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Chapter 11 
Rolling, Torque, and Angular Momentum  

 

11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED 
Translation vs. Rotation 

 
General Rolling Motion 

 General rolling motion consists of both translation and rotation. 

 Although analysis of the general rotary motion of a rigid body in space may be quite 

complicated, it is made easier by a few simplifying constraints. 

 Initially we will consider only objects with an extremely high degree of symmetry 

about a rotational axis, e.g., hoops, cylinders, spheres. 

 

Consider a uniform cylinder of radius R rolling on a rough (no slipping) horizontal surface. 

 

 
 

 As the cylinder rotates through an angular displacement θ, it’s center of mass (com) moves 

through distance cms s R  , or the same distance as the arc length. 

 
 If one looks at the velocity of a point on the surface of the cylinder in linear terms the 

situation is quite complicated. The total linear velocity is composed of two components: the 

tangential component, due strictly to rotation, and the translational component. 
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Linear velocity of different points in rolling: In case of rolling, all points of a rigid body have 

same angular speed but different linear speed. Let A, B, C and D are four points then their 

velocities are shown in the following figure. In the figure we used 
cmv v . 
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 It may be easily shown that the total linear velocity of a point at the very top of the cylinder, 

point B, relative to the surface across which it rolls, is 2 2cmv R , and that the linear 

velocity of a point at the bottom of the cylinder (in contact with the surface, point A) is zero,  

relative to the surface. The linear velocity of the axis around which the cylinder rotates is, of 

course, cmv . 

 

Note:  In rolling, we will consider the system is rotating about the point A (the point of contact). 

 

Linear quantities should be used judiciously in problems that involve rotation or a combination 

of translation and rotation. 
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11-2 FORCES AND KINETIC ENERGY OF ROLLING 

For a rolling symmetric object, of mass M and angular speed , one can calculate the total 

kinetic energy as: 
2 21

2
;                       roll A A cmK I I I MR    

Where 
AI  is the rotational inertia of the object about the axis through point A. cmI  is the 

rotational inertia of the object about an axis through its center of mass. R  is the radius of the 

object.  

 2 2 2 2 2 2

2 2

1 1 1

2 2 2

1 1

2 2

1

2

,                     /

roll A cm cm

cm cm cm

K I I MR I MR

I Mv v R

    

  

   

 

 

21

2 cmI  = the kinetic energy associated with the rotational of the object about an axis through its 

center of mass. It represents the rotational kinetic energy of the object about its symmetry axis. 

21

2 cmMv = the kinetic energy associated with the translational motion of the object’s center of 

mass. It represents the kinetic energy the object would have if it moved along with speed vCM 

without rotating (i.e. just translational motion). 

 

We can remember this relation simply as: 

roll rot transK K K  . 

-------------------------------------------------------- 

Example: A bowling ball has a mass of 4.0 kgM  , a M.I. 
2 21.6×10  kg ·m  cmI   and a 

radius 0.10 mR  . If it rolls straight in +x-direction without slipping with a linear speed of 

4.0 m/scmv  , what is its total energy? 

Answer: The total (kinetic) energy of an object which rolls without slipping is given by 

2 21 1

2 2
roll cm cmK I Mv  . To use this equation we have everything we need, except the angular 

speed of the ball.  From cmv R  the angular speed is: 

4.0
40.0 rad/s

0.1

cmv

R
     

and then the kinetic energy is 

     
2 22 2 21 1 1 1

1.6 10 40.0 4.0 4.0 44.8 J.
2 2 2 2

roll cm cmK I Mv        

The total kinetic energy of the ball is 44.8 J. 

---------------------------------------------------------------------- 
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Example: Consider a solid cylinder of radius R that rolls without slipping down an incline from 

some initial height h. Calculate the linear velocity, cmv , of the cylinder at the bottom of the 

incline and the angular velocity  . 

 
Answer: 

 If the cylinder starts from rest, all of its subsequent kinetic energy comes from gravitational 

potential energy iPE mgh . 

 Because the cylinder is both translating and rotating as it moves down the plane, some of 

this initial energy goes into rotation and some goes into translation. 

 This means that the linear velocity of the cylinder at the bottom of the plane is slower than it 

would be if the cylinder slid down the plane without rotating. Energy is still conserved, but 

the initial potential energy is now converted into two types of kinetic energy. 

 

For pure rolling motion (i.e. no slipping) 
cmv R  

 

2

2

2

2

1 1

2 2

2cm
cm cm I

R

v mgh
mgh I mv v

R m

 
    

  
 

For a solid cylinder rotating about a symmetry axis down the length of the cylinder, 21

2
I mR . 

Inserting this into the equation above yields: 

4

3
cmv gh  

We can also solve for angular velocity using the equation
2

4

3

cmv gh

R R
   , 

 Or we can do it another way, such as: 
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What is the ratio of rotational to translational energy? 

 
What percentage of the total kinetic energy goes into rotational? 

 
 

 You should perform the same analysis for a both a hoop and a sphere of the same mass m and 

the same radius R. Based on your calculations, which reaches the bottom first in a three-way 

race, a hoop, a solid sphere, or a solid cylinder? 

------------------------------------------------------------------------------- 

Example: Two objects (a solid disk and a solid sphere) are rolling down without slipping an 

incline from some initial height h. Both objects start from rest and from the same height. Which 

object reaches the bottom of the ramp first? 

 
The object with the largest linear velocity (v) at the bottom of the ramp will win the race. 

Answer: Apply the conservation of mechanical energy 

 

 

 

Solving for v         

 2

2

I

R

mgh
v

m

 



 

 

 

Compare these with point mass (box), 0I  , sliding down the ramp 2boxv gh  

------------------------------------------------------------- 

H.W. A thin-walled hollow cylinder (mass = m, radius = r) and a 

solid cylinder (also, mass = m, radius = r) start from rest at the 

top of an incline. Determine which cylinder has the greatest 

translational speed upon reaching the bottom. 

 

------------------------------------------------------------- 
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H.W. The figure shows a round uniform body of mass M and radius R 

rolling smoothly down a ramp at angle  , along an x axis. What is its 

linear acceleration? 

 

Answer: 

We have to apply Newton’s second law in linear and rotation motion. 

1- Write Newton’s second law for components along the x axis in Fig. 

( ,net x xF m a ) as 

 
This equation contains two unknowns, fs and acom,x. (We should not assume 

that fs is at its maximum value fs,max. All we know is that the value of fs is 

just right for the body to roll smoothly down the ramp, without sliding.) 

2- Apply Newton’s second law in angular form to the body’s rotation about its center of mass. 

 
                 

 
 

Notes:  

Note that the pull by the gravitational force causes the body to come down the ramp, but it is the 

frictional force that causes the body to rotate and thus roll. If you eliminate the friction (by, say, 

making the ramp slick with ice or grease) or arrange for Mg sin   to exceed fs,max, then you 

eliminate the smooth rolling and the body slides down the ramp. 

 

--------------------------------------------------------------------- 
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Extra Problems: 

11-3 THE YO-YO 

 
A yo-yo, which travels vertically up or down a string, can be treated as a wheel rolling along an inclined 

plane at angle 90  . 

 

 

 

 

Figure. The yo-yo. 

Figure shows a schematic drawing of a yo-yo. What is its linear acceleration? 
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There are two forces acting on the yo-yo: an upward force equal to the tension in the 

cord, and the gravitational force. The acceleration of the system depends on these two 

forces: 

 

The rotational motion of the yo-yo is determined by the torque exerted by the tension 

T (the torque due to the gravitational force is zero) 

 

The rotational acceleration “a” is related to the linear acceleration a: 

 

We can now write down the following equations for the tension T 

 

 

The linear acceleration a can now be calculated 

 

Thus, the yo-yo rolls down the string with a constant acceleration. The acceleration 

can be made smaller by increasing the rotational inertia and by decreasing the radius 

of the axle. 
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Example: A uniform cylinder rolls down a ramp inclined at an angle of θ to the horizontal. What 

is the linear acceleration of the cylinder at the bottom of the ramp? Remember that: The friction 

force is used to rotate the object. 

 

 

 

To find cmv , you can use the equation 
2 2 2f i cmv v a s  , where sinh s  , to get  

4

3
cm

gh
v  . 
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Chapter 11 

Rolling, Torque, and Angular Momentum  
Please go to the following sight to see the flywheel demos. 

http://www.wfu.edu/physics/demolabs/demos/avimov/byalpha/abvideos.html 

http://www.wfu.edu/physics/demolabs/demos/1/1q/1Q4010.html 
 

11-4 TORQUE REVISITED  (done with Chapter 10) 
In chapter 10 the torque  , i.e. “to twist”, is defined as a force that causes a rotational 

acceleration of a rigid body about an axis or motion of a single particle relative to some fixed 

point. The Torque 

1-   is a vector 

2-   is positive when the body rotate counterclockwise 

3-   is negative when the body rotate clockwise 

 
Symbolically, if we suppose the force F  (whose direction lies in the plane of rotation) is applied 

at a point r  (relative to the rotation axis which is the pivot). Suppose that the (smallest) angle 

between r and F  is  , Then the magnitude of the torque exerted on the object by this force is 

moment arm of  

( sin )

F

r F r F r F       

-------------------------------------------------------- 
Example: Calculate the net torque (magnitude and direction) on 

the beam in the figure about the O- and C- axes.  

 

Answer: We will choose clockwise as our positive direction and 

apply the formula for a torque: 

sin sinnet i i i i i i i i

i i i

r F r F rF          

a) About the O-axis: One way is: 

          25 2 cos30 10 4 sin20 0 29.6 N.mo            

And the other is: 

25 2 sin60 10 4 sin20 0 29.6 N.mo            

This net torque is counterclockwise 

b) About the C-axis: 

0 10 2 sin20 30 2 sin45 35.6 N.mC           

This net torque is again counterclockwise 

---------------------------------------------------------------- 

 

 

http://www.wfu.edu/physics/demolabs/demos/avimov/byalpha/abvideos.html
http://www.wfu.edu/physics/demolabs/demos/1/1q/1Q4010.html
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We can also assign direction to torque with cross product as:  

ˆ r F    

The vector torque  is defined with respect to an origin (which is usually, but not always, the axis 

of rotation).  So, if you change the origin, you change the torque (since changing the origin 

changes the position vector r). 

With these definitions of vector angular acceleration and vector torque, the fixed-axis equation 

I    becomes  

d
I I

dt


             ( like 

dv
F ma m

dt
  ) 

To the calculation, we can use the following expression: 

 

ˆ ˆ ˆi j k

( ) ( )o o o

x y z

r F x x y y z z

F F F

        

Where the coordinates of the origin point is ( , , )o o ox y z  

------------------------------------------------------- 

Example: A force  ˆ ˆ2.0 i 3.0 j NF    is applied to an object that is pivoted about a fixed axis 

aligned along the z-axis. If the force is applied at the point of coordinates (4.0, 5.0, 0.0) m, what 

is the applied torque (in N.m) about the z axis?  

Answer: 

 

 

ˆ ˆ ˆi j k

(4 0) (5 0) 0 0

2 3 0

ˆ2 k  N m

r F      

 

 

----------------------------------------------------------- 

Example: At an instant, a particle of mass 2.0 kg has a position of  ˆ ˆ9.0 i 15.0 j  mr   and 

acceleration of   2ˆ ˆ3.0 i 3.0 j  m/sa    . What is the net torque on the particle at this instant about 

the point having the position vector:  ˆ9.0 i  mor  ?  

Answer: 

     

 

ˆ ˆ ˆ ˆ ˆ ˆi j k i

( ) ( ) 2 (9 9) (15 0) 0 0

3 3 0

ˆ90 k  N m

o o o

x y z

j k

r F m r a m x x y y z z

a a a

            



 
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11-5 ANGULAR MOMENTUM (Important) 
 

 

 

 

 

 

 

 

 

Now, a new concept: angular momentum  = "spin".  Angular momentum, a vector, is the 

rotational analogue of linear momentum.  So, based on our analogy between translation and 

rotation, we expect I  (like p mv ) .  Note that this equation implies that the direction 

of L is the direction of .  

 

Definition of angular momentum of a particle with momentum 

p = mv at position r relative to an origin is r p  . Like 

torque , the angular momentum is defined w.r.t. an origin, 

often the axis of rotation. We now show that the total angular 

momentum of a object spinning about a fixed axis is I  .  

Consider an object spinning about an axis pointing along the +z 

direction.  We place the origin at the axis. 

 

 

tot i i i i i i

i i i

2

i i i i i

i i

tot

r p r (m v )

ˆ ˆ ˆz r m v z m r z I

I

    

    

 

  

   

 

If something has a big moment of inertia I and is spinning fast (big ), then it has a big "spin", 

big angular momentum. Angular momentum is a very useful concept, because angular 

momentum is conserved. 

 

Important fact: the angular momentum of a object spinning about an axis that passes through 

the center of mass is given by CMI  independent of the location of the origin; that is, 

even if the origin is chosen to be outside the spinning object, the angular momentum has the 

same value as if the origin was chosen to be at the axis. (Proof not given here). 
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Just as the moment of inertia “I” is the rotational analog to mass “m”, 

and torque “ ”is the rotational analog to force “ F ”, angular 

momentum “ ” is the rotational analog to linear momentum “ p ”. 

 

 The angular momentum of a particle, , with respect to the origin O 

is:                           

   

ˆˆ ˆ

( ) ( ) sino o o

x y z

i j k

r p m r v m x x y y z z m r v

v v v

          

 The product r p is in a plane perpendicular to the plane containing r  and p  and in this 

case is out of the plane of the page. 

 Angular momentum is a vector and its direction is determined from the right hand rule. The 

magnitude of the angular momentum vector is sinr p  . 

 Notice that a particle does not have to rotate about O in order to have angular momentum 

with respect to O. 

 Notice that just as Newton’s second law may be written in terms of linear momentum: 

                           net

dp
F

dt
  

it may also be written in terms of angular momentum (see next section): 

                           net

dL

dt
   

 Angular momentum may be written in terms of moment of inertia and angular velocity for a 

rigid body and a fixed axis: 

                          I   

 

Angular momentum is an enormously useful quantity in physics for several reasons, such as: 

 

1. Angular momentum is conserved, which means that in the absence of any external torques 

the angular momentum of a system remains constant. 

                                               
i f i i f f

i f

I I

mvr mvr

   

 
 

2. Angular momentum may be computed in a wide variety of situations that, at first glance, 

don’t involve rotational motion. 

3. All that it really necessary to compute angular momentum is to show motion with respect to 

any coordinate that one may compute angular momentum with respect to. 

4. In the case of instantaneous values this is normally an easy calculation. 

----------------------------------------------------------------------- 
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Example: A stone attached to a string is whirled at 3.0 rev/s around a 

horizontal circle of radius 0.75 m. The mass of the stone is 0.15 kg. The 

magnitude of the angular momentum of the stone relative to the center of 

the circle is:  

Answer: 

   
22 20.15 0.75 3 2 1.6 kg.m /smvr mr         

------------------------------------------------------------------------------- 

Example: A light, rigid rod of length d = 1.00 m joins two particles, with 

masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in 

the xy plane about a pivot through the center of the rod (see figure). 

Determine the angular momentum of the system about the origin when the 

speed of each particle is 2.00 m/s. 

Answer: Angular momentum of the system: 

      

 
1 2 1 2 1 2 1 2

2

2

1

2

ˆ

ˆ ˆ(4 3) 2 7  kg.m /s

d
r p r p m r v m r v m m v z

z z

           

   

 

Angular momentum is on the z  direction. N.B. The right hand rule is of great help to visualize 

the torque (and any cross product) direction. In this case r  and v  are in the plane of the figure, 

the torque cross product must be oriented perpendicular to the plane. 

----------------------------------------------------------------- 

Example: A uniform solid disk of mass m = 2.94 kg and radius r = 0.200 m 

rotates about a fixed axis perpendicular to its face with angular frequency 6.02 

rad/s.  

(a) Calculate the magnitude of the angular momentum of the disk when the axis 

of rotation passes through its center of mass. 
2

CM

1

2
I mr 
 

 

(b) What is the magnitude of the angular momentum when the axis of rotation passes through 

a point midway between the center and the rim? 

(c) What is the magnitude of the angular momentum when the axis of rotation passes through 

a point at the rim? 

Answer: 

(a)  

 
22 2

CM CM

1 1
2.94 0.2 6.02 0.354 kg.m /s

2 2
I mr         

 

(b) If the rotation axis is shifted to a point midway the center and the rim, the 

moment of inertia will change from

2

2 2

O

1 3

2 2 4

r
I mr m mr

 
   

 
 . The angular 

momentum will change to:  

 
22 2

O O

3 3
2.94 0.2 6.02 0.531 Kg.m /s

4 4
I mr         
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(c) If the rotation axis is shifted to a point at the rim, the moment of inertia will change 

from  
22 2

O'

1 3

2 2
I mr m r mr   .  The angular momentum will change to: 

 
22 2

O O

3 3
2.94 0.2 6.02 1.06 kg.m /s

2 2
I mr         

------------------------------------------------------------------------- 
 

11-6 NEWTON’S SECOND LAW IN ANGULAR FORM 

 
------------------------------------------------------------- 

Example. The angular momentum of a flywheel decreases from 3.00 to 2.00 kg.m2/s in 2.00 

seconds. Its moment of inertia is 0.125 kg.m2. Assuming a uniform angular acceleration, 

calculate the angle through which the flywheel has turned in this time.  

Answer:  Compute the torque: 

2 3
0.5 N.m

2

f id

dt dt


 
      

20.5
4.0 rad/s

0.125
I         

2 21 1

2 2

3
0 2 ( 4.0)2 40 rad

0.125
o

o o

I

t t               

--------------------------------------------------------------------- 
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Example: The Figure below shows a graph of a torque 

applied to a rotating object as a function of time. Assuming 

the object was initially at rest, what is the angular 

momentum, in units of kg·m2/s, of the object at t = 4.0 s? 

Solution 

 
---------------------------------------------------------------------- 

Q: At time t, the vector  2 2ˆ ˆ( ) 4.0 i 2.0 6.0 jr t t t t    gives the position of a 2.0 kg relative to 

the origin of an xy coordinate system ( r  is in meters and t is in seconds).  

(a) Find an expression for the torque acting on the particle relative to the origin.  

(b) Is the magnitude of the particle’s angular momentum relative to the origin increasing, 

decreasing, or unchanging? 

Answer: 

(a) We note that  ˆ ˆ8.0 i 2.0 12 j
dr

v t t
dt

    
   

with SI units understood.  From Eq. 11-18 (for the angular momentum) and Eq. 3-30, we find 

the particle’s angular momentum  

 

     

        

2 2

2 2

2

ˆ ˆ ˆ ˆ( ) 2.0 4.0 i 2.0 6.0 j 8.0 i 2.0 12 j

ˆ2.0 4.0 2.0 12 2.0 6.0 8.0 k

ˆ16.0 k

L t m r v t t t t t

t t t t t

t

          
   

      
 



 

Using Eq. 11-23 (relating its time-derivative to the (single) torque) then yields  

 

 
 

216.0( ) ˆ ˆ( ) k 32.0 k N.m
d tdL t

t t
dt dt

    

(b) The results in (a) indicate the  2L t  and t  

--------------------------------------------------------------------- 
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Extra problems 

Example: A counterweight of mass m = 4.40 kg is attached to a light cord 

that is wound around a pulley as shown in the figure below. The pulley is a 

thin hoop of radius R = 9.00 cm and mass M = 2.50 kg. The spokes have 

negligible mass. 

a) What is the net torque on the system about the axle of the pulley? 

b) When the counterweight has a speed v, the pulley has an angular speed = 

v/R. Determine the magnitude of the total angular momentum of the system 

about the axle of the pulley. 

c) Using your result from (b) and /net dL dt  , calculate the acceleration of 

the counterweight. (Enter the magnitude of the acceleration.) 

Answer: 

a) The system about the axle of the pulley is under the torque applied by the cord. At rest, the tension in 

the cord is balanced by the counterweight T = mg. If we choose the rotation axle towards a certain z , 

we should have: 

 
The net torque has a magnitude of τ = 3.88N.m and its direction is along the rotation axis towards the 

right in the figure. 

b) Taking into account rotation of the pulley and translation of the counterweight, the total angular 

momentum of the system is: 

 
c) 

 
--------------------------------------------------------------------- 
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Rolling, Torque, and Angular Momentum  
 

11-7 ANGULAR MOMENTUM OF A RIGID BODY 

 

 
 

 
 The net external torque net  acting on a system of particles is equal to the time rate of 

change of the system’s total angular momentum L . 
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Check point: In the figure, a disk, a hoop, and a solid sphere are made to spin about fixed 

central axes (like a top) by means of strings wrapped around them, with the strings producing the 

same constant tangential force on all three objects. The three objects have the same mass and 

radius, and they are initially stationary. Rank the objects according to (a) their angular 

momentum about their central axes and (b) their angular speed, greatest first, when the strings 

have been pulled for a certain time t. 

 

(a) all tie (same t, same  , thus same L ); (same for all).= RF    
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(b)   sphere, disk, hoop (reverse order of I, L/ I 1/ I  ) 

 

11-8 CONSERVATION OF ANGULAR MOMENTUM 
If a system is isolated from external torques, then its total angular momentum L is constant. 

ext 0         totL I    =  constant  ( like Fext = 0    ptot = constant ) 

Here is a proof (not needed) of conservation of angular momentum:  

First, we argue that 
net

d L

d t
   (this is like 

net

d p
F

d t
  ) : 

i
i i i i

i i i

d pd L d d r
r p p r .

d t d t d t d t

  
       

   
     

Now, the first term in the last expression is zero: 

   i i i i i i i

i i ii

d r
p v m v m v v 0

d t

 
      

 
    , since any vector crossed into itself is 

zero.  So, we have  i
i i i

i i

d pd L
r r F

d t d t

 
    

 
   (since 

net

d p
F

d t
 ) .  Finally, 

 i i i net

i i

r F      ,  so we have net

d L

d t
  .   

So now we have,  
net

L

t


 


      if net 0  , then 

L
0 L constant

t


  


.  Done. 

It turns out that only 4 things are conserved: 

 Energy 

 Linear momentum p 

 Angular momentum L 

 Charge q 
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Let's review the correspondence between translational and rotational motion 

Translation          Rotation 

x       
x

v
t





   =  
t





 

v
a

t





   =  
t





 

           F                = r F 

         M           I =  m r2 

Fnet = M a   net  = I   

KEtrans = (1/2)M v2  KErot = (1/2 ) I 2
 

p = m v  L = I   

Fnet = dp / dt           net = dL / dt 

If Fext  = 0, ptot = constant   If  ext  = 0, Ltot = constant 
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Examples of law of conservation of angular momentum: 
 

  The angular velocity of revolution of a planet around the sun in an elliptical orbit 
increases when the planet comes closer to the sun and vice-versa because when 
planet comes closer to the sun, it's moment of inertia I  decreases therefore 

increases.  (Note: 2)I mr 




(2) A spinning skater performs feats involving spin by bringing his arms closer to his 
body or vice-versa. On bringing the arms closer to body, his moment of inertia I 
decreases, hence increases. 

 
(3) A person-carrying heavy weight in his hands and standing on a rotating platform 

can change the speed of platform. When the person suddenly folds his arms, its 
moment of inertia decreases and in accordance the angular speed increases. 

 

 
 

(4) A diver performs somersaults by Jumping from a high diving 
board keeping his legs and arms out stretched first and then 
curling his body. 
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Example: A skater is spinning at 32.0 rad/s with his arms and legs extended outward. In this 

position his moment of inertia with respect to the vertical axis about which he is spinning is 45.6 

kg⋅m2. He pulls her arms and legs in close to her body changing his moment of inertia to 17.5 

kg⋅m2. What is his new angular velocity? 

 
Answer: 

 

   (1)                              ' ' (2)i f

L

L I L I    

Equating (1) and (2), one finds 
2

2

45.6 kg.m
' 32.0 rad/s 83.4 rad/s

' 17.5 kg.m

I

I
     

--------------------------------------------------------------------------- 

 

Example: A thin uniform rod of mass M = 3.0 kg and length L = 2.0 m is 

suspended vertically from a frictionless pivot at its upper end. An object of 

mass m = 500 g, traveling horizontally with a speed v = 45 m/s strikes the rod 

at its center of mass and sticks there (See Figure). What is the angular 

velocity of the system just after the collision?  

Answer: 

2
21

32 2
   (1)                     =         (2)i f

L L
m

L

L mv L ML   
   
   

   

Equating (1) and (2), one finds 

5 rad/s   

---------------------------------------------------------------- 

Example: A solid sphere of mass M =1.0 kg and radius R=10 cm rotates about a 

frictionless axis at 4.0 rad/s (see Figure). A hoop of mass m=0.10 kg and radius 

R =10 cm falls onto the ball and sticks to it in the middle exactly. Calculate the 

angular speed of the whole system about the axis just after the hoop sticks to the 

sphere. 

Answer: 
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 0    (1)                     =         (2)i s i r f s r f

L

L I I L I I       

Equating (1) and (2), one finds 

2

2 2

2
2 2 15 4 3.2 rad/s

2 2 5 2 1 5 0.1

5

s
f i i i

s r

MR
I M

I I M m
MR mR


     

    


     

------------------------------------ 

Q20:  A disk (rotational inertia = 2I) rotates with angular velocity 
o  

about a vertical, frictionless axle. A second disk (rotational inertia = 

I) and initially not rotating, drops onto   the first disk (see figure). The 

two disks stick together and rotate with an angular velocity 
f . Find 

f . 

Answer: Note: watch for the directions of in both disks. 

2 0    (1)                     =         (2 ) (2)i o f f

L

L I I L I I        

Equating (1) and (2), one finds 

 
2 /3f o   

 

------------------------------------------------ 
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Extra problems 

 
Q: In the Figure, two M  = 2.00 kg balls are attached to the ends of a thin and massless rod of length 

d = 50.0 cm. The rod is free to rotate in a vertical plane without friction about a horizontal axis 

through its center. With the rod initially horizontal, a 50.0 g piece of putty (clay) drops onto one of 

the balls, hitting it with speed of 3.00 m/s and sticking to it. Find the angular speed of the system just 

after the putty hits.  

Answer: 

 
For initial state:  

(0) ( / 2) (0) ( / 2) 0.05 3 ( / 2) 0.15( / 2)i i i i

i

m v r M d M d d d                                

(1) 

For final state:  All masses rotates with the same  .   

  ,f masses puttyI I                                                             (2) 

where 

     

     

2 2 2

2 2 2

2 / 2 2 2 / 2 4 / 2 ;

/ 2 0.05 / 2 0.05 / 2

masses

putty

I M d d d

I m d d d

    

   
 

Equating (1) and (2), we have  

2 0.15
0.15( / 2) (4 0.05)( / 2) 0.148 rad/s

4.05(0.5/ 2)
d d       

----------------------------------------------------------------- 

Q: A thin, uniform metal rod, of length d = 2.0 m, is hanging vertically from the ceiling by a 

frictionless pivot, as shown in Figure 8. Its rotational inertia about the pivot is 4.0 kg.m2. It is 

struck at h = 1.5 m below the ceiling by a small 0.050 kg ball, initially travelling horizontally at 

10 m/s. The ball rebounds in the opposite direction with a speed of 5.0 m/s. Find the angular 

speed of the rod just after the collision. 
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Answer: use b for the ball, and r for the rod. 

 
----------------------------------------------------------------------- 

Q: A horizontal disk of rotational inertia 4.25 kg.m2 with respect to its axis of symmetry is 

spinning counterclockwise about its axis of symmetry, as viewed from above, at 15.5 rev/s on a 

frictionless massless bearing. A second disk, of rotational inertia 1.80 kg.m2 with respect to its 

axis of symmetry, spinning clockwise as viewed from above about the same axis (which is also 

its axis of symmetry) at 14.2 rev/s, is dropped on top of the first disk. The two disks stick 

together and rotate as one about their common axis of symmetry at what new angular velocity (in 

units of radians per second)? 

 
Answer: Define the counterclockwise as + and the clockwise as -. 

 
(It is counterclockwise as viewed from above.) 
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------------------------------------------------------- 

Example:  A merry-go-round of radius R = 2.0 m is rotating about a frictionless 

pivot. It makes one revolution every 5.0 sec. The moment of inertia of the 

merry-go-round (about an axis through its center) is 500 kg·m2. A child of mass 

m = 25 kg, originally standing at the rim, walks radially in to the exact center. 

The child can be considered as a point mass. What is the new angular velocity, 

in rad/sec, of the merry-go-round? 

Answer: Apply the conservation of angular momentum (there are no net 

external torques on the system of merry-go-round and child). Thus we have 

L = constant = Ii i = If f 

or 

f = Ii i/ If 

The initial angular velocity and the initial and final moments of inertia. Since T = 5 s, so the 

initial angular velocity is 

i = 2 /T = 1.257 rad/s 

The initial moment-of-inertia is that of the merry-go-round plus that of the child located at the 

rim 

Ii = 500 kg·m2 + mR2 = 500 kg·m2 + (25 kg)(2 m)2 = 600 kg·m2 

Since the child ends up at the center (r = 0), she/he contributes no rotational inertia in the final 

situation, so the If is just that of the merry-go-round, i.e. 

If = 500 kg·m2 

Plugging these in gives 

f = (600 kg·m2)(1.257 rad/s)/(500 kg·m2) = 1.51 rad/sec 

------------------------------------------------------------------------------- 

Q: A playground merry-go-round of radius R = 1.60 m has a moment of inertia I = 255 kg .m2 

and is rotating at 9.0 rev/min about a frictionless vertical axle. Facing the axle, a 22.0-Kg child 

hops onto the merry-go-round and manages to sit down on the edge. What is the new angular 

speed of the merry-go-round?  

Answer: Without the child the merry-go-round has a moment of inertia I which will change to 

when the child hops onto the edge. However, the moment of inertia should be 

conserved.  

' 'i fL L I I     

2

255 
' 9.0 rad/s 7.37 rev/s

' 255 22 1.60  

I

I
  

 
   

----------------------------------------------------------------------- 

Q: A playground merry-go-round has a radius of 3.0 m and a rotational inertia of 600 kg. m2. It 

is initially spinning at 0.80 rad/s when a 20 kg child crawls from the center to the rim. When the 

child reaches the rim the angular velocity of the merry-go-round is:  

Answer: Conservation of angular momentum∶ Lf= Li (in rad/s) of the merry-go-round.  
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-------------------------------------------------------------------------------------- 

Q: A bullet, mass = 10 grams, is fired into the center of a door, of mass = 15 kg and width W = 

1.0 meter, with a velocity of 400 m/s. The door is mounted on frictionless hinges. Find the 

angular speed of the door after the impact. [ 
21

W
3

doorI M ] 

 

 
Answer: Consider the type of collision involved here. There is no net external torque exerted 

on the bullet-door system so angular momentum is conserved. The bullet does exert a torque on 

the door but the door, in return exerts a torque on the bullet so the condition of zero external 

torques is met. 

Computing angular momentum with respect to the door hinge: 

Initial 
  2

, 2

,

,

W / 2 (0.01)(400)(0.5) 2.0 Kg.m /s
2.0 Kg.m /s

0

i bullet

i system

i door

mv
L

    
  

  

 

Final 
, ,f system f system fL I   

2 2 2

2 2 2

,

1 1
W 15 1 5.0 Kg.m

3 3

(0.01)(0.5) 0.0025 Kg.m ;

door

bullet

f system door bullet

I M

I mR

I I I

    

  

 

 

Conservation of angular momentum requires: 

, , 2.0 5.0025 0.4 rad/si system f system f f fL I         

 
Is energy conserved? 

 

2 21 1
(0.01)(400) (0.5) 800 J

2 2
iK mv   , 

2

,

1

2
0.4 Jf f system fK I    , it is 1/2000 of the initial value! 

----------------------------------------------------------------------------------- 

Example: A long, thin, rod of mass M = 0.500 kg and length L = 1.00 m is free to pivot about a 

fixed pin located at L/4. The rod is held in a horizontal position as shown above by a thread 

attached to the far right end. 
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a. Given that the moment of inertia about an axis of rotation oriented perpendicular to the 

rod and passing through its center of mass is 
21

12
CM

I mR  , determine the moment of 

inertia I of the rod relative to the pivot at L/4. 

 

Answer: We can determine the moment of inertia about this new axis of rotation by using the 

Parallel Axis Theorem: 

 
 

b. Calculate the tension T in the thread that supports the rod. 

Answer: There are a number of ways to solve this, but the easiest is to look at the sum of the 

Torques about an axis of rotation located at the pivot: 

 
3 1 1 1

(0.5)(9.8) 1.63 N
4 4 3 3

LMg T Mg MgLT      

 

 

The thread is cut so that the rod is free to pivot about the fixed pin. 

c. Determine the angular acceleration of the rod at the moment the thread is cut. 

Answer: 

 
d. Determine the angular momentum of the rod relative to the pin at the moment the rod 

reaches a vertically-oriented position. 
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Answer: 
Just as the moving rod reaches the vertically-oriented position, it is struck in a head-on elastic 

collision at the lower end by a ball of mass m = 0.500 kg traveling in a horizontal direction at 

velocity v0 = 2.00 m/s as shown. 

 
Now we can go on to determine the angular momentum of the rod: 

 
e. Determine the velocity, both magnitude and direction, of the ball just after the collision. 

 
 

Answer: This is an elastic collision, so kinetic energy is conserved in the collision, as well as 

linear momentum and angular momentum. We can solve for the final velocity of the ball (and the 
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rod) after the collision using Conservation of K and Conservation of Angular Momentum. Let’s 

start with the energy analysis: 

 
At this point we have two unknowns, so let’s turn to Conservation of Angular Momentum to get 

another equation with those two unknowns. We’ll describe the angular momentum L of both the 

rod and the ball relative to the rod’s axis of rotation. 

 
At this point we have two expressions, both with the same unknown variables. Substitute in to 

get a quadratic equation that can be solved to get vf : 

 
We have two possible solutions—which one is correct? The ball was traveling at 2.0 m/s before 

it struck the bar, so it can’t possibly continue to have that velocity. Therefore, we choose the - 

0.62 m/s as the correct velocity of the ball after the elastic collision with the rod. 

 

 

 

 

 

 

Solution:  

 

Lf = Li  

Lwheel + Lhamster = 0 

The wheel is a rotating object so its angular momentum is given by Lwheel = -I⍵ , where the 

minus sign indicates that it is into the paper. For a point particle, the angular momentum is 

Lhamster = Rmv out of the paper. Thus we have 

-I⍵ + Rmv = 0 . 

So the angular velocity of the wheel is 

⍵ = Rmv / I = (0.3 kg)(0.12 m)(3.2 m/s) / (0.25 kg-m2/s) = 0.461 rad/s . 


