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The Mean Field Approximation (Schroeder page 343) 
 

This is a very crude approximation, which can be used to "solve" the Ising model in any 

dimensionality. This approximation won't be very accurate, but it does give some qualitative insight into 

what's happening and why the dimensionality matters. Let's concentrate on just a single dipole, somewhere 

in the middle of the lattice and label it “i” (see Figure 1), so its alignment is 
i

s  which: 

1 when the dipole is pointing up

1 when the dipole is pointing down
is
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 Let 4n   be the number of nearest neighbors that this dipole has. 

Figure 1. The four neighbors of this particular dipole have 

an average s  value of  1 3 1

4 2


  . If the central dipole 

points up, the energy due to its interactions with its 

neighbors is 2ns   , while if it points down, the energy 

is 2 .  

Imagine that the alignments of these neighboring dipoles are temporarily frozen, but that our dipole 

“i” is free to point up or down. In general, we have the interaction energy between this dipole and its 

neighbors is 
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If 
i

s  points up, then the interaction energy between this dipole and its neighbors is 

 
where s  is the average alignment of the neighbors and" "  is a positive quantity represents the dipole-

dipole interaction. Similarly, if 
i

s  points down, then the interaction energy is 

 

The partition function for just this dipole is therefore ( iE

i
i
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and the average expected value of its spin alignment is ( 1
iE

i i
ii

Z
s s e   ) 

 
Now look at both sides of this equation (8.49). On the left is is , the thermal average value of the 

alignment of any typical dipole (except those on the edge of the lattice, which we'll neglect). On the right is 

s , the average of the actual instantaneous alignments of this dipole's n neighbors. The idea of the mean 

field approximation is to assume (or pretend) that these two quantities are the same: 
is s . In other words, 

we assume that at every moment, the alignments of all the dipoles are such that every neighborhood is 

"typical"-there are no fluctuations  i is s that cause the magnetization in any neighborhood to be more or 

less than the expected thermal average.  

In the mean field approximation  when is s , then, we have the relation 
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where s  is now the average dipole alignment over the entire system. This is a transcendental equation, so 

we can't just solve for s  in terms of n .  

 

 
 

Mathematica program to plot equation  tanhm nm . 

Plot the one-dimensional lattice, n = 2,  tanh /m m t ,  

/Bt k T  . 

 

 
 

The best approach is to plot both sides of the equation and look for a graphical solution (see Figure 2). 

Notice that the larger the value of n , the steeper the slope of the hyperbolic tangent function near 0s  . 

This means that our equation can have either one solution or three, depending on the value of n . 

 

 
 

Figure 2. Graphical solution of equation 8.50. The slope of the tanh function at the origin is n . When this quantity 

is less than 1, there is only one solution, at 0s  ; when this quantity is greater than 1, the 0s   solution is unstable 

but there are also two nontrivial stable solutions. 
 

When 1n  , that is, when kT n  (high temperature), the only solution is at 0s  ; there is no 

net magnetization. If a thermal fluctuation were to momentarily increase the value of s , then the hyperbolic 

tangent function, which dictates what s  should be, would be less than the current value of s , so s  would 

tend to decrease back to zero. The solution 0s   is stable.  
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When 1n  , that is, when kT n (low temperature), we still have a solution at 0s   and we 

also have two more solutions, at positive and negative values of s . But the solution at 0s   is unstable: A 

small positive fluctuation of s  would cause the hyperbolic tangent function to exceed the current value of 

s , driving s  to even higher values. The stable solutions are the other two, which are symmetrically located 

because the system has no inherent tendency toward positive or negative magnetization. Thus, the system 

will acquire a net nonzero magnetization, which is equally likely to be positive or negative. When a system 

has a built-in symmetry such as this, yet must choose one state or another at low temperatures, we say that 

the symmetry is spontaneously broken. 

The critical temperature Tc below which the system becomes magnetized is 

1c cn kT n                                                           (8.51) 

proportional to both the neighbor-neighbor interaction energy and to the number of neighbors. This result is 

no surprise: The more neighbors each dipole has, the greater the tendency of the whole system to magnetize. 

Notice, though, that even a one-dimensional Ising model should magnetize below a temperature of 2 / k , 

according to this analysis. Yet we already saw from the exact solution that there is no abrupt transition in the 

behavior of a one-dimensional Ising model; it magnetizes only as the temperature goes to zero. Apparently, 

the mean field approximation is no good at all in one dimension. *Fortunately, the accuracy improves as the 

dimensionality increases. 

 

d  
B ck T n  Exact Comment 

1 2  0 (No PT) Wrong 

2 4  2.269  overestimated 

3 6  4.511  better 

 
 

Here we cannot calculate the critical exponent. 
 

 


