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V(X)
A

0 X <-a
V(x)=¢-V, -a<x<a

0 X >a B—

-V,
-a 0 a
Where the constantV , >0.
Casel E >0,
Define o’ = 2m_2E ,and % = w then the Schrodinger equations and its
h h

corresponding solutions are:
Q) if x<-a: y +a’y,=0 = y,=Ap' " +Be '™
(2) if —a<x<a: y,+pfw,=0 = y,=Ae  +Beg/
(3) if X>-a: y,+a’y,=0 = y,=Ae' +Bg '™
Take A, =1 and B, = 0for no reflection in the right region.
Matching y(x ) and dlg& at the boundaries a and —a, we can have:

X

e—izxa +Bleiaa :Aze—iﬁa +Bzeiﬂa
i a(efiaa . Bl eiaa) —ij ﬂ(Aze—iﬁa —82 ei/j’a)
Ae'”+B, e =A e

i B(Ag'" -Be ) =iaAe

which gives:



“2iaa (,Bz—az)sin;/
2af3cosy—i (S +a’)siny’
_p—2ica Zaﬁ
As =€ 2af3cosy —i (B°+a’)siny

B, =ie y=2pa

Comments:

1- R=B/>0, R=0if E>»V_,
2—- T+R =1
3—- R=0if siny=0
= 2pa=nr, n=123,:--
Condition #3 implies

2@&2 =n’z’
Thus whenever the incident energy is give as
Nz’

E=-V,+ >
8ma

there is only transmission. This is called transmission resonance, and it was
experimentally observed by Ramsauer and Townsend when they scattered low
energy electron off noble atoms. Relate this resonance to de Broglie wave
length.(E = 0.1eV)off noble atoms.

Case Il E <V,,=E =—[E|

The Schrodinger equations and its corresponding solutions are:

@D if X<-a: y,-a’y,=0 = wy,=Ae” +Be ™

(2) if —a<x<a: y,+pfw,=0 = w,=A,cos(fx)+B,sin(Bx)
() if X>-a: y,-a’y,=0 = y,=Ae” +B,e™

In the region we used cos(sx) and sin(fx) rather than using e'”* and e/

because the outside solutions are real. Boundary at « and —oo requires the
coefficients A, and B, are zeros.



Matching the wave function and its derivatives at a and —a gives

2m (V E
Where a2:_2n;£E|, ﬁzzw

. Matching w(x) and %at the
X

boundaries a and —a, we can have:
A e =A, cos(fa)-B,sin(fa)

aA, e = B(A,sin(Ba)+B,cos(Sa))
B,e ™ =A,cos(fa)+B,sin(fa)
—aB, e =—f(A,sin(Ba) - B, cos(fa))

By adding and subtracting of these equations, we get a more lucid form of the
system of equations, which is easy to solve:

(A, +B;)e™™ =2A, cos(fa)

Assuming that
(A,+B;)=0 and A, =0, (or divided ) the first two equations yield
ptan(fa) =«
Inserting this in one of the last two equations gives
A,=B,; B,=0
Hence, as a results, we have a symmetric solution with y(x ) =w(-x) . We then speak of
positive parity.
Almost identical calculations lead for
(A,—B;)=0 and for B, #0 to
peot(pa) =-a
and
A,=-B,;; A,=0

We thus obtained an antisymmetric solution with w(x ) =w/(x) corresponding to a
negative parity.



Qualitative solution of the eigenvalue problem. The equations connect-
ing « and k, which we have already obtained, are conditions for the energy
eigenvalue. Using the short forms

E=ka, n=«ka, (10)
we get from the definition (2)
2m Voa?
E24p? = h20 =r. (11)

On the other hand, using (7) and (9) we get the equations
n=~§tan(§) , n=-—£cot(f) .

Therefore the desired energy values can be obtained by constructing the intersec-
tion of those two curves with the circle defined by (11), within the (&, n) plane
(see next figure).

At least one solution exists for arbitrary values of the parameter Vj, in the
case of positive parity, because the tan function intersects the origin. For nega-
tive parity, the radius of the circle needs to be larger than a minimum value so
that the two curves can intersect. The potential must have a certain depth in con-
nection with a given size a and a given mass m, to permit a solution with negative

i £ 4pd =2
n={§tanf

The intersections of these
curves determine the energy
eigenvalues




parity. The number of energy levels increases with Vp, a and mass m. For the case
mVa* — o0, the intersections are found at

tan(ka) = oo corresponding to  ka = 2n2— ! T,
—cot(ka) = co corresponding to  ka =nm ,
n=1,2,3,... (12)
or, combined:
k(2a) =nm . (13)

For the energy spectrum this means that

E,= ?:—1 (%Z—r)2 -V . (14)

On enlarging the potential well and/or the particle’s mass m, the difference
between two neighbouring energy eigenvalues will decrease. The lowermost
state (n = 1) is not located at — Vj, but a little higher. This difference is called the
zero-point energy. We will come back to it later when discussing the harmonic
oscillator (see Chap. 7).

(e) The shape of the wave function is shown for the discussed solutions in the
two figures.

Wave functions with posi-
tive parity; they are symmet-
ric relative to the origin

Wave functions with nega-
tive parity; they are antisym-
metric relative to the origin



Sins B and « are functions of the energy E, the last equation imposes restrictions

on the values of energy E that permit a solution for A, B, C and D; in other words,
energy quantization. Moreover, there are two types of solution, one obtain when

Btan(Ba)=a even solution
The other when
Bcot(Ba)=—a odd solution.

Let’s study them sequentially.
First

Btan(pfa)=«a

We have a set of four simultaneous linear homogeneous equations for four
unknowns and the condition for a solution to exist is that the determinant of the
equations vanish:

cos(fa) —sin(pa) -—e 0
psin(pa) pcos(pa) —pe™ 0

cos(fa)  sin(pa) 0 —e
—psin(pa) pBcos(pa) 0 pe

This leads to the equation

(i) i)



