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Gravitation

This is one of the most interesting, challenging, and mysteries subject in Physics, old and
modern era.

13-1 NEWTON’S LAW OF GRAVITATION

Newton's Universal Law of Gravitation (first stated by Newton):
Any two masses m; and m; exert an attractive gravitational force on each other
according to the rule:

2 ’ (131)

F
L

This applies to all masses, not just big ones.

G = gravitational constant = 6.67 x 107 N m? / kg? (13.2)
(G is very small, so it is very difficult to measure!)

» Don't confuse G with g: "Big G" and "little g" are totally different things.

Newton showed that the force of gravity must act according to this rule in order to produce
the observed motions of the planets around the sun, of the moon around the earth, and of
projectiles near the earth. He then had the great insight to realize that this same force acts
between all masses. [That gravity acts between all masses, even small ones, was
experimentally verified in 1798 by Cavendish]

Newton couldn't say why gravity acted this way, only how. Einstein (1915) General Theory
of Relativity, explained why gravity acted like this.

Example: Force of attraction between two humans: 2 people with masses m: = m, = 70 kg,
distance r = 1 m apart.
Answer:

- m. m -11 2
@O <« [f=6— = (6'67”12 )0 _ 334107 N

This is a very tiny force! It is the weight of a mass of 3.4 x10~° gram. A hair weighs 2x107
grams — the force of gravity between two people talking is about 1/60 the weight of a single
hair.
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This is the pull on In Fig. 13-2a, F is the gravitational force acting on particle 1 (mass m1;) due to
particla 1 due ta P particle 2 (mass m;). The force is directed toward particle 2 and is said to be an
& attractive force because particle 1 is attracted toward particle 2. The magnitude

particle 2. -
//\ of the force is given by Eq. 13-1. We can describe F as being in the positive direc-
For” tion of an r axis extending radially from particle 1 through particle 2 (Fig. 13-2b).
é/( We can also describe F by using a radial unit vector  (a dimensionless vector of
/ magnitude 1) that is directed away from particle 1 along the r axis (Fig. 13-2c).

e N From Eq.13-1. the force on particle 1 is then
F=c2T% (13:3)

Draw tha vector with r
its tail on particle 1 2 .y The gravitational force on particle 2 due to particle 1 has the same magnitude
to show the pulling. K- 2 as the force on particle 1 but the opposite direction. These two forces form a
prad third-law force pair, and we can speak of the gravitational force between the two
F < particles as having a magnitude given by Eq. 13-1. This force between two parti-
é/‘{ cles is not altered by other objects, even if they are located between the particles.
) Put another way, no object can shield either particle from the gravitational force

due to the other particle.

A unit vector points 9 i The strength of the gravitational force —that is, how strongly two particles
along the radial axis. & with given masses al a given separation attract each other—depends on the
et value of the gravitational constant G. If G—by some miracle—were suddenly
//" multiplied by a factor of 10, you would be crushed to the floor by Earth’s
1 BT attraction. If G were divided by this factor. Earth’s attraction would be so weak
(c) 0}/ that you could jump over a building.

Fgure 132 (a) The gravitational force F Nonparticles. Although Newton's law of gravitation applies strictly to particles,
on particle 1 duc to particle 2 is an at- we can also apply it to real objects as long as the sizes of the objects are small relative
tractive force because particle 1 is at- to the distance between them. The Moon and Earth are far enough apart so that, to
tracted to particle 2. (b) Foree Fis di- a good approximation, we can treat them both as particles— but what about an apple
rected along a radial coordinate axis r and Earth? From the point of view of the apple, the broad and level Earth. stretching

extending from particle | through par- out to the horizon beneath the apple, certainly does not look like a particle.

ticle 2. (c) F is in the direction of a unit

\ . Newtonsolved the apple— Earth problem with the shell theorem:
vector ralong the raxis

Notes:
1- A uniform spherical shell of matter attracts a particle
that is outside the shell as if all the shell’s mass were mass m
concentrated at its center. T
2- Important fact about the gravitational force from spherical .
masses: a uniform spherical body exerts a gravitational —
force on surrounding bodies that is the same as if all the —

. Ld
sphere's mass were concentrated at its center. This is pontmasM Fiov (same as with sphiere)
difficult to prove.

3- Symbolically, the force Ifij represents the gravitational force on particle i due to
particle j .

4- ||fIJ | =|lfji| , but in the opposite direction as the Newton’s third law.

5- The force between two particles is not altered by other objects, even if they are located
between the particles. Put another way, no object can shield either particle from the
gravitational force due to the other particle.
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13-2 GRAVITATION AND THE PRINCIPLE OF SUPERPOSITION

For n interacting particles, we can write the principle of superposition for the
gravitational forces on particle 1 as

r‘lmfFl:“ﬁ;“r‘u‘-rlyr"-*fl,,. (13-4)

Here Fy . is the net force on particle 1 due to the other particles and, for exam-
ple, Fyy is the force on particle 1 from particle 3. We can express this equation
more compactly as a vector sum:

— L —-
o = O F (13-5)

Examplel: In Figure, two point particles are fixed on an x axis

. . .. ¥
separated by distance d = 3.50 m. Particle A, located at the origin, has -
mass ma = 1.00 kg and particle B has mass mg = 3.00 kg. A third i
particle C, of mass mc = 75.0 kg is to be placed on the x axis and near _J o
particles A and B. At what x coordinate should C be placed so that the A L]
net gravitational force on particle A from particles B and C is zero?
Answer:
First, we have to check for the position of mc that gives the net !
gravitational force on particle A from particles B and C is zero. x ;
The place will be in the left of ma, Why??7?? : i it
I LA ™
—F, —F
. F:; M. mg |, N F:; m, m. M. Fac <——> Fig Mg
Second, Use the condition of equilibrium for particle A:
EFA =0 = |FCA| = |FAB| Gmomy  Gmymy . Jm. _Vmyg
x? d? X d

[m, 75
IX|=d |2 =3.5x\/  —35x5=175:
\}mﬂ 3

So the position of particle C will be at -17.5 m from point A.

Example2: Two particles with masses M and 4M are separated by a distance D. What is the
shortest distance from the 4M mass for which the net gravitational field due to the two
masses is zero?

Answer: Suppose the distance between the two masses is D, and the test mass is M. The
condition for the net gravitational field due to the two masses is zero is given as:

|'EM,M|:|'EM,4M| 9 Le

&X>
q rf r ﬁ H n " “4H
G x'L -&mb
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Example3: In Fig. 13-32, a square of edge length 20.0 cm is formed by four spheres of
masses mz = 5.00 g, m2 = 3.00 g, mz = 1.00 g, and ms = 5.00 g. In unit-vector notation, what
is the net gravitational force from them on a central sphere with mass ms = 2.50 g?

m 1 ey my III.._y

|

} y ) /

| ™ [
ms, ’ n:,

l r -

me m, s m,

Answer: From the superposition principle, we have:

Fot = IE51 + lf52 + IE53 + lf54.
The gravitational forces ‘Ifm‘ =‘If54‘ on ms from the two 5.00 g masses m1 and m4 cancel each
other. Contributions to the net force on ms come from the remaining two masses:

m5
(\/Exlofl m)2
(6.67x10™* N-m?/kg® )(2.50x10"° kg)(3.00x10"° kg ~1.00x10"° kg)

(Jixlo-l m)2

Fnet = lzsz + lfsa =G

(mz—m3)

=1.67x10™ N.
The force is directed along the diagonal between m, and ms, towards my. In unit-vector
notation, we have

—>

F

- = F . (cos45°i +sin 45°]) = (1.18x107*N)i + (L.18x107™N)]j

net

Example4: In Fig., three 5.00 kg spheres are located at distances d: = 0.300 ¥
m and d2 = 0.400 m. What are the (a) magnitude and (b) direction (relative _5‘
to the positive direction of the x axis) of the net gravitational force on T (
sphere B due to spheres A and C? dy |
Answer: Using F = GmM/r?, we find that the topmost mass pulls upward

on the one at the origin with 1.9 x 108 N, and the rightmost mass pulls é”'
rightward on the one at the origin with 1.0 x 108 N. Thus, the (X, ) —d,
components of the net force, which can be converted to polar components

(here we use magnitude-angle notation), are

Fo = (1.04x10°,1.85x10° ) = (2.13x10™° £ 60.6°).
(a) The magnitude of the force is 2.13 x 108 N.

Q-+

il

(b) The direction of the force relative to the +x axis is60.6°.
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13-3 GRAVITATION NEAR EARTH’S SURFACE

Tahie B3-1 Variation of g, with Altitude

Gravitation Near Earth’s Surface

Altitude By "f\“imdc Let us assume that Earth is a uniform sphere of mass M. The magnitude of the
(km}) (mis7) Example gravitational force from Earth on a particle of mass m, located outside Earth a
Mecan Earth distance r from Earth’s center, is then given by Eq. 13-1 as
0 0.83 surface ) _Mm .
88 98 Mt. Everest F=G = I (13-9)
5 o Highest crewed If the particle is released, it will fall toward the center of Earth, as a result of the
366 9.7 o balloon gravitational force F, with an acceleration we shall call the gravitational accelera-
Space shuttle tion if;. Newton’s second law tells us that magnitudes F and a, are related by
400 8.70 orbit y L 2
x A . = 3
Communications F = ma, (13-10)
35700 0.225 satellite

Now.substituting F from Eq. 13-9 into Eq. 13-10 and solving for a,. we find
GM
r

by = (13-11)

Table 13-1 shows values of a, computed for various altitudes above Earth’s
surface. Notice that a, is significant even at 400 km.

Computation of g
We can now compute the acceleration of gravity g! (Before, g was
experimentally determined, and it was a mystery why g was the same assm
for all masses.)
(i)

dropped near
Fgrav =ma=mg

M.m - surface
Py = G 5~ (i)
E masgz Mg
(since r = Re is distance from m to center of Earth). Equating (i) and (ii)
implies:
G M.

m's cancel ! = g = >

RE

If you plug in the numbers for G, Mg, and Re, you get g = 9.8 m/s?.

Newton's Theory explains why all objects near the Earth's surface fall with the same

= :GMm

acceleration (because the m's cancel in F_, R - ma.) Newton's theory also makes a

quantitative prediction for the value of g, which is correct.

Example: g on Planet X. Planet X has the same mass as earth (Mx = Mg) but has ¥ the
radius (Rx = 0.5 Re). What is gx , the acceleration of gravity on planet X?

Answer:
Method I, Planet X is denser than earth, so expect gx larger than g.
G M, G M, 1 G M,
gx = 2 = 2 = 2 2 = 4g
Rx (Re/2)" (/2 R
g of earth
© Don't need values of G, Mg, and Rg!
Method 11, set up a ratio:
2 2
g_x —<GMX/RX) && = 1.22 = 4 =4
5 = =4, Ox = 40
Oc ((5 M, /R, ) M. ( Ry
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Notes:

At height h above the surface of the earth, g is less, since we are further from the surface,
further from the earth'’s center.
G M, G M, ol
r=Re+h = g = — = 5 e
r (Rg +h) -

The space shuttle orbits earth at an altitude of about 200 mi x 1.6 km/mi = 320 km. Earth's
radius is Re = 6380 km. So the space shuttle is only about 5% further from the earth's center
than we are. If r is 5% larger, then r? is about 10% larger, and

M. m
Fgrav(on mass minshuttle) = G (RE—h)2 =~ about 10% less than on earth's surface
+
E

We assumed that g has the constant value 9.8 m/s? any place on Earth’s surface. However,
any g value measured at a given location will differ from the a, value calculated with Eq. 13-
11 for that location for three reasons:

1) Earth’s mass is not distributed uniformly,

2) Earth is not a perfect sphere, and

3) Earth rotates.
Moreover, because g differs from a_, the same three reasons mean that the measured weight

mg of a particle differs from the magnitude of the gravitational force on the particle is given
by:
g=a,- 'R,
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Extra Problems
Q11 Two concentric shells of uniform density having masses M1 and M2 and Radii
R1=2.0m, R> = 4.0 m are situated as shown in FIGURE 4. Find the gravitational FORCE on
a particle of mass m placed at point B at a distance of 3.0 m from the center :Al
(G*M1*m)/9.

Answer: The only affected force is the one due to the inner shell.

mM 1

Figure 13-4a shows an arrangement of three particles,
particle 1 of mass m; = 6.0 kg and particles 2 and 3 of
mass m, = m; = 4.0 kg, and distance @ = 2.0 cm. What is
the net gravitational force F ., on particle 1 due to the
other particles?

m Chapter 13 | Gravitation

force on particle 1 is toward the particle responsible for
it. (3) Because the forces are not along a single axis, we
cannot simply add or subtract their magnitudes or their
components to get the net force. Instead, we must add
them as vectors.

Calculations: From Eq. 13-1, the magnitude of the
force F, on particle 1 from particle 2 is

Gmyn,
]F‘_’ o i

al
(667 X 107" m¥kg+s?)(6.0 kg)(4.0 kg)
a (0.020 m)?
=4.00 X 107°N,
Similarly, the magnitude of force F; on particle 1 from
particle 3 is

Gmymy
(2a)?
(6.67 x 107" m¥/kg-s)(6.0 kg)(4.0 kg)
(0.040 m)?
1.00 X 10-®N.

Force F 12 is directed in the positive direction of the y
axis (Fig. 13-4b) and has only the y component Fy,.
Similarly, F 5 is directed in the negative direction of the
x axis and has only the x component — Fs.

To find the net force F| . on particle 1, we must
add the two forces as vectors. We can do so on a vector-
capable calculator. However, here we note that —Fj;
and F,, are actually the x and y components of F,L,m.

fi; =

+0-6 T,

tude of the gravitatior
ther of the other par
Gmm,ir*). (2) The ¢

(a) (h)
FIG. 13-4  (a)An arrangement of three particles. (b) The forces
acting on the particle of mass /1, due to the other particles.

Therefore, we can use Eq. 3-6 to find first the magnitude
and then the direction of F| ... The magnitude is
Fiaa = V(F)* + (=Fa)?

= (4.00 X 10O N)? + (—1.00 X 106 N)2

=41X10"°N.
Relative to the positive direction of the x axis. Eq. 3-6
gives the direction of I, ., as
. B , 400 X 107°N
— 0 =tan ' —

—Fs —-1.00 X 10°°N

(Answer)

6 = tan = —76°.

Is this a reasonable direction? No, because the direction
of F, .., must be between the directions of F, and F ;.
Recall from Chapter 3 (Problem-Solving Tactic 3) that a
calculator displays only one of the two possible answers to

atan™! function. We find the other answer by adding 180°:
~76° + 180° = 1047, (Answer)

which is a reasonable direction for F ..
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Figure 13-5a shows an arrangement of five particles, with
masses m; = 8.0kg, m,=m;=m,;=ms=2.0kg, and
with @ = 2.0 cm and 6 = 30°. What is the net gravitational
force F 1.net ON particle 1 due to the other particles?

(1) Because we have particles, the magni-

tude of the gravitational force on particle 1 due to either
of the other particles is given by Eq. 13-1 (F = Gmymy/r?).
(2) The direction of a gravitational force on particle 1 is
toward the particle responsible for the force. (3) We can
use symmetry to eliminate unneeded calculations.

Calculations: For the magnitudes of the forces on par-
ticle 1, first note that particles 2 and 4 have equal masses
and equal distances of r = 2a from particle 1. Thus, from
Eq.13-1, we find

Gmym
ﬁz =Fs= =2

(2ay* ~

Similarly, since particles 3 and 5 have equal masses and
are both distance r = a from particle 1, we find

(13-7)

Gmym;

B3 = Fs= =3 (13-8)

Instead, however, we shall make further use of the
symmetry of the problem. First, we note that F 12 and E 1
are equal in magnitude but opposite in direction; thus,
those forces cancel. Inspection of Fig. 13-5b and Eq. 13-8
reveals that the x components of F 1z and F 15 also cancel,
and that their y components are identical in magnitude
and both act in the positive direction of the y axis. Thus,
F 1net @cts in that same direction, and its magnitude is
twice the y component of F 5:

Chapter13-I

December 7, 2017

o my

(&)

FIG.13-5 (@) Anarrangement of five particles. (b) The forces
acting on the particle of mass n1; due to the other four particles.

We could now substitute known data into these two
equations to evaluate the magnitudes of the forces, indi-
cate the directions of the forces on the free-body dia-
gram of Fig. 13-5b, and then find the net force either (1)
by resolving the vectors into x and y components, find-
ing the net x and net y components, and then vectorially
combining them or (2) by adding the vectors directly on
a vector-capable calculator.

G
Fpe = 2F;3c08 6 = 2——ma-;ﬂ3—cos 0

2(6.67 X 107" m¥/kg-s?)(8.0 kg)(2.0 kg)
= > cos 3
(0.020 m)

Oc

=4.6 X 107°N. (Answer)

Note that the presence of particle 5 along the line be-
tween particles 1 and 4 does not alter the gravitational
force on particle 1 from particle 4.
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Gravitation

Summary (13-1, -2,-3)
Newton's Universal Law of Gravitation (first stated by Newton): any two masses my and m;
exert an attractive gravitational force on each other according to the rule:

m, m
F=2G 122, (13.1)

G = gravitational constant = 6.67 x 10 N m? / kg?
M G M,
a, =G RZ (13-11) andonearth g =

13-5 GRAVITATIONAL POTENTIAL ENERGY
I- Measurement of Big G

The value of G ("big G™) was not known until 1798. In that year, Henry Cavendish
(English) measured the very tiny Fqrav between 2 lead spheres, using a device called a torsion
balance.

2
m, m
1 2 _ grav
Fgrav = G 5 = G=
r mm,

(If Fgrav, r, and m's known, can compute G.)

GM
Before Cavendish's experiment, g and Re were known, so using g =R—2E , one could

E
compute the product G-Mg, but G and Me could not be determined separately. With
Cavendish's measurement of G, one could then compute Me. Hence, Cavendish "weighed the
earth™.

li- Gravitational Potential Energy

Previously, we showed for the gravity that PE = mgh. But to derive PE = mgh, we assumed
that Fgav = mg = constant, which is only true near the surface of the Earth. In general,
F G Mm

orav >— # constant (it depends on r). We now show that for the general case,
r

GMm
PE = UgfaV(r) = _7 Y [Ugrav<r = OO) = O]

grav

This is the gravitational potential energy for two masses, M and m, separated by a distance r.
By convention, the zero of gravitational potential energy is set at r = . [We will use the
common notation U(r), instead of PE. ] Recall the general definition of
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X2
PE: APE, = - W, = — [ F(x)dx.
x1
Here, we have used the definition of work for the case of 1D motion:
r X2
W, = [Fdr = [F(x)-dx.
i (D) x1
M Foe
T =

Consider a mass M at the origin and a mass m at position x1, as shown in the diagram. We
compute the work done by the force of gravity as the mass m moves from X = X1 to x = oo.
The attractive force F_,, (x) of mass M on mass m is in the negative direction of x. Here, the

grav

work done by gravity is negative, since force and displacement are in opposite directions:

Wgrav = j Fgrav(x) dx = — J' lezlm dx = + GMm = - GMm
x1 x1 X X x1 Xl
From the definition of PE
GMm
AF)Egrav = AUgrav = Ugrav(X:Oo) - Ugrav(xl) = - Wgrav =+ :
— %

GMm
_r'

Calling the initial position r (instead of x1), we have U, (r) = U(r) =

& With the choice of the zero of potential energy at infinity distance where the force
approaches zero, the gravitational potential energy is the work done to bring an object
from infinity to radius r.

@ The negative potential energy indicates a bound state. An object at radius r out from

the earth is bound to the earth by energy U(r) , and would require the supply of extra

energy equal to U to escape the earth’s gravity.

Important points

i. Potential energy is a scalar quantity.

ii. Unit: Joule

iii. Dimension : [ML?T?3]

iv. Gravitational potential energy is always negative in the gravitational field because the
force is always attractive in nature.

v. As the distance r increases, the gravitational potential energy becomes less negative
I.e., it increases.

vi. If r =oothen it becomes zero (maximum)

vii. In case of discrete distribution of masses, Gravitational potential energy

m,m.
— _ i
Utotal - ZUij’ Uij =-G

P>l g
J#
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Viil. If the body of mass m is moved from a point at a distance I, to a point at

distance I, (I, > I, ) then change in potential energy

V2 (_‘,‘ = o = | {
AU = .[ —"1"111\ = —GMm L - l or AU = GMm L - L
n X rs 1| Il |

As 1, is greater than T, , the change in potential energy of the body will be negative. It
means that if a body is brought closer to earth it's potential energy decreases.

iX. Relation between gravitational potential energy and potential
GMm GM
=-m

u(r)= -

r r

X. Gravitational potential energy of a body at height h from the earth surface is given by

} =mV, V =Gravitational potential.

N GMm oR ‘mo_ meR
E}h = — = —= = — =
R+h R+h 1 h
+ J—
R
Examplel: Find the potential energy for a system of three particles A

placed at the corners’ of a triangle (see figure).
Answer: the potential energy of the system is given by: 4}

Uy =Y, +U+U,, 4 : D=
Example: Find the potential energy for four particles placed at the corners’ of
a square (see figure).
Answer: the potential energy of the system is given by: |
Ugr =Up, +U3 +U, +U +U,, +U,, “

total

my my

Example: Three particles, each of mass m = 10* kg, each are placed at the corners’ of an
equilateral triangle with each side 102 m long. Calculate the potential energy of the system.
Answer:

©

‘ U= \),,,4-(),2"’\)23 g
i § P o
C'D @ :~G%1[ loo] LA a

Example: How much work is done by the Moon's gravitational field in moving a 995 kg rock
from infinity to the Moon's surface? [The Moon’s radius and mass are 1.74x10°m
and 7.36 x 10?*kg , respectively.]

Answer:
W =—AU =—(U, —U,)=—| ~CMm _ _GMnf |} _GMm
R o0 R
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_ GMm _ (6.67x107)(7.36x10%)(995)

- ST =2.8x10° J.
. X

iii- Escape Speed Vescape

Throw a rock away from an (airless) planet with a speed v. If vV < Vescape,
the rock will rise to a maximum height and then fall back down. If v > Vescape, the
rock will go to r = oo , and will still have some speed left over and be moving
away from the planet. If v = Vescape, the rock will have just enough initial KE to
escape the planet: its distance goes to r = co at the same time its speed approaches
zero: v > 0asr— oo.

We can use conservation of energy to compute the escape speed Vesc
(often called, incorrectly, the "escape velocity”). Initial configuration:

r = R (surface of planet), v, =v,,., , KE + PE = E, = constant
(+) ) (+) or (<)
GMm GMm
KE, + PE, = KE; +PE, = 1imvZ - R " imv: — ——
r
\/ ) 2GM  2GM
= V; = [Vie — +
R r
2GM 2GM
Asv, =0 = Vo, = -
R r
As: r=o.
2GM
= Vese = T 5
R

Note: If the rock is thrown with speed v, > v it will go to r = oo, and will have some KE

esc 2

left over, v, >0 .

Example: A rocket is launched from the surface of a planet of mass M = 1.90 x 10%’ kg and
radius R = 7.15 x 10’ m. What minimum initial speed is required if the rocket is to rise to a
height of 6R above the surface of the planet? (Neglect the effects of the atmosphere).
Answer:

26M "2 [2x6.65x107 x1.9x107
Ve =| — | = : = =5.51x10* mis.
R; 7.15x10
Try to calculate
1/2
Vg, = 26M _Z6M 1 _ 4 5910 mis
R 6R
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Some Escape Speeds

Mass Radius Escape Speed

Body (kg) (m) (km/s)
Ceres® 1.17 X 102 3.8 X 10° 0.64
Earth’s moon® 7.36 X 10% 1.74 x 10° 2.38
Earth 5.98 x 10% 6.37 % 10° 11.2
Jupiter 1.90 X 107 7.15 % 107 59.5
Sun 1.99 x 10 6.96 % 10% 618
Sirius B? 2 X 10% 1 x 107 5200
Neutron star* 2 X 10 1 % 10* 2 X 10°

“The most massive of the asteroids.
"A white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.

“The collapsed core of a star that remains after that star has exploded in a supernova event.

13-7 SATELLITES: ORBITS AND ENERGY

Key ldeas
® When a planet or satellite with mass m moves in a orcudar The mechanscal energy £ = K + Um then
orbit with radess . its potential energy L' and kinetic energy K GMm
are given by ! =
g ” ., 2r
U GMm and K (":!m For an oliptical orbit of semimajor axis @
X -~ _ GNm
E —
2

As a satellite orbits Earth in an elliptical path, both its speed, which fixes its kinetic
energy K, and its distance from the center of Earth, which fixes its gravitational potential
energy U, fluctuate with fixed periods. However, the mechanical energy E of the satellite
remains constant. (Since the satellite’s mass is so much smaller than Earth’s mass, we assign
U and E for the Earth—satellite system to the satellite alone.)

The potential energy of the system is given by

_GMm
r

(with U = 0 for infinite separation). Here r is the radius of the satellite’s orbit, assumed for
the time being to be circular, and M and m are the masses of Earth and the satellite,
respectively. To find the kinetic energy of a satellite in a circular orbit, we write Newton’s
second law (F = ma) as

U:

v GMm
mT =5 (13-37)

where v? /1 is the centripetal acceleration of the satellite. Then, from Eq. 13-37, the Kinetic
energy is

M
K =3im? = M (13-38)

2r

which shows us that for a satellite in a circular orbit,
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(circular orbit). (13-29)

Iul c

The total mechanical energy of the orbiting satellite is
GMm GMm

LEENL= 2r
GM .
or E=-— 7rm (circular orbit). (13-40)

This tells us that for a satellite in a circular orbit, the total energy E is the negative of the
kinetic energy K:
This is a plot of a
E = —K (circularorbit). (13-41) satellite's energies
versus orbit radius.

For a satellite in an elliptical orbit of semimajor Energy

axis a, we can substitute a for r in Eq. 13-40 to find the
mechanical energy: The kinetic energy

CM K(n s positive.

E=—""""(elliptical orbit). (13-42)
2a 0 — ¥

Equation 13-42 tells us that the total energy of an o "!.,/
orbiting satellite depends only on the semimajor axis of / /o T :
. . . .. e potential energy
its orbit and not on its eccentricity e. For example, four / and total energy
orbits with the same semimajor axis are shown in Fig. are negative.

13-15; Fhe same satel!lte would hav_e the_ same total  goye 1916 The variation of kinetic eneray
mechanical energy E in all four orbits. Figure 13-16 K.potential energy U/, and total energy E
shows the variation of K, U, and E with r for a satellite piilhr"ﬂdiusfft;f“;"}w“g“‘inla CifL‘fU‘L‘c}f“‘fj'

. - - - - il. For any value ol r, the values ol U anc
moving in a mrcu_lar orbit about a massive central body. ... nepiiiverthevaloz ol B b potiitve;
Note that as r is increased, the kinetic energy (and thus  and £ = —K.Asr—=.all three energy
also the orbital speed) decreases. curves approach a value of zero.

Example: A 1000 kg satellite is in a circular orbit of radius = 2R. about the Earth. How much
energy is required to transfer the satellite to an orbit of radius = 4Re? (Re = radius of Earth =
6.37 x 10° m, mass of the Earth = 5.98 x 10* kg).

Answer:
AE —E, —E, :_GMm [ _GMm __ GMm ( GMm :GMm
2r; 2r; 2(4R,) 2(2R,) 8R,
_ 6.67x107" x5.98x10** x1000

—7.8x10° J.
8x6.37 x10° -
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Work Done Against Gravity

If the body of mess m 1s moved from the surface of earth to a point at distance /i above the surface of
earth, then change in potential energy or work done against gravity will be

W =AU = GMm| I L:|

th N
= W:G‘\lm—l~ 1] [Asn=Rand r, =R+ 1]
LR R+hJ
- GMmly nigh GM
- W [As —=£]
R:l l__’l g
\ R R
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Extra Problems
13-4 GRAVITATION INSIDE EARTH

Gravitation Inside Earth

Newton’s shell theorem can also be applied to a situation in which a particle is
located inside a uniform shell. to show the following:

0 A uniform shell of matter cxerts no net gravitational force on a particle located
inside it

Caution: This statement does nnof mean that the gravitational forces on the par-
ticle from the various elements of the shell magically disappear. Rather, it
means that the swmn of the force vectors on the particle from all the elements
is zero.

If Earth’s mass were uniformly distributed, the gravilational force acting
on a particle would be a maximum at Earth’s surface and would decrease as
the particle moved outward. away from the planel. If the particle were to move

December 10, 2017

Fgure 13-7 A capsule of mass m falls from
rest through a tunnel that connects Earth's
south and north poles. When the capsule is
at distance r from Earth’s center, the por-
tion of Earth’s mass that is contained in a

inward. perhaps down a deep mine shaft, the gravitational force would change
for two reasons. (1) It would tend to increase because the particle would
be moving closer to the center of Earth. (2) It would tend to decrease because
the thickening shell of material lying outside the particle’s radial position
would not exert any net force on the particle.

To find an expression for the gravitational force inside a uniform Earth, let’s
use the plol in Pole to Pole. an early science fiction story by George Griffith. Three
explorers attempt to travel by capsule through a naturally formed (and, of course,
fictional) tunnel directly from the south pole to the north pole. Figure 13-7 shows
the capsule (mass m) when it has fallen to a distance r from Earth’s center. At that
moment, the nef gravitational force on the capsule is due to the mass M. inside
the sphere with radius r (the mass enclosed by the dashed outline), not the mass
in the outer spherical shell (outside the dashed outline). Moreover, we can assume
that the inside mass M. is concentrated as a particle at Earth’s center. Thus. we
can wrile Eq. 13-1, for the magnitude of the gravitational force on the capsule, as

GmM,,
- =2 =

sphere of that radius is M.

F= (13-17)
Because we assume a uniform density p. we can write this inside mass in
terms of Earth’s total mass M and its radius R:
inside mass total mass

density = = 5
by inside volume total volume

o M. M
2 et
3 7R

Solving for M, we find

M, = 3% = %A (13-18)
Substituting the second expression for M, into Eq. 13-17 gives us the magnitude
of the gravitational force on the capsule as a function of the capsule’s distance r
from Earth’s center:

GmM
R3
According to Griffith’s story, as the capsule approaches Earth’s center, the gravita-
tional force on the explorers becomes alarmingly large and, exactly at the center. it
suddenly but only momentarily disappears. From Eq. 13-19 we see thal, in fact, the
force magnitude decreases linearly as the capsule approaches the center, until it is

zero at the center. At least Griffith got the zero-at-the-center detail correct.

F= r. (13-19)

Equation 13-19 can also be written in terms of the force vector F and the
capsule’s position vector ¥ along a radial axis extending from Earth’s center.
Letting K represent the collection of constants in Eq. 13-19. we can rewrite the
force in vector form as

F = —KF, (13-20)
in which we have inserted a minus sign to indicate that ¥ and 7 have opposite
directions. Eguation 13-20 has the form of Hooke's law (Eq. 7-20, F = —kd ).

Thus. under the idealized conditions of the story. the capsule would osciliate like a
block on a spring. with the center of the oscillation at Earth’s center. After the cap-
sule had fallen from the south pole to Earth’s center, it would travel from the center
to the north pole (as Griffith said) and then back again, repeating the cycle forever.

For the real Earth. which certainly has a nonuniform distribution of mass
{Fig. 13-5). the force on the capsule would initially increase as the capsule de-
scends The force would then reach a maximum at a certain depth, and only then
would it begin to decrease as the capsule further descends.
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An asteroid, headed directly toward Earth, has a speed
of 12 km/s relative to the planet when the asteroid is 10
Earth radii from Earth’s center. Neglecting the effects
of Earth’s atmosphere on the asteroid, find the aster-
oid’s speed vywhen it reaches Earth’s surface.

el Because we are to neglect the effects of the

atmosphere on the asteroid, the mechanical energy of
the asteroid—Earth system is conserved during the fall.
Thus, the final mechanical energy (when the asteroid
reaches Earth’s surface) is equal to the initial mechani-
cal energy. With kinetic energy K and gravitational po-
tential energy U, we can write this as

K+ Uy= K, + U, (13-29)

Also, if we assume the system is isolated, the sys-
tem’s linear momentum must be conserved during the
fall. Therefore, the momentum change of the asteroid
and that of Earth must be equal in magnitude and
opposite in sign. However, because Earth’s mass is so
much greater than the asteroid’s mass, the change in
Earth’s speed is negligible relative to the change in the
asteroid’s speed. So. the change in Earth’s kinetic energy
is also negligible. Thus, we can assume that the kinetic
energies in Eq. 13-29 are those of the asteroid alone.

Calculations: Let m represent the asteroid’s mass and M
represent Earth’s mass (5.98 X 107 kg). The asteroid is
initially at distance 10R; and finally at distance Rj,

where R is Earth’s radius (6.37 X 10° m). Substituting
Eq. 13-21 for U and my? for K, we rewrite Eq. 13-29 as

GMm ,  GMm

R, = smv; — m
Rearranging and substituting known values, we find
vi= v+ 26M (1 ——1—)

! Ry 10
(12 % 10° m/s)?
2(6.67 x 107" m¥/kg-s?)(5.98 X 10°* kg)

+ 0.9
6.37 X 10°m

= 2.567 X 10° m?/s’,

rol—

5mv} -

L}

and

ve=1.60 X 10'm/s = 16 km/s. (Answer)

At this speed, the asteroid would not have to be
particularly large to do considerable damage at impact.
If it were only 5m across, the impact could release
about as much energy as the nuclear explosion at
Hiroshima. Alarmingly, about 500 million asteroids of
this size are near Earth’s orbit, and in 1994 one of them
apparently penetrated Earth’s atmosphere and
exploded 20 km above the South Pacific (setting off
nuclear-explosion warnings on six military satellites).
The impact of an asteroid 500 m across (there may be a
million of them near Earth’s orbit) could end modern
civilization and almost eliminate humans worldwide.

Example: Four stars (A, B, D, E), of equal mass, rotate in the same D
direction around a fifth star C of the same mass located at their common -

center of mass (see figure). The radius of the common orbit is R. What o i
minimum speed would star A need in order to depart from its 4 c :\so
companions for good? (Express your answer in terms of G, M, R). A, @'-k - @j x
\ :jo“'

Answer: Apply the conservation of energy, where Ei = E¢ @
g TR

g M i
‘ * 3 2R

s . fares (S35 %

Example: A satellite of mass 1300 kg is rotating around the earth in an orbit of
radius 0.665%10"m .. Then the satellite moves to a new orbit of radius 4.230x10’m. What is

the change in its mechanical energy?

Answer:
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AE:EZ_El:_GMEm_[_GMEmJ:_GMEm[i_l]

2r, 2n 2 L

-11 m? 24
6.67 x 10 N. kg2 % 5.98 x 10-%kg » 1300 kg 1 1

- 2 (4.230 x 107 0.665 x 1{]?)

=3.29x 10%°7J

Q5: An object is fired vertically upward from the surface of the Earth (Radius = R ) with

an initial speed of (Vesc)/2, where (Vesc = escape speed). Neglecting air resistance, how far

above the surface of Earth will it reach?

Answer:
2 Re r
2
lm 1 2GM _GMm _l A _GMm
2 2\ R, R, Yo
:r:%Re:h_lRe

Q. A 500 kg rocket is fired from earth surface with an escape speed. Find the rocket’s speed
when it is at a distance 0f1.50 x10°km from the center of earth? [Neglect any friction and air
resistance effects]

Ans:
1 , GMgm 1 , GMgm
Emvi — R, = Emvf — o
= vi = v + 2GM (1 1)
Vi = Vj E e Rg

= vy =231x10°m/s

10
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Gravitation
Summary of equations:
E -G m, m , GMm 2GM
- r2 » g= ag - RE’ U(r) == r , Vese = T
oL Jjg— |
fo- AN ; X A S :
F o £ g _a_ Fer i S i. —l_l_,____ __,l
Major Axi: e ——
E”lpSC = L o ¥ Mitane A T The Sun is at
£P + PG s constant s oo one of the two

focal points.

Fgure 13- A planct of mass m moving in
an elliptical orbit around the Sun. The Sun.
us Fof the cllipse

of mass M. 1sat one

The other focus is F*, which is located in
empty space. The semimajor axis a of the
ellipse, the perihelion (nearest the Sun)
distance R_.and the aphelion (farthest
from the Sun) distance R, are also shown.

13-6 PLANETS AND SATELLITES: KEPLER’S
LAWS
Examples of Orbits:

» Consider a planet like Earth, but with no air. Fire projectiles
horizontally from a mountain top, with faster and faster
initial speeds.

» The orbit of a satellite around the earth, or

» aplanet around the sun

All orbits obey Kepler's 3 Laws. ——

Kepler, German (1571-1630) took the data that Danish astronomer Tycho Brahe ("Bra-hay") had
spent his life collecting and used it (especially the information on Mars) to create three laws that
apply to any object that is orbiting something else.
e Although Kepler’s math was essentially wrong, the three laws he came up with were
correct!
e It would be like you writing a test, and even though you did all the work on a question
wrong, you somehow get the correct final answer.
e Kepler’s Three Laws of Planetary Motion are still the basis for work done in the field of
astronomy to this day.
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THE THREE KEPLER’S LAWS

Law | Name statement Figure
THE All planets move in elliptical orbits, with the Sun S
| | _awor | atone focus. e W Hlanet
ORBITS "o x
\\ Sun /,.'
HL_"'-—..__..______#"/
A line that connects a planet to the Sun sweeps same time intervals,
THE . , . o
Il | _Lawor | out equal areas in the plane of the planet’s orbit s <
AREAS in equal time intervals; that is, the rate dA/dt at B dower
which it sweeps out area A is constant. faster A
~ -~
Comment: Area of the segment A= Lr2de, T
2 vB =vA
then
dA d(e
_zer_( )zlrza):—, L=mr’e
dd 2 dt 2 2m
THE The square of the period, T2, of any planet is
HI | cawor proportional to the cube of the semi-major, r*,
PERIODS 7 “
axis of its orbit, i.e. |- = constant|. 2 . o .
r %
Comment: Since in circular motion we have
Mm 2
F,=F .Then,G—— = m_;and we can
r? y
have:
. M
- vVi=G—
r
ii- v=2nr/T,

KII1: For planets around the sun, the period T and the mean distance r from the sun are related

2 . T’ T.? .
by T—g = constant. That is for any two planets A and B, —4- = —2-. This means that
r ry ry

planets further from the sun (larger r) have longer orbital periods (longer T).

Kepler's Laws were empirical rules, based on observations of the motions of the planets in the
sky. Kepler had no theory to explain these rules.

Newton (1642-1727) started with Kepler's Laws and NIl (Fnet = ma) and deduced that

I:grav =G

(Sun—planet)

Mg m,

2
r‘SP

Newton applied similar reasoning to the motion of the Earth-Moon
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Mg m

system (and to an Earth-apple system) and deduced that Fy., =G Newton then

(Earth-mass m) rEm
made a mental leap, and realized that this law applied to any 2 masses, not just to the Sun-planet,
the Earth-moon, and Earth-projectile systems. Starting with Fret = ma and Fgav = G Mm / r?,
Newton was able to derive Kepler's Laws (and much more!). Newton could explain the motion
of everything!

Derivation of K111 (for special case of circular orbits). Consider a small mass

5 -

m in circular orbit about a large mass M, with orbital radius r and period T. We P
aim to show that T2/ r* = const. Start with NII: Free=m a A
The only force acting is gravity, and for circular motiona=v?/r = .'\
Mm 2 M 21r 2 ‘\ y /
G 7 = mv_ = G _ = V2 = [ \\\M p v
r 4 r T ~———
[recall the v =dist / time = 2xr /T ]
M An*r? T? 4n? :
- G—- ==L 5 = — = T - constant, independent of m
r T r GM

(Deriving this result for elliptical orbits is much harder, but Newton did it.)
> Note that: The speed v of a satellite in circular orbit: v =, /G—M .
r

For low-earth orbit (few hundred miles up), this orbital speed is about 7.8 km/s = 4.7
miles/second. The Space Shuttle must attain a speed of 4.7 mi/s when it reaches the top of the
atmosphere (and it fuel has run out) or else it will fall back to Earth.

Example: The planet Mars has a satellite, Phobos, which travels in a circular orbit of radius
9.40x10° m, with a period of 2.754x10*s. Calculate the mass of Mars from this information.

2
Answer: Use KIII T2 =(éiM]r3, we have

3
2\ 3 2 9.4x10°
=M= —4” r_2= o 11 ( ) 2 :6'5X1023kg.

G JT2 | 6.65x10 (2.754><104) -

Example: A satellite of Jupiter, has an orbital period of 1.77 days and an orbital radius of

4.22x10° km. Determine the mass of Jupiter.

Answer:
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_ AT°R? M= 4m’R3 M= 4m°R? 190 x 1027 &
- TGM I~ Tem, 7T Tz &

TZ

Example: A 20.0 kg satellite moves on a circular orbit around a planet of mass M = 4.06x10%*
kg with a period of 2.40 h. What is the radius of the orbit of the satellite?
Answer:

1

TZ_«-hT?XS: B GMT?2\3
—em Tt T a2

=8.00 X 10°m

[6.67 x 10~ x 4.06 X 1024 x (2.4 x 3600)2]*>
r p—

412

Example: The Fig shows a planet traveling in a counterclockwise direction

Vi

on an elliptical path around a star S located at one focus of the ellipse. The /""_
speed of the planet at a point A'is v, and at B is vg. The distance As = Ip Y IRLE WL
while the distance Bs = ;. The ratio va/vs is: v .L\\ ; /”
Answer: Conservation of angular momentum at points A and B requires —
that:

Va_s

Ve Ia

Example: A planet makes a circular orbit with period T around a star. If the planet were to orbit,
at the same distance, around a star with three times the mass of the original star, what would be
the new period?

2
Solution: From Kepler’s third law: T2 = [4GLMJ R®
If the distance (R) is the same, then T o M~1/2
Let the old period be T and the new period be Th, then:

1 T
T, x 32T=—=0577T
V3

Example: Both Venus and the Earth have approximately circular orbits around the Sun. The
period of the orbital motion of Venus is 0.615 year, and the period of the Earth is 1 year. By
what factor do the sizes of the two orbits differ (Re/Rv)?

Solution:
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re B Té/.'s 5 (1 ),L,m,').‘/l B -
f_;- o Tf” - (0.615 year)”* =
Summary of equations:
E -G m, m, , GMm 2GM
- r2 Y g:ag—()) RE’ U(r):— - y VeSC = T
dA L
—=—= constant, L=mr’e
dt 2m
T? 4r’
= = = constant
r GM
GM
V=, [—
r
1 GmM
E=—=
2 r

SATELLITES: ORBITS AND ENERGY

From KIII , it was found v = /G—M , then the total energy of an object in an orbit (circular or
r

parabolic) is given by:

E—KE+PE=im?+U-imEM_GM __16mM
2 2 r r 2 r

Example: A 1000 kg satellite is in a circular orbit of radius = 2R, about the Earth. How much
energy is required to transfer the satellite to an orbit of radius = 4Re? (Re= radius of Earth =
6.37 x 10% m, mass of the Earth = 5.98 x 10 kg).

Answer:
AE —E, —E, :_GMm B _GMm _ GMm | GMm :GMm
2r; 2r; 2(4R,) 2(2R,) 8R,
-11 24
_ 6.67 %10 ><5.98><1((5) X1000=7.8><109 ]
8x6.37x10
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Extra Solved problems

Example: At what distance above the surface of Earth (radius = R,) is the magnitude of the
gravitational acceleration equal to g/16? (Where g = gravitational acceleration at the surface of
Earth).

: . i g
Answer: At a distance habove the surface of Earth, it is required that g :E' where

i GM

> and g=

a, =——— o
g (h+R.) then:

2!
e

2
CM___9 _CSM/R" . 1R )’ -16R?

(h+R)? 16 16

Example: The magnitude of the acceleration due to gravity at the North Pole of planet Neptune
is 10.7 m/s?. Neptune has a radius of 2.5 x 10* km and rotates once around its axis in 16.0 hours.
What is the magnitude of the acceleration due to gravity at the equator of Neptune? A: 10.4 m/s?
Solution:

ag = acceleration due to gravity at the pole = 10.7 m/s?

T = period of revolution = (16) (3600) = 57600 s

o = angular speed of the planet = 27/T = 1.091 x 10 rad/s

g = acceleration due to gravity at the equator = ag— » °R = 10.4 m/s?

Example:If the gravitational acceleration at the surface of Earth is 9.8 m/s?, at what distance
from the Earth’s center (inside the Earth) will the gravitational acceleration be 4.0 m/s??
Solution: Let M be the mass of the earth, R be the radius of the Earth, r be the requested
distance, ags be the gravitational acceleration at the surface, and ay be the gravitational
acceleration at the required location.

The effective mass of the earth (m*) at the required location is given by the ratio of the volumes.

_Gm* Gr*  GMr r
SRS L BL
Thus:
ag 4.0
r=—=R=— x6370 = 2600 km
Ags 9.8

Example: A spherical asteroid has a radius of 500 km. The acceleration due to gravity at the
surface of the asteroid is 3.00 m/s?. With what speed will an object hit the surface of the asteroid
if it is dropped from rest from 300 km above the surface?

Solution: with
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_GM B 9
ag—?aGM—agR

Ki+ UI': Kf+ Uf — Kf: UI'— Uf

GmM GmM

2 _
R+n ' "R

mruve =

N =

2

<

_ 26M  26M , (1 1
~ "R R+h “Y“" \RTR+n

1 1
5 x10° 8 x10°

v2 =2 x3.0 x25x%x 10" ( ) = 1125000

Thus: v =1.06 km/s

Example: The semimajor axis of planet Pluto is 5.92 x 10'2 m and the ,,

eccentricity of its orbit around the Sun is e = 0.248. Find Pluto’s closest
distance from the Sun.
Solution: £l

a = semimajor axis, e = eccentricity, Rp = closest distance
a=ae+Rp

Ro=a—ae=a(1l—€)=592x102x (1—0.248) =4.45x 102 m e I
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Phys101 Final Zero Version
Termy: 131 Thursday, January 02, 2014 Page: 9
Ql15.

Three solid uniform spheres are located in space, as shown in Figure 7. The 50.0
kg and 100 kg spheres are fixed and the 0.100 kg sphere is released from its initial
position with its center 0.400 m from the center of the 50.0 kg sphere. Find the kinetic
energy of the 0.100 kg sphere when it has moved 0.400 m to the right from its initial

position,
Figure 7
A) +1.81nJ 100.0 kg
B) ~1.81nJ . 0.100 kg
C) -534n) Q ’l ?
D) +5.34 nJ i GE Mol v TR
E) +7.45n]
Ans:
(P
Kl — Emvf — U( - U’
Msp | Mypp Gmsomygq
= = + —
U= G (0.4 0.6 ) 1

Mso 4 mxoo) _ GMsoMy00

g —Gm“‘(o.s 0.2 1

1 m m m m
it 2 7 — - 50 100 _Mso  Myoo
Ky = 27(°-"’f U=ty G/é"-‘ (0.8 t02 "0z 06 )

K, =0.1x6.67 x 10~*! (ﬂ+£-2—ﬂo) = 1.80 x 10~/
r 08 02 04 06
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Term: 131 Thursday. January 02. 2014 Page: 10
Q16.

The potential energy of a satellite of mass 1.00x10°kg on a surface of a planet is
~1.00%10° J. Find the escape speed of the satellite from the surface of the planet.

A) 1.41%10° m’s

B) 2.00¢10°m’s

C) 3.54x10'm’s

D) 9.80%10°m's

E) 9.80<10°m’s
Ans:

l 2 —ZU,
Ki+U=0=K= Emvz'-'sr = =U v, = o=

2 x 106 :
Vese = [—oo— = L41X 102 m/s

10





