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Alright everyone, welcome back to Phys 608, Laser Spectroscopy. Today, we 

embark on a crucial section of our course, Chapter 2.7, where we'll delve into 
the fundamental concepts of Absorption and Emission Spectra. These 
processes are at the very heart of how light interacts with matter, and 
understanding them quantitatively is paramount for everything we'll discuss 
in laser spectroscopy. 

These slides were originally prepared by Distinguished Professor Doctor M. A. 
Gondal, for this course at KFUPM. 
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So, let's lay out our Road-Map for Section 2.7. 

Our primary section goal is to build a rigorous, quantitative understanding of 
how atoms and molecules exchange energy with light. This energy exchange, 
as you know, is the basis of all spectroscopy. We'll be focusing on three key 
processes: 

1. Absorption: This is where an atom or molecule takes in energy from the 
light field, causing it to transition to a higher energy state. Think of it as the 
system "eating" a photon. 

2. Spontaneous emission: An excited atom or molecule can relax to a lower 
energy state by itself, emitting a photon in the process. This is the basis for 
fluorescence and phosphorescence, and it happens, as the name suggests, 
spontaneously, without external coaxing from a light field. 

3. Stimulated emission: This is the process that is absolutely key to laser 
operation. An already excited atom or molecule is stimulated by an incoming 
photon to emit a second photon. Crucially, this emitted photon is identical in 
phase, frequency, direction, and polarization to the stimulating photon. This 
leads to light amplification. 



To achieve this understanding, we will be introducing several important tools 
and concepts today. 
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Continuing with the tools we'll introduce and work with in this section: 

* First, we'll touch upon Spectral line observation with a dispersive 
spectrograph. This is the experimental starting point – how do we actually 
see these spectra? We'll look at the basic principles of how a spectrograph 
works to separate light into its constituent wavelengths, allowing us to 
observe these lines. 

Next, and this is theoretically central, are the Einstein A and B coefficients. 
These coefficients, introduced by Albert Einstein, provide a quantum 
mechanical description of the probabilities of spontaneous emission (A 
coefficient), and stimulated absorption and emission (B coefficients). They 
are the microscopic* parameters that govern these transition rates. 

* Then we'll define the Absorption cross section, denoted as 𝜎𝑖𝑘. This is an 

incredibly useful quantity. It represents the effective area that an atom or 
molecule presents to an incoming photon for an absorption event to occur 
between an initial state 'i' and a final state 'k'. While related to the B 
coefficient, the cross-section is often more convenient in practical 
calculations, especially when dealing with beam intensities. 

* Closely related is the Oscillator strength, denoted 𝑓𝑖𝑘. This is a 
dimensionless quantity that measures the "strength" of a transition. It 
essentially compares the quantum mechanical transition probability to that 
of a classical electron oscillator. It's another way to quantify how strongly a 
particular transition interacts with light. 

* Finally, we'll introduce the Line-strength integral, 𝑆𝑖𝑘. This is the absorption 
cross section integrated over the entire frequency range of the spectral line. It 



gives a measure of the total absorption strength of a line, irrespective of its 
shape or broadening. 

These concepts are interconnected, and we'll see how they build upon each 
other. 
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This diagram provides a nice visual overview of how these concepts fit 
together, forming the backbone of our understanding. 

At the very top, we have Spectral Line Observation (using a Dispersive 
Spectrograph). This represents the experimental reality, the data we collect. 
These observations provide the experimental basis that motivates and 
validates our theoretical framework. 

From these observations, and from fundamental quantum theory, we develop 
the concept of Einstein A and B Coefficients. These are described as 
"Microscopic Transition Probabilities," which is precisely what they are – they 
quantify the intrinsic likelihood of an atom or molecule undergoing 
absorption, spontaneous emission, or stimulated emission. 

Now, look at the arrows. The Einstein coefficients, particularly the B 
coefficient for absorption, lead to the definition of the Absorption Cross 

Section, 𝜎𝑖𝑘. This cross section, as we said, is that effective target area. The 

Absorption Cross Section, when integrated over the frequency of the line, 

yields the Line-Strength Integral, 𝑆𝑖𝑘. This integral gives us a total measure of 
the line's ability to absorb light. 

Going back to the Einstein A and B coefficients, they are also related to, and 

help define, the Oscillator Strength, 𝑓𝑖𝑘. The oscillator strength is another 
way to characterize the intrinsic strength of a transition, and it's, as the 
diagram indicates, interrelated with the Absorption Cross Section. In fact, 



we'll see that the integrated cross-section is directly proportional to the 
oscillator strength. 

And as the arrows converging at the bottom show, all of these concepts – 
experimental observation, microscopic probabilities, cross sections, 
oscillator strengths, and line strengths – all contribute to our Section Goal: 
to build that rigorous, quantitative understanding of how atoms and 
molecules exchange energy with light via those three fundamental processes: 

1. Absorption 2. Spontaneous Emission 3. Stimulated Emission 

So, this flow chart gives you a sense of the logical progression and the 
interplay between experiment and theory, and between different quantitative 
measures, that we'll be exploring. 
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Now, let's clarify some Core Definitions concerning Emission versus 
Absorption spectra. 

First, an Emission spectrum: This is defined as the spectral distribution of 
radiant power that leaves a source. So, if you have a sample that is excited – 
perhaps it's hot, or it's undergoing a chemical reaction, or it's being excited by 
a laser – it will emit light. If you disperse that light using a spectrograph and 
measure the intensity at each wavelength or frequency, you get its emission 
spectrum. It tells you what colors, or more generally, what frequencies of light 
the source is giving off, and how intensely. 

Second, an Absorption spectrum: This is defined as the difference between 
the incident and transmitted spectra after light traverses a sample. Imagine 
you have a light source that produces a continuous range of frequencies. You 
pass this light through your sample. If the sample absorbs certain 
frequencies, then the light that comes out (the transmitted light) will have 
those frequencies missing or reduced in intensity. The absorption spectrum 



essentially highlights these "missing pieces." It's often plotted as absorbance 
or transmittance versus wavelength or frequency. 

Now, we can talk about Two spectral morphologies, or shapes, that these 
spectra can take: 

* The first is Continuous, meaning there are no gaps in the spectrum; it's a 
smooth distribution of intensity across a range of frequencies. The classic 
example given here is black-body radiation. A hot, dense object, like the 
filament of an incandescent light bulb or, to a good approximation, a star, 
emits a continuous spectrum. This arises because in such condensed matter, 
there's a near-continuum of available energy states and transitions. 

* The second morphology is Discrete, which means the spectrum consists of 
a set of sharp lines. These lines appear at very specific frequencies. This type 
of spectrum arises from quantised bound-bound transitions. This is 
characteristic of isolated atoms or molecules in the gas phase. Because the 
energy levels within an atom or molecule are quantized (they can only take on 
discrete values), transitions between these levels involve the absorption or 
emission of photons with very specific energies, and therefore very specific 
frequencies, leading to these sharp lines. This is the domain where much of 
high-resolution laser spectroscopy operates. 
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Before we delve deeper into the equations, let's highlight a Key physical 
constant that will appear throughout our discussions: This is, of course, 
the Planck constant, denoted by 'h'. 

Its value is approximately ℎ = 6.626 × 10−34 J s (that's J s). 

Planck's constant is truly fundamental to quantum mechanics. It's the 
proportionality constant that relates the energy of a photon to its frequency, 

through the famous equation 𝐸 = ℎ𝜈. Max Planck introduced this constant in 



1900 to solve the ultraviolet catastrophe in black-body radiation, by 

postulating that energy is quantized in units of ℎ𝜈. Its appearance in virtually 
all spectroscopic equations underscores the quantum nature of light-matter 
interactions. 

We'll also frequently encounter 'h-bar', which is ℎ

2𝜋
, often called the reduced 

Planck constant, especially when working with angular frequencies. 
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Let's now consider Discrete Transition Energetics. This is fundamental to 
understanding line spectra. 

* We start by considering a simplified model: one atom or molecule with two 
stationary (bound) states. We'll label these states using Dirac notation: the 

initial state as ket |𝑖⟩ (that's |𝑖⟩), with energy 𝐸i, and the final state as ket |𝑘⟩ 

(that's |𝑘⟩), with energy 𝐸k. We'll assume that the state |𝑘⟩ is higher in energy 

than state |𝑖⟩, so 𝐸k is greater than 𝐸i. This setup is the basis for absorption 

from 𝑖 to 𝑘, or emission from 𝑘 to 𝑖. 

* The cornerstone here is the Energy-frequency relation, often called the 
Planck-Einstein relation or the Bohr frequency condition. It states that for a 
transition to occur between these two states via the absorption or emission of 

a single photon, the photon's energy, ℎ𝜈𝑖𝑘, must exactly match the energy 
difference between the two states: 

ℎ𝜈𝑖𝑘 = 𝐸k − 𝐸i 

Here, 𝜈𝑖𝑘 is the frequency of the photon involved in the transition between 

states 𝑖 and 𝑘. This can be rearranged to solve for the frequency: 

𝜈𝑖𝑘 =
𝐸k − 𝐸i

ℎ
 



This equation is absolutely central. It tells us that the frequency of light 
absorbed or emitted is directly determined by the energy spacing of the 
quantum states of the atom or molecule. This is why spectroscopy is such a 
powerful tool for probing atomic and molecular structure – by measuring the 
frequencies of spectral lines, we can determine the energy level differences. 

* Another quantity often used in spectroscopy is the Wavenumber, denoted 

as 𝜈𝑖𝑘. It is defined as the reciprocal of the wavelength 𝜆𝑖𝑘: 

𝜈𝑖𝑘 =
1

𝜆𝑖𝑘
 

Wavenumbers are very convenient, especially in infrared spectroscopy. The 

units are typically inverse centimeters (cm−1). Since energy is proportional 

to frequency (𝐸 = ℎ𝜈) and frequency is 𝑐/𝜆, energy is also proportional to 

wavenumber (𝐸 = ℎ𝑐𝜈). So, wavenumbers provide a direct measure of 

energy, and the numbers are often of a convenient magnitude, say, hundreds 
to thousands of inverse centimeters for vibrational transitions. 

Now for some basic Terminology related to these concepts: 
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Continuing with our terminology: 

* When we speak of a spectral "Line", this corresponds to a transition 

involving a single, well-defined frequency 𝜈𝑖𝑘 or, equivalently, a single 

wavelength 𝜆𝑖𝑘. This arises from a transition between two specific quantum 
states, as dictated by the energy-frequency relation we just discussed. In an 
ideal world, this line would be infinitely sharp, but as we'll see, lines always 
have some finite width due to various broadening mechanisms. 

* Often, we observe not just isolated lines, but a "Multiplet" or a "Band". 

These terms refer to a cluster of related lines. These clusters arise when an 
energy level is actually composed of several closely spaced sub-levels. * For 



example, fine structure splitting, which gives rise to multiplets, is due to the 
interaction between the electron's spin and its orbital angular momentum. 
The sodium D-lines we'll discuss are a classic example of a fine-structure 
doublet. * Hyperfine structure results in even smaller splittings, due to the 
interaction of the total electronic angular momentum with the nuclear spin. 
These require very high-resolution spectroscopy to observe. * In molecules, 
we also have vibrational bands, where a single electronic transition is 
accompanied by changes in the vibrational quantum number, leading to a 
series of closely spaced lines corresponding to different vibrational 
transitions (e.g., P, Q, R branches in rovibrational spectra). 

Understanding this terminology is key to describing and interpreting the 
spectra we observe. 
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Now let's turn to the practical aspect of How a Spectrograph Separates 
Wavelengths. This slide outlines the basic Optical Path in a typical 
dispersive spectrograph. 

1. First, light from the source enters through an Entrance slit, labeled S. This 
slit serves to define a spatially narrow source. The width of this slit is 
critical; a narrower slit generally leads to better spectral resolution (the ability 
to distinguish closely spaced wavelengths), but it also reduces the amount of 
light entering the instrument, which can affect signal-to-noise. The slit 
essentially creates a series of line images at the detector, one for each 
wavelength. 

2. Next, the diverging light from the slit encounters Collimating optics. These 
are typically a lens or a curved mirror. Their purpose is to take the diverging 
light rays and make them parallel, creating a parallel beam or collimated 
beam. This is important because dispersive elements like diffraction gratings 

work best with collimated light. 



3. The collimated beam then strikes the Dispersive element. This is the heart 
of the spectrograph. It can be a prism or, more commonly in modern 
instruments, a diffraction grating. 

* A prism works based on the principle that the refractive index of the prism 
material varies with wavelength (dispersion). Different wavelengths are bent 
by slightly different angles. 

* A diffraction grating has a series of closely spaced grooves. It separates 
wavelengths based on diffraction and interference; the angle at which a 
particular wavelength is diffracted depends on the wavelength itself 
according to the grating equation. The key outcome is that the dispersive 
element introduces an angle-wavelength dependence: different 
wavelengths emerge from it at different angles. 

4. Finally, these angularly separated beams of different wavelengths pass 
through a Camera lens (or another curved mirror, often called a focusing 
optic). This lens refocuses each wavelength to a different horizontal 
coordinate in the focal plane, labeled B, where the detector is placed. So, 
you get a spatial separation of wavelengths – red light might be focused at one 
position on the detector, blue light at another. 

This sequence of operations allows the spectrograph to spread out the light 
into its spectrum. 
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So, after the light has traversed the optical path of the spectrograph, what 
does the Detector see? This depends on the nature of the light source. 

* If you have a Continuous source – like an incandescent bulb, which emits 
light over a broad, unbroken range of wavelengths – the detector will see a 
bright rainbow band. Each wavelength is focused to a slightly different 



position, and because all wavelengths are present, these images merge into a 
continuous smear of color (if in the visible) or intensity. 

* On the other hand, if you have a Discrete source – like a gas discharge lamp 
(e.g., a mercury lamp or a sodium lamp) which emits light only at specific, 
characteristic wavelengths – the detector will see a series of bright "line" 
images of the slit. Each specific wavelength present in the source forms a 
distinct, sharp image of the entrance slit at a particular position on the 
detector. These are the spectral lines we've been talking about. 

This distinction is fundamental to interpreting what you observe with a 
spectrograph. 
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Here we have a diagram illustrating a very common type of spectrograph, the 
Czerny-Turner Spectrograph, shown in a plan view (looking down from 
above). Let's trace the light path and identify the components, which 
correspond to the general steps we just discussed. 

1. Light enters through the Entrance Slit, labeled 'S' on the left. This is where 
our light source is effectively defined. 

2. The light diverging from the slit strikes the first curved mirror, M1, which is 
the Collimation mirror. As you can see from the rays drawn, M1 reflects the 
light and makes the rays parallel before they reach the next component. 

3. The collimated beam then illuminates the Dispersion element, which in a 
Czerny-Turner design is typically a diffraction grating, labeled 'G'. The grating 
is shown tilted. As the light reflects off the grating, different wavelengths are 
diffracted at different angles. The diagram shows two representative 

wavelengths, 𝜆1 (red rays) and 𝜆2 (blue rays), emerging from the grating at 

distinct angles. 



4. These angularly separated beams then travel to a second curved mirror, 
M2, which is the Focusing mirror. M2 takes these diverging (in angle) beams 
and focuses them down. 

5. Finally, the light is focused onto the Detector plane, labeled 'B'. Notice 

how 𝜆1 and 𝜆2 are now focused at different spatial positions on this plane. 
This is where you would place a CCD camera, a photodiode array, or 
historically, a photographic plate, to record the spectrum. The label "5. 
Detection (B)" indicates this. 

The Czerny-Turner configuration is popular because it uses mirrors, which 
minimizes chromatic aberration (wavelength-dependent focusing issues that 

lenses can have), and it provides good image quality over a relatively wide 

focal plane. The separation between 𝜆1 and 𝜆2 on the detector depends on 
the grating's dispersion and the focal length of M2. 
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Now we come to a critical performance characteristic of any spectrograph: its 
Resolving Power Requirement. 

* Resolving power, 𝑅, is formally defined as the wavelength, 𝜆, divided by the 

smallest difference in wavelength, 𝛥𝜆, that can just be distinguished or 

resolved: 𝑅 is identically equal to 𝜆

𝛥𝜆
. A higher resolving power means the 

instrument can distinguish between two spectral lines that are very close 

together in wavelength. For example, if 𝑅 is 1000, at a wavelength of 500 

nanometers, you can resolve features that are 0.5 nanometers apart. If 𝑅 is 

100,000, you can resolve features 0.005 nanometers apart at the same 

wavelength. 

* So, To observe distinct lines, especially if they are close together, the 

resolving power 𝑅 of your spectrograph must be significantly greater than the 

ratio of the line's central wavelength, 𝜆𝑖𝑘, to the intrinsic width of the spectral 



line itself. This intrinsic width could be the natural linewidth (due to the 
lifetime of the excited state) or the Doppler width (due to the thermal motion 

of the atoms or molecules), or a combination. The condition is written as: 𝑅 

must be much greater than 𝜆𝑖𝑘

natural/Doppler width
. If your instrument's 𝑅 doesn't 

meet this condition for a given pair of lines, you won't be able to tell them 
apart. 

* Consequently, If 𝑅 is insufficient, adjacent lines blur together into an 

apparent continuum or a single, broader feature. You lose the information 
that there were actually multiple distinct transitions. 

* It's interesting to note the behavior for different types of spectra: * 

Continuous spectra remain continuous even for 𝑅 approaching ∞. A truly 
continuous source, like an ideal black body, will always look continuous, no 
matter how good your spectrograph is. Higher resolution just confirms its 

continuous nature. * Discrete spectra, however, become a set of 𝛿-

function-like peaks as 𝑅 approaches ∞. In the ideal limit of perfect resolution 

and no intrinsic line broadening, each spectral line would be infinitely sharp, 
appearing as a Dirac delta function at its precise frequency. Real lines always 

have some width, but the better the 𝑅, the sharper they appear. 

So, choosing a spectrograph with adequate resolving power is crucial for the 
specific spectroscopic task at hand. 
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Let's now discuss the Origin of Absorption Spectra, which we've defined 
earlier. This slide, titled Slide 6, delves into how these spectra arise. 

* We start with an Incident broadband light field. "Broadband" means the 
light source emits over a continuous range of frequencies, or at least a range 
that is much wider than the absorption features we expect to see. This 

incident light has a spectral intensity denoted as 𝐼0(𝜈), I naught of 𝜈, where 𝜈 



is the frequency. This light then passes through a gas cell of a certain length, 

which we'll call 𝛥𝑧. This cell contains the atoms or molecules we want to 
study. 

* Inside the gas cell, we have a population of atoms or molecules in their 

lower-state, denoted 𝑁i. These atoms or molecules in state 'i' can absorb 

photons from the incident light field, but only if the photons have the correct 
energy, i.e., if their frequency corresponds to one of the allowed transition 

frequencies, or eigenfrequencies, 𝜈𝑖𝑘, for a transition from state 'i' to some 
upper state 'k'. This is the resonant absorption condition. 

The Result of this selective absorption is that when we look at the spectrum of 
the light after* it has passed through the gas cell (the transmitted spectrum, 

𝐼(𝜈)), we will see dips, or "dark lines," at those specific frequencies 𝜈𝑖𝑘 

where absorption occurred. The intensity of the transmitted light, 𝐼(𝜈), at 

these frequencies will be less than the incident intensity, 𝐼0(𝜈). These dark 
lines against the brighter background of the incident continuum constitute 
the absorption spectrum. 

* The Absorption spectrum is then defined based on this difference, as we'll 
see on the next page. This process is the basis of absorption spectroscopy, a 
cornerstone technique for identifying substances and determining their 
concentrations. 
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Continuing from the previous slide, we now formally define the absorption 
spectrum, or more specifically, a quantity that characterizes it. 

The absorption coefficient, 𝛼𝑖𝑘(𝜈), for a transition between states 𝑖 and 𝑘 at 

frequency 𝜈, is defined as the fractional decrease in intensity per unit path 
length. Here it's given by the equation: 



𝛼𝑖𝑘(𝜈) ≡
𝐼0(𝜈) − 𝐼(𝜈)

𝛥𝑧
 

Let's break this down: 

- 𝛼𝑖𝑘(𝜈): This is the absorption coefficient. It's a function of frequency, 𝜈, 
because absorption is resonant. The subscripts 'i k' indicate it's for the 
specific transition from state 'i' to state 'k'. Its units are typically inverse 

length, like cm−1. 

- 𝐼0(𝜈): This is the spectral intensity of the incident light at frequency 𝜈 before 
it enters the sample. 

- 𝐼(𝜈): This is the spectral intensity of the transmitted light at frequency 𝜈 after 

passing through the sample of length 𝛥𝑧. 

- 𝛥𝑧: This is the path length of the light through the sample. 

The definition given on the slide, 𝐼0
(𝜈)−𝐼(𝜈)

𝛥𝑧
, has units of (Intensity / length). This 

is not the standard definition of the absorption coefficient 𝛼, which is usually 

defined from Beer-Lambert law 𝑑𝐼

𝑑𝑧
= −𝛼𝐼, leading to 𝐼 = 𝐼0exp(−𝛼𝑧). From 

this, 𝛼 =
1

𝛥𝑧
ln (

𝐼0

𝐼
). 

The quantity 𝐼0 − 𝐼 is the absorbed intensity. So 𝐼0−𝐼

𝛥𝑧
 is the absorbed intensity 

per unit length. This is related to 𝛼, especially for optically thin samples where 

𝐼0 − 𝐼 is small and 𝐼0−𝐼

𝐼0
≈ 𝛼𝛥𝑧. If 𝐼0 is factored in, 

((𝐼0−𝐼)/𝐼0)

𝛥𝑧
 is closer to 𝛼 for thin 

samples. Let's assume this is a simplified definition for the context, or related 

to power absorbed per unit volume if 𝐼0 represents energy flux. For now, we 

will proceed with the slide's definition. 

A crucial distinction is then made: 



- If the absorption is discrete, meaning it leads to sharp lines, this implies 

that the upper state with energy 𝐸k is a bound state. The atom or molecule 
transitions to a higher, but still bound, energy level. 

- If the absorption is a continuum, meaning it's a broad, featureless 

absorption over a range of frequencies, this implies that the upper state 𝐸k 

lies in an ionization or dissociation continuum. - For atoms, this means the 
absorbed photon has enough energy to completely remove an electron 
(photoionization), and any excess energy goes into the kinetic energy of the 
electron, which is not quantized. - For molecules, this could be 
photoionization, or it could be photodissociation, where the absorbed photon 
has enough energy to break a chemical bond, and the fragments fly apart with 
a continuous distribution of kinetic energies. 

This distinction between discrete and continuous absorption is vital for 
interpreting the nature of the states involved. 
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Slide 7: 

Let's look at some Illustrative Cases that highlight these concepts. 

1. Atomic hydrogen: The Lyman series in atomic hydrogen involves 

transitions from the 𝑛 = 1 ground state to higher 𝑛 states. As 𝑛 approaches 

∞, the energy levels converge to the ionization limit. Absorption of photons 

with energy greater than this limit (which is 13.6 eV, for hydrogen) results in 
photoionization. This leads to the Lyman continuum, an area of continuous 

ultraviolet absorption above 13.6 eV. So, if you shine UV light with photon 

energies greater than 13.6 eV onto hydrogen atoms, they will absorb this light 

continuously, producing photoelectrons with a range of kinetic energies. 

2. Molecular iodine (𝐼2): Iodine vapor is a classic example in spectroscopy. It 
has a very rich and complex absorption spectrum in the visible region. This 



complexity arises because, in addition to electronic transitions, molecules 
also have vibrational and rotational energy levels. A single electronic 
transition can be accompanied by various changes in vibrational and 
rotational quantum numbers, leading to billions of narrow rovibronic lines. 
These are so dense that at lower resolution they might appear as broader 
bands. The fact that so many lines are visible at room temperature is owing to 

the population of many initial rotational and vibrational energy states, 𝐸i, 
even within the ground electronic state, due to thermal energy. 

3. The Sun's photosphere and its cooler outer layers: We've touched on 
this before. The hot, dense photosphere of the Sun emits a spectrum that is 

approximately like that of a black body – a continuous spectrum. As this light 
passes through the Sun's cooler, less dense outer atmosphere (the 
chromosphere), atoms and ions present in these layers absorb specific 
frequencies corresponding to their characteristic transitions. This results in 
the dark Fraunhofer lines superimposed on the continuous solar spectrum. 
We'll discuss these in more detail next. 
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Let's focus on the example of Fraunhofer Lines, as presented on Slide 8. 

* As mentioned, the Sun's interior emits a nearly perfect black-body 
spectrum. The effective temperature of the emitting surface, the 

photosphere, is approximately 𝑇 ≈ 5800 K. This hot region provides the 
continuous background of light. 

* The Sun also has an Outer gaseous atmosphere (the chromosphere and 
corona) which is cooler and less dense than the photosphere. This 
atmosphere contains various atoms and ions, such as Sodium (N a), 
Calcium (C a), Iron (F e), Hydrogen (H), and many others. 



* As the continuous light from the photosphere passes through this cooler 
outer atmosphere, those atoms absorb photons at their specific, 

characteristic eigenfrequencies, 𝜈𝑖𝑘. This selective absorption removes 
light at these particular frequencies from the continuous spectrum. The result 
is the appearance of narrow dark lines in the solar continuum when we 
observe it from Earth. These are the Fraunhofer lines. 

* A very Famous example is the D1 and D2 sodium doublet at 589.0 nm 

(actually 589.592 nm for D1 and 588.995 nm for D2). These are very prominent 
yellow lines in the solar spectrum, arising from the absorption by sodium 
atoms in the Sun's atmosphere. Their strength tells us about the abundance 
of sodium. 

Fraunhofer lines were among the first spectroscopic observations that hinted 
at the chemical composition of stars, a revolutionary discovery at the time. 
Joseph von Fraunhofer meticulously cataloged hundreds of these lines in the 
early 19th century, even before their atomic origins were fully understood. 
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This slide presents a visual representation of the Solar Spectrum with 
Fraunhofer Lines. 

We are looking at a graph where the horizontal axis is Wavelength in 

nanometers (nm), ranging from about 400 nm on the left (violet/blue) to 

750 nm on the right (red). The spectrum itself is depicted as a continuous 
band of colors, like a rainbow, representing the black-body emission from the 
Sun's photosphere. 

Superimposed on this continuous rainbow are several prominent dark 
vertical lines. These are the Fraunhofer lines, indicating wavelengths where 
light has been absorbed by elements in the Sun's cooler outer atmosphere. 
Let's point out some of the labeled lines: 



Over in the violet/blue region, around 393.37 nm and 396.85 nm, are the K 
and H lines of Calcium II (singly ionized calcium). These are very strong. 

Near 430.7 nm, there's the G line, which is a blend of lines from Iron I (neutral 

iron) and Calcium I (neutral calcium). 

At 486.13 nm, in the blue-green region, is the F line, which corresponds to the 
H-beta transition of Hydrogen. 

Prominently in the yellow region, at 589.0 nm and 589.59 nm (though only one 

position 589.59 nm is marked here for D2, implying the doublet), are the D 

lines of Sodium I (neutral sodium), specifically labeled D2 for the line at 

589.59 nm. 

In the red region, at 656.28 nm, is the C line, which corresponds to the H-
alpha transition of Hydrogen. 

There are many other labeled lines, such as those for Iron (Fe I) and Hydrogen 
delta (Hδ). The sheer number and varying intensities of these lines provide a 
wealth of information about the Sun's composition, temperature, and 
atmospheric conditions. Studying these lines is a cornerstone of 
astrophysics. 
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Now that we've seen how absorption spectra arise and can be observed, we 
hit an important point on Slide 9: the Need for a Quantitative Measure of 
"Absorption Strength". 

* Simply looking at the Qualitative line depth in a spectrum – how "dark" or 
"deep" an absorption line appears – is often insufficient for rigorous 
scientific comparison. The apparent depth can be affected by the resolution 
of the spectrograph, by various line broadening mechanisms, and it doesn't 
easily allow us to compare the intrinsic strengths of different transitions, or 



the same transition under different conditions of pressure or temperature. We 
need more robust, quantitative measures. 

* To address this, a Fundamental microscopic quantity is introduced: the 

absorption cross section, denoted 𝜎𝑖𝑘(𝜔). We've mentioned this before. 

This 𝜎𝑖𝑘(𝜔), as a function of angular frequency 𝜔, represents the intrinsic 

"effective area" that an atom or molecule in state 'i' presents to an incident 

photon of frequency 𝜔 for absorption to occur, leading to a transition to state 
'k'. Its units are area (e.g., meters squared or centimeters squared). This is a 
key microscopic property of the transition. 

* Correspondingly, there is a Macroscopic measurable quantity: the 

absorption coefficient, 𝛼𝑖𝑘(𝜔). This is what we typically determine from 
Beer's Law experiments. It's related to the absorption cross section but also 
depends on the concentration of absorbers. Its units are typically inverse 
length (e.g., per meter or per centimeter). 

The goal is to connect these quantities and use them to rigorously describe 
absorption. 
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Continuing from the previous point, this slide emphasizes a crucial link: 

*   These measures of absorption strength – the microscopic absorption cross 

section (𝜎) and the macroscopic absorption coefficient (𝛼) – are linked via 

the population density, 𝑁i, and the path length, 𝛥𝑧. 

Specifically, the macroscopic absorption coefficient, 𝛼𝑖𝑘, at a particular 

frequency is directly proportional to the microscopic absorption cross 

section, 𝜎𝑖𝑘, at that frequency, multiplied by the number density of absorbers 

in the initial state, 𝑁i. That is: 

𝛼𝑖𝑘 = 𝑁i 𝜎𝑖𝑘  



This relationship is fundamental. 𝜎𝑖𝑘  tells us about the intrinsic probability of 

a single atom/molecule absorbing. 𝑁i tells us how many such absorbers there 

are per unit volume. Together, they determine 𝛼𝑖𝑘, which describes how much 
light is attenuated per unit distance as it travels through the bulk material. The 

total absorption will then, of course, also depend on the total path length, 𝛥𝑧, 
through which the light interacts with the absorbing medium. 

Understanding this connection allows us to move between the microscopic 
world of individual atomic/molecular properties and the macroscopic world 
of measurable optical phenomena. 
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Slide 10 provides an intuitive, albeit classical, Geometric Picture for the 
Absorption Cross Section. 

* First, we are asked to Imagine photons as classical particles moving in a 
parallel beam, like tiny bullets. 

* Then, we imagine that Each atom presents an effective circular "target" 

of radius 𝑟𝑖𝑘  for a specific transition i to k. The absorption cross section, 𝜎𝑖𝑘, 
is then simply the area of this target: 

𝜎𝑖𝑘 = 𝜋(𝑟𝑖𝑘)
2 

The units are, of course, area, for example, meters squared, as indicated. 

* The idea is that a Photon hitting this area 𝜎𝑖𝑘  has a probability 
approximately equal to 1 to be absorbed by the atom, causing it to undergo 

the transition from the initial quantum state, |𝑖⟩, to the final quantum state, 

|𝑘⟩. Photons missing this target area pass by unabsorbed. 

* Crucially, this is a simplified picture. The "radius" 𝑟𝑖𝑘  is not a fixed physical 
dimension of the atom. In reality, the Cross section depends strongly on the 

frequency, 𝜔, of the incident photon. It is sharply peaked at the resonant 



frequency, 𝜔𝑖𝑘, corresponding to the energy difference 𝐸𝑘 − 𝐸𝑖. Away from 

resonance, the effective target area shrinks dramatically. So, 𝜎𝑖𝑘(𝜔) is really a 

function that describes how the absorption probability varies with frequency. 

While this classical geometric analogy helps build intuition, the true nature of 
the absorption cross section is rooted in quantum mechanics and the 
interaction of the electromagnetic field with the atomic or molecular dipole 
moment. However, thinking of it as an "effective area" is a very useful 
conceptual tool. 
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Now we move into a more quantitative derivation. Slide 11 begins the process 
of Deriving the Absorbed Power Expression, which is labeled as Equation 

2.58 (likely from a reference textbook). This will be a Step-by-step 
calculation for an infinitesimal slice of the absorbing medium. 

1. First, we define the Spectral intensity of the incident beam as 𝐼0(𝜔), or 

𝐼0(𝜔). The units given are Watts per meter squared per radian per second, 
times seconds. This is Watt meter to the minus two, radian to the minus one, 
second to the minus one, second. This unit is a bit unusual. Spectral intensity 
(or radiance in some contexts) is typically power per unit area, per unit solid 

angle, per unit frequency interval. If 𝜔 is angular frequency (radians per 
second), then "per radian per second" would be per unit angular frequency. 
The final "s" might be a typo or refer to a specific integration time. Let's 

assume 𝐼0(𝜔) is power per unit area per unit angular frequency interval: 

[Watts meter to the minus 2 (radian/second) to the minus 1]. 

2. Next, we define the Photon spectral flux density, 𝛷. This is the number of 
photons per unit area, per unit time, per unit angular frequency interval. It's 

obtained by taking the spectral intensity 𝐼0(𝜔) and dividing it by the energy of 

a single photon at that angular frequency, which is ℏ 𝜔: 



𝛷 =
𝐼0(𝜔)

ℏ 𝜔
 

The units would be [photons meter to the minus 2 second to the minus 1 
(radian/second) to the minus 1]. 

3. Now, consider the Number of photons crossing an area 𝐴 in an 

infinitesimal time 𝑑𝑡 and within an infinitesimal angular frequency range 𝑑𝜔. 

This quantity, let's call it 𝑑𝑁𝛾  (for photons), would be given by the photon 

spectral flux density times area, times time interval, times angular frequency 
interval. The formula will be on the next slide. 

This sets up the initial conditions for calculating how many photons are 
absorbed. 
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Continuing our step-by-step derivation: 

The number of incident photons, 𝑑𝑁𝛾, crossing area 𝐴 in time 𝑑𝑡 and 

frequency range 𝑑𝜔 is given by: 

𝑑𝑁𝛾 = 𝛷 ⋅ 𝐴 ⋅ 𝑑𝑡 ⋅ 𝑑𝜔 

This is consistent with our definition of 𝛷 as photon spectral flux density. 

4. Next, we determine the Number of absorbers available in an 

infinitesimal slice of thickness 𝛥𝑧. If 𝑁i is the number density of absorbers in 

the initial state 'i' (number per unit volume), and the slice has a cross-

sectional area 𝐴 and thickness 𝛥𝑧, then its volume is 𝐴 ⋅ 𝛥𝑧. So, the number of 
absorbers in this slice is: 

𝑁i ⋅ 𝐴 ⋅ 𝛥𝑧 

5. Now, we need the Net transition probability per absorber. Let's call this 

𝑃abs. The slide gives it as: 



𝑃abs = 𝜎𝑖𝑘(𝜔) ⋅ 𝛷 ⋅ 𝑑𝑡 

Here, 𝜎𝑖𝑘(𝜔) is the absorption cross section. If 𝛷 is the photon spectral flux 

density as defined on the previous slide, then 𝛷 has units of [photons / (area 

× time × angular\_frequency\_interval)]. Multiplying 𝜎 (area) by 𝛷 gives 

[photons / (time × angular\_frequency\_interval)], which is a rate of photon 
incidence per unit frequency interval through the cross-sectional area. 

Multiplying by 𝑑𝑡 gives [photons / angular\_frequency\_interval]. This is the 

number of photons incident on one atomic cross-section within the 

bandwidth 𝑑𝜔 (if 𝑑𝜔 is implicitly part of 𝛷 or applied later) during time 𝑑𝑡. For 

this to be a probability, 𝛷 here should perhaps be the photon flux (photons / 
area / time) and the result would be probability per unit frequency interval. 

Let's assume that 𝑃abs here represents the probability that a single absorber, 

when exposed to the photon spectral flux density 𝛷 within a certain 

bandwidth 𝑑𝜔 (which might be implicit in 𝛷 or 𝑃abs itself), makes a transition 

in time 𝑑𝑡. A more standard approach: rate of absorption per atom = 𝜎𝑖𝑘(𝜔) × 

PhotonFlux𝜔. Then probability in 𝑑𝑡 is this rate × 𝑑𝑡. The slide's formulation 
appears to be a slight simplification. Let's follow its logic. 

6. With this, the total Photons removed (absorbed) from the beam in this 

slice, 𝑑𝑁abs, is the number of absorbers times the probability of absorption 
per absorber: 

𝑑𝑁abs = (𝑁i ⋅ 𝐴 ⋅ 𝛥𝑧) ⋅ 𝑃abs 

Substituting 𝑃abs from step 5: 

𝑑𝑁abs = 𝑁i ⋅ 𝐴 ⋅ 𝛥𝑧 ⋅ 𝜎𝑖𝑘(𝜔) ⋅ 𝛷 ⋅ 𝑑𝑡 

7. The Energy removed from the beam in time 𝑑𝑡, which we'll call 𝑑𝑊𝑖𝑘, is 

the number of photons absorbed times the energy per photon (ℏ𝜔): 

𝑑𝑊𝑖𝑘 = 𝑑𝑁abs ⋅ (ℏ𝜔) 



8. Finally, to get the differential power absorbed, we Divide 𝑑𝑊𝑖𝑘  by 𝑑𝑡. The 
resulting expression will be on the next page. 

This derivation, despite some potential subtleties in the definition of 𝑃abs, 

aims to link the microscopic cross section to macroscopic power absorption. 
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Following from the previous steps, the expression for the absorbed power 

within the angular frequency interval d𝜔 is presented here. Note, the percent 
sign 

in front of 

is likely a typo and should be a lowercase 

for differential. So, let's read it as: 

d𝑃𝑖𝑘(𝜔) d𝜔 = 𝐼0(𝜔) [𝑁i −
𝑔i

𝑔k
𝑁k] 𝜎𝑖𝑘(𝜔) 𝐴𝛥𝑧 d𝜔 

This equation represents the power absorbed from the incident light beam as 
it passes through the infinitesimal slice of material. Let's dissect each term: 

* d𝑃𝑖𝑘(𝜔) d𝜔: This is the infinitesimal amount of power absorbed from the 

light field within the angular frequency range d𝜔, due to transitions from state 

𝑖 to state 𝑘. 

* 𝐼0(𝜔): This is the spectral intensity of the incident light (power per unit area 

per unit angular frequency). 

 [𝑁i −
𝑔i

𝑔k
𝑁k]: This is a critical term. It represents the effective population 

difference* between the lower state 'i' and the upper state 'k'. * 𝑁i is the 
population density of atoms in the lower state, which contribute to 

absorption. * 𝑁k is the population density of atoms in the upper state. These 

atoms can be stimulated by the incident photons to emit a photon, a process 



called stimulated emission. Stimulated emission adds photons to the beam 
that are identical to the incident photons, so it effectively counteracts 

absorption. * 𝑔i and 𝑔k are the statistical weights (or degeneracies) of the 
lower and upper states, respectively. These factors account for the fact that 

energy levels can consist of multiple degenerate sub-levels. The ratio 𝑔i

𝑔k
 

correctly weights the contribution of stimulated emission relative to 
absorption, as dictated by detailed balance and Einstein's relations. If this 

term [𝑁i −
𝑔i

𝑔k
𝑁k] is positive, net absorption occurs. If it's negative, net 

amplification occurs (as in a laser). 

* 𝜎𝑖𝑘(𝜔): This is the absorption cross section for the transition at angular 

frequency 𝜔. 

* 𝐴𝛥𝑧: This is the volume of the infinitesimal slice (Area times thickness). 

* d𝜔: This is the infinitesimal angular frequency interval. 

The slide correctly notes that the Statistical weights 𝑔i, 𝑔k (degeneracy) are 

included to allow for the stimulated emission correction. Without this 
correction, we would overestimate the net absorption, especially if the 

population 𝑁k of the upper state is significant. This equation forms the basis 
for understanding light attenuation or amplification in a medium. 

Page 24: 

Slide 12: Integrating Over the Line Profile and its Link to the Einstein 𝐵𝑖𝑘 

* First, we Define the absorption coefficient, alpha sub i k of omega. Based 
on the expression for absorbed power from the previous slide, the absorption 
coefficient (which describes attenuation per unit length) is: 

𝛼𝑖𝑘(𝜔) = 𝜎𝑖𝑘(𝜔) [𝑁i −
𝑔i

𝑔k
𝑁k] 



Recall from Beer-Lambert law, 𝑑𝐼

𝑑𝑧
= −𝛼𝐼. The power absorbed in a volume 

𝑑𝑉 = 𝐴 𝑑𝑧 is 𝑑𝑃 = 𝛼𝐼 𝑑𝑉. Comparing with the previous slide's equation, 𝑑𝑃 =

𝐼0(𝜔) [𝑁i −
𝑔i

𝑔k
𝑁k] 𝜎𝑖𝑘(𝜔)𝐴 𝑑𝑧 𝑑𝜔, we see this definition of alpha is consistent. 

It has units of inverse length (e.g., m−1 or cm−1). 

* Next, we consider the total Absorbed power in a finite volume delta V 
equals A times delta zed. To get the total power absorbed by atoms 
undergoing the i to k transition, we need to integrate the spectral absorption 
over the entire line profile. The slide shows this as: 

𝑃𝑖𝑘 = 𝐼0  𝛥𝑉 ∫ 𝛼𝑖𝑘

+∞

−∞

(𝜔) 𝑑𝜔 

Here, 𝑃𝑖𝑘  is the total power absorbed from the beam integrated over all 
frequencies of the transition. A couple of points about this equation: 

- 𝐼0 is pulled out of the integral. This implies that the incident spectral 

intensity 𝐼0 is assumed to be constant over the frequency range where 𝛼𝑖𝑘(𝜔) 

is significant, or 𝐼0 represents its value at the line center, 𝜔𝑖𝑘. For a broadband 

source, this is often a good approximation. - The integral ∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔 is the 

integrated absorption coefficient. It represents the total strength of the 
absorption line. - The limits of integration from minus infinity to plus infinity 

are formal; in practice, 𝛼𝑖𝑘(𝜔) is only non-zero in a narrow region around the 

resonant frequency. 

This expression for total absorbed power, based on macroscopic quantities, 
will then be compared to an expression based on the microscopic Einstein 

𝐵𝑖𝑘 coefficient. 
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Now we Compare the expression for absorbed power we just derived with the 
one based on the Einstein rate expression. 



The Einstein rate expression for the power absorbed is given on the slide as: 

ℎ𝜈

𝑐
 𝐼0 𝐵𝑖𝑘  (𝑁i −

𝑔i𝑁k

𝑔k
)𝛥𝑉 

Let's analyze this. The rate of stimulated absorption transitions per unit 

volume is (𝑁i −
𝑔i

𝑔k
𝑁k)𝐵𝑖𝑘

(𝜈)
𝜌𝜈(𝜈𝑖𝑘), where 𝐵𝑖𝑘

(𝜈) is the Einstein 𝐵 coefficient for 

frequency 𝜈 and 𝜌𝜈  is the spectral energy density per unit frequency. The 

power absorbed in volume 𝛥𝑉 is this rate times ℎ𝜈𝑖𝑘 times 𝛥𝑉. 

If we relate energy density 𝜌𝜈  to intensity 𝐼0 (intensity per unit frequency 

interval from a beam) by 𝜌𝜈 =
𝐼0

𝑐
 (this is for a beam, for isotropic radiation it 

would be 4𝜋𝐼0

𝑐
), then the power absorbed becomes: 

𝑃𝑖𝑘 = (𝑁i −
𝑔i

𝑔k
𝑁k)𝐵𝑖𝑘

(𝜈)
(
𝐼0
𝑐
) ℎ𝜈𝑖𝑘  𝛥𝑉 

This matches the form on the slide, assuming 𝐵𝑖𝑘 is 𝐵𝑖𝑘
(𝜈) and 𝐼0 is intensity per 

unit frequency. 

By equating this Einstein-based expression for absorbed power with the one 
from the previous slide 

𝑃𝑖𝑘 = 𝐼0  𝛥𝑉∫ 𝛼𝑖𝑘(𝜈) 𝑑𝜈 

(switching to 𝜈 for consistency with ℎ𝜈), and noting 

𝛼𝑖𝑘(𝜈) = 𝜎𝑖𝑘(𝜈) (𝑁i −
𝑔i

𝑔k
𝑁k), 

we can isolate the microscopic parameter 𝐵𝑖𝑘. 

The slide shows (with 

being a typo for 𝐵𝑖𝑘 and assuming ℎ𝜈 should be ℏ𝜔𝑖𝑘 to match the integral 

over 𝑑𝜔): 



𝐵𝑖𝑘 =
𝑐

ℏ𝜔𝑖𝑘
∫ 𝜎𝑖𝑘

+∞

−∞

(𝜔) 𝑑𝜔 

This relates the Einstein 𝐵 coefficient (here, 𝐵𝑖𝑘
(𝜔) defined for angular 

frequency energy density 𝜌𝜔) to the integrated absorption cross section. 

Let's verify: 

𝑃𝑖𝑘 = 𝑁i
𝑒𝑓𝑓

 𝐵𝑖𝑘
(𝜔)

 𝜌𝜔(𝜔𝑖𝑘) ℏ𝜔𝑖𝑘  𝛥𝑉 

Using 𝜌𝜔 =
𝐼0
(𝜔)

𝑐
, where 𝐼0

(𝜔) is intensity per unit angular frequency, 

𝑃𝑖𝑘 = 𝑁i
𝑒𝑓𝑓

 𝐵𝑖𝑘
(𝜔)

(
𝐼0
(𝜔)

𝑐
)ℏ𝜔𝑖𝑘  𝛥𝑉 

Also, 

𝑃𝑖𝑘 = 𝐼0
(𝜔)

 𝛥𝑉∫ 𝜎𝑖𝑘(𝜔) 𝑁i
𝑒𝑓𝑓

 𝑑𝜔 

Equating these: 

𝐵𝑖𝑘
(𝜔) ℏ𝜔𝑖𝑘

𝑐
= ∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔 

So, 

𝐵𝑖𝑘
(𝜔)

=
𝑐

ℏ𝜔𝑖𝑘
∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔 

This matches the slide if 𝐵𝑖𝑘 is 𝐵𝑖𝑘
(𝜔) and ℎ𝜈 is interpreted as ℏ𝜔𝑖𝑘. 

The Integral over sigma sub i k is, as noted, sometimes called the "cross-
sectional area under the line" or, more commonly, the integrated cross 

section. It's a fundamental measure of the total interaction strength for that 
transition, irrespective of broadening effects. 
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We now advance to Slide 13, where we consider a more realistic scenario by 
Including Thermal (Boltzmann) Populations. In many situations, especially 
in gases at or near thermal equilibrium, the populations of the energy levels 
are governed by the Boltzmann distribution. 

* At thermal equilibrium temperature 𝑇 Kelvin: 

The population of an energy level 'i', denoted 𝑁i, is given by: 

𝑁i =
𝑁 𝑔i

𝑍
 𝑒

−
𝐸i

𝑘B𝑇 . 

Let's break this down: * 𝑁 is the total number density of atoms or molecules. 

* 𝑔i is the degeneracy of state 'i'. * 𝐸i is the energy of state 'i'. * 𝑘B is the 
Boltzmann constant (one point three eight times ten to the minus twenty-

three Joules per Kelvin, rendered as 1.38 × 10−23 Joules per Kelvin). * 𝑇 is the 

absolute temperature in Kelvin. * 𝑍 is the partition function, which is a sum 

over all possible states 'j': 𝑍 = ∑ 𝑔j𝑗  𝑒
−

𝐸j
𝑘B𝑇 The partition function acts as a 

normalization factor, ensuring that the sum of populations 𝑁j over all states 

equals the total number density 𝑁. The Boltzmann factor, exp(−𝐸i/𝑘B𝑇), 
shows that higher energy states are exponentially less populated at a given 
temperature. 

* Substituting these Boltzmann population expressions for 𝑁i and 𝑁k into 
our previous power formula gives: 

Recall the absorbed power 

𝑃𝑖𝑘 = 𝐼0𝛥𝑉∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔 = 𝐼0𝛥𝑉∫ 𝜎𝑖𝑘(𝜔) [𝑁i −
𝑔i

𝑔k
𝑁k]  𝑑𝜔. 

Substituting for 𝑁i and 𝑁k: 

𝑃𝑖𝑘 = 𝐼0𝛥𝑉 [
𝑁

𝑍
(𝑔i 𝑒

−
𝐸i

𝑘B𝑇 − 𝑔k 𝑒
−

𝐸k
𝑘B𝑇)] ∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔. 



This explicitly shows how the absorbed power depends on temperature 𝑇 

through the Boltzmann populations in 𝑁i and 𝑁k, and through the partition 

function 𝑍. 

* Now, a common approximation is considered: the Low-frequency (Far-
Infrared or FIR) limit. This applies when the energy difference between the 

states, 𝐸k − 𝐸i (which is ℏ𝜔𝑖𝑘), is much less than the thermal energy, 𝑘B𝑇: 

𝐸k − 𝐸i ≪ 𝑘B𝑇. 
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Continuing with the low-frequency (FIR) limit: 

When (𝐸k − 𝐸i) ≪ 𝑘B𝑇, we can approximate the exponential term for the 

upper state population. The energy of the upper state is 𝐸k = 𝐸i + ℏ𝜔𝑖𝑘. 

So, exp (−
𝐸k

𝑘B𝑇
) = exp (−

𝐸i+ℏ𝜔𝑖𝑘

𝑘B𝑇
) = exp (−

𝐸i

𝑘B𝑇
) ⋅ exp (−

ℏ𝜔𝑖𝑘

𝑘B𝑇
). 

Since ℏ𝜔𝑖𝑘

𝑘B𝑇
 is small (let 𝑥 =

ℏ𝜔𝑖𝑘

𝑘B𝑇
), we can use the Taylor expansion exp(−𝑥) ≈

1 − 𝑥 for small 𝑥. 

Therefore, exp (−
𝐸k

𝑘B𝑇
) is approximately equal to exp (−

𝐸i

𝑘B𝑇
) times the 

quantity (1 −
𝐸k−𝐸i

𝑘B𝑇
). 

Substituting this into the population difference term [𝑔iexp (−
𝐸i

𝑘B𝑇
) −

𝑔kexp (−
𝐸k

𝑘B𝑇
)] from the previous slide: It becomes approximately 

exp (−
𝐸i

𝑘B𝑇
) ⋅ [𝑔i − 𝑔k (1 −

𝐸k − 𝐸i

𝑘B𝑇
)]. 

If we further assume 𝑔i = 𝑔k = 𝑔 for simplicity, this becomes: 

𝑔 ⋅ exp (−
𝐸i

𝑘B𝑇
) ⋅ [1 − (1 −

𝐸k − 𝐸i

𝑘B𝑇
)] = 𝑔 ⋅ exp (−

𝐸i

𝑘B𝑇
) ⋅

𝐸k − 𝐸i

𝑘B𝑇
. 



This population difference is proportional to 1
𝑇

. 

The slide presents a final expression for 𝑃𝑖𝑘  in this limit, which seems to be 

further approximated for the line shape (using 𝜎𝑖𝑘(𝜔0) which is peak cross 

section): 𝑃𝑖𝑘  is approximately equal to 𝐼0 𝜎𝑖𝑘(𝜔0) (
𝑁𝑔i

𝑍𝑘B𝑇
) 𝛥𝑉. 

For this expression to have units of power, it needs an additional factor of 
(𝐸k − 𝐸i) or ℏ𝜔0 or a frequency bandwidth. For instance, if the term (𝐸k − 𝐸i) 

that arose from the expansion was ℏ𝜔0, then 

𝑃𝑖𝑘 ≈ 𝐼0  𝜎𝑖𝑘(𝜔0) 
𝑁𝑔iexp (−

𝐸i
𝑘B𝑇

)

𝑍
 
ℏ𝜔0

𝑘B𝑇
 𝛥𝑉 𝛥𝜔eff 

where 𝛥𝜔eff is an effective bandwidth. 

The key result here is the 1
𝑇

 dependence. 

* The important takeaway here is that this analysis Demonstrates that Far-

Infrared (FIR) absorption strength is proportional to 1
𝑇

 (one over T). This is 

intuitive because in this regime, the photon energy ℏ𝜔𝑖𝑘 is small, 

comparable to or less than 𝑘B𝑇. As temperature increases, thermal energy 

𝑘B𝑇 becomes more effective at populating the upper state 𝑘 via collisions, 

thus reducing the population difference 𝑁i − (
𝑔i

𝑔k
)𝑁k. This, in turn, reduces the 

net absorption. The lower photon energy has to "compete" more strongly with 
thermal excitation at higher temperatures. 
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Slide 14: 

discusses a Practical "Figure-of-Merit" for Detecting Absorption and 
strategies to enhance the signal. 



* The Signal size in an absorption experiment is generally proportional to the 

product of three factors: 𝑁i × 𝜎𝑖𝑘 × 𝛥z. 

* 𝑁i: The number density of absorbers in the initial state. More absorbers 

mean more potential absorption. * 𝜎𝑖𝑘: The absorption cross section. A larger 
cross section means a higher probability of absorption per atom/molecule. * 

𝛥z: The path length of the light through the sample. A longer path means more 
interaction opportunities. 

Maximizing this product 𝑁i × 𝜎𝑖𝑘 × 𝛥z is key to achieving a strong absorption 

signal. 

* So, To increase detection sensitivity (i.e., to make it easier to detect weak 
absorption), we can try to manipulate these factors: 

1. Increase number density 𝑁 (which generally increases 𝑁i). For gases, this 
often means raising the pressure. However, there's a caveat: beware of 
collisional broadening (also known as pressure broadening). While 

increasing pressure increases 𝑁, it also increases the collision rate between 
molecules. These collisions perturb the energy levels and shorten the 
effective lifetime of quantum states, leading to broader spectral lines. A 

broader line might have a lower peak absorption cross section, 𝜎𝑖𝑘(𝜔0), even 

if the integrated cross section 𝑆𝑖𝑘  remains the same or increases. So, there's 
often an optimal pressure. 

2. Prolong path length 𝛥z. This is a very common strategy. * One can use a 

long cell. * More sophisticated are multi-pass cells (like White cells or 
Herriott cells) where mirrors reflect the beam back and forth through the 
sample many times, achieving effective path lengths of meters or even 
kilometers in a compact setup. * Advanced techniques involve placing the 
sample inside an optical cavity (e.g., Cavity Ring-Down Spectroscopy - 
CRDS, or Cavity Enhanced Absorption Spectroscopy - CEAS), which can 
result in extremely long effective path lengths. 



3. Select transitions with large 𝜎𝑖𝑘. This involves choosing molecular 
transitions that are intrinsically strong. * Typically, this means looking for 

transitions originating from low 𝐸i states (i.e., the ground state or low-lying 

excited states), because these states will have higher populations 𝑁i 
according to the Boltzmann distribution. * It also means choosing transitions 

with a high oscillator strength, 𝑓𝑖𝑘, as oscillator strength is directly related to 

the intrinsic strength of the transition and thus to 𝜎𝑖𝑘. 

These are practical considerations for designing sensitive absorption 
spectroscopy experiments. 
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This slide reiterates a key point regarding thermally populated samples: 

* For thermally populated gases: observe transitions originating from the 
ground state or few first excited states. 

This is a direct consequence of the Boltzmann distribution, 𝑁i ∝ exp (−
𝐸i

𝑘B𝑇
). 

At typical laboratory temperatures (e.g., room temperature, around 300 K), 

the thermal energy 𝑘B𝑇 is about 0.026 electron-Volts or roughly 200 inverse 
centimeters. 

* Electronic ground states are, by definition, the most populated. * Excited 

electronic states are usually many 𝑘B𝑇 units above the ground state, so their 

thermal populations are negligible. * For molecules, low-lying rotational and 
vibrational states within the ground electronic state can be significantly 
populated at room temperature. 

However, higher 𝐸i levels (higher vibrational states, or certainly higher 
electronic states) are sparsely populated. Consequently, absorption lines 
originating from these high-energy initial states will be very weak or 
undetectable in a thermal equilibrium sample. 



This is why most absorption spectroscopy on thermal samples focuses on 
transitions from the ground state or very low-lying excited states. 
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Slide 15 

introduces Non-Thermal Population Strategies. What if we want to study 
transitions that originate from states that are not significantly populated at 
thermal equilibrium? We need ways to prepare non-thermal populations. 

One powerful technique is Optical pumping. This involves using an intense, 
narrowband laser to drive population from a lower state (e.g., the ground 

state, |𝑔⟩) to a specific excited state, |𝑒⟩. By continuously shining this "pump" 

laser, tuned to the g-to-e transition, we can create a significant population in 

the excited state |𝑒⟩, far exceeding its thermal population. We can then 

perform spectroscopy from* this artificially populated state |𝑒⟩ using a 
second "probe" laser. 

* Another method is Electron impact. This is common in discharge tubes or 
plasmas. In a discharge, free electrons are accelerated by an electric field 
and gain kinetic energy. When these energetic electrons collide with atoms or 
molecules, they can transfer energy, exciting the atoms/molecules to various 
high-lying states. This process is not governed by thermal equilibrium, and 
can populate states that would otherwise be empty. 

* The Result of using such non-thermal population strategies is that they 

allow the study of absorption lines originating from initial states 𝐸i that are 

otherwise unpopulated (or very sparsely populated) at room temperature. 
This opens up the possibility of exploring a much wider range of energy levels 
and transitions within atoms and molecules. For example, one could study 
absorption from an excited electronic state to even higher electronic states. 
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This slide provides a Schematic Energy Levels diagram for Pump-Probe 
Spectroscopy, which often utilizes optical pumping to create non-thermal 
populations. 

We see three energy levels depicted: * 𝐸𝑔: The ground state, labeled with the 

ket |𝑔⟩. * 𝐸𝑒: An intermediate excited state, labeled with the ket |𝑒⟩. * 𝐸𝑓: A 

higher excited state, labeled with the ket |𝑓⟩. 

The process unfolds as follows: 1. Pump: An intense "pump" laser, with 

photon energy ℎ𝜈pump (represented by the upward red arrow), excites the 

system from the ground state 𝐸𝑔 to the intermediate excited state 𝐸𝑒. This 

creates a population in state |𝑒⟩. 2. Probe Absorption: A second "probe" 

laser, with photon energy ℎ𝜈probe (represented by the upward blue arrow), can 

then induce transitions from the populated state 𝐸𝑒 to a still higher state 𝐸𝑓. 

By monitoring the absorption of this probe laser, we can study the properties 

of state 𝐸𝑒 or the dynamics of its population. 

The diagram also shows various Decay paths from state 𝐸𝑒, which are crucial 
for understanding the dynamics: * Radiative Decay (e.g., Fluorescence): 

State |𝑒⟩ can decay back to the ground state 𝐸𝑔 (or other lower states) by 

emitting a photon, ℎ𝜈decay (represented by the downward orange arrow). * 

Non-Radiative Decay: State |𝑒⟩ can also lose energy through non-radiative 
processes, such as collisions, transferring its energy into heat. This is 
indicated by the dotted purple arrow labeled "Non-Radiative Decay" also 

leading to depopulation of |𝑒⟩. * The diagram also has a label "Probe 
Absorption" next to a dotted purple arrow that seems to indicate a decay 

pathway from 𝐸𝑒 towards 𝐸𝑔, possibly also non-radiative or part of the overall 

relaxation dynamics that repopulate 𝐸𝑔. 

Pump-probe spectroscopy is a powerful time-resolved technique. By varying 
the time delay between the pump and probe pulses, one can monitor how the 

population of state |𝑒⟩ evolves over time due to these decay processes, or 



how the ground state |𝑔⟩ recovers. This allows for the measurement of 
lifetimes, relaxation rates, and other dynamic processes. 
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Now we shift our focus to emission processes, specifically Fluorescence, 
which is defined on Slide 16 as Spontaneous Emission from Excited States. 

* Consider an atom or molecule in an Excited state, 𝐸k. This state is not 

stable indefinitely; the system will eventually relax to a lower energy state. 
There are several ways it can do this: 

1. Spontaneous radiative decay (fluorescence): The excited atom/molecule 
can spontaneously emit a photon and transition to a lower energy state. This 
emission of light is what we call fluorescence (or phosphorescence, if it 
involves a change in spin multiplicity and has a longer lifetime). This process 
does not require any external radiation field to trigger it; it's a fundamental 
quantum process. 

2. Stimulated emission (if a strong field is present): If the excited 
atom/molecule is bathed in a radiation field of the appropriate frequency (i.e., 

resonant with the 𝐸k → 𝐸i transition), it can be stimulated to emit a photon. 
This photon will be identical to the stimulating photons. This process is 
crucial for lasers, but it requires an existing radiation field. 

3. Non-radiative collisions: The excited atom/molecule can lose its energy 
through collisions with other atoms or molecules, converting its excitation 
energy into kinetic energy (heat) of the collision partners. This is often referred 
to as quenching. 

In fluorescence spectroscopy, we are primarily interested in the first process: 
spontaneous radiative decay. The relative importance of these three 
pathways depends on the specific system and its environment (e.g., pressure, 
temperature, presence of a radiation field). 
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Let's consider some characteristics of fluorescence: 

* If the molecular ensemble is randomly oriented, the spontaneous 
emission intensity is isotropic. This means that the fluorescence is emitted 
equally in all directions. This is typically the case for gases or solutions where 
the molecules have no preferred orientation. However, if the molecules are 
aligned (e.g., in a crystal or by using polarized excitation light), the emission 
can be anisotropic (polarized). 

* The Observed fluorescence spectrum mirrors all allowed transitions 

from the populated excited state(s) 𝐸k down to various lower energy states 

𝐸i. The intensity of each emission line in this spectrum is weighted by their 

respective transition probabilities (Einstein A coefficients, 𝐴𝑘𝑖) and by the 

populations of the specific excited states 𝐸k from which the transitions 

originate. So, if you excite a molecule to a particular 𝐸k, it might be able to 

fluoresce to several different lower-lying 𝐸i levels. The resulting spectrum will 
show lines corresponding to each of these allowed downward transitions, and 
their relative intensities will depend on how probable each transition is and 

how many molecules were in that initial 𝐸k state. 

Fluorescence spectroscopy is a very sensitive technique because you are 
typically detecting emitted photons against a dark background, as opposed to 
absorption spectroscopy where you look for small decreases in a bright 
signal. 
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Slide 17 discusses the distinction between Discrete vs. Continuous 
Fluorescence, which depends on the nature of the lower state involved in the 
emission. 



1. If the fluorescence transition occurs from a bound excited state to a Bound 

lower state 𝐸i, it produces discrete line fluorescence. Just like in 
absorption, if both the initial (upper) and final (lower) states are quantized and 
bound, the energy difference is fixed, leading to the emission of photons at 
specific, sharp frequencies. This results in a spectrum of discrete emission 
lines. 

2. However, if the fluorescence transition occurs from a bound excited state 

to a Repulsive (dissociative) lower state 𝐸i, or to a continuum of states 

above a dissociation or ionization limit, it produces broad continuum 
fluorescence. 

* A repulsive state is one where there is no potential energy minimum to 
support bound vibrational levels; as soon as the molecule enters such a 
state, it flies apart. 

* If the transition terminates above the dissociation limit of a bound lower 
state potential, the molecule also dissociates. In both cases, the energy of 
the final state is not quantized but can take on a continuous range of values 
(corresponding to the kinetic energy of the fragments). This leads to the 
emission of photons over a continuous range of frequencies, resulting in a 
broad, featureless emission band. 

* An interesting point for continuum fluorescence, especially in molecules: 

The Transition probability versus internuclear distance 𝑅 determines how 
vibrational wavefunction nodes imprint modulation on the continuum. 
According to the Franck-Condon principle, electronic transitions are "vertical" 
on a potential energy diagram. The intensity of the emission at a particular 
frequency in the continuum is related to the square of the overlap integral 
between the vibrational wavefunction of the bound upper state and the 
(continuum) wavefunction of the repulsive lower state. If the upper state 
vibrational wavefunction has nodes (points where its amplitude is zero), this 



can lead to minima or characteristic oscillatory structures in the intensity 
profile of the continuous fluorescence spectrum. This is often called the 
"reflection principle" because the continuum spectrum can appear to reflect 
the shape of the upper state vibrational wavefunction. 
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This diagram beautifully illustrates the concept of Bound Upper State to 
Repulsive Lower State Fluorescence. 

We are looking at a potential energy diagram where the vertical axis is 

Potential Energy, 𝑉(𝑅), and the horizontal axis is Internuclear Distance, 𝑅 
(for a diatomic molecule). 

* The Upper electronic state, 𝐸k (Bound), is represented by the blue curve, 
which shows a typical potential energy well. This well can support discrete 
vibrational energy levels, a few of which are indicated by horizontal lines 
within the well. The minimum of this well is at an equilibrium internuclear 

distance 𝑅e. 

* The Lower electronic state, 𝐸i (Repulsive), is represented by the red curve. 

This curve is purely repulsive; it continuously decreases in energy as 𝑅 
increases, meaning that if the molecule finds itself on this potential energy 
surface, the two atoms will repel each other and the molecule will dissociate. 

Now, imagine the molecule is initially excited to one of the vibrational levels in 

the upper bound state 𝐸k. From there, it can undergo fluorescence by 

transitioning down to the lower repulsive state 𝐸i. These transitions are shown 

by the vertical green arrows, originating from different points along the upper 
potential well (representing the classical turning points of a particular 
vibrational level, or more accurately, regions where the vibrational 
wavefunction has significant amplitude). 



Because the lower state 𝐸i is repulsive, for any 𝑅 value where the transition 
terminates, the molecule flies apart, and the energy released as fluorescence 
(the length of the green arrow) plus the kinetic energy of the fragments equals 
the energy of the upper vibrational level relative to the separated atoms limit 
of the lower state. Since the kinetic energy of the fragments can be 
continuous, the emitted photon energy can also be continuous. 

This results in Fluorescence (Continuum), a broad emission spectrum, as 
indicated. The intensity distribution of this continuum will reflect the 
projection of the upper state vibrational wavefunction onto the lower 
repulsive curve, according to the Franck-Condon principle. 
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Slide 18 

Slide 18 presents a Case Study: the NaK Molecule (Sodium-Potassium) 

and a transition from a 3𝛱 state to a 3𝛴 state (triplet 𝛱 to triplet 𝛴 electronic 
states). This is an example of molecular fluorescence that can exhibit both 
discrete and continuous features. 

The Upper state involved is a specific bound vibrational level within the 3𝛱 
electronic state, which is populated by excitation with an Argon-ion laser. 
Argon-ion lasers have several discrete emission lines, and one of these can 
be chosen to selectively pump the NaK molecules to a particular rovibrational 

level of the 3𝛱 state. 

The Lower electronic state is the 3𝛴 state. This state is described as having 

a shallow van der Waals well, with its dissociation limit, 𝐷0, lying just above 

some of its lower vibrational energy levels 𝐸i. A van der Waals well is typically 

much shallower and has a larger equilibrium internuclear distance than a 
normal chemical bond. 



Now, depending on the energy of the emitting vibrational level in the upper 3𝛱 

state relative to the features of the lower 3𝛴 state: 

If the transition from the upper state terminates on the High-energy part of 

the lower 3𝛴 potential, specifically to energies 𝐸k that are above the 

dissociation limit 𝐷0 of this lower state, then this results in continuum 

fluorescence. The molecule dissociates upon emission. (Here, 𝐸k seems to 

refer to the energy of the emitted photon relative to the bottom of the lower 

state, or perhaps 𝐸k is the energy of the upper level, and the transition energy 

is such that it lands above 𝐷0). 

Conversely, if the transition terminates on the Low-energy part of the lower 

3𝛴 potential, into one of the bound vibrational levels within its shallow well 

(i.e., the transition energy results in a final state energy 𝐸k that is less than 𝐷0), 
then this results in discrete bound-bound lines. 

For the continuum part of the fluorescence, the Continuum intensity is 
modulated by the overlap integral between the vibrational wavefunction of 

the initial (upper 3𝛱) state and the continuum wavefunctions of the final 

(lower 3𝛴) dissociative state. This is the Franck-Condon effect we discussed. 

This example beautifully illustrates how a single excited state can lead to both 
discrete and continuous emission features, depending on the nature of the 
lower potential energy surface it transitions to. 
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This slide provides the mathematical expression that governs the intensity of 
these spectral features, which we've alluded to – the Franck-Condon 
principle. 

The intensity of fluorescence at a given frequency 𝜈, denoted 𝐼(𝜈), is 
proportional to the square of the absolute value of the overlap integral 



between the upper vibrational wavefunction and the lower state 
wavefunction: 

𝐼(𝜈) ∝ |⟨𝜓vib
upper

∣ 𝜓𝐸
lower⟩|

2
. 

Let's break this down: 

• 𝜓vib
upper: This is the vibrational wavefunction of the specific vibrational level 

in the upper electronic state from which the emission originates. It's a 

function of the internuclear coordinates (like 𝑅 for a diatomic). 

• 𝜓𝐸
lower: This is the wavefunction of the final state in the lower electronic 

state.   • If the lower state is bound, then 𝜓𝐸
lower would be a specific 

vibrational wavefunction of that bound state.   • If the lower state is 

repulsive or a continuum, then 𝜓𝐸
lower is a continuum wavefunction 

characterized by the energy 𝐸 of the dissociating fragments. 

• The notation ⟨ | ⟩ represents the integral of the product of these two 

wavefunctions (with the complex conjugate of the first, if they are complex) 
over all spatial coordinates. This is the overlap integral. 

• The square of the absolute value of this overlap integral gives a quantity 
proportional to the transition probability. 

The slide also reiterates an important consequence: where nodes in 𝜓vib
upper 

exist, they create minima in the fluorescence intensity. A node is a point 
where the wavefunction passes through zero. If the upper state vibrational 

wavefunction has a node at a particular internuclear distance 𝑅, the overlap 
integral with lower state wavefunctions that are primarily localized around 

that 𝑅 value will be small, leading to a dip or minimum in the fluorescence 

spectrum corresponding to transitions around that 𝑅. 
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Now we introduce a very important concept on Slide 19: the Oscillator 

Strength, denoted 𝑓𝑖𝑘. This concept serves as a bridge between classical 
ideas of absorption and the quantum mechanical reality. 

* Let's start with a Classical Lorentz oscillator model. Imagine a single 

electron of mass 𝑚e and charge −𝑒, bound to an atomic core by a spring-like 

force. This electron will have a natural oscillation frequency, 𝜔0. If light of this 

frequency 𝜔0 is incident on this classical oscillator, it will be driven into 
resonance and will absorb power from the light field. By definition, such an 

ideal classical oscillator is assigned an oscillator strength 𝑓 = 1. It's 

considered a "perfect" absorber at its resonant frequency. 

* Now, a Real atom is more complex. An electron in a real atom can make 
transitions between many different allowed initial states 'i' and final states 'k'. 
The total "absorbing power" of the electron is, in a sense, distributed among 

all these possible transitions. The oscillator strength, 𝑓𝑖𝑘, for a specific 
quantum mechanical transition from state 'i' to state 'k', quantifies what 
fraction of the absorbing power of a single classical electron is associated 
with this particular transition. 

* So, we Define a dimensionless quantity 𝑓𝑖𝑘  such that 𝑁 × 𝑓𝑖𝑘 classical 

oscillators would mimic the absorption strength of 𝑁 atoms undergoing the 

specific transition i to k. In other words, 𝑓𝑖𝑘  tells us the "effective number" of 
classical oscillators that corresponds to the quantum mechanical transition i 

to k. If 𝑓𝑖𝑘  is, say, 0.5, then the i-to-k transition is half as strong as a classical 

oscillator. If it's 0.01, it's much weaker. Strong, allowed transitions can have 

𝑓𝑖𝑘  values approaching 1. 
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Continuing with the oscillator strength concept: 



The 𝑁 times 𝑓𝑖𝑘  classical oscillators are conceptualized to mimic the 

absorption strength of 𝑁 real atoms when they are undergoing the specific 

transition from state 𝑖 to state 𝑘. A crucial property of oscillator strengths is 
the Sum rule, specifically the Thomas-Reiche-Kuhn sum rule. This rule 

states that for a given initial state 𝑖, the sum of all oscillator strengths, 𝑓𝑖𝑘, for 

transitions to all possible final states 𝑘 (including discrete excited states and 

the ionization/dissociation continuum) is equal to a constant. For a one-

electron atom, this sum is 1. 

Mathematically: 

∑𝑓𝑖𝑘
𝑘

= 1 

This equation is shown on the slide. The condition mentioned, "when 
summation includes continuum," is important because transitions to the 
continuum (ionization for atoms, dissociation for molecules) also contribute 
to the total oscillator strength. 

For multi-electron atoms, the sum rule is slightly more complex: the sum of 
oscillator strengths from a given level is equal to the number of optically 

active electrons (valence electrons) involved. The slide simplifies this to 1, 

which is appropriate for a single active electron system or if 𝑓𝑖𝑘  is understood 
as normalized per electron. 

The significance of this sum rule is profound: it implies a sort of "conservation 
of absorption strength." The total ability of an electron to absorb light is fixed, 
and it's just distributed among various possible transitions. If one transition is 

very strong (large 𝑓𝑖𝑘), others must necessarily be weaker to maintain the 

sum. 
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Slide 20: 



Slide 20 delves into the Physical Meaning and Sign of 𝑓𝑖𝑘, the oscillator 
strength. 

* For absorption, which involves a transition from a lower energy state to an 

upper energy state (lower arrow right upper), the oscillator strength 𝑓𝑖𝑘  is 

greater than 0 (positive). This makes sense, as absorption removes energy 
from the light field. 

* For stimulated emission, which is a transition from an upper energy state 
to a lower energy state (upper arrow right lower), the oscillator strength for 

this process, denoted 𝑓𝑘𝑖  (for emission from 𝑘 to 𝑖), is related to the 

absorption oscillator strength 𝑓𝑖𝑘  by: 

𝐟𝐤𝐢 = −𝐟𝐢𝐤 

It's negative because this process decreases the net absorption of the 
field energy; in fact, it adds energy to the field coherently. If we consider the 
net change in field energy, absorption is positive (loss for field) and stimulated 
emission is negative (gain for field from the perspective of net absorption). 
Note that often oscillator strengths are defined as intrinsically positive for 
both absorption and emission, and their relationship involves degeneracies: 

𝑔i𝑓𝑖𝑘 (absorption) = 𝑔k𝑓𝑘𝑖  (emission). The convention here 𝑓𝑘𝑖 = −𝑓𝑖𝑘  is useful 
when considering net energy exchange with a field that can cause both 
processes. 

* The magnitude of 𝑓𝑖𝑘  is also significant: A Large 𝑓𝑖𝑘  implies a strong 

transition. Strong transitions are characterized by: 

* A short radiative lifetime of the upper state (if 𝑓𝑖𝑘  refers to absorption to 

that state, then 𝑓𝑘𝑖  for emission from it will also be large, leading to a high 
Einstein A coefficient). The atom/molecule doesn't stay in the excited state for 
long. 



* A correspondingly broad natural linewidth. The natural linewidth is 
inversely proportional to the lifetime, due to the energy–time uncertainty 
principle. So, a short lifetime means a larger uncertainty in energy, hence a 
broader line. 

* Units: As mentioned before, the oscillator strength 𝑓𝑖𝑘  is none 
(dimensionless). This makes it a convenient, universal measure for 
comparing transition strengths across different atoms, molecules, and 
spectral regions. 
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Slide 21: 

Slide 21 gives a concrete Example: Sodium, specifically the transition 

3 𝑠 2𝑆1

2

 to 3 𝑝 2𝑃𝐽. This refers to the famous sodium D-lines. 

The ground state of sodium is 3 𝑠, which is a 2𝑆1

2

 state (doublet S one-half). 

The first excited p-states are 3 𝑝, which are split by fine structure into two 

levels: 2𝑃1

2

 (doublet P one-half) and 2𝑃3

2

 (doublet P three-halves). Transitions 

from the ground state to these two P levels give the D1 and D2 lines, 
respectively. 

* The slide notes the Fine-structure split and gives the oscillator strengths 

for these two transitions: * For the transition to the 𝐽 =
1

2
 upper state (i.e., 

3 𝑠 2𝑆1

2

→ 3 𝑝 2𝑃1

2

, which is the D1 line), the oscillator strength 𝑓 is 

approximately 0.33 (roughly one-third). * For the transition to the 𝐽 =
3

2
 upper 

state (i.e., 3 𝑠 2𝑆1

2

→ 3 𝑝 2𝑃3

2

, which is the D2 line), the oscillator strength 𝑓 is 

approximately 0.66 (roughly two-thirds). 

* Together, the sum of these oscillator strengths is 0.33 + 0.66 = 0.99, 

which is approximately equal to 1. This is a beautiful experimental 



confirmation of the Thomas-Reiche-Kuhn sum rule for the single valence 

electron of sodium. The sum of oscillator strengths for transitions from the 3 𝑠 

ground state to these first excited 3 𝑝 states nearly exhausts the total 

expected sum of 1. 

* The Remaining less than 1% of the oscillator strength for transitions from 

the 3 𝑠 state is distributed among transitions to higher p-states (4 𝑝, 5 𝑝, 
etc.), other types of transitions (e.g., to continuum states via photoionization), 
and transitions in the far-UV lines. But the vast majority of the absorption 
strength from the ground state is concentrated in these D-lines. 
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This slide highlights the direct Consequence of the large oscillator strengths 
of the sodium D-lines: 

- The Na D lines dominate the optical absorption of sodium vapour. 

Because these transitions (3 𝑠 to 3 𝑝) have oscillator strengths that sum to 

nearly 1, and they originate from the ground state (which is overwhelmingly 
populated at typical temperatures), they are by far the strongest absorption 
features for sodium atoms in the visible and near-UV regions. 

This is why: 

- Sodium vapor lamps emit their characteristic yellow light (which are these 
D-lines in emission). - Sodium is so easily detected in flames or astronomical 
objects via absorption or emission spectroscopy using these lines. - Even 
trace amounts of sodium can produce significant absorption or emission at 
these wavelengths. 

The concept of oscillator strength provides a quantitative explanation for why 
certain spectral lines are so prominent. 
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Slide 22 

Slide 22 shows how we can Incorporate the oscillator strength, 𝑓𝑖𝑘, Into 
expressions for Absorption and Dispersion. These equations arise from the 
classical Lorentz model of an atom interacting with an electromagnetic wave, 
but with the strength of the interaction now quantified by the quantum 

mechanical 𝑓𝑖𝑘. 

* First, the Macroscopic absorption coefficient for stationary atoms. The 

slide denotes this as 𝜅i(𝜔). This 𝜅 is related to the imaginary part of the 

complex refractive index (often 𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝑛′ − 𝑖𝜅). The absorption coefficient 

𝛼 (from Beer's Law) is related to this 𝜅 by 𝛼 =
2𝜔𝜅

𝑐
. 

The expression for 𝜅i(𝜔) is: 

𝜅i(𝜔) =
𝑁i𝑒

2

2𝜖0𝑚e
⋅

𝜔𝑓𝑖𝑘𝛾k

((𝜔k
2 − 𝜔2)2 + 𝛾k

2𝜔2)
. 

Let's break this down: 

* `𝑁i`: Number density of atoms in the initial state 𝑖. * `𝑒 

𝜖0 

𝑚e 

𝜔 

𝑓𝑖𝑘`: Oscillator strength for the transition from state 𝑖 to state 𝑘. * `𝛾k`: 

Damping constant, related to the FWHM of the natural lineshape of state 𝑘. * 

`𝜔k`: Resonant angular frequency of the transition 𝑖 to 𝑘. 

The denominator structure ((𝜔k
2 − 𝜔2)2 + 𝛾k

2𝜔2) is characteristic of a 
damped harmonic oscillator's response. This expression shows how the 

absorption strength (via 𝑓𝑖𝑘) and line shape (via 𝛾k and 𝜔k) are determined. 



* Next, the Real part of the refractive index deviation from unity, denoted 

𝑛′i(𝜔). The refractive index itself would be 𝑛(𝜔) = 𝑛′i(𝜔). 

𝑛′i(𝜔) = 1 +
𝑁i𝑒

2

2𝜖0𝑚e
⋅

(𝜔k
2 − 𝜔2)𝑓𝑖𝑘

((𝜔k
2 − 𝜔2)2 + 𝛾k

2𝜔2)
. 

This expression describes how the phase velocity of light changes as it passes 
through the medium, particularly near an absorption resonance. The 
characteristic "S-shape" of anomalous dispersion around a resonance is 

captured by this formula. Again, 𝑓𝑖𝑘  determines the magnitude of this effect. 

These two equations are fundamental in describing how a material responds 

optically to light, and 𝑓𝑖𝑘  is central to that response. 
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Continuing with the discussion of the expressions for absorption and 
dispersion: 

* The term 𝛾k that appears in these equations is the full width at half 
maximum (FWHM) of the natural line shape. This natural broadening is due 

to the finite lifetime of the excited state 𝑘, a consequence of spontaneous 

emission, and is related to the Einstein A coefficient. A larger 𝛾k means a 

broader line. 

* An important simplification occurs Close to resonance. That is, when the 

driving frequency 𝜔 is very close to the resonant frequency 𝜔k, such that the 

absolute difference |𝜔 − 𝜔k| is much, much less than 𝜔k. In this near-
resonance regime, the somewhat complex frequency-dependent 

denominators in the expressions for absorption (𝜅) and dispersion (𝑛′) can be 

simplified. Specifically: 

* 

𝜔k
2 − 𝜔2 = (𝜔k − 𝜔)(𝜔k + 𝜔) ≈ (𝜔k − 𝜔)(2𝜔k) 



* And in the damping term, 

𝛾k
2𝜔2 ≈ 𝛾k

2𝜔k
2. 

When these approximations are made, the expressions for absorption (𝜅) and 

dispersion (𝑛′) simplify to Lorentzian forms. The absorption profile becomes 

a Lorentzian centered at 𝜔k with FWHM 𝛾k. The dispersion profile takes on the 
characteristic derivative-like shape of a Lorentzian dispersion. This Lorentzian 
approximation is very widely used when analyzing spectra near the center of 
an isolated absorption line. 
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Now we briefly preview another crucial factor influencing spectral lines: the 
Influence of Thermal Motion, which leads to Doppler Broadening. This is 
Slide 23. 

* In a gas at a finite temperature 𝑇, the atoms or molecules are in constant 
random motion. Their velocities are described by the Maxwellian velocity 
distribution. 

* Because of this motion, an atom moving with a velocity component 𝑣z along 

the direction of light propagation will experience a Doppler shift. If the atom 
is moving towards the light source (or detector), it sees the light frequency 
blue-shifted (higher). If it's moving away, it sees it red-shifted (lower). The 

observed (or emitted) frequency in the lab frame, 𝜔′, is related to the resonant 

frequency in the atom's rest frame, 𝜔, by: 

𝜔′ = 𝜔 (1 +
𝑣z

𝑐
) 

where 𝑐 is the speed of light. 𝑣z is positive if moving towards the detector for 
an emitter, or away from the source for an absorber. 

* The overall observed spectral line shape for an ensemble of moving atoms is 
then a Convolution of the Lorentzian (natural) line shape with the 



Gaussian (Doppler) line shape. The Lorentzian arises from the lifetime 

broadening (𝛾k we discussed). The Gaussian arises from the Maxwellian 
distribution of velocities, which translates into a Gaussian distribution of 
Doppler shifts. The resulting combined profile is known as a Voigt profile. The 

effective width of this Voigt profile, 𝛾Voigt, can be approximated by the square 

root of the sum of the squares of the Lorentzian width (𝛾k) and a term 
representing the Doppler width: 

𝛾Voigt ≈ √𝛾k
2 + (

𝜔k 𝑣rms

𝑐
)
2

 

Here, 𝑣rms is the root-mean-square velocity of the atoms, which depends on 

temperature and mass. The term (𝜔k 𝑣rms

𝑐
) is characteristic of the Doppler 

width (FWHM of the Gaussian component). This approximation is good when 
one width dominates, or for adding variances. 

Doppler broadening is often the dominant broadening mechanism for atomic 
and molecular transitions in low-pressure gases at visible and UV 
wavelengths. 
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Just a quick note following the preview of Doppler broadening: 

* Later, in Section 3.2 of this course, we will quantify these line 
broadening effects with exact formulas. 

So, the discussion of the Voigt profile and its width on the previous slide was a 
brief introduction. We will delve into the mathematical details of line shapes, 
including natural broadening, Doppler broadening, collisional (pressure) 
broadening, and the Voigt profile more rigorously in Chapter 3. For now, it's 
important to be aware that thermal motion significantly affects the observed 
widths and shapes of spectral lines. 
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Slide 24 

Slide 24 outlines several Experimental Routes for Measuring Oscillator 

Strengths (𝑓𝑖𝑘). Since 𝑓𝑖𝑘  is such a fundamental quantity, determining its 
value experimentally is very important. 

1. Absorption or dispersion profile area measurement: 

We've seen equations (like on Slide 43) that relate the absorption coefficient 𝜅 

(and thus 𝛼) and the refractive index 𝑛′ to the oscillator strength 𝑓𝑖𝑘. By 

carefully measuring the shape of an absorption line (𝛼(𝜔)) or the dispersion 

curve (𝑛′(𝜔)) across a resonance, one can integrate these profiles. The area 

under the absorption profile, for example, ∫ 𝛼(𝜔) 𝑑𝜔, can be directly related 

to 𝑁i𝑓𝑖𝑘 through the previously derived equations. If 𝑁i (the number density 

of absorbers) is known, 𝑓𝑖𝑘  can be determined. 

2. Radiative lifetime measurement: 

The radiative lifetime of an excited state 𝑘, denoted 𝜏k, is the average time an 

atom/molecule spends in that state before spontaneously emitting a photon. 

This lifetime is directly related to the Einstein 𝐴 coefficient for spontaneous 

emission. If state 𝑘 can only decay to a single lower state 𝑖, then the Einstein 

𝐴 coefficient for that specific transition, 𝐴𝑘𝑖, equals 1

𝜏k
. (If there are multiple 

decay channels, then 1
𝜏k

 is the sum of 𝐴 coefficients for all channels). 

There is a direct theoretical relationship between the Einstein 𝐴 coefficient, 

𝐴𝑘𝑖, and the oscillator strength, 𝑓𝑖𝑘  (for absorption from 𝑖 to 𝑘, related by 

𝑔i𝑓𝑖𝑘 = 𝑔k(constant)𝐴𝑘𝑖). So, by measuring the lifetime (e.g., using time-

resolved fluorescence decay), one can determine 𝐴𝑘𝑖  and then calculate 𝑓𝑖𝑘. 

3. Branching-ratio spectroscopy in combination with a known lifetime 𝜏k: 



If an excited state 𝑘 can decay to several different lower states (𝑖, 𝑗, 𝑙, …), the 

branching ratio for a particular decay channel (say, 𝑘 to 𝑖) is the fraction of 

decays that proceed through that channel: 𝐴𝑘𝑖

(𝐴𝑘𝑖+𝐴𝑘𝑗+𝐴𝑘𝑙+⋯)
. The total decay 

rate is 1
𝜏k

= (𝐴𝑘𝑖 + 𝐴𝑘𝑗 + 𝐴𝑘𝑙 + ⋯). 

If one measures the total lifetime 𝜏k (giving the sum of 𝐴's) and also measures 
the relative intensities of the fluorescence lines (which are proportional to the 

𝐴 coefficients times populations, or just 𝐴's if from the same upper state), one 

can determine the individual 𝐴𝑘𝑖  values. Each 𝐴𝑘𝑖  can then be converted to an 

oscillator strength 𝑓𝑖𝑘. 

These methods provide different pathways to experimentally access the 

fundamental quantity 𝑓𝑖𝑘. 
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A fourth experimental route for measuring oscillator strengths is: 

4. Laser-induced fluorescence (LIF) with absolute intensity calibration. 

In this method, a laser is used to excite atoms or molecules to a specific 
upper state. The subsequent fluorescence emission is collected and its 
intensity is measured. If the measurement of the fluorescence intensity is 
absolute (i.e., calibrated to give the actual number of photons emitted per 
unit time per unit volume), and if the number density of excited atoms created 
by the laser is known or can be determined, then one can directly calculate 

the Einstein 𝐴 coefficient for the observed fluorescence transition. 

This 𝐴 coefficient is then related to the oscillator strength 𝑓𝑖𝑘, as discussed 

before. 

Achieving accurate absolute intensity calibration can be challenging, 
requiring careful characterization of the collection optics efficiency, detector 



quantum efficiency, and the geometry of the fluorescence collection. 
However, when done carefully, it's a powerful method. 
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This slide shows a schematic diagram of an Experimental Setup for 

Measuring Oscillator Strength (𝑓) via Laser Absorption Spectroscopy. This is 
a common and fundamental technique. 

Let's trace the components: 

* At the far left, we have a Tunable Laser. This provides the source of 
monochromatic light whose wavelength can be scanned across the 
absorption line of interest. 

* The laser beam passes through a Beam Splitter (BS). A portion of the beam 
(the main beam) goes straight through towards the sample. This beam passes 
through an I Detector (Intensity Detector) before* the sample, which can be 

used to measure the incident intensity, 𝐼0, or this 𝐼0 detector could be after 
the beam splitter in the reference arm. The diagram shows an "I Detector" 

after the sample, so let's assume 𝐼0 is measured by the reference arm. * The 
beam then passes through the Absorption Cell. This cell contains the sample 

(e.g., a gas) characterized by its number density 𝑁 (or 𝑁i) and path length 𝐿. * 

After the absorption cell, the transmitted light intensity, 𝐼, is measured by 
another I Detector. 

* The second beam path, created by the beam splitter, forms a reference arm. 
This beam goes directly to an I Detector, labeled as "Reference Cavity 
(Frequency Markers)" feeding into a "Cavity Detector". More typically, a small 
portion of the main laser beam is split off and sent through a Reference 
Cavity, such as a Fabry-Pérot etalon. As the laser frequency is scanned, this 
cavity transmits light only at specific resonant frequencies, providing a set of 



Frequency Markers. A Cavity Detector measures these transmission peaks. 
This allows for precise calibration of the laser frequency scan. 

* The signals from all detectors (measuring 𝐼, 𝐼0 implicitly or via reference, and 
frequency markers) are fed into a Data Acquisition & Control system. This 
system records the data and may also control the laser tuning. 

By measuring 𝐼(𝜈) and 𝐼0(𝜈) as a function of frequency (𝜈), one can calculate 

the absorbance or the absorption coefficient 𝛼(𝜈). Integrating 𝛼(𝜈) across the 

line profile, and knowing 𝑁 and 𝐿, allows for the determination of the 

oscillator strength 𝑓, as per the relationships we've discussed. 
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Slide 25 presents the Starting Point for deriving the 𝐵𝑖𝑘 − 𝜎𝑖𝑘  Relation, that 

is, the relationship between the Einstein 𝐵 coefficient and the absorption 
cross section. 

We consider a dilute sample, which implies that the population of the upper 

state, 𝑁k, is approximately zero (𝑁k ≈ 0). In this case, stimulated emission 

can be neglected. The excitation rate, or more accurately, the power 

absorbed 𝑑𝑊𝑖𝑘

𝑑𝑡
 due to stimulated absorption, is given by: 

𝑑𝑊𝑖𝑘

𝑑𝑡
= 𝑁i 𝐵𝑖𝑘  𝜌(𝜔) ℏ𝜔 𝛥𝑉. 

Let's break this down: 

- 𝑑𝑊𝑖𝑘

𝑑𝑡
: Power absorbed in volume 𝛥𝑉. 

- 𝑁i: Number density of atoms in the lower state 𝑖. 

- 𝐵𝑖𝑘: Einstein 𝐵 coefficient for stimulated absorption from 𝑖 to 𝑘 (defined here 

with respect to angular frequency energy density 𝜌(𝜔)). 



- 𝜌(𝜔): Spectral energy density of the incident radiation field at angular 

frequency 𝜔 (Energy per unit volume per unit angular frequency interval). 

- ℏ𝜔: Energy of a single photon. 

- 𝛥𝑉: Volume of the sample interacting with the radiation. 

This equation states that the absorbed power is proportional to the number of 

absorbers, the 𝐵 coefficient, the energy density of the field, and the photon 

energy. 

Next, the Plane wave energy density 𝜌(𝜔) is related to the spectral intensity 

𝐼(𝜔) (power per unit area per unit angular frequency for a beam) by: 

𝐼(𝜔) = 𝑐 𝜌(𝜔), 

where 𝑐 is the speed of light. This relationship allows us to switch between 

descriptions based on energy density (often used in theoretical derivations of 

𝐵 coefficients) and intensity (often measured in experiments). 

The Goal is to express 𝐵𝑖𝑘 in terms of the experimentally accessible 

absorption coefficient 𝛼𝑖𝑘  of 𝜔 (or the related absorption cross section 𝜎𝑖𝑘  of 

𝜔). This will provide a bridge between the fundamental Einstein coefficient 
and measurable quantities. 
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Slide 26 outlines the Full Derivation of Equation 2.64 (this equation number 
likely refers to a textbook). This derivation aims to connect the macroscopic 

absorption with the microscopic Einstein 𝐵 coefficient. 

1. Express absorbed power differential: 

The power absorbed from a beam of spectral intensity 𝐼(𝜔) within a spectral 

bandwidth 𝑑𝜔 as it passes through a sample of volume 𝛥𝑉 with an absorption 

coefficient 𝛼𝑖𝑘(𝜔) is given by: 



𝑑𝑃(𝜔) = 𝐼(𝜔) × 𝛼𝑖𝑘(𝜔) × 𝛥𝑉 × 𝑑𝜔. 

Here, 𝑑𝑃(𝜔) is the power absorbed from the spectral interval 𝑑𝜔. 𝛼𝑖𝑘(𝜔) is 

the absorption coefficient (per unit length), so 𝛼𝑖𝑘(𝜔) × 𝛥𝑉 implicitly involves 

multiplying by a length if 𝛥𝑉 is Area × length. More directly, 

\[dP(\omega) = I(\omega) \alpha_{ik}(\omega) \text{Area} d(\text{length}) 
d\omega.\] 

So power absorbed in volume 𝛥𝑉 from bandwidth 𝑑𝜔 is 

\[\frac{I(\omega) \alpha_{ik}(\omega) \Delta V d\omega}{\text{Area} 
d(\text{length})} \text{Area} * d(\text{length}).\] 

Yes, this is consistent. 

2. Integrate across the full spectral line: 

To find the total power absorbed, 𝑃𝑡𝑜𝑡, we integrate this differential power 

over all frequencies (or angular frequencies) where 𝛼𝑖𝑘(𝜔) is non-zero: 

𝑃𝑡𝑜𝑡 = 𝛥𝑉 × ∫ 𝐼
+∞

0

(𝜔) × 𝛼𝑖𝑘(𝜔) × 𝑑𝜔. 

The integration limit can be taken from 0 to +∞ as alpha is typically only non-

zero around positive resonant frequencies. If 𝐼(𝜔) is broadband and varies 

slowly across the absorption line, it can be approximated as 𝐼(𝜔𝑖𝑘) and taken 
out of the integral. 

3. Equate with Einstein form at steady state: 

This macroscopic 𝑃𝑡𝑜𝑡 must be equal to the power absorbed as described by 

the Einstein 𝐵 coefficient. The Einstein form for absorbed power is given as: 

𝑁i × 𝐵𝑖𝑘 × 𝜌(𝜔𝑖𝑘) × ℏ𝜔𝑖𝑘 × 𝛥𝑉. 

This is the expression we saw on the previous slide (assuming 𝑁k = 0). It's 
stated that this equating happens "at steady state where stimulated rate 



equals integrated absorption." This phrasing usually applies when 

considering saturation, but here, for 𝑁k = 0, it simply means equating the two 
descriptions of absorbed power. We are equating the total power absorbed, 

integrated over the line, with the power absorption rate described by the 𝐵 

coefficient acting with the energy density at the line center (or assuming 𝐵 

already incorporates the line shape if 𝜌 is broadband). 

This procedure will allow us to solve for 𝐵𝑖𝑘. 
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Following the steps from the previous slide, we now Solve for 𝐵𝑖𝑘. 

By equating the two expressions for total absorbed power (𝑃tot from 

integrating 𝐼 𝛼 𝑑𝑉 𝑑𝜔, and 𝑃tot from the Einstein 𝐵 coefficient formulation), 

and using the relation 𝐼(𝜔) = 𝑐 𝜌(𝜔), we arrive at the following expression for 

𝐵𝑖𝑘: 

𝐵𝑖𝑘 =
2𝜋𝑐

𝑁i ℏ 𝜔𝑖𝑘
∫ 𝛼𝑖𝑘

∞

0

(𝜔) 𝑑𝜔. 

Let's analyze this expression and the note about the 2𝜋 factor. 

If 𝐵𝑖𝑘 here is 𝐵𝑖𝑘
(𝜔) (defined for angular frequency energy density 𝜌𝜔), and we 

use 𝛼𝑖𝑘(𝜔) = 𝑁i 𝜎𝑖𝑘(𝜔) (for 𝑁k = 0), then the previous derivation (page 25) 

yielded: 

𝐵𝑖𝑘
(𝜔)

=
𝑐

ℏ 𝜔𝑖𝑘
∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔 =

𝑐

𝑁i ℏ 𝜔𝑖𝑘
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔. 

This form does not have the 2𝜋 factor. 

The slide provides a note: "where factor 2𝜋 converts from 𝑑𝜈 to 𝑑𝜔 = 2𝜋 𝑑𝜈." 

This suggests that the 𝐵𝑖𝑘 being solved for might be 𝐵𝑖𝑘
(𝜈) (for frequency 𝜈 and 

energy density 𝜌𝜈), while the integral is over 𝑑𝜔. 



We know that 𝐵𝑖𝑘
(𝜔)

= 𝐵𝑖𝑘
(𝜈) is not the standard relation. The rates must be 

equal: 

𝐵𝑖𝑘
(𝜈)

 𝜌𝜈 = 𝐵𝑖𝑘
(𝜔)

 𝜌𝜔 . 

Since 𝜌𝜈  𝑑𝜈 = 𝜌𝜔  𝑑𝜔 and 𝑑𝜔 = 2𝜋 𝑑𝜈, we have 𝜌𝜈 = 2𝜋 𝜌𝜔. 

Therefore, 

𝐵𝑖𝑘
(𝜈)

 (2𝜋 𝜌𝜔) = 𝐵𝑖𝑘
(𝜔)

 𝜌𝜔 , 

which implies 

𝐵𝑖𝑘
(𝜔)

= 2𝜋 𝐵𝑖𝑘
(𝜈)

. 

So, if the 𝐵𝑖𝑘 on the slide is 𝐵𝑖𝑘
(𝜈), then: 

𝐵𝑖𝑘
(𝜈)

=
𝐵𝑖𝑘

(𝜔)

2𝜋
=

1

2𝜋
 

𝑐

𝑁i ℏ 𝜔𝑖𝑘
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔. 

This form has 1

2𝜋
, not 2𝜋. 

However, if the integral was ∫ 𝛼𝑖𝑘(𝜈) 𝑑𝜈, then: 

𝐵𝑖𝑘
(𝜈)

=
𝑐

𝑁i ℎ 𝜈𝑖𝑘
∫ 𝛼𝑖𝑘(𝜈) 𝑑𝜈. 

And 

∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔 = ∫ 𝛼𝑖𝑘(𝜈) 
𝑑𝜔

𝑑𝜈
 𝑑𝜈 = 2𝜋∫ 𝛼𝑖𝑘(𝜈) 𝑑𝜈. 

So 

∫ 𝛼𝑖𝑘(𝜈) 𝑑𝜈 =
1

2𝜋
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔. 

Substituting this into the 𝐵𝑖𝑘
(𝜈) expression: 



𝐵𝑖𝑘
(𝜈)

=
𝑐

𝑁i ℎ 𝜈𝑖𝑘
⋅

1

2𝜋
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔. 

Since ℎ𝜈𝑖𝑘 = ℏ 𝜔𝑖𝑘, this is 

𝐵𝑖𝑘
(𝜈)

=
𝑐

𝑁i ℏ 𝜔𝑖𝑘  2𝜋
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔. 

This still results in 1

2𝜋
. 

The expression on the slide, 

𝐵𝑖𝑘 =
2𝜋𝑐

𝑁i ℏ 𝜔𝑖𝑘
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔, 

appears to be for a 𝐵𝑖𝑘 that is (2𝜋)2 times larger than my derived 𝐵𝑖𝑘
(𝜈) in terms 

of the 𝜔 integral, or there's a specific convention for 𝐵𝑖𝑘 and 𝛼𝑖𝑘  being used. 

Given the final well-known result on slide 54, we should aim for the standard 

𝐵𝑖𝑘
(𝜔). The formula for 𝐵𝑖𝑘

(𝜔) should be 

𝑐

𝑁i ℏ 𝜔𝑖𝑘
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔. 

The 2𝜋 factor here is likely an error or relates to a non-standard definition of 𝐵 

or 𝛼. For the purpose of this lecture, we will note this formula and proceed, as 
the final connection to oscillator strength is standard and correct. 
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Now, on Slide 27, we are Substituting the Lorentz Oscillator Model into our 

framework. This is a key step to connect the Einstein 𝐵𝑖𝑘 coefficient with the 

oscillator strength 𝑓𝑖𝑘. 

• The first step is to Insert 𝛼𝑖𝑘(𝜔) =
2𝜔

𝑐
𝜅𝑖(𝜔).   Here, 𝛼𝑖𝑘(𝜔) is the 

absorption coefficient, and 𝜅𝑖(𝜔) is the imaginary part of the complex 



refractive index, whose expression (containing 𝑓𝑖𝑘) was given on Slide 43.   

The expression for 𝜅𝑖(𝜔) from Slide 43 was:    

𝜅𝑖(𝜔) =
𝑁i𝑒

2

2𝜖0𝑚e
⋅

𝜔 𝑓𝑖𝑘  𝛾k

(𝜔k
2 − 𝜔2)2 + 𝛾k

2 𝜔2  

  So,    

𝛼𝑖𝑘(𝜔) =
2𝜔

𝑐
⋅

𝑁i𝑒
2

2𝜖0𝑚e
⋅

𝜔 𝑓𝑖𝑘  𝛾k

(𝜔k
2 − 𝜔2)2 + 𝛾k

2 𝜔2  

   

𝛼𝑖𝑘(𝜔) =
𝑁i𝑒

2

𝜖0𝑚e𝑐
⋅

𝜔2 𝑓𝑖𝑘  𝛾k

(𝜔k
2 − 𝜔2)2 + 𝛾k

2 𝜔2  

  This is a standard expression for the absorption coefficient from the 
Lorentz model. 

• Next, we need to Compute the integral ∫ 𝛼𝑖𝑘
+∞

0
(𝜔) 𝑑𝜔 analytically.   

This involves integrating the expression for 𝛼𝑖𝑘(𝜔) we just wrote down. This 
integral, while looking complicated, can be solved, often using 

approximations valid near resonance (where 𝜔 ≈ 𝜔k) or by contour 
integration.   A common approximation for the integral of a Lorentzian-like 

function   ∫
𝐴 𝛾

(𝜔0−𝜔)2+(𝛾/2)2
 𝑑𝜔 ≈ 𝐴𝜋.   The integral    

∫
𝜔2 𝛾k 𝑑𝜔

(𝜔k
2 − 𝜔2)2 + 𝛾k

2 𝜔2

∞

0

 

  when 𝛾k ≪ 𝜔k (narrow line approximation) evaluates to 𝜋/2.   So,    

∫ 𝛼𝑖𝑘

∞

0

(𝜔) 𝑑𝜔 ≈
𝑁i𝑒

2

𝜖0𝑚e𝑐
⋅ 𝑓𝑖𝑘 ⋅ 𝜔k

2⋅𝛾k ⋅ (integral part) 

  The actual result for the integral ∫ 𝛼𝑖𝑘
∞

0
(𝜔) 𝑑𝜔 is    



𝑁i𝜋𝑒2

2𝜖0𝑚e𝑐
 𝑓𝑖𝑘  

. 

• The slide presents an intermediate integral:   Integral from 0 to plus 

infinity of [ 𝜔 𝛾𝑖𝑘 𝑑𝜔

((𝜔𝑖𝑘
2 −𝜔2)

2
+

1

4
𝛾𝑖𝑘

2  𝜔2)
] equals 2𝜋 𝜔𝑖𝑘.   This specific integral form 

and its result 2𝜋 𝜔𝑖𝑘 are unusual and seem to be part of a very specific 

derivation path or contain typos. The standard integration of 𝛼(𝜔) from the 

Lorentz model gives the 𝑁i𝜋𝑒2

2𝜖0𝑚e𝑐
 𝑓𝑖𝑘 result. 

• The aim is to Obtain an elegant relationship between 𝐵𝑖𝑘 and 𝑓𝑖𝑘. 
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After performing the integration of 𝛼𝑖𝑘(𝜔) (which contains 𝑓𝑖𝑘) and 

substituting it into the expression for 𝐵𝑖𝑘
(𝜔) (which was 𝐵𝑖𝑘

(𝜔)
=

𝑐

𝑁iℏ𝜔𝑖𝑘
∫ 𝛼𝑖𝑘(𝜔) 𝑑𝜔), we arrive at the following fundamental and elegant 

relationship: 

𝐵𝑖𝑘
(𝜔)

=
𝜋𝑒2

2𝑚e𝜖0ℏ𝜔𝑖𝑘
𝑓𝑖𝑘  

Let's break down the terms in this crucial equation: 

• 𝐵𝑖𝑘
(𝜔): This is the Einstein B coefficient for stimulated absorption (or 

emission, related by degeneracies) for the transition i to k, defined with 

respect to the angular frequency energy density 𝜌(𝜔). 

• 𝜋: The mathematical constant pi. 

• 𝑒: The elementary charge. 

• 𝑚e: The mass of the electron. 



• 𝜖0: The permittivity of free space. 

• ℏ: The reduced Planck constant (h divided by 2𝜋). 

• 𝜔𝑖𝑘: The resonant angular frequency of the transition i to k. 

• 𝑓𝑖𝑘: The dimensionless oscillator strength of the transition i to k. 

This equation provides a direct link between the quantum mechanical 
Einstein B coefficient, which describes transition probabilities, and the semi-
classical oscillator strength, which quantifies the "strength" of a transition. It 

shows that 𝐵𝑖𝑘 is directly proportional to 𝑓𝑖𝑘. 

The slide also notes an Important conversion between B coefficients defined 

for angular frequency (𝜔) and those for linear frequency (𝜈): 

𝐵𝑖𝑘
(𝜈)

=
𝐵𝑖𝑘

(𝜔)

2𝜋
 

This conversion arises because the energy densities are related by 𝜌(𝜈) =

2𝜋𝜌(𝜔). 

To see this: the rate of transitions must be independent of the units used, so 

Rate = 𝐵𝑖𝑘
(𝜈)

𝜌(𝜈) = 𝐵𝑖𝑘
(𝜔)

𝜌(𝜔) 

Substituting 𝜌(𝜈) = 2𝜋𝜌(𝜔) gives 

𝐵𝑖𝑘
(𝜈)

(2𝜋𝜌(𝜔)) = 𝐵𝑖𝑘
(𝜔)

𝜌(𝜔) 

This implies 𝐵𝑖𝑘
(𝜔)

= 2𝜋𝐵𝑖𝑘
(𝜈), or 𝐵𝑖𝑘

(𝜈)
=

𝐵𝑖𝑘
(𝜔)

2𝜋
. This conversion is correct. 

This relationship between 𝐵𝑖𝑘 and 𝑓𝑖𝑘  is a cornerstone for linking theoretical 
calculations of transition strengths with experimental measurements. 
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Slide 28: 



Slide 28 introduces another important quantity related to the strength of an 

absorption line: the Integrated Absorption — Line Strength 𝑆𝑖𝑘. 

* We Define the line strength, 𝑆𝑖𝑘, as the integral of the absorption cross 

section, 𝜎𝑖𝑘, over the entire spectral line. It can be defined with respect to 

angular frequency 𝜔 or linear frequency 𝜈: 

𝑆𝑖𝑘 = ∫ 𝜎𝑖𝑘
+∞

0
(𝜔) 𝑑𝜔 𝑆𝑖𝑘 = ∫ 𝜎𝑖𝑘

+∞

0
(𝜈) 𝑑𝜈 

It's important to be careful here: 𝜎𝑖𝑘(𝜔) and 𝜎𝑖𝑘(𝜈) are different functions, 

related by 𝜎𝑖𝑘(𝜔) 𝑑𝜔 = 𝜎𝑖𝑘(𝜈) 𝑑𝜈. Since 𝑑𝜔 = 2𝜋 𝑑𝜈, it means 𝜎𝑖𝑘(𝜔) =
𝜎𝑖𝑘(𝜈)

2𝜋
. 

Therefore, 𝑆𝑖𝑘
(𝜔)

= ∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔 and 𝑆𝑖𝑘
(𝜈)

= ∫ 𝜎𝑖𝑘(𝜈) 𝑑𝜈 are related by 𝑆𝑖𝑘
(𝜔)

=

𝑆𝑖𝑘
(𝜈). This seems incorrect. 

Let's define 𝑆𝑖𝑘
(𝜔)

= ∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔 and 𝑆𝑖𝑘
(𝜈)

= ∫ 𝜎𝑖𝑘(𝜈) 𝑑𝜈. 

Since 𝜎𝑖𝑘(𝜔) 𝑑𝜔 = 𝜎𝑖𝑘(𝜈) 𝑑𝜈 is not true, but rather the number of absorbed 
photons in corresponding intervals should be proportional. 

The absorption cross section 𝜎 is an area. The integrated absorption cross 

section should have units of Area × Frequency. 

So, 𝑆𝑖𝑘
(𝜔) has units of meters squared times radians per second (m² rad/s). 

And 𝑆𝑖𝑘
(𝜈) has units of meters squared times Hertz (m² Hz), or equivalently 

meters squared per second (m² s⁻¹) since Hz is 𝑠−1. 

The relation is 𝑆𝑖𝑘
(𝜔)

= 2𝜋 𝑆𝑖𝑘
(𝜈). The slide equating them means 𝑆𝑖𝑘  is being 

used generically. 

* Now, the Relation to 𝐵𝑖𝑘
(𝜔). 

We had (from page 25, assuming ℎ𝜈 there meant ℏ𝜔𝑖𝑘): 



𝐵𝑖𝑘
(𝜔)

=
𝑐

ℏ𝜔𝑖𝑘
∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔. 

So, if 𝑆𝑖𝑘
(𝜔)

= ∫ 𝜎𝑖𝑘(𝜔) 𝑑𝜔, then: 

𝐵𝑖𝑘
(𝜔)

=
𝑐

ℏ𝜔𝑖𝑘
𝑆𝑖𝑘

(𝜔)
. 

The slide presents: 𝐵𝑖𝑘
(𝜔)

=
2𝜋 𝑐

ℏ𝜔𝑖𝑘
𝑆𝑖𝑘. 

For this to be consistent with 𝐵𝑖𝑘
(𝜔)

=
𝑐

ℏ𝜔𝑖𝑘
𝑆𝑖𝑘

(𝜔), the 𝑆𝑖𝑘  on this slide must be 

𝑆𝑖𝑘
(𝜔)

2𝜋
, which is 𝑆𝑖𝑘

(𝜈). 

So, if 𝑆𝑖𝑘  here represents 𝑆𝑖𝑘
(𝜈)

= ∫ 𝜎𝑖𝑘(𝜈) 𝑑𝜈, then the formula 

𝐵𝑖𝑘
(𝜔)

=
2𝜋 𝑐

ℏ𝜔𝑖𝑘
𝑆𝑖𝑘

(𝜈) 

is correct because ℏ𝜔𝑖𝑘 = ℎ𝜈𝑖𝑘 and 𝑆𝑖𝑘
(𝜔)

= 2𝜋 𝑆𝑖𝑘
(𝜈). This connects the 𝐵 

coefficient to the integrated cross section defined in terms of linear 
frequency. 

Line strength 𝑆𝑖𝑘  is a very useful quantity as it represents the total strength of 
a transition, independent of broadening effects that might change the line's 
shape but not its total area. 
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This slide makes a practical point regarding the measurement of these 
quantities: 

* The "Area under the cross-section curve", which is precisely what the line 

strength 𝑆𝑖𝑘  (the integrated absorption cross section) represents, is easier to 

measure experimentally than the Einstein B coefficient, 𝐵𝑖𝑘, directly. 

Why is this the case? 



To determine 𝑆𝑖𝑘, one typically measures the absorption spectrum 𝛼(𝜈) or 

𝜎(𝜈) over the entire line profile. Even if the line is broadened by various 

mechanisms (Doppler, collisional), as long as the entire profile is captured, 

the area under it gives 𝑆𝑖𝑘  (or ∫ 𝛼 𝑑𝜈, which is 𝑁i 𝑆𝑖𝑘). This measurement relies 

on relative intensity changes (𝐼/𝐼0) and frequency calibration. 

Directly measuring 𝐵𝑖𝑘 would require accurately knowing the spectral energy 

density 𝜌(𝜔) of the light interacting with the atoms, along with precise 

measurements of population densities and transition rates, which can be 

more challenging. Since 𝑆𝑖𝑘  is derivable from standard absorption spectra 

and is directly related to 𝐵𝑖𝑘, it provides a more convenient experimental 
route to quantify fundamental transition probabilities. 
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Slide 29 introduces the concept of an Averaged Absorption Cross Section, 

denoted 𝜎‾𝑖𝑘. This provides another way to characterize the strength of a line, 

especially in relation to its observed width. 

- First, we consider the Experimental linewidth. This is often characterized 

by the half-width-at-half-maximum (HWHM), which the slide denotes as 𝛥𝜈. 

(Note: sometimes 𝛥𝜈 is used for FWHM, so clarity is important. Here, it's 
specified as HWHM). 

- We then Define 𝜎‾𝑖𝑘  as: 

𝜎‾𝑖𝑘 =
1

𝛥𝜈
∫ 𝜎𝑖𝑘

line
(𝜈) 𝑑𝜈. 

The integral ∫ 𝜎𝑖𝑘line
(𝜈) 𝑑𝜈 is precisely the line strength 𝑆𝑖𝑘

(𝜈). So, this definition 

states that the averaged absorption cross section is the total line strength 𝑆𝑖𝑘
(𝜈) 

divided by the HWHM linewidth 𝛥𝜈. 𝜎‾𝑖𝑘 =
𝑆𝑖𝑘

(𝜈)

𝛥𝜈HWHM
. This 𝜎‾𝑖𝑘  effectively 



represents the average strength of the cross section across the HWHM of the 
line. 

- From this definition, it follows directly that Then: 

𝑆𝑖𝑘 = 𝛥𝜈 ⋅ 𝜎‾𝑖𝑘 . 

(Here 𝑆𝑖𝑘  is 𝑆𝑖𝑘
(𝜈) and 𝛥𝜈 is 𝛥𝜈𝐻𝑊𝐻𝑀). This means the total area under the line 

(line strength) can be thought of as the product of an effective average height 

(𝜎‾𝑖𝑘) and an effective width (𝛥𝜈). 

- The utility of this concept is that it Combines the ease of measuring peak 
width and integrated area. Experimentally, it can be easier to determine a 
characteristic linewidth (like FWHM or HWHM from the spectral profile) and 
relate it to the total integrated area rather than dealing with the detailed line 
shape function at every point, especially if the exact line shape is complex 

(e.g., Voigt). However, note that 𝜎‾𝑖𝑘 defined this way is not necessarily the 

peak cross section, 𝜎𝑖𝑘(𝜈0), unless the line shape is rectangular. For a 

Lorentzian, FWHM is 𝛾, and peak is 𝑆

𝜋 (𝛾/2)
. 
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Slide 30 focuses on Linking the averaged absorption cross section, 𝜎‾𝑖𝑘, to 

the Einstein A coefficient, 𝐴𝑖𝑘. This provides a connection between a 
measurable absorption parameter and a fundamental emission parameter. 

* The slide starts with a formula for the Einstein A coefficient, presumably 𝐴𝑘𝑖  

(for spontaneous emission from 𝑘 to 𝑖), in terms of the oscillator strength 𝑓𝑖𝑘  

(for absorption 𝑖 to 𝑘): 

𝐴𝑖𝑘 =
8𝜋2𝜈𝑖𝑘

2 𝑒2

𝑚e𝑐
3𝜖0

 𝑓𝑖𝑘  

This formula relates 𝐴𝑘𝑖  to 𝑓𝑖𝑘. A standard relation is 



𝑔k𝐴𝑘𝑖 = 𝑔i (
8𝜋2𝑒2𝜈𝑖𝑘

2

𝑚e𝑐
3𝜖0

)𝑓𝑖𝑘  

If 𝑔i = 𝑔k, this matches if 𝐴𝑖𝑘  on the slide is 𝐴𝑘𝑖. Let's assume this relation as 

given. 

* Then, by Substituting and simplifying, using previous relations between 

𝑓𝑖𝑘, 𝐵𝑖𝑘, 𝑆𝑖𝑘, and 𝜎‾𝑖𝑘, a relationship for 𝜎‾𝑖𝑘  is provided: 

𝜎‾𝑖𝑘 =
𝜆𝑖𝑘
2  𝐴𝑖𝑘

8𝜋𝛥𝜈
 

Let's try to verify this. We had 

𝑆𝑖𝑘
(𝜈)

= 𝛥𝜈𝐻𝑊𝐻𝑀  𝜎‾𝑖𝑘  

(if 𝛥𝜈 is HWHM). 

And 

𝑆𝑖𝑘
(𝜈)

=
𝑔k

𝑔i

𝜆𝑖𝑘
2

8𝜋
𝐴𝑘𝑖  

is a standard formula relating line strength to Einstein A coefficient. 

So, 

𝜎‾𝑖𝑘 =
𝑆𝑖𝑘

(𝜈)

𝛥𝜈𝐻𝑊𝐻𝑀
=

𝑔k
𝑔i

𝜆𝑖𝑘
2

8𝜋
𝐴𝑘𝑖

𝛥𝜈𝐻𝑊𝐻𝑀
 

This matches the slide's formula if 𝐴𝑖𝑘  on the slide is taken as (𝑔k

𝑔i
)𝐴𝑘𝑖  or if 

𝑔i = 𝑔k and 𝐴𝑖𝑘  is 𝐴𝑘𝑖, and 𝛥𝜈 is the HWHM. 

This equation is very useful because it connects the averaged absorption 
cross section (measurable from an absorption lineshape and its width) to the 
Einstein A coefficient (related to radiative lifetime and fundamental emission 



properties) and the wavelength of the transition. 𝛥𝜈 here is the observed 
HWHM, which could be due to various broadening mechanisms. 
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This slide considers a very important special case: 

If the linewidth is limited solely by spontaneous emission, meaning we are 
looking at the natural width of the line. The natural linewidth (FWHM in Hz) is 

given by 𝛥𝜈𝑛𝑎𝑡_FWHM =
𝐴k

2𝜋
, where 𝐴k is the total spontaneous emission rate 

from the upper state 𝑘. If state 𝑘 decays only to state 𝑖, then 𝐴k = 𝐴𝑘𝑖. 

The slide denotes the natural width (presumably HWHM if 𝛥𝜈 was HWHM on 
previous slide) as: 

𝛥𝜈n =
𝐴𝑖𝑘

2𝜋
. (Let's assume 𝐴𝑖𝑘  is 𝐴𝑘𝑖  and this is FWHM. If 𝛥𝜈 on prev. slide was 

HWHM, then this should be HWHM too 𝐴𝑘𝑖

4𝜋
 or the previous 𝛥𝜈 was FWHM). 

If we substitute this natural FWHM linewidth 𝛥𝜈 =
𝐴𝑘𝑖

2𝜋
 into the formula for 𝜎‾𝑖𝑘  

from the previous page (assuming 𝑔i = 𝑔k): 

𝜎‾𝑖𝑘 =

𝜆𝑖𝑘
2

8𝜋
𝐴𝑘𝑖

𝛥𝜈
 

If 𝛥𝜈 here is the FWHM 𝐴𝑘𝑖

2𝜋
, then 

𝜎‾𝑖𝑘
natural =

𝜆𝑖𝑘
2

8𝜋
𝐴𝑘𝑖

𝐴𝑘𝑖

2𝜋

=
𝜆𝑖𝑘
2 𝐴𝑘𝑖  2𝜋

8𝜋𝐴𝑘𝑖
=

𝜆𝑖𝑘
2

4
 

The slide gives the result for the averaged cross section under these 
conditions (presumably the peak cross section for a naturally broadened 

line): 



𝜎‾𝑖𝑘
natural =

𝜆𝑖𝑘
2

4
 

This result, 𝜆2

4
, is indeed a well-known expression for the peak absorption 

cross section of a transition that is only broadened by its natural lifetime, 
assuming equal degeneracies for the initial and final states and that the 
"averaged" cross section is interpreted as the peak of the Lorentzian. 

This result is strikingly independent of 𝐴𝑖𝑘. Although 𝐴𝑖𝑘  (the spontaneous 
emission rate) determines the natural linewidth, it cancels out when 

calculating this peak cross section. A larger 𝐴𝑖𝑘  leads to a proportionally 

larger integrated line strength 𝑆𝑖𝑘  AND a proportionally larger natural 

linewidth. The ratio, which gives the peak cross section, depends only on the 
wavelength of the transition. This is a very elegant and fundamental result in 
spectroscopy. 
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Slide 31 provides a Numerical Example – the Sodium D-Line – to illustrate 
these concepts. 

• The Wavelength, 𝜆, for the sodium D-line is approximately 589 
nanometers (nm). 

• Using the formula for the peak natural absorption cross section, 

𝜎‾𝑖𝑘
natural =

𝜆2

4
: 

  The slide shows the calculation: 

   

(589 × 10−9 m)2 ÷ 4 = 9 × 10−18 m2 = 9 × 10−10 cm2. 

  Let's check this calculation: 

   



𝜆 = 589 nm = 5.89 × 10−7 m. 

   

𝜆2 = (5.89 × 10−7)2 m2 = 34.6921 × 10−14 m2. 

   

𝜆2

4
=

34.6921 × 10−14

4
 m2 = 8.673 × 10−14 m2. 

  This is 

   

8.673 × 10−10 cm2. 

  The value on the slide, 9 × 10−18 m2, appears to be incorrect by several 

orders of magnitude if the formula 𝜆
2

4
 is used. 9 × 10−18 m2 would correspond 

to a much shorter wavelength. 

  However, if the subsequent calculations rely on the slide's value for 𝜎‾𝑖𝑘, 

we will proceed with that, noting the discrepancy. It's possible the 𝜆2

4
 is an 

ideal case and the 9 × 10−18 m2 is a more realistic or differently defined value 
for this specific example. For the purpose of following the lecture's flow, let's 
assume 

   

𝜎‾𝑖𝑘 = 9 × 10−10 cm2 

  (which is 9 × 10−14 m2, closer to our calculation, but the slide explicitly 
states 

   

9 × 10−18 m2 = 9 × 10−10 cm2, 



  which implies 1 m2 = 108 cm2, an error since 1 m2 = 104 cm2. If 

9 × 10−18 m2 is the starting point, then it would be 9 × 10−14 cm2.) 

  Given the final result on the next slide (𝛼 = 2 cm−1), it seems the 

intended cross section is around 0.8 × 10−10 cm2. 

  Let's assume the value 

   

𝜎‾𝑖𝑘 = 9 × 10−10 cm2 

  is what the slide intends to use for the next step, regardless of the 𝜆2

4
 

calculation's accuracy or the m² to cm² conversion error on the slide. 

• Next, a Vapour pressure of 10−6 mbar for sodium is considered. This 

vapour pressure corresponds to a certain number density 𝑁i (assuming most 
sodium atoms are in the ground state 'i').   The slide states this number 
density as: 

   

𝑁i = 2.5 × 1010 atoms/cm3. 

  This conversion from pressure to number density would use the ideal gas 
law, 

   

𝑃 =
𝑁𝑘B𝑇

𝑉
 

  or 

   

𝑁

𝑉
=

𝑃

𝑘B𝑇
. 



   (10−6 mbar = 0.1 Pa. At 𝑇 ∼ 400-500 K for this vapor pressure, 
𝑁i can be calculated). 

• With 𝑁i and 𝜎‾𝑖𝑘, we can now calculate the Absorption coefficient, which 
will be on the next slide. 
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Continuing the numerical example for the Sodium D-line: 

We have the number density 𝑁i = 2.5 × 1010 cm−3. 

And from the previous slide, if we use their stated 𝜎‾𝑖𝑘 = 9 × 10−10 cm2. 

Then the absorption coefficient, 𝛼𝑖𝑘, is calculated as 𝑁i × 𝜎‾𝑖𝑘: 

𝛼𝑖𝑘 = (2.5 × 1010 cm−3) × (9 × 10−10 cm2) 

This product is 2.5 × 9 = 22.5 per centimeter (cm⁻¹). 

However, the slide gives the result as: = 2 cm−1. 

For 𝛼𝑖𝑘  to be 2 cm−1 with 𝑁i = 2.5 × 1010 cm−3, the cross section 𝜎‾𝑖𝑘  would 
need to be: 

𝜎‾𝑖𝑘 =
𝛼𝑖𝑘

𝑁i
=

2 cm−1

2.5 × 1010 cm−3
= 0.8 × 10−10 cm2 

This value 0.8 × 10−10 cm2 (or 8 × 10−15 m2) is different from the 9 ×

10−10 cm2 given on the previous slide, and also from our 𝜆2/4 calculation (∼

8.67 × 10−10 cm2). 

There seems to be some inconsistency in the numerical values presented 
across these example calculation steps. However, let's proceed with the 
slide's final result for alpha. 

* Assuming the absorption coefficient 𝛼𝑖𝑘  is indeed 2 cm−1: Hence, the 

intensity of light passing through this sodium vapor attenuates by a factor 



of 𝑒−1 after a path length of 0.5 cm. This comes from Beer's Law: 𝐼 =

𝐼0exp(−𝛼𝑧). If 𝐼/𝐼0 = 𝑒−1, then 𝛼𝑧 = 1. So, 𝑧 = 1/𝛼 = 1/(2 cm−1) = 0.5 cm. 

This demonstrates that even at a very low vapor pressure (10−6 mbar), sodium 
exhibits strong resonance absorption for the D-lines, significantly 
attenuating light over a short path length. This underscores the large oscillator 
strength of this transition. 
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We've covered a lot of ground in this section. 

Slide 32: 

summarizes the Key Take-Aways from Section 2.7. 

* First, we've established how the Microscopic picture (involving Einstein 

coefficients 𝐴 and 𝐵, oscillator strength 𝑓, and absorption cross section 𝜎) 

and the Macroscopic picture (involving the absorption coefficient 𝛼 and the 

imaginary part of refractive index 𝜅) are quantitatively linked. We can derive 

macroscopic optical properties from fundamental atomic/molecular 
transition parameters. 

* Second, Integrated quantities like the line strength 𝑆𝑖𝑘  (integral of 𝜎 𝑑𝜈) 

and the averaged cross section 𝜎‾𝑖𝑘 are experimentally convenient. They 
provide robust measures of transition strength that can be extracted from 
experimental spectra, often more easily than determining the peak values or 
exact line shapes if broadening is complex. 

* Third, the Sum rule, ∑ 𝑓𝑖𝑘𝑘 = 1 (for a one‐electron system, or normalized per 

electron), ensures energy conservation across all transitions originating 
from a given state. It means the total "absorption capability" of an electron is 
fixed and distributed among its possible transitions. 

* Fourth, for a transition whose linewidth is determined solely by its natural 
lifetime (natural broadening), the Natural linewidth uniquely fixes the peak 



averaged absorption cross section, 𝜎‾𝑖𝑘, to be proportional to 𝜆𝑖𝑘
2  (e.g., 𝜆𝑖𝑘

2

4
, 

under certain conditions), making it strikingly independent of the specific 

lifetime (or 𝐴𝑖𝑘  value) in that final formula. While the lifetime (via 𝐴𝑖𝑘) 
determines the natural linewidth AND the integrated strength, these two 
dependencies cancel out when calculating the peak cross section for such an 

ideal, naturally broadened line. This results in the simple 𝜆
2

4
 type of formula. 

These are the core concepts that provide the foundation for understanding 
how light interacts with atoms and molecules in the context of absorption and 
emission. 
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To conclude this section: 

• These foundations underpin modern high-resolution laser 
spectroscopy. The concepts of Einstein coefficients, cross sections, 
oscillator strengths, and the factors governing absorption and emission are 
absolutely essential for designing experiments, interpreting spectra, and 
extracting quantitative information about atomic and molecular systems. 

• Furthermore, these concepts will be crucial for interpreting Doppler and 
pressure broadening in Chapter 3. Understanding the intrinsic properties of 
a spectral line, like its natural width and strength (which we've discussed 
here), is a prerequisite for understanding how these lines are modified by the 
environment of the atoms or molecules – such as their thermal motion 

(Doppler broadening) or collisions with other particles (pressure broadening). 

So, please make sure you are comfortable with the material from Section 2.7, 
as we will be building directly upon it as we move forward. Thank you. 

  


