
Chapter 2 

Equations of State 

 

2.1 Introduction 
 The state of a homogeneous fluid can be described by an equation of the form: 

𝑓(𝑃, 𝑉, 𝑇) = 0 

 This equation is the resulted conclusion from experiments. 

 This equation will have two independent variables. 

 This equation does not contain time. 

 Each system has its own equation of state. 

 The equation of state doesn’t involve time evolution since classical thermodynamics only 

deals with equilibrium states. That is, the system is in thermal, chemical, and mechanical 

equilibrium. 

2.2 Equation of State of an Ideal Gas 
 If we have a system composed of gas of mass m in kg whose molecular weight is M, its 

equation is approximately given by: 

𝑃𝑉 =
𝑚

𝑀
𝑅𝑇 

Where R is a universal constant, having the same value for all gases: 

𝑅 = 8.314 × 103
𝐽

𝑘𝑖𝑙𝑜𝑚𝑜𝑙𝑒 ∙ 𝐾
 

 Since 𝑛 = 𝑚
𝑀⁄  is the number of kilomoles of the gas, we can write: 

𝑃𝑉 = 𝑛𝑅𝑇 

 This equation is called the equation of state of an ideal gas. 

 The gas laws were developed at the end of the 18th century. 

 Scientists began to realize that relationships between pressure, volume and temperature of 

a sample of gas could be obtained which would hold to approximation for all gases. 

 Boyle’s Law: 

 



 
Robert Boyle (1627-1691) 

 Charles law: 

 

 
Jacques Charles (1746-1823) 

 Gay-Lussac's law: 

 



 
Joseph Gay-Lussac (1778-1850) 

 

 Avogadro’s Law (1811): 

 

 
Amedeo Avogadro (1776-1856) 

 The ideal gas equation is obtained by combining Boyle's Law, Charles' Law, Gay-Lussac's 

Law: 
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 If we define the specific volume 𝑣 = 𝑉/𝑛, the ideal gas law becomes:  

𝑃𝑣 = 𝑅𝑇 

 The projections of the surface 𝑓(𝑃, 𝑣, 𝑇) = 0 on the P-𝑣 plane, the P-T plane, and the 𝑣-T 

plane are shown in the figure. 



 

2.3 Van Der Waals Equation for a Real Gas 
 The ideal gas law works well for high temperatures and low pressures.  

 However, when the temperature and pressure are near condensation, deviations from the 

ideal gas law are observed.  

 Van Der Waals equation represent a good model for real gases because of its simplicity and 

because it describes the behavior of many substances over a wide range of temperatures 

and pressures. 

 His equation is: 
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Where 𝑎 and 𝑏 are characteristic constants for a given substance that depend only on the 

critical properties of the given material.  

 The term 𝑎/𝑣2 arises from the intermolecular forces due to the overlap of electrons clouds.  

 The constant 𝑏 takes into account the finite volume occupied by the molecules; its effect is 

to be subtracted from the volume occupied.  

 Van Der Waals equation reduces to the ideal gas equation for the case when 𝑎 = 𝑏 = 0. 

 The Figure below shows some isotherms calculated from the Van der Waals equation. 



 
 As T increases, the curves approach 𝑃𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The correction factors become less 

important. 

 For 𝑇 < 𝑇𝑐 there is a local maximum and local minimum for 𝑃.  

 The region for which 𝑇 < 𝑇𝑐 is considered unstable since the pressure no longer increases 

as the volume is diminished. 

 Actually, the gas never traverses the portion of the curve between 𝑏 and 𝑑 because the gas 

undergoes a change of phase.  

  If the compression process starts at 𝑎, part of the gas will begin to liquify at 𝑏 and the 

pressure remains constant as the volume is further decreased as long as the temperature is 

held constant.  

 Between 𝑏 and 𝑑, liquid and vapor are in equilibrium. 

 Finally, at 𝑑, liquification is complete. 

 After that, the pressure rises sharply as the volume is decreased which is characteristic of a 

liquid. 

 For 𝑇 ≥ 𝑇𝑐, the curve has no minima or maxima. Above 𝑇𝑐, it is impossible to liquify a gas, 

no matter how large the pressure is. 

 The critical values 𝑣𝑐, 𝑇𝑐, and 𝑃𝑐 of a substance can be expressed in terms of the constants 

𝑎 and 𝑏 that appear in the Van der Waals equation for 𝑇 = 𝑇𝑐: 

𝑃𝑐 =
𝑅𝑇𝑐

𝑣𝑐 − 𝑏
−
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       &      (
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→ 𝑣𝑐 = 3𝑏 

→ 𝑇𝑐 =
8𝑎

27𝑅𝑏
 

→ 𝑃𝑐 =
𝑎

27𝑏2
 

 Alternatively, we may solve for the constants 𝑎 and 𝑏 in terms of the critical values as 

follows: 

 
And get the critical properties from a thermophysical properties table. 



 

 

 

 

 

 

 

2.4 𝑷-𝒗-𝑻 Surfaces for Real Substances 
 The 𝑃-𝑣-𝑇 surface for a pure substance is shown in the Figure below. 



 
 On the left is the projection of the 𝑃-𝑣-𝑇 surface on a 𝑃-𝑇 diagram.  

 TP stands for the triple line where all the three phases can coexist. 

 CP stands for the critical point where there is no discernable interface between the two 

phases. 

 The projection of the surfaces on the 𝑃-𝑇 plane is of special interest and is shown below. 

 
 The L-V curve is the vapor pressure curve, for which the liquid and vapor can coexist in 

equilibrium. It is known as the saturated vapor curve.  

 The S-L curve is the freezing point curve. 

 The S-V curve is the sublimation curve.  

 No critical point can exist for solid-liquid equilibrium (S-L curve). This is because solids 

and liquids possess different symmetry properties. A normal liquid is isotropic, whereas a 



solid has a crystalline structure whose orientation defines a particular set of directions. The 

transition from one symmetry to another is strictly a discontinues process. 

2.5 Expansivity and Compressibility 
 Suppose we want to develop an equation of state for a solid or liquid. 

 Then, writing the equation of state is written in this form: 

 
 Taking the differential: 

 
 Defining the coefficient of expansivity: 
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 Defining the isothermal compressibility as: 
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 For an ideal gas, 𝑣 = 𝑅𝑇/𝑃 and: 

 

 
 For liquids and solids, 𝛽 and 𝜅 are nearly constant across a wide range of temperature and 

pressures.  

 Also, we can take 𝑣 ≈ 𝑣𝑜. 

 Substituting, 𝛽 and 𝜅 back to 𝑑𝑣 gives: 

 

 
 And integrating: 

 
 We get: 

 
 This is an approximation equation of a state for a liquid or a solid. The volume increases 

linearly with an increase in temperature and decreases linearly with an increase in pressure. 

2.6 An Application 
 Suppose we want to calculate the decrease in pressure of a fluid when it is cooled from 𝑇1 

to 𝑇2. 



 We know that the equilibrium states of the fluid are fixed by specifying two state variables 

that are related by some equation of state: 

𝑓(𝑃, 𝑣, 𝑇) = 0 → 𝑃 = 𝑃(𝑣, 𝑇) 

 We assume that the process in which the fluid is changed from an equilibrium state (𝑃1, 𝑇1) 

to another equilibrium state (𝑃2, 𝑇2) is isochoric—that is, the volume is unchanged.  

 We assume that the fluid is cooled reversibly. 

 Taking the differential: 

 
 Since the process is isochoric, 𝑑𝑣 = 0: 

 
 Unfortunately, the integrand is unknown. However, using the cyclical relation given in 

Appendix A, we have: 
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 Substituting this result back in the integral, we have: 

 
 Be careful! Cooling in reality would introduce large temperature gradients in the bulk of 

the material and the environment surrounding it.  

 Consequently, the intermediate states are not equilibrium ones. 

 

--------------------------------------------------------------------- 

QUESTION: Equations of state are formulated for equilibrium states. However, we have 

shown that the intermediate states are not equilibrium ones. Can this equation still be 

considered an equation of state? or not?  

 

Answer: 𝑃, 𝑣, 𝑎𝑛𝑑 𝑇 are all exact differentials whose integrals are independent of path. Thus, 

even though the process goes through nonequilibrium intermediate states, the final states are 

equilibrium states, and it doesn’t matter which path we took to get from state 1 to state 2. We 

chose a reversible path because of its convenience. 

∆𝑃 is independent of the path. 

  



Appendix 1 

 
 
Phase: A portion of the system under consideration that is sub-macroscopically homogeneous and is 

separated from other such portions by definite physical boundary.  
 

Coexistence lines: The boundary lines between phases.  
 

Phase Transition (PT): Transition between two equilibrium phases of matter whose signature is a 

singularity or discontinuity in some observable quantity.  

 

Critical point (CP): a point on a phase diagram at which both the liquid and gas phases of a 

substance have the same density, and are therefore indistinguishable. 
 

  



Appendix 2 
Thermal Expansion 

For the expression: 

1 ( ) ( )f i f i f iV V T T P P         

We can define the following: 
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Usually,   is positive.  An exception is water in the temperature range between 0° C and 4° 

C. 

Range of   is about: 

  » 10-3 for gasses. 

  » 10-5 for solids. 

 Compressibility: Volume also depends on pressure. Isothermal Compressibility 

),( PT : 
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Bulk Modulus
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A Little Calculus 
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Cyclical Relation 
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Application 

Suppose you need:  
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