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Chapter 11
Rolling, Torque, and Angular Momentum

11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED
Translation vs. Rotation

— y ~y
Pure Pure Translation
i rotation
Translation & Rotation

General Rolling Motion
» General rolling motion consists of both translation and rotation.
» Although analysis of the general rotary motion of a rigid body in space may be quite
complicated, it is made easier by a few simplifying constraints.
> Initially we will consider only objects with an extremely high degree of symmetry
about a rotational axis, e.g., hoops, cylinders, spheres.

Consider a uniform cylinder of radius R rolling on a rough (no slipping) horizontal surface.

Figure 2.1: lustration of the relation between Ax, s, R and 8 for a relling object.

e As the cylinder rotates through an angular displacement 0, it’s center of mass (Com) moves
through distance s_, =S = R@, or the same distance as the arc length.

+ 5 =RS
Ag A
+ v =—=~R =Ra
Mt At
+» g =—==R—=Rua
’ At At

e If one looks at the velocity of a point on the surface of the cylinder in linear terms the
situation is quite complicated. The total linear velocity is composed of two components: the
tangential component, due strictly to rotation, and the translational component.
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Linear velocity of different points in rolling: In case of rolling, all points of a rigid body have
same angular speed but different linear speed. Let A, B, C and D are four points then their

velocities are shown in the following figure. In the figure we used v, = V.

v=0
Pure Translation * Pure Rotation = Rolling ==t +
In Pure rotation
Ve =Vem;
A= Vems
Ve =
In Pure translation
Ve =Vem;
Va=Vem;
Ve =V,
In rolling
Vg =2v,,;
V,=0; surprise
c ~— Vem

e It may be easily shown that the total linear velocity of a point at the very top of the cylinder,
point B, relative to the surface across which it rolls, is 2v_, =2wR , and that the linear

velocity of a point at the bottom of the cylinder (in contact with the surface, point A) is zero,
relative to the surface. The linear velocity of the axis around which the cylinder rotates is, of

course, V.

Note: In rolling, we will consider the system is rotating about the point A (the point of contact).

Linear quantities should be used judiciously in problems that involve rotation or a combination
of translation and rotation.
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11-2 FORCES AND KINETIC ENERGY OF ROLLING
For a rolling symmetric object, of mass M and angular speed @, one can calculate the total
Kinetic energy as:

1
Keai =5 1,0 I, =1, +MR?

roll —

Where 1, is the rotational inertia of the object about the axis through point A. I, is the

cm

rotational inertia of the object about an axis through its center of mass. R is the radius of the
object.

1 1 1 1
Kot =5 140" = 5(15 + MR?) 0" = 21 0" + = MR?e?
1 1
=5 Ln@” + 5 MV, o=V, /R
% Icmoo2 = the kinetic energy associated with the rotational of the object about an axis through its

center of mass. It represents the rotational Kinetic energy of the object about its symmetry axis.

%vam= the kinetic energy associated with the translational motion of the object’s center of

mass. It represents the kinetic energy the object would have if it moved along with speed v,
without rotating (i.e. just translational motion).

We can remember this relation simply as:

=K _ +K

roll rot trans | -

Example: A bowling ball has a mass of M =4.0kg, a M.I. 1, =1.6x107 kg -m* and a
radius R=0.10 m. If it rolls straight in +x-direction without slipping with a linear speed of
V., =4.0 m/s, what is its total energy?

Answer: The total (kinetic) energy of an object which rolls without slipping is given by

K :1| @° +1Mv2 . To use this equation we have everything we need, except the angular
cm 2 cm

roll 2
speed of the ball. From v_ = R the angular speed is:

w:vﬂzﬂzm.o rad/s
R 0.1
and then the kinetic energy is
1 2 1o 1 2 2 1 2
K.,==1 +=Mv. ==(1.6x10")(40.0) +=(4.0)(4.0) =44.8J.
roll 2 cma) 2 cm 2( X )( ) 2( )( )

The total kinetic energy of the ball is 44.8 J.
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Example: Consider a solid cylinder of radius R that rolls without slipping down an incline from
some initial height h. Calculate the linear velocity,v,, , of the cylinder at the bottom of the
incline and the angular velocity .

Answer:
e If the cylinder starts from rest, all of its subsequent kinetic energy comes from gravitational

potential energy PE, =mgh.

e Because the cylinder is both translating and rotating as it moves down the plane, some of
this initial energy goes into rotation and some goes into translation.

e This means that the linear velocity of the cylinder at the bottom of the plane is slower than it
would be if the cylinder slid down the plane without rotating. Energy is still conserved, but
the initial potential energy is now converted into two types of kinetic energy.

PE,=KE, +KE,

-

1.5 1 2
mgh = —Io" +—mv,,
- -

For pure rolling motion (i.e. no slipping) v, = Rw

2
mgh =%I (VCZ‘] +%mv§m = v, = Zm—g?
" (m+ )
For a solid cylinder rotating about a symmetry axis down the length of the cylinder, | = %mRZ.
Inserting this into the equation above yields:
4
ch = §gh

Vv 4gh
We can also solve for angular velocity using the equation @ = % - \f 33 2

Or we can do it another way, such as:
mgh = %i %mRz !(9: +%?‘?1‘{R&)]2

( 1\' 3 ] 3 3 3 4 5
L co"—i{Rco}2 —>g?f=lR‘aJ‘+lR*u-‘" Lgh=—Ro /o= ig_h
J 2 4 2 4 3R

g;’l‘ = —| ?R_
2




Prof. Dr. I. Nasser Chapter11-1 November 22, 2017

What is the ratio of rotational to translational energy?

P Y
xE, | %mRz ]! % "

KET =20 AT % =50% (rotation has half the energy of translation)
2

cm -
-

1

i —my
9l
-

-

What percentage of the total kinetic energy goes into rotational?

(1 3 Vaw ]
| —mR~ | —
KE 4 MR

=33%

Y 2
Vem ]

e e e

—mvmz + ‘Il mR?
2 L4
» You should perform the same analysis for a both a hoop and a sphere of the same mass m and

the same radius R. Based on your calculations, which reaches the bottom first in a three-way
race, a hoop, a solid sphere, or a solid cylinder?

Example: Two objects (a solid disk and a solid sphere) are rolling down without slipping an
incline from some initial height h. Both objects start from rest and from the same height. Which
object reaches the bottom of the ramp first?

8

The object with the largest linear velocity (v) at the bottom of the ramp will win the race.
Answer: Apply the conservation of mechanical energy

E =E,
U+K,=U,+K,
mgh+0=0+lmv:+llr:f}: =lm1-'3+11{1] SOIVmg forv =
2 2 2 2 IR

il )
mgh =l| m +i1 v
2 \ R- ,

y -
For the disk: vy, =\.|'3 gh

1 2
i =52 SINCe Vypnere™ Viek the
The moments of inertia are: 2 .. e sphere wins the race.
]aphe:e = E)I?R For the sphere: Vg = \:73/7

Compare these with point mass (box), | =0, sliding down the ramp v, = ,\/29h

Solid Hollow

H.W. A thin-walled hollow cylinder (mass = m, radius =r) and a <¥inger
solid cylinder (also, mass = m, radius = r) start from rest at the r

top of an incline. Determine which cylinder has the greatest
translational speed upon reaching the bottom. ‘__
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H.W. The figure shows a round uniform body of mass M and radius R
rolling smoothly down a ramp at angle ¢, along an x axis. What is its
linear acceleration?

Answer:
We have to apply Newton’s second law in linear and rotation motion.
1- Write Newton’s second law for components along the x axis in Fig.

(Fetx =Mma,)as
Jr.? Mg sin f = Magoy ;. (j 1-7) \ \ f:{ cos 6
This equation contains two unknowns, fs and acomx. (We should not assume ,;.‘“ e

that fs is at its maximum value fs max. All we know is that the value of fs is
just right for the body to roll smoothly down the ramp, without sliding.)
2- Apply Newton’s second law in angular form to the body’s rotation about its center of mass.
Rf, = Iomer. (11-8)

Bscausc the body is rolling smoothly, we can use Eq. 11-6 (d.,m = aR) to relate
the unknowns @ ., and a. But we must be cautious because here a..,, is negative
(in the negative direction of the x axis) and « is positive (counterclockwise ). Thus
we substitute —a_, /R for «in Eq. 11-8. Then, solving for f,. we obtain

anmn.x

eom, "
;= —lom R:l . (11-9)

Substituting the right side of Eq. 11-9 for f; in Eq. 11-7, we then find

= a gsin ¢
WRE Y L IMR

(11-10)

We can use this equation to find the linear acceleration @.. of any body rolling
along an incline of anele # with the horizontal.

Notes:
Note that the pull by the gravitational force causes the body to come down the ramp, but it is the

frictional force that causes the body to rotate and thus roll. If you eliminate the friction (by, say,
making the ramp slick with ice or grease) or arrange for Mg sin @ to exceed fsmax, then you
eliminate the smooth rolling and the body slides down the ramp.
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Extra Problems:
11-3 THE YO-YO

A yo-yo, which travels vertically up or down a string, can be treated as a wheel rolling along an inclined
plane at angle & =90°.

The Yo-Yo

A yo-yo is a physics lab that you can fit in your pocket. If a yo-yo rolls down its
™Y . string for a distance A, it loses potential energy in amount mgh but gains kinetic
energy in both translational (;Mv2,,) and rotational (3/e0?) forms. As it climbs
back up. it loses Kinetic energy and regains potential energy.

In a modern yo-yo, the string is not tied to the axle but is looped around it.
When the yo-yo “hits” the bottom of its string, an upward force on the axle from
the string stops the descenl. The yo-yo then spins, axle inside loop, with only
rotational kinetic energy. The yo-yo keeps spinning (“sleeping”) until you “wake
it” by jerking on the string, causing the string to catch on the axle and the yo-yo to
climb back up. The rotational kinetic energy of the yo-yo at the bottom of its
string (and thus the sieeping time) can be considerably increased by throwing the
yo-yo downward so that it starts down the string with initial speeds v, and win-
stead of rolling down from rest. -

To find an expression for the linear acceleration d ., of a yo-yo rolling down
a string, we could use Newton’s second law (in linear and angular forms) just as
we did for the body rolling down a ramp in Fig. 11-8. The analysis is the same ex-
cept for the following:

(a) @ 1. Instead of rolling down a ramp at angle ¢ with the horizontal, the yo-yo rolls
Figure 114 (a) A yo-yo, shown in cross down astring at angle # = 90° with the horizontal.
“7"0“‘ Th.c string, of essumed ncgligible 2. Instead of rolling on its ouler surface at radius R, the yo-yo rolls on an axle of
thickness, is wound around an axle of ¥ -
radius Ry. (b) A free-body diagram for the radius R, (Fig. 11-9a). 5
falling yo-yo. Only the axle is shown. 3. Instead of being slowed by [rictional force f, the yo-yo is slowed by the force

T onitfrom the string (Fig. 11-9b).

The analysis would again lead us to Eq. 11-10. Therefore, let us just change the
notation in Eq. 11-10 and set # = 90° to write the linear acceleration as

g
A== 11-13
s 1 + Lo/MR ( )

where I is the yo-yo's rotational inertia about its center and M is its mass. A
yo-yo has the same downward acceleration when it is climbing back up.

—~ -— Fo

Figure. The yo-yo.

Figure shows a schematic drawing of a yo-yo. What is its linear acceleration?
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There are two forces acting on the yo-yo: an upward force equal to the tension in the
cord, and the gravitational force. The acceleration of the system depends on these two
forces:

MF=mg-T=ma

The rotational motion of the yo-yo is determined by the torque exerted by the tension
T (the torque due to the gravitational force is zero)

Yr=In=TR,

The rotational acceleration ““a” 1s related to the linear acceleration a:

a=R_o

i}

We can now write down the following equations for the tension T

®

T =

o

Ia
z
0 Ru

T=mg-ma

The linear acceleration a can now be calculated

Thus, the yo-yo rolls down the string with a constant acceleration. The acceleration
can be made smaller by increasing the rotational inertia and by decreasing the radius
of the axle.
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Example: A uniform cylinder rolls down a ramp inclined at an angle of 6 to the horizontal. What
is the linear acceleration of the cylinder at the bottom of the ramp? Remember that: The friction
force is used to rotate the object.

EF =mgsinf — f =ma__ (1)

Rf, =Ia (2)

MMote: For = %mRJaf

MNote: Ra=a,_,

gsingd = ?am
2gsind
a =
p- 3
: . > 2 . 4gh
To find v,,,, you can use the equation v, =V +2a,,S , whereh =ssin@,toget v, = 3
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Chapter 11

Rolling, Torque, and Angular Momentum
Please go to the following sight to see the flywheel demos.
http://www.wfu.edu/physics/demolabs/demos/avimov/byalpha/abvideos.html
http://www.wfu.edu/physics/demolabs/demos/1/19/104010.html

11-4 TORQUE REVISITED (done with Chapter 10)

In chapter 10 the torque 7, i.e. “to twist”, is defined as a force that causes a rotational
acceleration of a rigid body about an axis or motion of a single particle relative to some fixed
point. The Torque

1- isavector

2- is positive when the body rotate counterclockwise

3- is negative when the body rotate clockwise

1T (out of page) . )
(¢} =vecior out of page
® F
[ vl ($y=vector inio page
ofigin r R
!
point of application
of force

Symbolically, if we suppose the force F (whose direction lies in the plane of rotation) is applied
at a point r (relative to the rotation axis which is the pivot). Suppose that the (smallest) angle
between rand F is &, Then the magnitude of the torque exerted on the object by this force is
‘?‘:r(F sing)=rF, = r F
moment arm of F

Example: Calculate the net torque (magnitude and direction) on
the beam in the figure about the O- and C- axes.

Answer: We will choose clockwise as our positive direction and
apply the formula for a torque: -

;net:ZﬁXﬁi:Z[}LESina :Zr}FiLSinHi / 2.0 m !

e— | {} 1 ——

)

a) About the O-axis: One way is:
7, =—25x2xc0s30" +10x4 xsin20° +0=-29.6 N.m
And the other is:
7, = —25%x2x5sin60" +10x 4 xsin20" +0=—-29.6 N.m

This net torque is counterclockwise
b) About the C-axis:

7. =0+10x2xsin20° —30x 2 xsin45 =—-35.6 N.m
This net torque is again counterclockwise

30N



http://www.wfu.edu/physics/demolabs/demos/avimov/byalpha/abvideos.html
http://www.wfu.edu/physics/demolabs/demos/1/1q/1Q4010.html
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We can also assign direction to torque with cross product as:

T=TxF
The vector torque 7 is defined with respect to an origin (which is usually, but not always, the axis
of rotation). So, if you change the origin, you change the torque (since changing the origin
changes the position vector r).
With these definitions of vector angular acceleration and vector torque, the fixed-axis equation
T = l o becomes

?=I6L=Iz—? (|ikeﬁ=ma=m‘;—‘t’)
To the calculation, we can use the following expression:
i ] k
T=FxF =|(x -x,) (Y -Y,) (z2-2,)
F, F, F,

Where the coordinates of the origin pointis (x,,Y,,z,)

Example: A force F = (2.0i+3.0]) N is applied to an object that is pivoted about a fixed axis

aligned along the z-axis. If the force is applied at the point of coordinates (4.0, 5.0, 0.0) m, what
is the applied torque (in N.m) about the z axis?

Answer:
i ] k
r=FxF =|(4-0) (5-0) (0-0)
2 3 0

Example: At an instant, a particle of mass 2.0 kg has a position of ¢ =(9.0i+15.0 ]) m and

acceleration of a =(—3.0?+3.0 ]) m/s®. What is the net torque on the particle at this instant about

(o]

the point having the position vector: =(9.0?) m?

Answer:
i j k i j K
r=rxF=m(Fxa)=m|(x-x,) (y-y,) (z-2,)[=2|(9-9) (@5-0) (0-0)
a, a, a, -3 3 0
:(9012) N-m
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11-5 ANGULAR MOMENTUM (Important)

\ I @
Now, a new concept: angular momentum 7 = “spin”. Angular momentum, a vector, is the
rotational analogue of linear momentum. So, based on our analogy between translation and

-

rotation, we expect £ =l® (likep = MV) . Note that this equation implies that the direction
of L is the direction of .

Definition of angular momentum of a particle with momentum
p = mv at position r relative to an origin is ¢ = TxP . Like £ (outofpage)

- (o) p
torque 7, the angular momentum ¢ is defined w.r.t. an origin, r /
often the axis of rotation. We now show that the total angular Dﬁgm T
momentum of a object spinning about a fixed axis is 7 = & . pa\\r\‘ticle
Consider an object spinning about an axis pointing along the +z
direction. We place the origin at the axis.

"\ /’/, \\.\ Lot = Zﬁi = foﬁu = Z?ix(mivi)
{ \ Vi O 1 1 1
X | \ _ 5 _ 5 2 g
o, | \\ﬁ\ = zzi:rimivi =2 Zmi Fo=2lo
/ v \
P 3 \j y — &
v‘/ (——”"F“*}n; f ¢ tot ! ®
|\ axis )
\_\\Kt '-’—__/

If something has a big moment of inertia | and is spinning fast (big ), then it has a big "spin”,
big angular momentum. Angular momentum is a very useful concept, because angular
momentum is conserved.

Important fact: the angular momentum of a object spinning about an axis that passes through

the center of mass is given by £ =l,, ® , independent of the location of the origin; that is,

even if the origin is chosen to be outside the spinning object, the angular momentum has the
same value as if the origin was chosen to be at the axis. (Proof not given here).
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Just as the moment of inertia “I” is the rotational analog to mass “m”,
and torque “r”is the rotational analog to force “F ”, angular
momentum 7 > is the rotational analog to linear momentum “ p .

-
7 {redrawn, with
il at onigin)

0
2

» The angular momentum of a particle, 7, with respect to the origin O

A
IS: ‘

=l

] i k
K:Fxﬁzm(FxG)zm(x—xo) (y-VY,) (z-z,)|=mryvsing
v v v

X y z

> The product I x p is in a plane perpendicular to the plane containing ¥ and p and in this
case is out of the plane of the page.
» Angular momentum is a vector and its direction is determined from the right hand rule. The
magnitude of the angular momentum vector is r psing.
> Notice that a particle does not have to rotate about O in order to have angular momentum
with respect to O.
» Notice that just as Newton’s second law may be written in terms of linear momentum:
IEnet = %
dt
it may also be written in terms of angular momentum (see next section):
- dL

Tnet = ——

dt

» Angular momentum may be written in terms of moment of inertia and angular velocity for a
rigid body and a fixed axis:

—_

(=1l
Angular momentum is an enormously useful quantity in physics for several reasons, such as:

1. Angular momentum is conserved, which means that in the absence of any external torques
the angular momentum of a system remains constant.

t=0, =lo=1 0,

I
= mvr, = mvr,

2. Angular momentum may be computed in a wide variety of situations that, at first glance,
don’t involve rotational motion.

3. All that it really necessary to compute angular momentum is to show motion with respect to
any coordinate that one may compute angular momentum with respect to.

4. In the case of instantaneous values this is normally an easy calculation.




Prof. Dr. I. Nasser Chapter11-I1 November 22, 2017

Example: A stone attached to a string is whirled at 3.0 rev/s around a i
horizontal circle of radius 0.75 m. The mass of the stone is 0.15 kg. The (e
magnitude of the angular momentum of the stone relative to the center of _ P~
the circle is: G “@/
Answer: 4 <

¢ =mvr =mr?m=0.15x(0.75)" x(3x27) =1.6 kg.m* /s e %

Example: A light, rigid rod of length d = 1.00 m joins two particles, with
masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in y
the xy plane about a pivot through the center of the rod (see figure). \,,,.,

Determine the angular momentum of the system about the origin when the . »
speed of each particle is 2.00 m/s. ~ 27 4
Answer: Angular momentum of the system: m "

0="0+0,=Fx P +Fxp, :ml(fo)+m2('7X\7):(m1+m2)(g)vz \'

= (4+3)(2)x2 2=7 2 kgm?ss

Angular momentum is on the Z direction. N.B. The right hand rule is of great help to visualize

the torque (and any cross product) direction. In this case I and V are in the plane of the figure,
the torque cross product must be oriented perpendicular to the plane.
Example: A uniform solid disk of mass m = 2.94 kg and radius r = 0.200 m
rotates about a fixed axis perpendicular to its face with angular frequency 6.02 7
rad/s.

(a) Calculate the magnitude of the angular momentum of the disk when the axis e

of rotation passes through its center of mass. [ICM = % mrz} ——

(b) What is the magnitude of the angular momentum when the axis of rotation passes through
a point midway between the center and the rim?

(c) What is the magnitude of the angular momentum when the axis of rotation passes through
a point at the rim?

Answer:
(@)
o] =1 ond} = %mrza)z % x2.94x(0.2)" x6.02 = 0.354 kg.m? /s
(b) If the rotation axis is shifted to a point midway the center and the rim, the Rotation
| Axis

. . . 1 r ? b
moment of inertia will change from I, = B mr? + m(zj = %mr2 . The angular Lo
momentum will change to: @

70| =168 = %mrza): % x2.94x(0.2)° x6.02 = 0.531 Kg.m? /s h=r/2 '
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(c) If the rotation axis is shifted to a point at the rim, the moment of inertia will change

1 .
from 1, = Emr2 + m(r)2 :gmr2 . The angular momentum will change to:

70| =10} = gmrza) = g x2.94x(0.2)° x6.02 =1.06 kg.m* /s

11-6 NEWTON’S SECOND LAW IN ANGULAR FORM
Newton's second law written in the form

—

- d_p (single particle) (11-22)

‘et dr
expresses the close relation between force and linear momentum for a single
particle. We have seen enough of the parallelism between linear and angular
quantities to be pretty sure that there is also a close relation between torque
and angular momentum. Guided by Eq. 11-22, we can even guess that it must be

. 4t
Toet = {single partxle). (11-23)

Equation 11-23 is indeed an angular form of Newton's second law for a single particle:

Q The (vector) sum of all the torgues acting on a particle 1s equal to the time rate of
change of the angular momentum of that particle,

Equation 11-23 has no meaning unless the torques 7 and the angular momentum
€ are defined with respect to the same point. usually the origin of the coordinate
system being used.
Example. The angular momentum of a flywheel decreases from 3.00 to 2.00 kg.m?%/s in 2.00
seconds. Its moment of inertia is 0.125 kg.m? Assuming a uniform angular acceleration,
calculate the angle through which the flywheel has turned in this time.
Answer: Compute the torque:

o~
QN
I
o~

-_dr_ 2273 _ _g5Nm
at dt 2

cr=la :>E:—ﬂ =—4.0 rad/s?
0.125

L 0=0 +a,t +%ozt2 =0+
£

Zo
|

x 2+ 1. (~4.0)22 = 40 rad
0125 2
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Example: The Figure below shows a graph of a torque
applied to a rotating object as a function of time. Assuming
the object was initially at rest, what is the angular
momentum, in units of kg-m?/s, of the object at t = 4.0 s?
Solution

7(N.m)

dt
~ Lf — L; = Area under the curve

dL
T=—=>AL=det )

i
Ly = Area = 5(4)(4) =8.0kg-m?/s

Q: Attime t, the vector 7(t)=4.0t*i—(2.0t +6.0t*)] gives the position of a 2.0 kg relative to

the origin of an xy coordinate system (¥ is in meters and t is in seconds).
(a) Find an expression for the torque acting on the particle relative to the origin.

(b) Is the magnitude of the particle’s angular momentum relative to the origin increasing,

decreasing, or unchanging?
Answer:

_, dr 2 ~
(2) We note that v =—- = [80ti—(20+121)]]

with SI units understood. From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we find

the particle’s angular momentum

A A

L(t) =m(7 x7)=2.0[ 40" i-(20t +6.0")]|x[80ti-(20+121)]]
=2.0[(4.08°){~(20+121)}-{~(20t +6.0t")}(8.01) Kk

=16.0t%k
Using Eq. 11-23 (relating its time-derivative to the (single) torque) then yields

= 2
Z(t) = d:ﬁt) _¢ (110t )R= (32.0t k )N.m

(b) The results in (a) indicate the Loct? and 7 ct

A 200.kg puncie-lihe chyect moves = 5 plane wath velocsty components v, = |50
maandv, = 120 m's 2t o paaser theough Be pocer wash (x, v) cooeduare: of (4.00, -
SO0 = Arduar iwetane whon it e angaly mossennes of the obwect abour the ongn
(= s of kgm' 3)°
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Extra problems

Example: A counterweight of mass m = 4.40 kg is attached to a light cord

that is wound around a pulley as shown in the figure below. The pulley is a

thin hoop of radius R = 9.00 cm and mass M = 2.50 kg. The spokes have
negligible mass. >
a) What is the net torque on the system about the axle of the pulley? ‘
b) When the counterweight has a speed v, the pulley has an angular speed = =
Vv/R. Determine the magnitude of the total angular momentum of the system

about the axle of the pulley.

c) Using your result from (b) and 7ne = dL/dt, calculate the acceleration of

the counterweight. (Enter the magnitude of the acceleration.)

Answer:

a) The system about the axle of the pulley is under the torque applied by the cord. At rest, the tension in
the cord is balanced by the counterweight T = mg. If we choose the rotation axle towards a certain 7,
we should have:

wet = RBxT = Rmg? = 0.09x4.40x 987 = 3887

-1

The net torque has a magnitude of t = 3.88N.m and its direction is along the rotation axis towards the
right in the figure.

b) Taking into account rotation of the pulley and translation of the counterweight, the total angular
momentum of the system is:

L = Rxmi+I&
. mmw.\/n% — (m+M)Rv = (4.404250)x0.09 = 0621 Kg.m
c)
) dL
T di
, N
mgR = (M + m)l'a’% = (M +m)Ra
(
4.40 x 9.8 4
a = mg = - = 6.25m/s*
m+ M 6.90
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Rolling, Torque, and Angular Momentum

11-7 ANGULAR MOMENTUM OF A RIGID BODY

M Checkpoint 1 Qg—T -~ ES=beesss St

In part @ of the figure, partickes | and 2 move szound point O in circles »’ -
with radii 2 m and 4 m. In part b, particles 3 and 4 travel along straight B N

lines at perpendicular distances of 4 mand 2 m from point O, Particke s | | % ¢ | e
maves directly away from . All five partichcs have the same mass and Ve R LU
the same constant spoed. (a) Rank the particles according to the magni- N : /S

tudes of their angular momentum ubout point (), greatest fiest. (b) sl

Which particles have negative angulur momentum aboul polat &7 (o "

The Angular Momentum of a System of Particles

Now we turn our attention to the angular momentum of a system of particles with
respect 1o an origin. The total angular momentum £ of the system is the (vector)
sum of the angular momenta € of the individual particles (here with label i):

l‘=l',+l’2+'0,'3+--»4»1",,=é1'r (11-26)
=1

With time, the angular momenta of individual particles may change because
of interactions between the particles or with the outside. We can find the resulting
change in L by taking the time derivative of Eq. 11-26.Thus,

dl. & di,

—= Y — (11-27)
d 5 dt
From Eq. 11-23, we see that dt,/di is equal to the net torque 7,,, on the ith
particle. We can rewrite Eq. 11-27 as

dl. &
v (11-28)

o~ 2 s
That is, the rate of change of the system’s angular momentum Lis equal to the
vector sum of the torques on its individual particles. Those torques include inter-
nal torques (due to forces between the particles) and external torques (due to
forces on the particles from bodies external to the system). However, the forces
between the particles always come in third-law force pairs so their torques sum to
zero. Thus, the only torques that can change the total angular momentum L of
the system are the external torques acting on the system.
Net External Torque. et 7, represent the net external torque. the vector
sum of all external torques on all particles in the system. Then we can write
Eq.11-28as

. dL
Toet = & (system of particles), (11-29)

» The net external torque T, acting on a system of particles is equal to the time rate of

net

—

change of the system’s total angular momentum L .
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Table 111 More Corresponding Variables and Relations for Translational

and Rotational Motion«
Translational Rotational

Force F Torque F(=TxF)

- g - —
Lincar momeatum ? Angular momentum E(=7xP)
Lincar momentum?® P (=2Zp) Angular momentum® L{(=2¢)
Lincar momentum® P= .\!i."nﬁ Angular momentum® L=lw

' . d N ~ dl
Newton's second law® Fo = — Newton's second law® Tosl = ——
dt di

Conscrvation law? P = aconstant = Conservation law? I’ = aconstant

“See also Table 10-3.

PFor systems of particles, including rigid bodies.

“For a rigid body about a fixed axis, with . being the component along that axis.
“For a closed. isolated system

M Checkpoint 5

The figure shows the position vector 7 of a particle — By
at a certain instant, and four choices for the direc- :
tion of a force that is to accelerate the particle. All
four choices lie in the xy plane. (a) Rank the
choices according to the magnitude of the time rate
of change (@¥€'/dt) they produce in the angular mo-
mentum of the particle about point O, greatest
first. (b) Which choice results in a negative rate of change about O?

M Checkpoint 6

In the figure, a disk, a
hoop.and a solid sphere i f
are made to spin about
fixed central axes (like a
top) by means of strings
wrapped around them, with the strings producing the same constant tangential force
F on all three objects. The three objects have the same mass and radius, and they are
initially stationary. Rank the objects according to (a) their angular momentum about
their central axes and (b) their angular speed, greatest first, when the strings have
been pulled for a certain time £.

Check point: In the figure, a disk, a hoop, and a solid sphere are made to spin about fixed
central axes (like a top) by means of strings wrapped around them, with the strings producing the
same constant tangential force on all three objects. The three objects have the same mass and
radius, and they are initially stationary. Rank the objects according to (a) their angular
momentum about their central axes and (b) their angular speed, greatest first, when the strings
have been pulled for a certain time t.

disk hoop sphere

Hoop Sphere

F F

- —-

F F
(a) all tie (same t, same 7, thus same L ); t=—> RF (same for all).
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L= t-t — same forall

(b) sphere, disk, hoop (reverse order of I, @=L/1oc1/1)

11-8 CONSERVATION OF ANGULAR MOMENTUM

If a system is isolated from external torques, then its total angular momentum L is constant.
T.=0 = L, =lo = constant (like Fexx=0 = Prot = constant )

Here is a proof (not needed) of conservation of angular momentum:

dL

T dt

dL d L dr . _ dp,
— = — Frxp. | = — . Fx—-—|.
dt dt(Z'Xp'j Z[dt P dtj

First, we argue that %, (thisis like F, = 3—? )

Now, the first term in the last expression is zero:

> (g xr)i] = > (v xmy; )=> m(V,xV;) = 0,since any vector crossed into itself is

zero. So, we have (Zi—lt‘ = Z(deﬁj = Z(Fxﬁ) (since F, = z—‘:). Finally,

< F
2

!

)

i net *

.- di .
xF) = Z‘Ti = T s SOWehave — = 7

AL - AL .
So now we have, 7. = A = if 7, =0, then N 0 = L = constant. Done.
It turns out that only 4 things are conserved:
e Energy
e Linear momentum p
e Angular momentum L
[ ]

Charge q
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Let's review the correspondence between translational and rotational motion

Translation o Rotation
X © 0
AX AO
V=— o w=—
At At
AV A®
a=— o o= —
At At
F “ T=rF.

M VAN =Y mr?
Fret=Ma > Tnet =1 @
KEtrans = (1/2)M V2 <> KErot = (1/2 ) | (1)2
p=myv © L=lo
Fnet:dp/dt 4 Tnet = dL / dt
If Fext =0, prot = constant Y. If Text =0, Ltot = constant
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Examples of law of conservation of angular momentum:

(1) The angular velocity of revolution of a planet around the sun in an elliptical orbit
increases when the planet comes closer to the sun and vice-versa because when
planet comes closer to the sun, it's moment of inertia | decreases therefore

o increases. (Note: | =mr?)

I o L oy
{Ismall, @big) \ """ (Ibig, o small)

P>

(2) A spinning skater performs feats involving spin by bringing his arms closer to his
body or vice-versa. On bringing the arms closer to body, his moment of inertia |
decreases, hence o increases.

L o - Ir o
(Ibig, © small) (Ismall, @big)
(3) A person-carrying heavy weight in his hands and standing on a rotating platform

can change the speed of platform. When the person suddenly folds his arms, its
moment of inertia decreases and in accordance the angular speed increases.

9
L oy = Iy ox
(Ibig, ® small) (Ismall, @big)

(4) A diver performs somersaults by Jumping from a high diving #2775, }
board keeping his legs and arms out stretched first and then ¢ AN
curling his body. y ( =

Her angular momentum
is finad but she can stil
control her spin rata. |
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M Checkpoint 7

A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round.
If the beetle crawls toward the center of the disk, do the following (each relative to
the central axis) increase, decrease, or remain the same for the beetle—disk system:
(a) rotational inertia, (b) angular momentum. and (c) angular speed?

Example: A skater is spinning at 32.0 rad/s with his arms and legs extended outward. In this
position his moment of inertia with respect to the vertical axis about which he is spinning is 45.6
kg-m?2. He pulls her arms and legs in close to her body changing his moment of inertia to 17.5

kg-m?. What is his new angular velocity?

BEFORE AFTER

Cyw= 32,08 Chyw
®) " e

\ '-: 45.6 ke'm [ =17.5 kgm’
/N

Answer:
L
L=lo (1) L, =1'ew' (2)

Equating (1) and (2), one finds

I 45.6 kg.m’
—_— ) =—
I 17.5 kg.m?

32.0 rad/s =83.4 rad/s

Example: A thin uniform rod of mass M = 3.0 kg and length L = 2.0 m is

suspended vertically from a frictionless pivot at its upper end. An object of ;:jfg;;g I % phvot
mass m = 500 g, traveling horizontally with a speed v = 45 m/s strikes the rod m=Slg" b o
at its center of mass and sticks there (See Figure). What is the angular : ' 2
velocity of the system just after the collision? BP0 1
Answer: w2

L ||

2
L = mv@ (1) = L = m@ o+:Mlo (2)
Equating (1) and (2), one finds
= w=>5rad/s

Example: A solid sphere of mass M =1.0 kg and radius R=10 cm rotates about a
frictionless axis at 4.0 rad/s (see Figure). A hoop of mass m=0.10 kg and radius
R =10 cm falls onto the ball and sticks to it in the middle exactly. Calculate the
angular speed of the whole system about the axis just after the hoop sticks to the
sphere.

Answer:
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L
L =lw+1, x0 (2 = Lf:(ls+lr)a)f (2)
Equating (1) and (2), one finds
2\ 102
—MR
oy 5 . 2M B 2x1 B
e “2 A= oM e T 2xiasx0l 22 ads

Is+|r 7MR2+mR2
5

Q20: A disk (rotational inertia = 21) rotates with angular velocity o,

about a vertical, frictionless axle. A second disk (rotational inertia =
I) and initially not rotating, drops onto the first disk (see figure). The
two disks stick together and rotate with an angular velocity @, . Find

@ . "N

Answer: Note: watch for the directions of in both disks. ‘
L

I_i:2l><a)o+l><0 (2 = Lf:(2l+l)a)f (2)

Equating (1) and (2), one finds

o, =2a0,13

| %ﬁ I
0

|
|
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Extra problems

Q: In the Figure, two M = 2.00 kg balls are attached to the ends of a thin and massless rod of length
d = 50.0 cm. The rod is free to rotate in a vertical plane without friction about a horizontal axis
through its center. With the rod initially horizontal, a 50.0 g piece of putty (clay) drops onto one of
the balls, hitting it with speed of 3.00 m/s and sticking to it. Find the angular speed of the system just
after the putty hits.

Answer:

|- state f-state
For initial state:

£, =Y myir =M(0)x(d/2)+ M (0) x (d /2) +0.05x 3 (d /2) = 0.15(d /2)
1)

For final state: All masses rotates with the same @.

E f ( I masses + I putty ) @, (2)

where
2

lssses = 2M (d/2)* =2x2x(d /2)* =4(d /2)*;
| e, =M(d/2)° =0.05%(d /2)° =0.05(d /2)
Equating (1) and (2), we have

2

0.15(d /2) = (4+0.05)(d /220 = w=—Or> 0148 radis

4.05(0.5/2)
Q: A thin, uniform metal rod, of length d = 2.0 m, is hanging vertically from the ceiling by a
frictionless pivot, as shown in Figure 8. Its rotational inertia about the pivot is 4.0 kg.m?. It is
struck at h = 1.5 m below the ceiling by a small 0.050 kg ball, initially travelling horizontally at
10 m/s. The ball rebounds in the opposite direction with a speed of 5.0 m/s. Find the angular
speed of the rod just after the collision.

Figure 8§

celling 5 “‘?‘“* .
fl pivot | pivot
h=15m h=15m
d=20m C=g0m

ball ball §

- L "

<=
N = W

i-state f-state
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Answer: use b for the ball, and r for the rod.
lp =(mhv) k=005 x1.5x10k=0.75k

lp= —0.05 x1.5x5k= —0.375k
if, = lwk

L, = L;:0.75k = Iwk—0.375k
1.125

Iw =075+4+0375=1.125 =w= =0.281 rad/s

Q: A horizontal disk of rotational inertia 4.25 kg.m? with respect to its axis of symmetry is
spinning counterclockwise about its axis of symmetry, as viewed from above, at 15.5 rev/s on a
frictionless massless bearing. A second disk, of rotational inertia 1.80 kg.m? with respect to its
axis of symmetry, spinning clockwise as viewed from above about the same axis (which is also
its axis of symmetry) at 14.2 rev/s, is dropped on top of the first disk. The two disks stick
together and rotate as one about their common axis of symmetry at what new angular velocity (in
units of radians per second)?

@ ,=1.80 kg-nr

W

, =425kgnr

\’,_Jurl
i
i

Answer: Define the counterclockwise as + and the clockwise as -.
Some preliminary work (expressing the given angular velocities in units of rad/s):
2xrad ) rad

|=89.22—
/ S

rev| 27 rad | rad rev |
w, =15.5—| === | =97.39— w, =14.2—|
) s \ rev |/ s 3 s\ rev

Now we apply the principle of conservation of angular momentum for the special case in which
there is no transfer of angular momentum to or from the system from outside the system.
Referring to the diagram:

=L We define counterclockwise, as viewed from
- ~ ‘.
above. to be the "+ sense of rotation.

Lw; =1, w, =(1+1, )"

W, —1, w,

I+1,

4 1
w =

, (4.25kg-m’)97.39rad/s — (1.80kg-m*) 89.22rad/s 41.9 rad
w = 3 3 =41
4.25kg-m” +1.80kg - m*

(It is counterclockwise as viewed from above.)
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Example: A merry-go-round of radius R = 2.0 m is rotating about a frictionless
pivot. It makes one revolution every 5.0 sec. The moment of inertia of the
merry-go-round (about an axis through its center) is 500 kg-m2. A child of mass
m = 25 kg, originally standing at the rim, walks radially in to the exact center.
The child can be considered as a point mass. What is the new angular velocity, =
in rad/sec, of the merry-go-round? & .
Answer: Apply the conservation of angular momentum (there are no net \*
external torques on the system of merry-go-round and child). Thus we have N A
L = constant = |; Wi = It Wt SEm—
or
we=li wil Iy
The initial angular velocity and the initial and final moments of inertia. Since T =5 s, so the
initial angular velocity is
Wi =27T/T = 1.257 rad/s
The initial moment-of-inertia is that of the merry-go-round plus that of the child located at the
rim
li = 500 kg-m? + mR? =500 kg-m? + (25 kg)(2 m)? = 600 kg-m?
Since the child ends up at the center (r = 0), she/he contributes no rotational inertia in the final
situation, so the s is just that of the merry-go-round, i.e.
I+ = 500 kg-m?
Plugging these in gives
wr = (600 kg-m?)(1.257 rad/s)/(500 kg-m?) = 1.51 rad/sec
Q: A playground merry-go-round of radius R = 1.60 m has a moment of inertia | = 255 kg .m?
and is rotating at 9.0 rev/min about a frictionless vertical axle. Facing the axle, a 22.0-Kg child
hops onto the merry-go-round and manages to sit down on the edge. What is the new angular
speed of the merry-go-round?
Answer: Without the child the merry-go-round has a moment of inertia I which will change to

I' = I + mr?when the child hops onto the edge. However, the moment of inertia should be
conserved.

L=L =>lo=1'o
| 255
a =—=
| 255+ 22 x1.60°

9.0 rad/s =7.37 rev/s

Q: A playground merry-go-round has a radius of 3.0 m and a rotational inertia of 600 kg. m?. It
is initially spinning at 0.80 rad/s when a 20 kg child crawls from the center to the rim. When the
child reaches the rim the angular velocity of the merry-go-round is:

Answer: Conservation of angular momentum: L= L (in rad/s) of the merry-go-round.

0
I, wf
= (Ig+Dws= o +){‘wi = wp= (_li1+l:J
600 x 0.8
= 0.615 rad/s

©“f= 500 + 180

10
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Q: A bullet, mass = 10 grams, is fired into the center of a door, of mass = 15 kg and width W =
1.0 meter, with a velocity of 400 m/s. The door is mounted on frictionless hinges. Find the
angular speed of the door after the impact. [ | = % M W?]

door

¢ collivion

Answer: Consider the type of collision involved here. There is no net external torque exerted
on the bullet-door system so angular momentum is conserved. The bullet does exert a torque on
the door but the door, in return exerts a torque on the bullet so the condition of zero external
torques is met.

Computing angular momentum with respect to the door hinge:

nitial | Cioare =MV(W/2) = (0.01)(400)(05) =2.0  Kg.m*/s
=0
=1

}: L gem = 2.0 Kg.m?/s

Ki,door

Final Lf ,System f ,systema)f

1 1

I =-MW? ==x15x1* =5.0 Kg.m’
3 3

door

I, ... =MR?=(0.01)(0.5)* =0.0025 Kg.m?;
bullet g

If,system = I + Ibullet
Conservation of angular momentum requires:
o, = 20=500250; = w,=0.4radls

door

Li,system = If,system

Is energy conserved?

mv2 = %(0.01)(400)2(0.5) 8007,

w? =0.4] , itis 1/2000 of the initial value!

f ,system

Example: A long, thin, rod of mass M = 0.500 kg and length L = 1.00 m is free to pivot about a
fixed pin located at L/4. The rod is held in a horizontal position as shown above by a thread
attached to the far right end.

11
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NN NN AN

thread connects
fixed SUDDOTt rotating rod to
PP ceiling
| o |
pinatL/4 long, thin rod, mass M, length L

a. Given that the moment of inertia about an axis of rotation oriented perpendicular to the
: . . 1 :
rod and passing through its center of massiis I, = EmR2 , determine the moment of

inertia | of the rod relative to the pivot at L/4.

Answer: We can determine the moment of inertia about this new axis of rotation by using the
Parallel Axis Theorem:

I1=1,,+MD’
2
1=L o+ M(E) =M= i(O.Skg)(lm)2 =0.073kgem’
12 4) 48 48

b. Calculate the tension T in the thread that supports the rod.
Answer: There are a number of ways to solve this, but the easiest is to look at the sum of the
Torques about an axis of rotation located at the pivot:

2r=1a

Tr)vmd = rgn:mn' o O
rthrmd = rg/m'.’h

rxF =rxF

thread gravity

3 1 1 1

The thread is cut so that the rod is free to pivot about the fixed pin.
c. Determine the angular acceleration of the rod at the moment the thread is cut.
Answer:

2”5:1(1

L
—M
oy Tarwin _TXF, _ 38
48
d. Determine the angular momentum of the rod relative to the pin at the moment the rod
reaches a vertically-oriented position.

128 _168rad/s?

12
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AN AN NN . s O N .

fixed support — fixed support —

i1
/

cm

. ‘/x }Ah L/4

Answer:

Just as the moving rod reaches the vertically-oriented position, it is struck in a head-on elastic
collision at the lower end by a ball of mass m = 0.500 kg traveling in a horizontal direction at
velocity vo = 2.00 m/s as shown.

U+K,=U,+K;

mgh+0 =0+%Iﬂ)2
mg(£)=l(iMLz)m2
4 2\48

= 1/ﬂ =580rad/s
7L

Now we can go on to determine the angular momentum of the rod:

L=1w
L=(0073kgem>)(5.80rad /s)
L=042kgem’ /s

e. Determine the velocity, both magnitude and direction, of the ball just after the collision.
N AREK N A

fixed support -

v

o —» U

Answer: This is an elastic collision, so kinetic energy is conserved in the collision, as well as
linear momentum and angular momentum. We can solve for the final velocity of the ball (and the

13
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rod) after the collision using Conservation of K and Conservation of Angular Momentum. Let’s
start with the energy analysis:

- - o !
Kbaﬁ + Rma‘ - Eba-!l? Rmd

1 > 1. - 1 5 1_ 5
—mv: +—ITw  =—mv, +—Iw
-~y i o) i ) I ~ I

(0.5kg)(2.0m / 5)* +(0.073kg « m*)(5.8rad / 5)° = (0.5kg)v; + (0.073kg  m* ),

61.0 = 6.85v; +w;

At this point we have two unknowns, so let’s turn to Conservation of Angular Momentum to get
another equation with those two unknowns. We’ll describe the angular momentum L of both the
rod and the ball relative to the rod’s axis of rotation.

Lhu[[ + _Lmd = lell +erl
rxmv,+ 1w, =rxmv,+1w,
(0.75111 )(O.Skg)(?..Om /8)+—(0.073kg m>)(5.80rad | s)=
(0.75m)(0.5kg)v, +(0.073kg * m* ),
447-5.14v, = w,
At this point we have two expressions, both with the same unknown variables. Substitute in to
get a quadratic equation that can be solved to get vf :
610=685;+w; and  447-514v,=w

f
610 =6.85v; +(447-5.14v,)’
v, ={-0.62m/s,2.0m/s}

We have two possible solutions—which one is correct? The ball was traveling at 2.0 m/s before
it struck the bar, so it can’t possibly continue to have that velocity. Therefore, we choose the -
0.62 m/s as the correct velocity of the ball after the elastic collision with the rod.

Solution:

Ls = L

Lwheel + Lhamster = 0

The wheel is a rotating object so its angular momentum is given by Lwheel = -l , Where the
minus sign indicates that it is into the paper. For a point particle, the angular momentum is
Lhamster = Rmv out of the paper. Thus we have

-lw+Rmv=0.

So the angular velocity of the wheel is

w=Rmv/1=(0.3kg)(0.12 m)(3.2 m/s) / (0.25 kg-m?/s) = 0.461 rad/s .

14



