship" is. 

The three hyphens indicate the end of this list on the slide. This 𝛾12(𝜏) will 

appear directly in the interference law for partially coherent light. 
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Let's now look at the Irradiance at an Observation Point 𝑃 when fields from 
two sources or apertures interfere. This will give us the general Interference 
Law for partially coherent light, as shown on Slide 21. 

First, we write the Superposed field at point 𝑃 at time 𝑡. Let's say light from 

two points (or slits) 𝑆1 and 𝑆2 propagates to 𝑃. 

𝐸(𝑃, 𝑡) = 𝑘1 𝐸1 (𝑡 −
𝑟1
𝑐
) + 𝑘2 𝐸2 (𝑡 −

𝑟2
𝑐
). 

Let's break this down: 

   

𝐸1 (𝑡 −
𝑟1

𝑐
) is the field that was at 𝑆1 at an earlier time (𝑡 −

𝑟1

𝑐
), now arriving at 

𝑃. Here 𝑟1 is the distance from 𝑆1 to 𝑃. 

   

𝐸2 (𝑡 −
𝑟2

𝑐
) is the field that was at 𝑆2 at an earlier time (𝑡 −

𝑟2

𝑐
), now arriving at 

𝑃. Here 𝑟2 is the distance from 𝑆2 to 𝑃. 

   

The terms 𝑘1 and 𝑘2 are complex transfer factors. They are generally 
dimensionless and account for things like the efficiency of transmission from 



𝑆1 to 𝑃 (e.g., slit area, diffraction effects, attenuation) and any phase shifts 

introduced by the propagation path itself, beyond the simple (𝑡 −
𝑟

𝑐
) 

retardation. 

Next, we need the Time-averaged irradiance at point 𝑃. Irradiance 𝐼P is 

proportional to the time average of the squared magnitude of the total electric 

field. In SI units, this proportionality involves 𝜀0𝑐 (epsilon naught times 𝑐). So, 

𝐼P = 𝜀0𝑐 ⟨|𝐸(𝑃, 𝑡)|2⟩. 

The explicit formula for this irradiance in terms of the coherence functions is 
on the next page. 
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Here's the result for the time-averaged irradiance 𝐼P at point P: 

* 𝐼P = 𝜀0𝑐⟨|𝐸(𝑃, 𝑡)|2⟩ = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 Re[𝛾12(𝜏)] (𝐼P = 𝜀0𝑐⟨|𝐸(𝑃, 𝑡)|2⟩ = 𝐼1 +

𝐼2 + 2√𝐼1 𝐼2 Re[𝛾12(𝜏)]). 

Let's carefully define the terms in this crucial formula: 

* 𝐼P: The time-averaged irradiance observed at point P. * 𝐼1: The time-averaged 

irradiance that would be observed at P if only source/slit 1 were open (i.e., if 

𝑘2 were zero). 𝐼1 = 𝜀0𝑐⟨|𝑘1 𝐸1(𝑡 − 𝑟1/𝑐)|
2⟩. * 𝐼2: The time-averaged irradiance 

that would be observed at P if only source/slit 2 were open (i.e., if 𝑘1 were 

zero). 𝐼2 = 𝜀0𝑐⟨|𝑘2 𝐸2(𝑡 − 𝑟2/𝑐)|
2⟩. 𝜏 (tau): This is the crucial time delay. It is 

𝑟2

𝑐
−

𝑟1

𝑐
 if 𝛾12 is defined for fields 𝐸1(𝑡) and 𝐸2(𝑡) at the sources 𝑆1 and 𝑆2. Or, if 

𝐸1 and 𝐸2 in 𝛾12 are fields at P from path 1 and path 2 respectively without the 

other*, then 𝜏 is the relative delay introduced by the paths. 

More precisely, if 𝐸𝑆1(𝑡′) and 𝐸𝑆2(𝑡′) are fields at the sources, then 

𝐸1(𝑡 − 𝑟1/𝑐) and 𝐸2(𝑡 − 𝑟2/𝑐) arrive at P. The cross term involves ⟨𝐸𝑆1(𝑡 −

𝑟1/𝑐)𝐸𝑆2
∗ (𝑡 − 𝑟2/𝑐)⟩. Let 𝑡′ = 𝑡 − 𝑟2/𝑐. Then this becomes ⟨𝐸𝑆1 (𝑡′ +



𝑟2−𝑟1

𝑐
)𝐸𝑆2

∗ (𝑡′)⟩. So, 𝜏 =
𝑟2−𝑟1

𝑐
, the difference in propagation times from 𝑆1 and 𝑆2 

to P. * 𝛾12(𝜏): This is the normalized complex degree of coherence between 

the field from 𝑆1 and the field from 𝑆2, evaluated for the time difference 𝜏. * 

Re[𝛾12(𝜏)]: The real part of this complex degree of coherence. 

* This equation is rightfully called the Master interference formula for 

partially coherent light. It's incredibly general. * The first two terms, 𝐼1 + 𝐼2, 
represent the sum of intensities you'd get if there were no interference (e.g., if 

the light were completely incoherent, 𝛾12 = 0). * The third term, 

2√𝐼1 𝐼2  Re[𝛾12(𝜏)], is the interference term. Its magnitude and sign depend 

directly on the degree of coherence 𝛾12 and the time delay 𝜏. 

* Let's consider the Visibility when 𝐼1 = 𝐼2. Let 𝐼1 = 𝐼2 = 𝐼0. Then 

𝐼P = 2 𝐼0 + 2 𝐼0 Re[𝛾12(𝜏)] = 2 𝐼0(1 + Re[𝛾12(𝜏)]). 

The maximum intensity 𝐼max occurs when Re[𝛾12(𝜏)] is maximal. Since 

𝛾12(𝜏) = |𝛾12(𝜏)|𝑒
𝑖𝛼(𝜏) (where 𝛼 is the phase of 𝛾12), Re[𝛾12(𝜏)] =

|𝛾12(𝜏)|cos(𝛼(𝜏)). So 

𝐼max = 2 𝐼0(1 + |𝛾12(𝜏)|) (assuming 𝛼 can be such that cos(𝛼)

= 1, by adjusting overall path). 

And 

𝐼min = 2 𝐼0(1 − |𝛾12(𝜏)|) (assuming cos(𝛼) = −1 can be achieved). 

The visibility 

𝑉 =
𝐼max − 𝐼min

𝐼max + 𝐼min
 

becomes 

𝑉 =
2 𝐼0(1 + |𝛾12(𝜏)|) − 2 𝐼0(1 − |𝛾12(𝜏)|)

2 𝐼0(1 + |𝛾12(𝜏)|) + 2 𝐼0(1 − |𝛾12(𝜏)|)
=

4 𝐼0|𝛾12(𝜏)|

4 𝐼0
= |𝛾12(𝜏)|. 



So, as the slide states: 𝑉 equals the magnitude of little gamma sub 1 2 of tau 

(|𝛾12(𝜏)|). 

* Thus, the fringe contrast (visibility 𝑉) directly measures the magnitude of 

the degree of coherence, |𝛾12(𝜏)|, when the interfering beams have equal 

intensities. This provides a direct experimental way to measure |𝛾12|. 
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Slide 22: 

Let's apply this formalism to an Example – The Michelson Interferometer 
Revisited, on Slide 22. 

* Assume we have Equal amplitudes in both arms of the Michelson. Let the 

complex field incident on the beam splitter be 𝐸(𝑡) = 𝐸0𝑒
𝑖𝜙(𝑡). 𝐸0 is a 

constant real amplitude. 𝜙(𝑡) is the phase, which may fluctuate for a partially 

coherent source. 

* We are interested in the Degree of temporal coherence. In a Michelson, 

the beam is split, and one part is delayed by 𝜏 = 𝛥𝑠/𝑐 relative to the other 

before they are recombined. So we are correlating the field 𝐸(𝑡) with 𝐸(𝑡 − 𝜏) 

(or 𝐸(𝑡 + 𝜏) with 𝐸(𝑡)). This is described by the normalized auto-coherence 

function, which we can denote as 𝛾11(𝜏). 

𝛾11(𝜏) equals the angle brackets of 𝑒𝑖[𝜙(𝑡+𝜏)−𝜙(𝑡)]. 

This arises because 

𝛤11(𝜏) = ⟨𝐸(𝑡 + 𝜏)𝐸∗(𝑡)⟩ = ⟨𝐸0𝑒
𝑖𝜙(𝑡+𝜏) 𝐸0𝑒

−𝑖𝜙(𝑡)⟩ = 𝐸0
2⟨𝑒𝑖[𝜙(𝑡+𝜏)−𝜙(𝑡)]⟩, 

and 

𝛤11(0) = ⟨|𝐸(𝑡)|2⟩ = 𝐸0
2. 

So, 𝛾11(𝜏) =
𝛤11(𝜏)

𝛤11(0)
 gives the expression on the slide. 



* Now, consider the case If the source is strictly monochromatic. This 

means the frequency 𝜔 is perfectly defined, so the phase 𝜙(𝑡) = 𝜔𝑡 + 𝜙0 

(where 𝜙0 is a constant initial phase). Then the phase difference 𝜙(𝑡 + 𝜏) −

𝜙(𝑡) = [𝜔(𝑡 + 𝜏) + 𝜙0] − [𝜔𝑡 + 𝜙0] = 𝜔𝜏. So, 𝛾11(𝜏) = ⟨𝑒𝑖𝜔𝜏⟩. Since 𝜔𝜏 is a 

constant for a given 𝜏, the average is just 𝑒𝑖𝜔𝜏. 

𝛾11(𝜏) equals 𝑒𝑖𝜔𝜏. 

And consequently, the magnitude of gamma sub one one, |𝛾11|, equals 1. 

(|𝑒𝑖𝜔𝜏| = 1). 

* Therefore, for a strictly monochromatic source, the Visibility 𝑉 = |𝛾11(𝜏)| =

1, and this is independent of the time delay 𝜏. You get perfect fringes no 

matter how large the path difference in the Michelson, which makes sense 
because a perfectly monochromatic wave has infinite coherence time and 
length. 
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Continuing with the Michelson interferometer example: 

* Now consider the opposite extreme: a Broadband source, where the time 

delay 𝜏 is much greater than 1

𝛥𝜔
 (𝜏 ≫

1

𝛥𝜔
). 

Recall that 𝛥𝑡c ≈
1

𝛥𝜔
 is the coherence time of the source. So, this condition 

means 𝜏 ≫ 𝛥𝑡c; the introduced time delay is much larger than the source's 
coherence time. 

In this situation, the phases randomize. The term inside the expectation for 

𝛾11(𝜏) was 𝑒𝑖[𝜙(𝑡+𝜏)−𝜙(𝑡)]. If 𝜏 is much larger than the coherence time, then the 

phase 𝜙(𝑡 + 𝜏) has no correlation with the phase 𝜙(𝑡). Their difference, 
[𝜙(𝑡 + 𝜏) − 𝜙(𝑡)], will fluctuate randomly over many multiples of 2𝜋 as we 

average over 't'. When you average 𝑒𝑖(a random phase that’s uniformly distributed), the 

result is 0. 



Therefore, gamma sub one one (𝛾11) approaches zero (→ 0). 

Since the visibility 𝑉 = |𝛾11(𝜏)|, this means 𝑉 also approaches zero. The 

interference fringes disappear when the path difference in the Michelson 

(which determines 𝜏) significantly exceeds the coherence length of the 
broadband source. This is exactly what we discussed earlier in a more 
qualitative way, and now we see it emerge from the formalism of the 
coherence function. 
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This slide presents a graph showing the Magnitude of Temporal Coherence, 

absolute value of 𝛾11(𝜏) (|𝛾11(𝜏)|), versus Time Delay 𝜏. This visually 
summarizes what happens in a Michelson interferometer. 

Let's analyze the graph: 

• The horizontal axis is Time Delay (𝜏), with points 0, 𝜏 (generic), 2𝜏, 3𝜏 

marked. This 𝜏 on the axis label might represent a characteristic coherence 

time, 𝛥𝑡c. 

• The vertical axis is the magnitude of the temporal coherence, |𝛾(𝜏)| 

(specifically |𝛾11(𝜏)|), ranging from 0.0 to 1.0. Values 0.5 and 1/𝑒 (which is 
about 0.368) are marked. 

Two curves are shown: 

1. The blue dashed line represents a Monochromatic source (𝛥𝜔 = 0). 

For such a source, |𝛾11(𝜏)| = 1 for all 𝜏. So, this is a horizontal line at a height 

of 1.0. This means perfect coherence and constant visibility of 1, regardless of 
the time delay. 

2. The red solid curve represents a source with Finite Bandwidth (𝛥𝜔 >

0).   • At 𝜏 = 0 (zero time delay), |𝛾11(0)| = 1. This means the wave is 

perfectly correlated with itself at the same instant.   • As 𝜏 increases, 



|𝛾11(𝜏)| decreases from 1. The curve shows a decaying behavior, often 
exponential for sources with certain spectral shapes (e.g., a Lorentzian 

spectrum gives an exponential decay of 𝛾11).   • The annotation on the 

curve "|𝛾(𝜏)| ∼ 𝑒" seems incomplete. It likely intends to show an exponential 

decay, like |𝛾(𝜏)| ∼ 𝑒−𝜏/𝜏c, where 𝜏c is the coherence time. The point where 

the curve drops to 1/𝑒 of its initial value (i.e., to 0.368) occurs at 𝜏 = 𝜏c. The x-

axis labeling of 𝜏, 2𝜏, 3𝜏 might be in units of this coherence time. 

This graph vividly illustrates that for any real source with finite spectral 
bandwidth, the temporal coherence (and thus fringe visibility in a Michelson) 
diminishes as the time delay (or path difference) increases. The rate of this 

decay is determined by the coherence time 𝜏c, which in turn is inversely 

related to the bandwidth 𝛥𝜔. 
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Slide 23: Example – Young's Double-Slit Spatial Coherence. 

Now let's consider another example: We'll apply the coherence formalism 
here. 

* Assume we have a Plane quasi-monochromatic wave incident on the 

double slits. The field is given by 𝐸 = 𝐸0𝑒
𝑖(𝜔𝑡−𝐤⋅𝐫). 𝐸 = 𝐸0𝑒

𝑖(𝜔𝑡−𝐤⋅𝐫). 

* "Plane wave" implies that the incident wavefront is perfectly spatially 

coherent. That is, at a given time 𝑡, the phase is the same for all points 𝐫 lying 

on a plane perpendicular to 𝐤. 

* "Quasi-monochromatic" means the light has a narrow spectral bandwidth 

𝛥𝜔 around the central frequency 𝜔, so its temporal coherence is good. We 

are primarily interested in spatial effects here. 

* Light from this plane wave passes through two slits, 𝑆1 and 𝑆2, and then 

travels to an observation screen. Let 𝑟1 be the distance from 𝑆1 to a point 𝑃 on 



the screen, and 𝑟2 be the distance from 𝑆2 to 𝑃. The Optical path difference, 

𝛥𝑟 = 𝑟2 − 𝑟1, between the paths from the two slits to point 𝑃 induces a phase 

difference. This phase difference at 𝑃 is 𝜙12 = 𝑘𝛥𝑟. * 𝑘 =
2𝜋

𝜆
 is the wave 

number. This 𝜙12 is the phase difference that arises purely from the geometry 
of propagation after the slits, assuming the fields at the slits themselves* 
were in phase due to the incident plane wave. 

The Irradiance pattern observed on the screen will then depend on this 

phase difference 𝜙12 and the degree of spatial coherence of the illumination 

at the slits*, which for an incident plane wave is perfect. 

The formula for the irradiance pattern is on the next page. 
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Continuing with the Young's double-slit example: 

The irradiance pattern 𝐼P at a point 𝑃 on the screen is given by: 

𝐼P = 2 𝐼0[1 + |𝛾12(0)|cos(𝑘𝛥𝑟)] 

( 𝐼P = 2 𝐼0[1 + |𝛾12(0)|cos(𝑘𝛥𝑟)] ). 

Let's break this down using our master interference formula: 

𝐼P = 𝐼1 + 𝐼2 + 2√𝐼1 𝐼2 Re[𝛾12(𝜏)] 

* Here, 𝐼0 is the irradiance from a single slit if the other were closed (assuming 

𝐼1 = 𝐼2 = 𝐼0). 

 𝛾12(0) is the normalized complex degree of spatial coherence between the 

fields at slit 𝑆1 and slit 𝑆2 at the same instant* (hence 𝜏 = 0 in 𝛾12). 

* 𝑘𝛥𝑟 is the phase difference introduced by the path difference 𝛥𝑟 = 𝑟2 − 𝑟1 

from the slits to the point 𝑃 on the screen. 



* The formula effectively assumes that the phase of 𝛾12(0) itself is zero (or 

has been absorbed into the definition of 𝛥𝑟). If 𝛾12(0) = |𝛾12(0)|𝑒𝑖𝛼, then the 

term would be |𝛾12(0)|cos(𝑘𝛥𝑟 − 𝛼). For simplicity, if the illumination of the 

slits is symmetric, 𝛼 might be zero. 

So, the interference term is modulated by |𝛾12(0)|, the degree of spatial 
coherence between the light at the two slits. 

* If the magnitude of gamma sub 1 2 of zero, |𝛾12(0)|, equals 1, this implies 
perfect spatial coherence between the slits. In this case, we get high-contrast 

fringes, as the interference term becomes 2 𝐼0cos(𝑘𝛥𝑟), leading to 𝐼P varying 

between 0 (if cos = −1) and 4 𝐼0 (if cos = +1), giving visibility 𝑉 = 1. This 
would be the case for our assumed incident plane wave. 

* However, if the source illuminating the slits is not a perfect plane wave but 

an extended source, then |𝛾12(0)| might be less than 1. 

Specifically, Increasing the slit separation 𝑑 (which is implicit in the 

definition of 𝑆1 and 𝑆2) reduces |𝛾12(0)| according to the spatial coherence 

criterion we discussed earlier (e.g., related to 𝑏𝑑

𝑟
< 𝜆, where 𝑏 is source width, 

𝑑 is slit separation, 𝑟 is source-to-slit distance). 

As 𝑑 increases, the light at the two slits becomes less spatially correlated, 
|𝛾12(0)| decreases, and the visibility of the interference fringes diminishes. 
This is how Young's experiment probes spatial coherence. 
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This slide shows a graph of Fringe Visibility vs. Slit Separation for a Young's 

Double-Slit Experiment, Illustrating Spatial Coherence. 

Let's analyze the graph: 

• The horizontal axis is Slit Separation (𝑑) in arbitrary units. It's marked 

with 0, 2.5, 𝐿c, 7.5, and 2 𝐿c. Here, 𝐿c represents a characteristic transverse 



coherence length – it's the slit separation at which the visibility of fringes 

drops significantly (often to zero for the first time). This 𝐿c is determined by 

the source size 𝑏, wavelength 𝜆, and source-to-slit distance 𝑟 (𝐿c ≈
𝜆𝑟

𝑏
). 

• The vertical axis is labeled "Visibility (V), Degree of Coherence 
|𝛾12(𝑑, 𝜏 = 0)|". It ranges from 0.0 to 1.0. This confirms that for equal intensity 

slits, 𝑉 = |𝛾12(0)|, where 𝛾12(0) now depends on slit separation 𝑑. 

• The blue solid curve labeled "Theoretical |𝛾12(𝑑, 𝜏 = 0)|":   • When 

the slit separation 𝑑 = 0 (conceptually), the coherence is perfect, |𝛾12| = 1. 

  • As 𝑑 increases, |𝛾12| decreases. For a uniformly illuminated 

incoherent slit source of width 𝑏, the theoretical form of |𝛾12(𝑑)| is a sinc 

function:        |
sin(

𝜋𝑏𝑑

𝜆𝑟
)

𝜋𝑏𝑑

𝜆𝑟

|.      This function has its first zero 

when        
𝜋𝑏𝑑

𝜆𝑟
= 𝜋,      which means 𝑑 =

𝜆𝑟

𝑏
. This value of 𝑑 

corresponds to 𝐿c on the graph. 

  • The graph shows this main lobe of the sinc-like function, decreasing 

from 1 at 𝑑 = 0 to 0 at 𝑑 = 𝐿c. 

  • It also shows a small secondary lobe (sidelobe of the sinc function) 
where visibility becomes slightly positive again before decaying. Real sources 

might have smoother profiles, leading to a more Gaussian-like decay of |𝛾12|. 

• Red dots labeled "Experimental Visibility (𝑉)": These points generally 
follow the theoretical curve, showing that the fringe visibility measured in an 

experiment indeed drops as the slit separation 𝑑 increases, confirming the 

loss of spatial coherence over larger distances. 

This graph powerfully demonstrates how increasing the distance 𝑑 between 
the points being probed (the slits) leads to a decrease in the spatial 



coherence of the light arriving from an extended source, and consequently, a 
reduction in interference fringe visibility. 
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Let's look at Slide 24: Measuring 𝛾12 Experimentally. How can we actually 
determine this complex degree of coherence from measurements? 

* The general approach involves recording three intensities at an 

observation point 𝑃 (e.g., a point on the screen in Young's experiment, or the 

output of a Michelson). 

These intensities are: 

1. Capital 𝐼 (𝐼): This is the intensity measured when both apertures (or paths) 

are open and light from both contributes to the field at 𝑃. This 𝐼 corresponds 
to 

𝐼P = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2  Re[𝛾12(𝜏)] 

from our master interference formula. 

2. Capital 𝐼1 (𝐼1): This is the intensity measured when only aperture 𝑆1 (or 

path 1) is open, and 𝑆2 is blocked. This directly gives us the 𝐼1 term. 

3. Capital 𝐼2 (𝐼2): This is the intensity measured when only aperture 𝑆2 (or 

path 2) is open, and 𝑆1 is blocked. This directly gives us the 𝐼2 term. 

* Once we have these three measured intensities (𝐼, 𝐼1, and 𝐼2), we can 

Compute the real part of the degree of coherence, Re[𝛾12(𝜏)], using the 
formula on the next page. 
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Continuing with measuring 𝛾12 experimentally: 



• The formula to compute the real part of 𝛾12(𝜏) from the measured 

intensities 𝐼, 𝐼1, and 𝐼2 is: 

  Real part of 𝛾12(𝜏) equals 𝐼−𝐼1−𝐼2

2√𝐼1𝐼2
.   (Re[𝛾12(𝜏)] = 𝐼−𝐼1−𝐼2

2√𝐼1𝐼2
 ).   This 

formula comes directly from rearranging our master interference law: 

   

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2  Re[𝛾12(𝜏)] 

  Solving for Re[𝛾12(𝜏)] gives the expression above.   So, by making 

these three simple intensity measurements, we can determine the real part of 
the complex degree of coherence. 

• A special case we've encountered:   When 𝐼1 = 𝐼2 (the intensities from 

the two paths are equal), the visibility 𝑉 simplifies to:   𝑉 =
𝐼max−𝐼min

𝐼max+𝐼min
, which 

equals the magnitude of 𝛾12 (|𝛾12|).   In this case, measuring 𝐼max (by 

varying 𝜏 or position to find a bright fringe peak) and 𝐼min (a dark fringe 

minimum) directly gives us the magnitude of 𝛾12. This doesn't give the phase 

of 𝛾12, however. 

• To get the full information, including the phase:   The full complex 

𝛾12(𝜏) is recoverable via additional phase-shifting techniques.   These 

techniques involve introducing known, controlled phase shifts into one of the 
interfering beams (e.g., by precisely moving a mirror in one arm of an 
interferometer, or using an electro-optic modulator). By recording the 

intensity 𝐼 for several (typically 3, 4, or 5) different known phase shifts, one 

can solve a system of equations to extract both the magnitude |𝛾12(𝜏)| and 

the phase of 𝛾12(𝜏). This is common in phase-shifting interferometry. 

The three hyphens mark the end of the text on this slide. 

Page 58: 



Now, let's bring this all together and consider the Slide 25: Practical 
Consequences for Laser Spectroscopy. Why have we spent so much time 
on coherence? Because it's what makes lasers such extraordinary tools for 
spectroscopy. 

The High temporal coherence of single-mode lasers enables several 
critical capabilities: 

   

Precise heterodyne frequency measurements. 

   Heterodyning involves mixing two waves of slightly different 
frequencies to produce a beat frequency signal at their difference frequency. 
For this to work effectively and for the beat frequency to be stable and 
accurately measurable, both original waves must have very stable phases 
over the measurement period. This means they need high temporal 
coherence (long coherence times, narrow linewidths). Lasers provide this, 
allowing for extremely precise frequency comparisons and measurements. 

   

High-resolution Doppler-free spectroscopy. Examples include two-photon 
spectroscopy and saturation spectroscopy. 

   Many atomic and molecular transitions are broadened by the Doppler 
effect in gaseous samples. Doppler-free techniques are designed to 
overcome this limitation and resolve the true, underlying narrow spectral 
features. These techniques inherently rely on the laser having a linewidth 
(which is inversely related to coherence time) that is much narrower than the 
Doppler width, and often narrower than the natural linewidth of the transition 
being probed. High temporal coherence is an absolute prerequisite. For 
example, in saturation spectroscopy, a strong pump beam and a weak probe 



beam interact with the same atoms; their ability to do so in a frequency-
selective way depends on the laser's narrow linewidth. 

Similarly, the High spatial coherence of lasers enables: 

   

Tight focusing to diffraction-limited spots. 

   A laser beam, especially one in a fundamental transverse mode like 

TEM00, has a very uniform and well-defined wavefront. Such a spatially 
coherent beam can be focused by a lens down to a very small spot, ideally 
limited only by diffraction (the spot size being on the order of the wavelength). 
This ability to concentrate light into a tiny volume achieves very high 

irradiance (power per unit area), which is essential for many spectroscopic 
techniques, including nonlinear spectroscopy, Raman microscopy, and 
material processing. Light from an incoherent source, with its jumbled 
wavefronts, cannot be focused so tightly. 
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Continuing with the practical consequences for laser spectroscopy: 

(High spatial coherence also enables:) Long-baseline interferometry & 
holography. 

   

Long-baseline interferometry: Whether in astronomy (using separated 
telescopes to synthesize a larger aperture) or in laboratory settings for 
precision measurements, maintaining phase coherence across the extended 
baseline is crucial. Lasers, with their excellent spatial coherence, are ideal 
sources or references for such applications. 

   



Holography: This technique records and reconstructs wavefronts. It relies on 
the interference between a wave scattered from an object and a coherent 
reference wave (usually from the same laser). The formation of a stable, high-
contrast interference pattern (the hologram) over the entire recording 
medium requires both high spatial and temporal coherence of the light 
source. 

A very practical point: Understanding coherence boundaries is critical 
when mixing laser light with incoherent backgrounds or when designing 
interferometers with finite arm differences. 

   

In many experiments, a laser signal might be accompanied by incoherent 
background light (e.g., stray room light, fluorescence from the sample at 
different wavelengths, or thermal emission). Knowing the coherence 
properties helps in distinguishing or filtering the desired coherent laser signal 
from the incoherent background. 

   

When designing an interferometer (like a Michelson or Mach-Zehnder), it's 

essential to know the coherence length 𝛥𝑠c of your laser source. If the path 

difference between the arms of the interferometer exceeds 𝛥𝑠c, you will lose 
fringe visibility. Therefore, arms must be matched to within the coherence 
length for effective interference. This is especially true for lasers that might 
not be perfectly single-mode or might have some residual bandwidth. 

These considerations are paramount for successful experimental design and 
data interpretation in laser spectroscopy. 
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This slide presents a very useful diagram summarizing the Impact of Laser 
Coherence Properties on Spectroscopy Techniques. It's a concept map 



showing how the characteristics of temporal and spatial coherence lead to 
various applications. 

Let's trace the paths: 

Starting from the top left: High Temporal Coherence 

* Its Characteristics are listed as: * Spectral Purity (Narrow 𝛥𝜔) * Long 

Coherence Time (𝛥𝑡c) * Long Coherence Length (𝛥𝑠c) * This enables several 

techniques: * Directly: Precise Heterodyne Frequency Measurements. * 
Also: High-Resolution Doppler-Free Spectroscopy. This then branches into 
specific examples like Two-Photon Spectroscopy and Saturation 
Spectroscopy. * Another application is Coherent LIDAR (e.g., Doppler 
LIDAR). (LIDAR stands for Light Detection and Ranging). Doppler LIDAR relies 
on the coherence of the backscattered light to measure frequency shifts and 
thus velocities. 

Now, from the top right: High Spatial Coherence 

* Its Characteristics are: * Wavefront Uniformity * High Beam Quality * 
Enables Tight Focusing 

* This enables: * Directly: Tight Focusing to Diffraction-Limited Spots. This, 
in turn, is crucial for techniques like Confocal Raman Spectroscopy (which 
requires tight focusing for spatial resolution and signal enhancement). * Also: 
Holography. And Long-Baseline Interferometry. There's an asterisk here 
with a note: "Also requires high temporal coherence*." This is true; for fringes 
to be stable over long path differences, both are needed. Another application 
is Optical Coherence Tomography (OCT). A double asterisk notes: "High 
spatial coherence for beam quality/focusing; temporal coherence needs 
depend on OCT type." OCT often uses broadband (low temporal coherence) 
sources to achieve high axial resolution, but good spatial coherence is still 
needed for beam delivery and collection. 



Finally, both the temporal and spatial coherence branches converge at the 
bottom to the Overall Impact: High coherence Enables Precise 
Diagnostics, High-Resolution Spectroscopy, & Advanced Imaging. 

This diagram provides an excellent overview of why coherence is not just an 
abstract physical property but a cornerstone of modern optical science and 
technology, particularly in the field of laser spectroscopy. 
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We're nearing the end of our discussion on coherence. Slide 26 provides a 
Summary & Key Formulae to Remember. These are the essential takeaways 
you should have a firm grasp of. 

1. Temporal coherence length, 𝛥𝑠c (𝛥𝑠c): 

 

𝛥𝑠c =
𝑐

𝛥𝜔
 

(𝛥𝑠c =
𝑐

𝛥𝜔
.) 

This relates the spatial extent of temporal coherence to the speed of light 𝑐 

and the angular frequency bandwidth 𝛥𝜔 of the source. Remember, a smaller 

bandwidth means a longer coherence length. Variants exist with 𝛥𝜈 (linear 

frequency bandwidth), sometimes involving a 2𝜋 factor depending on precise 

definitions. 

2. Spatial coherence condition between two points on a wavefront: 

 

𝐴s 𝑑𝛺 ≤ 𝜆2 

This is the compact and general form. 𝐴s is the source area, 𝑑𝛺 is the solid 

angle over which coherence is considered (or into which light is collected), 



and 𝜆 is the wavelength. This tells us that the product 𝐴s𝑑𝛺 (related to 

étendue) must be on the order of 𝜆2 for spatial coherence. 

An alternative, more direct form for Young's slits (source width 𝑏, slit 

separation 𝑑, source-to-slit distance 𝑟) is 

𝑏𝑑

𝑟
< 𝜆 

3. Coherence volume, 𝑉c (𝑉c): 

The formula is on the next page. 
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Continuing with the Summary & Key Formulae: 

The formula for Coherence volume, 𝑉c (V_c), is: 

𝑉c =
𝜆2𝑟2𝑐

𝛥𝜔𝐴s
 

(𝑉c =
𝜆2𝑟2𝑐

𝛥𝜔𝐴s
). 

This coherence volume 𝑉c = 𝑆c𝛥𝑠c, where 𝑆c is the coherence area (≈ 𝜆2𝑟2

𝐴s
) 

and 𝛥𝑠c is the coherence length (≈ 𝑐

𝛥𝜔
). It represents the region of space-time 

where the field maintains fixed phase correlations and corresponds to a 

single electromagnetic mode or phase-space cell (of volume ℎ3). 

4. Degree of coherence (normalized correlation), little gamma sub 1 2 of 

tau (𝛾12(𝜏)): 

𝛾12(𝜏) equals the angle brackets of (𝐸1 of (t plus tau) times 𝐸2
∗ of (t)) divided by 

the square root of (angle brackets of |𝐸1|
2 times angle brackets of |𝐸2|

2). 

𝛾12(𝜏) =
⟨𝐸1(𝑡 + 𝜏)𝐸2

∗(𝑡)⟩

√⟨|𝐸1|
2⟩⟨|𝐸2|

2⟩
 



Where 𝐸1 and 𝐸2 are the complex fields at points 1 and 2 respectively. This 
normalized complex degree of coherence ranges from 0 (incoherent) to 1 
(perfectly coherent) in magnitude, and its phase gives the average phase 
difference. 

5. Fringe visibility V (capital Vee) is related to the magnitude of gamma 

sub 1 2 (|𝛾12|) for equal intensities. 

Specifically, if the intensities of the two interfering beams are equal, then 𝑉 =

|𝛾12(𝜏)|. This provides a direct experimental measure of the magnitude of the 
degree of coherence. 

The slide concludes with excellent advice: 

Master these relations to analyze and design any optical interference 
experiment in laser spectroscopy. 

Indeed, a solid understanding of coherence and these quantitative 
relationships is indispensable for anyone working seriously with lasers and 

spectroscopic techniques that rely on interference. It allows you to predict 
behavior, optimize setups, and correctly interpret experimental results. 

This concludes our detailed look into the coherence properties of radiation 
fields. Thank you. 


