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Chapter 10 

Rotational motion  
 

Important Terms 
 

Angular Displacement “ ”  in radians  

,
s

r
  where s  is the length of arc and r is the radius. 

Angular Velocity “ ” 

The rate at which   changes. 

Angular Acceleration; Constant Angular Acceleration “ ” 

             The rate at which the angular velocity changes. 

Instantaneous speed, or point’s linear speed (or, tangential speed)  

t

ds d
v r r

dt dt


   . 

Linear acceleration (or, tangential acceleration)  

t
t

dv d
a r r

dt dt
  


 . 

Centripetal acceleration  

t
t

dv d
a r r

dt dt
  


 . 

Equations and Symbols  

s

r
  

0
lim
t

d

t dt

 


 


 


 

0
lim

t

d

t dt 


 



 
  

 

t

ds d
v r r

dt dt


    

t
t

dv d
a r r

dt dt
  


  

 
22

2t
c

rv
a r

r r
  


  

s = length of arc 

r = radius 

v = velocity 

  = angle in radians 

 = Angular velocity 

 = angular acceleration 

tv  = Linear (tangential) velocity 

ta  = tangential acceleration 

ca = Radial (Centripetal) acceleration 

 

Basic Requirements：  

1. To be familiar with the angular terminologies, such as Angular: displacement, 

velocity and acceleration. 

2. To relate the linear and angular variables. 

3. Master the kinematic equations in case of rotation. 

4. Differentiate between tangential and centripetal acceleration 
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10-1 ROTATIONAL VARIABLES 
 

So far in our study of physics we have (with few exceptions) dealt with particles, 

objects whose spatial dimensions were unimportant for the questions we were asking. We 

now deal with the (elementary!) aspects of the motion of extended objects, objects whose 

dimensions are important. 

The objects that we deal with are those which maintain a rigid shape (the mass points 

maintain their relative positions) but which can change their orientation in space. They can 

have translational motion, in which their center of mass moves but also rotational motion, in 

which we can observe the changes in direction of a set of axes that is “glued to” the object. 

Such an object is known as a rigid body. We need only a small set of angles to describe the 

rotation of a rigid body. Still, the general motion of such an object can be quite complicated. 

 

Translation vs. Rotation 

 

 
 

Since this is such a complicated subject, we specialize further to the case where a line 

of points of the object is fixed and the object spins about a rotation axis fixed in space. When 

this happens, every individual point of the object will have a circular path, although the 

radius of that circle will depend on which mass point we are talking about. And the 

orientation of the object is completely specified by one variable, an angle which we can 

take to be the angle between some reference line “painted” on the object and the x axis 

(measured counter-clockwise, as usual). 

Because of the nice mathematical properties of expressing the measure of an angle in 

radians, we will usually express angles in radians all through our study of rotations; on 

occasion, though, we may have to convert to or from degrees or revolutions. Revolutions, 

degrees and radians are related by: 

1 revolution = 360o  = 2  radians     

 

1 revolution 
2

1 radians
    

 

 

[Later, because of its importance, we will deal with the 

motion of a (round) object which rolls along a surface 

without slipping. This motion involves rotation and 

translation, but it is not much more complicated than rotation about a fixed axis.] 
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Angular Displacement “ ” 
As a rotating object moves through an angle   from the 

starting position, a mass point on the object at radius r will move a 

distance s ; s  length of arc of a circle of radius r, subtended by the 

angle  . When   is in radians, these are related by 

,                     in radians
s

r
                               (1) 

If we think about the consistency of the units in this equation, we 

see that since s and r both have units of length,   is really dimensionless; but since we are 

assuming radian measure, we will often write “rad” next to our angles to keep this in mind. 

 

Notes: 

 We will assume that   is + if it is counterclockwise from the + x axis. 

 Although   has both magnitude and direction it is not generally considered a vector 

quantity because addition of angular displacements is not communicative. Only in the 

limiting case of   can an angular displacement be considered a vector. 

 Normally we are interested in  as a function of time or ( )t . 

 1 revolution = 3600 = 2π radians 

 1 radian = 57.30 = 0.159 revolutions 

 A complete revolution is some multiple integers of 2π radians, e.g. ( 2n  ): 2π, 4π, 6π, 

etc. 

 If a body rotates about a fixed axis then all the particles will have same angular 
displacement (although linear displacement will differ from particle to particle in 
accordance with the distance of particles from the axis of rotation). 

-------------------------------------------------------------------------- 

Simple Example:  

a- What angle in radians is subtended by an arc that has length 1.80 m and is part of a circle 

of radius 1.20 m?  

b- Express the same angle in degrees.  

c- The angle between two radii of a circle is 0.620 rad. What arc length is subtended if the 

radius is 2.40 m? 

Answer: 

a- The equation 
s

r
   relates arc-length, radius and subtended angle. We find: 

1.80 m
1.50 rad

1.20 m

s

r
     

b- To express this angle in degrees use the relation: 360 deg = 2  rad (or, 180  rad  ). 

Then we have: 

180
1.50 rad (1.50 rad) 85.9

 rad


 

  
 

 

 

c- We can find the arc length subtended by an angle   by the relation: s r . Then for an 

angle of 0.620 rad and radius 2.40m, the arc-length is 

(2.40 m)(0.620) 1.49 m.s r    
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Angular Velocity “ ”: is “the rate at which   changes”.  

If in a time period t  the object has rotated through an angular displacement   then we 

define the average angular velocity for that period as: 

avg
t








                                                                 (2) 

A more interesting quantity is found as we let the time period t  be vanishingly small. 

This gives us the instantaneous angular velocity,  : 

0
lim
t

d

t dt

 


 


 


                                                             (3) 

Angular velocity has units of rad/s, or equivalently, 1/s or s−1. 

In more advanced studies of rotational motion,   of a rotating object is defined in 

such a way that it is a vector quantity. For an object rotating counterclockwise about a fixed 

axis, this vector has magnitude   and points outward along the axis of rotation. For our 

purposes, though, we will treat   as a number which can be positive or negative, depending 

on the direction of rotation. 

 
 

Notes: 

    has the same value for all particles in a rotating system. 

 Tangential velocity, which depends upon distance from the rotational axis, varies 

depending upon radius. 

  avg       rad/s
t








 

 Angular velocity is a psuedovector. The direction is determined from the right hand rule 

(RHR). 

 If one curls their right hand around the axis of rotation with their fingers pointing in the 

direction of rotation, their thumb then gives the direction of the angular momentum 

vector. 

 Note that the direction of the angular velocity vector is along the axis of rotation rather 

than in the direction of motion. 

-------------------------------------------------------- 

 

In 1D, velocity v has a sign (+ or –) depending on 

direction.  Likewise, for fixed-axis rotation,  has a 

sign convention, depending on the sense of rotation. 

 

---------------------------------------------------------- 



Prof. Dr. I. Nasser                           Chapter10_I                                 November 16, 2017  

 5 

Simple Example:  What is the angular speed in radians per second of  

b- the Earth in its orbit about the Sun and  

c- the Moon in its orbit about the Earth? 

Answer: 

b- The Earth goes around in a (nearly!) circular path with a period of one year. In seconds, 

this is: 

 
        In one year its angular displacement is 2π radians (all the way around) so its angular 

        speed is 

 
 

c- How long does it take the moon to go around the earth? any good reference source will 

tell you that it is 27.3 days. Converting to seconds, we have: 
 

 
      In that length of time the angular displacement of the moon is 2π so its angular speed is 

 

 

-------------------------------------------------------------- 

Angular Acceleration; Constant Angular Acceleration “ ” 
  

“The rate at which the angular velocity changes” is the angular acceleration of the object. If 

the object’s (instantaneous) angular velocity changes by   within a time period t , then 

the average angular acceleration for this period is 

avg
t








                                                           (4) 

But as you might expect, much more interesting is the instantaneous angular acceleration, 

defined as: 

0
lim
t

d

t dt

 


 


 


                                                        (5) 

Notes: 
 Angular acceleration has the same value for all particles in a rotating system. 

 
2

avg rad/s
t








 

 Angular acceleration is another psuedovector and its direction is also determined from the 

RHR. 
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10-2 ROTATION WITH CONSTANT ANGULAR ACCELERATION 
We can derive simple equations for rotational motion if we know that   is constant. 

(Later we will see that this happens if the “torque” on the object is constant.) Then, if 
o  is 

the initial angular displacement, 
o  is the initial angular velocity and   is the constant 

angular acceleration, then we find: 

 

 

2

2 2

1

2

1

2

                                                          (6)

                                             (7)

2                                            (8)

o

o o

o o

o o

t

t t

 

  

  

  

  

   

    

                                                (9)t

 

where   and   are the angular displacements and velocity at time t . 
o  and 

o  are the 

values  of the angle and angular velocity at 0t  . 

These equations have exactly the same form as the kinematic equations for one–

dimensional linear motion given in Chapter 2. The correspondences of the variables are: 

, ,x v a      

It is almost always simplest to set 0o   in these equations, so you will often see Eqs. 6—9 

written with this substitution already made. 

 
------------------------------------------------------------ 

 
----------------------------------------------------------- 

Example:   Calculate the required time for a wheel, initially at rest, to turn through 10 full 

revolutions if it can accelerate at a rate of 
21  rad/s . 

Answer: given that 
21  rad/s  , 10 2  radi     , and 0 rad/si  , then 

  

2

22

1

2

1

2
20  rad 0 1  rad/s 6.3 s.

i it t

t t t

  

   

   

 
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---------------------------------------------------- 

Example:   A wheel spins at a rate of 30 revs/sec 30 revs/s 60 rad/s   comes to a 

complete stop in 10 seconds. Find: 

a) the angular acceleration of the wheel 

b) the number of revolutions the wheel undergoes before it comes to a stop 

Answer:  given that 10 st  , 60 rad/si   , 0f   , and take 0i  , then 

a)                           
2

0 60 rad
6

10 s

f i

f i t
t

 
      



  
      

b)    use                            

   
 

22 2
2 2 0 60

2 300  rad
2 2( 6 )

o
o o o


       



 
       

 
 

Or, we can use 

    
221 1

2 2
60 10 6 10 300  rad.i it t              

Since there are 2 radians per revolution, this yields 150 revolutions of the wheel. 

--------------------------------------------------------------------------- 

Example: A car engine is idling at ω0= 500 rev/min at a traffic light. When the light turns 

green, the crankshaft rotation speeds up at a constant rate to ω = 2500 rev/min over an 

interval of 3.0 s.  The number of revolutions the crankshaft makes during these 3.0 s is: 

Answer: 

500 2500
3 75 rev

2 2 60

i f rev
t

 


     
       

   
 

----------------------------------------------------------- 

Example:   The angular position of a point on the rim of a rotating wheel is 

given by  
2 3( ) 4.0 3.0t t t t    , 

where   is in radians if t is given in seconds.  

a- What are the angular velocities at t  = 2.0 s and t = 4.0 s?  

b- What is the average angular acceleration for the time interval that begins at t = 2.0 s and 

ends at t  = 4.0 s? 

c- What are the instantaneous angular accelerations at the beginning and end of this time 

interval? 

Answer: 

a- In the problem we are given the angular position   as a function of time. To find the 

(instantaneous) angular velocity at any time, use Eq. 3 and find: 

 
where, if t  is given in seconds,   is given in rad/s . 

The angular velocities at the given times are then 

 
b- Since we have the values of   and t  = 2.0 s and t = 4.0 s, Eq. 4 gives the average 

angular acceleration for the interval: 
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The average angular acceleration is 12.0 rad/s2. 

 

c- We find the instantaneous angular acceleration from Eq. 5: 

 
where, if t is given in seconds,   is given in rad/s2 . 

Then at the beginning and end of our time interval the angular accelerations are: 

 
------------------------------------------------------- 
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H.W. Sample problem 10.01 
The angular position of a point on the rim of a rotating wheel is given by  

2( ) 1.00 0.600 0.250t t t     , 

where   is in radians if t is given in seconds.  

 

H.W. At what time, 
mint , does ( )t  reach the minimum value? What is ( )t at 

mint ?  

Answer: Calculate ( ) 0t   to find 
min 1.20 st  , and 

min( ) 1.36 rad 77.9t      

------------------------------------------------------------------- 

Example:   An electric motor rotating a grinding wheel at 100 rev/min is switched off. 

Assuming constant negative angular acceleration of magnitude 2.00 rad/s2,  

(a) How long does it take the wheel to stop?  

(b) Through how many radians does it turn during the time found in (a)?  

Answer: 

(a) Convert the initial rotation rate to radians per second: 

 
When the wheel has stopped then of course its angular velocity is zero. Since we know 

o , 

  and   we can use Eq. 6 to get the elapsed time: 

 o

o t t


   
 

  


 

and we get: 

 
The wheel takes 5.24 s to stop. 

(b) We want to find the angular displacement   during the time of stopping. Since we know 

that the angular acceleration is constant we can use Eq 9, and it might be simplest to do so. 

Then we have: 

 
The wheel turns through 27.5 radians in coming to stop. 

 

------------------------------------------------------------------------ 
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10-3 RELATING THE LINEAR AND ANGULAR VARIABLES 

As we wrote in Eq. 1, when a rotating object has an angular displacement  , then a 

point on the object at a radius r travels a distance s r . This is a relation between the 

angular motion of the point and the “linear” motion of the point (though here “linear” is a bit 

of a misnomer because the point has a circular path). The distance of the point from the axis 

does not change, so taking the time derivative of this relation give the instantaneous speed of 

the particle as: 

t

ds d
v r r

dt dt


                                               (10) 

which we similarly call the point’s linear speed (or, tangential speed ) to distinguish it from 

the angular speed. Note, all points on the rotating object have the same angular speed but 

their linear speeds depend on their distances from the axis. 

Similarly, the time derivative of the Eq. 10 gives the linear acceleration of the point: 

t
t

dv d
a r r

dt dt
  


                                             (11) 

Here it is essential to distinguish the tangential acceleration from the centripetal 

acceleration that we recall from our study of uniform circular motion. It is still true that a 

point on the wheel at radius r will have a centripetal acceleration given by: 

 
22

2t
c

rv
a r

r r
  


                                             (12) 

These two components specify the acceleration vector of a point on a rotating object. (Of 

course, if   is zero, then 0ta  and there is only a centripetal component.) 

--------------------------------------------------------------- 

Example:   What is the angular speed of a car traveling at 50 km/h and rounding a circular 

turn of radius 110 m? 

Answer: 

To work consistently in SI units, convert the speed of the car: 

 

Example: A disk, of radius 6.0 cm, is free to rotate at a constant rate of 1200 rpm  about 

its axis. Find: 

a- the radial acceleration 

b- the tangential acceleration. 

Answer: 

a- 

2

2 2 2

2
1200 rpm 1200 125.7 rad/s

60

  (0.06) (125.7) 948 m/s
r

v
a R

R

   

     






 

b- 0
t

a  ; since    is constant. 

----------------------------------------------------------------- 
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Example:   An astronaut is being tested in a centrifuge. The centrifuge has a radius of 10 m 

and, in starting, rotates according to 
2( ) 0.30t t  , where t  in seconds gives   in radians. 

When t  = 5.0 s, what are the astronaut’s  

(a) Angular velocity,  

(b) Linear speed, 

(c) Tangential acceleration (magnitude only) and  

(d) Radial acceleration (magnitude only)? 

Answer: 
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Extra Problems 
 

Q1: A disk—a horizontal rotating platform—of radius r is initially at rest, and then begins to 

accelerate constantly until it has reached an angular velocity   after 2 complete revolutions. 

What is the angular acceleration of the disk during this time? Ans: 2 /8   

Answer: Given the quantities: 0, 0, 2 2 ,o o f        then, the angular acceleration of 

the disk can be determined by using rotational kinematics: 

 
------------------------------------------------------------------ 

Q2: A rotating wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. 

a) Find its angular acceleration in rad/s2. 

b) Would doubling the angular acceleration during the given period have doubled final 

angular speed? 

Answer: Given the quantities: 0, 0, 0.16 2  rad/s,o o f        and t = 33 s, then, the 

angular acceleration of the disk can be determined by 

 

a) Using the kinematic equation: 

 
a) For double the angular acceleration we should have: 

 
The angular speed will be doubled as well 

--------------------------------------------------------------------------- 
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Q3: A racing car travels on a circular track of radius 275 m. Suppose the car moves with a 

constant linear speed of 51.5 m/s. 

a) Find its angular speed. 

b) Find the magnitude and direction of its acceleration. 

Answer: Given that 275 m,  51.5 m/str v v    

a) Angular and linear (tangential) speed are always related through : tv v r   

 

b) With a constant linear speed the acceleration is radial 
2

( r t

v
a a v r

r
     as 

0)t

dv
a

dr
   

 
-------------------------------------------------------------- 

Q4: A wheel 1.65 m in diameter lies in a vertical plane and rotates about its central axis with 

a constant angular acceleration of 3.70 rad/s2. The wheel starts at rest at t = 0, and the radius 

vector of a certain point P on the rim makes an angle of 57.3o with the horizontal at this time. 

At 2.00 st  , find the following: 

 a) the angular speed of the wheel. 

 b) the tangential speed of the point P. 

 c) the total acceleration of the point P. 

 d) the angular position of the point P. 

Answer: Given the quantities: 0o  , 
257.3  rad , 3.70 rad/s ,

180
o   


   at t = 2 s, 

then: 

a) The wheel started at rest., therefore: 

 
b) The tangential speed of point P located on the rim: 

 
c) To calculate the total acceleration of the point P, we need to calculate both the radial and 

tangential components 

 
And finally: 

 
Its direction   with respect to the radius to P can be evaluated from 
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i.e.  3.86   

 

d) 

 
------------------------------------------------------------------ 

Q:   The angular position of a point on the rim of a rotating wheel of radius R is given by: 

θ (t) = 6.0 t + 3.0 t2 ‒ 2.0 t3, 

where θ is in radians and t is in seconds. What is the average angular acceleration for a point 

at R/2 for the time interval between t = 0 and t = 5 s?  – 24   rad/s2 

Answer 

θ (t) = 6.0 t + 3.0 t2 ‒ 2.0 t3      ω (t) = 6.0 + 6.0 t ‒ 6.0 t2        

ω (0) = 6.0  ,     ω (5) = -114 


114 6

24
5 0t




  
   
 

 

------------------------------------------------------------------ 

Q:   A uniform disk starts from rest and rotates, about fixed central axis, with a constant 

angular acceleration. It reaches an angular velocity of 13.7 rad/s when it has completed 5.00 

revolutions. What is the angular velocity when it has completed 9.00 revolutions?  18.4 rad/s 

Answer: First calculate the acceleration 

 

2 2 2
2(13.7) 0

2.987 rad/s
2 2 5 2

f i 


 

 
  

 
 

Second 2(9 revolutions) 2 0 2 2.987 9 2 18.38 rad/si              

------------------------------------------------------------------------------ 

 

 

Q:   A phonograph turntable rotating at 33.3 rev/min slows down and stops in 30 s after the 

motor is turned off.  

(a) Find its (uniform) angular acceleration in units of rev/min2.  

(b) How many revolutions did it make in this time? 

                     
Answer: 

(a) Here we are given the initial angular velocity of the turntable and its final angular velocity 

(namely zero, when it stops) and the time interval between them. We can use Eq. 6 to find 

 , which we are told is constant. We have: 
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 o

o t
t


   

 
     

We don’t need to convert the units of the data to radians and seconds; if we watch our 

units, we can use revolutions and minutes. Noting that the time for the turntable to stop is 

t = 30 s = 0.50min, and with 
o  = 33.3 rev/min and   = 0 we find: 

 
The angular acceleration of the turntable during the time of stopping was −66.7 rev/min2. 

(The minus sign indicates a deceleration, that is, an angular acceleration opposite to the sense 

of the angular velocity.) 

(b) Here we want to find the value of   at t = 0.50 min. To get this, we can use either 

Eq. 7 or Eq. 9. With 0o  , Eq. 9 gives us: 

 
The turntable makes 8.33 revolutions as it slows to stop. 

----------------------------------------------------------------- 

Q:   A disk, initially rotating at 120 rad/s, is slowed down with a constant angular 

acceleration of magnitude 4.0 rad/s2.  

(a) How much time elapses before the disk stops?  

(b) Through what angle does the disk rotate in coming to rest? 

Answer: 

(a) We are given the initial angular velocity of the disk, o  = 120 rad/s. (We let the positive 

sense of rotation be the same as that of the initial motion.) We are given the magnitude of the 

disk’s angular acceleration as it slows, but then we must write 

 
The final angular velocity (when the disk has stopped!) is   = 0. Then from Eq. 6 we can 

solve for the time t: 

 o

o t t


   
 

  


 

and we get: 

 
(b) We’ll let the initial angle be 0o  . We can now use any of the constant–  equations 

containing   to solve for it; let’s choose Eq. 8, which gives us: 

 2 2

2 2 2 ( )
2

o

o


   

 
    


 

and we get: 

 
The disk turns through an angle of 1800 radians before coming to rest. 

---------------------------------------------------------------- 

Q:   A wheel, starting from rest, rotates with a constant angular acceleration of 

2.00 rad/s2. During a certain 3.00 s interval, it turns through 90.0 rad.  
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(a) How long had the wheel been turning before the start of the 3.00 s interval?  

(b) What was the angular velocity of the wheel at the start of the 3.00 s interval? 

Answer: 

(a)We are told that sometime after the wheel starts from rest we measure the angular 

displacement for some 3.00 s interval and it is 9.00 rad. Suppose that we start measuring time 

at the beginning of this interval; since this time measurement isn’t from the beginning of the 

wheel’s motion, we’ll call it ot . Now, with the usual choice 0o   we know that at 

3.00 sot   we have   = 90.0 rad. Also   = 2.00 rad/s2. Using Eq. 7 to get: 

 
which we can use to solve for 

o : 

 
so that 

 
(Looking ahead, we can see that we’ve already answered part (b)!) 

 

Now suppose we measure time from the beginning of the wheel’s motion with the variable t . 

We want to find the length of time required for   to get up to the value 27.0 rad/s. For this 

period the initial angular velocity is 
o  = 0 and the final angular velocity is 27.0 rad/s. Since 

we have   we can use Eq. 6 to get t : 

 o

o t t


   
 

  


 

which gives 

 
This tells us that the wheel had been turning for 13.5 s before the start of the 3.00 s interval. 

(b) In part (a) we found that at the beginning of the 3.00 s interval the angular velocity was 

27.0 rad/s. 

------------------------------------------------------------------ 
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Chapter 10 

Rotational motion  
Summary of last lecture: 

Classification        displacemet                 velocity             acceleration

    Linear                                                                     

Rotation            

d s d v
s v a

dt dt
 

motion

                                                                   

 

------------------------------------------------------------------------ 
 

Important Terms 
 Moment of inertia (rotational inertia) “ I ” 2 in kg.m : a quantity expressing a body's 

tendency to resist angular acceleration. For a point mass the moment of inertia is just 

the mass times the square of perpendicular distance to the rotation axis, I = m r2. That 

point mass relationship becomes the basis for all other moments of inertia. Total 

moment of inertial is the sum of the products of the mass of each particle in the body 

with the square of its distance from the axis of rotation 

 Rotational kinetic energy “
1 2

2rotK I  ” 

 Parallel axis theorem: can be used to determine the mass moment of inertia of 

a rigid body about any axis, given the body's moment of inertia about a parallel axis 

through the object's center of gravity and the perpendicular distance between the axes. 

 

Equations and Symbols  

s

r
  

0
lim
t

d

t dt

 


 


 


,  

0
lim
t

d

t dt

 


 


 



 

t

ds d
v r r

dt dt


    

t
t

dv d
a r r

dt dt


    

  
22

2t
c

rv
a r

r r


    

2

i i

i

I m r  

21

2rotK I  

2

CMI I MD   

 

s = length of arc 

r = radius 

v = velocity 

  = angle in radians 

 = Angular velocity 

 = angular acceleration 

tv  = Linear (tangential) velocity 

ta  = tangential acceleration 

ca = Radial (Centripetal) acceleration 

I moment of inertia (rotational inertia) 

im  = mass of particles i. 

M = total mass 

D = distance 

Basic Requirements：  

1. Master the calculation of the moment of inertia of a system of particles. 

2. Use the Parallel axis theorem to calculate the moment of inertia of a system of 

particles. 

http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html#mix
https://en.wikipedia.org/wiki/Mass_moment_of_inertia
https://en.wikipedia.org/wiki/Rigid_body
https://en.wikipedia.org/wiki/Parallel_(geometry)
https://en.wikipedia.org/wiki/Center_of_gravity
https://en.wikipedia.org/wiki/Perpendicular
https://en.wikipedia.org/wiki/Distance
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10-4 KINETIC ENERGY OF ROTATION 

Because a rotating object is made of many mass points in motion, it has kinetic 

energy; but since each mass point has a different linear speed  v r  our formula from 

translational particle motion, 21

2
K m v no longer applies. If we label the mass points of the 

rotating object as
im , having individual (different!) linear speeds 

iv , then the total kinetic 

energy of the rotating object is 

21

2rot i i

i

K m v  

If 
ir  is the distance of the ith mass point form the axis, then 

i iv r  and we then have: 

 
22 2 21 1 1

2 2 2rot i i i i i i

i i i

K m v m r m r 
 

    
 

    

The sum 
2

i i

i

m r  is called the moment of inertia for the rotating object (which we discuss 

further in the next section), and usually denoted I . (It is also called the rotational inertia in 

some books.) It has units of kg · m2 in the SI system. I  of a body is a measure of the 

rotational inertia of the body. With this simplification, our last equation becomes 

21

2rotK I                                                                           (13) 

------------------------------------------------------------------ 

Example: Calculate the rotational inertia of a wheel that has a kinetic energy of 24, 400 J 

when rotating at 602 revs/min . 

Answer: 

First, find the angular speed of the wheel in rad/s: 602 revs/min 63.0 rad/s  . 

Finally, we have 

2

2

1

2

2 rot
rot

K
K I I  


 

 
---------------------------------------------------- 
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10-5 CALCULATING THE ROTATIONAL INERTIA 
For a rotating object composed of many mass points, the moment of inertia I  is given by 

2

i i

i

I m r                                                                (14) 

I  has units of kg ·m2 in the SI system, and as we use it in elementary physics, it is a scalar 

(i.e. a single number which in fact is always positive). More frequently we deal with a 

rotating object which is a continuous distribution of mass, and for this case we have the more 

general expression (not required in our course) 

2I r dm                                                                  (15) 

Here, the integral is performed over the volume of the object and at each point we evaluate 
2r , where r  is the distance measured perpendicularly from the rotation axis. 

The evaluation of this integral for several cases of interest is a common exercise in multi-

variable calculus. In most of our problems we will only be using a few basic geometrical 

shapes, and the moments of inertia for these are given in the Appendix. 

Appendix: 

Moments of Inertia for some shapes M is the total mass, a, b, and L are lengths, and R is the 

radius. 

 

---------------------------------------- 

 
---------------------------------------------------------------------- 
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Example: As shown in the figure, three masses, of 1.5 kg 

each, are fastened at fixed position to a very light rod 

pivoted at one end. Find the moment of inertia for the 

rotation axes shown  

Answer: Apply the equation  
3

2 2 2 2 2 2 2 2 2 2 2

1 1 2 2 3 3 1 2 3( ) 1.5(1 2 3 ) 21 kg.mi i

i

mI r m r m r m r m r r r            

---------------------------------------------- 

Example: The figure shows a rigid body consists of two particles 

attached to a rod of negligible mass. The masses are m1 = 2.00 kg and 

m2 = 1.00 kg and they are separated by a distance r = r1 + r2.   

(a) Find the moment of inertia of the body. Assume r1 = 0.33 m and r2 

= 0.67 m are the distance between m1 and the rotation axis and m2 

and the rotation axis (the dashed, vertical line) respectively. 

(b) What is the moment of inertia if the axis is moved so that is passes 

through m1? 

(c) What is your comment on the two calculated values? Which one will be easy to rotate? 

Answer:  

(a) Apply the formula (14) of the moment of inertia, we can have 
2

2 2 2 2 2 2

1 1 2 2 2.0(0.33 ) 1.0(0.67 ) 0.67 kg.mi i

i

mI r m r m r       

(b)  
2

2 2 2 2 2 2

1 1 2 2 2.0(0.00 ) 1.0(1.00 ) 1.00 kg.mi i

i

mI r m r m r       

(c)??? 

--------------------------------------------------------------- 
Example: A rigid body consists of two particles attached to a 

rod of negligible mass. The rotational inertia of the system 

about the axis shown in Figure is 10 kg m2. What is x1?  

Answer: 
2

2 2 2 2 2

1 1 2 2 1 110 1 2 2 1.41 mi i

i

mI r m r m r x x           

---------------------------------------------------------------------- 

 

Example: A hoop rolls without sliding on a horizontal floor. The ratio of its translational 

kinetic energy to its rotational kinetic energy (about its central axis) is 

Answer: The ratio is 

  

2 2

22 2

1 1

2 2 1
1 1

/
2 2

edge

center

mv mvK

K
I mR v R

    

--------------------------------------------------------------------------- 
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Example: A solid sphere of mass m is fastened to another sphere of mass 2m by a thin rod 

with a length of 3x. The spheres have negligible size, and the rod has negligible mass. What 

is the moment of inertia of the system of spheres as the rod is rotated about the point located 

at position x, as shown? 

 
 

Answer: Moment of inertia for a system of discrete masses is calculated as follows: 

2
2 2 2 2( ) 2 (2 ) 9i i

i

mI r m x m x mx     

------------------------------------------------------------------------- 

Q3: Rigid rods of negligible mass lying along the y axis connect three particles. The system 

rotates about the x axis with an angular speed of 2.10 rad/s. 

 
a) Find the moment of inertia about the x axis. 

b) Find the total rotational kinetic energy evaluated from 
21

2
rotK I   

c) Find the tangential speed of each particle. 

d) Find the total kinetic energy evaluated from 21

2rot i i

i

K m v  

e) Your comment for b and d. 

 

Answer: 

a)  

b)  

 

c) Different linear speeds for different radius. However, all particles are rotating at same 

angular speed: i iv r  
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Mass 1:     

 

Mass 2:     

 

Mass 3:     

 

d) The total kinetic energy is: 

 
e) Both expressions lead to the same value. 

----------------------------------------------------------------------------- 

Q4: A pair of long, thin, rods, each of length L and mass M, are connected to a hoop of mass 

M and radius L/2 to form a 4-spoked wheel as shown in the figure. Express all answers in 

terms of the given variables and fundamental constants. Calculate the moment of inertia for 

the entire spoked-wheel assembly for an axis of rotation through the center of the assembly 

and perpendicular to the plane of the wheel. 

 
Answer: 

The moment of inertia for the spoked wheel is simply the sum of the individual moments of 

inertia of its three components: the two long thin rods and the hoop around the outside: 

 

 
--------------------------------------------------------------------------------------- 

Example: Three point masses, i.e. they have no moment of inertia, 

each of mass m are placed at the corners of an equilateral triangle of 

side a. Calculate the moment of inertia of this system about an axis 

passing along one side of the triangle. Choose the side AB. 

Answer: The moment of inertia of system about AB side of triangle 
2

2 2

system A B C

3
0 0

4

2a 3
I I I I mx mx m ma

2

 
          

 
 

------------------------------------------------ 
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Parallel Axis Theorem  
Moment of inertia of a body about a given axis I is equal to the sum of 
moment of inertia of the body about an axis parallel to given axis and 

passing through center of mass of the body is 
CMI and 

2MD , where 

M  is the mass of the body and D  is the perpendicular distance 
between the two axes. This situation is shown in the figure. In symbol, 

the new moment of inertia of the object about the new axis will have a 

new value I, given by 

2

CMI I MD                                          (16) 

Eq. 16 is known as the Parallel Axis Theorem and is sometimes handy for computing 

moments of inertia if we already have a listing for a moment of inertia through the object’s 

center of mass. 

Relates CMI  (axis through center-of-mass) to I  w.r.t. some other axis:  
2

CMI I MD   

(See proof in text.) 

--------------------------------------------------------------- 

 
---------------------------------------------------------------------- 

Example:  Calculate the moment of inertia for a rod about its end point. 

Answer: Rod of length L, mass M 
2

CM

1

12
I M R   ,  d = L/2   

2 2 2 2

Pivot CM

1 1 1

12 4 3
I I M d M L M L M L      

Example: Moment of inertia of a disc about an axis through its center 

of mass and perpendicular to its plane is 21

2GI MR . Calculate the 

moment of inertia about an axis through its tangent perpendicular to 

the plane 

Answer: The moment of inertia about an axis through its tangent 

perpendicular to the plane is given by: 

2 2 2 2

G

1 3
I I

2 2
MR MR MR MR      

----------------------------------------------------------- 
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Example: Four thin rods of same mass M and same length l, form a 

square as shown in figure.  Calculate the moment of inertia of this 

system about an axis through center O and perpendicular to its plane. 

Answer: 2

CM

1

22
I rod M( )  

M.I. of rod AB about point 21

12
MP   

M.I. of rod AB about point  
2

2 21 1

12 32
M M MO                                

[by the theorem of parallel axis] 

and the system consists of 4 rods of similar type so by the symmetry 24
M

3
systemI   

------------------------------------------------------ 

Example: Three rings each of mass m and radius R are arranged as shown in 

the figure. Calculate the moment of inertia of the system about YY '. 

Answer: 2

CM

1

2
I ring mR( )  

M.I of system about YY '  system 1 2 3I I I I    , where 1I  = moment of 

inertia of ring about CM, 2 3 M II I  . . of inertia of ring about a tangent in a 

plane 

   2 2 2 2 2 2

system

1 1 1 7

2 2 2 2
mR mR mR mR mR mRI        

------------------------------------------------------------ 
Example: Three identical thin rods, each of length L  and mass M , 

are welded perpendicular to one another as shown in the figure. They 

are placed along X, Y and Z-axes in such a way that one end of each of the 
rod is at the origin. The moment of inertia of this system about Z axis is 

Answer: 2

CM

1

12
I rod ML( )  

Moment of inertia of the system about z-axis can be find out by calculating 
the moment of inertia of individual rod about z-axis 

2

1 2

1

3
I I ML   because z-axis is the edge of rod 1 and 2 and 3 0I   because rod in lying on z-axis 

2 2 2

system 1 2 3

1 1 2
0

3 3 3
I I I I ML ML ML         

---------------------------------------------------------------------  

Example: Find the moment of inertia of a uniform ring of radius R and mass M 

about an axis 2R from the center of the ring as shown in the Figure.  

Answer: 
2 2 2 2(2 ) 5o CMI I Md MR M R MR      

---------------------------------------------------- 
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Extra Problems 
 

Q: A uniform slab of dimensions: a = 60 cm, b = 80 cm, and 

 c = 2.0 cm (see Figure) has a mass of 6.0 kg. Its rotational inertia 

about an axis perpendicular to the larger face and passing through 

one corner of the slab is:  

Answer: 2

CMUse the equation: I I +MD  

2 2 2 2 2 2 2

1

= ( ) ( ) ( ) ( ) 2.0 kg.m
12 2 2 3

M a b M
I a b M a b

 
       

 

------------------------------------------------------------------------ 

Q: Calculate the rotational inertia of a meter stick with 

mass 0.56 kg, about an axis perpendicular to the stick and 

located at the 20 cm mark. 

Answer: 

A picture of this rotating system is given in the figure. The stick is one meter long (being a 

meter stick and all that) and we take it to be uniform so that its center of mass is at the 50 cm 

mark. But the axis of rotation goes through the 20 cm mark. 

Now if the axis did pass through the center of mass (perpendicular to the stick), we would 

know how to find the rotational inertia; from Figure we see that it would be 

2 2 2 2

CM

1 1
I M L 0 56 1 00 4 7 10  kg.m

12 12

   ( . )( . ) .  

The rotational inertia about our axis will not be the same. 

 
----------------------------------------------------- 

Q: In the Figure, two particles, each with mass m 0.85 kg, are fastened to each other, and to a 

rotation axis at O, by two thin rods, each with length  d = 5.6 cm and mass M = 1.2 kg. The 

combination rotates around the rotation axis with the angular speed   = 0.30 rad/s. 

Measured about O, what are the combination’s  

(a) rotational inertia and  

(b) kinetic energy? 
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Answer: 

The particles are treated “point-like” in the sense that Eq. 10-33 yields their rotational inertia, 

and the rotational inertia for the rods is figured using Table 10-2(e) and the parallel-axis 

theorem (Eq. 10-36). 

(a) With subscript 1 standing for the rod nearest the axis and 4 for the particle farthest from it, 

we have 

1, 2, 3, 4,

2

2

1,

2

2

2,

2

3,

2

4,

1 1
,

12 2

1 3
,

12 2

(2 ) .

O O O O O

O

O

O

O

I I I I I

I Md M d

I Md M d

I md

I m d

   

  
      

  
      





 

 

2 2 2 2

2

8 8
5 (1.2 kg)(0.056 m) +5(0.85 kg)(0.056 m)

3 3

=0.023 kg m .

OI Md md  



 

(b) Using Eq. 10-34, we have 

 

2 2 2 2 2

3

1 1 8 4 5
5 (1.2 kg) (0.85 kg) (0.056 m) (0.30 rad/s)

2 2 3 3 2

1.1 10  J.

rot OK I M m d 



   
       

   

 

 

------------------------------------------------- 
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Rotational motion  
Basic Requirements：  

1. Master the calculation of the rotational torque. 

2. Calculate the power in case of rotational. 

 

 

Basic Principles: Why is the handle on a door located far away from the hinge?  Why is it 

easier to loosen a nut using a long wrench?  Why are long wheel-base cars more stable than 

short wheel-base cars?  

 

 
handle on a door is located far away 

from the hinge 

 
loosen a nut using a long wrench 

 

 

The “ability” of a force to rotate an object about an axis depends on two variables: 

 

           1.  The magnitude of the force F. 

           2.  The distance r between the axis of rotation and the point where the force is applied. 

   

 

 

 

 

 

 

Try opening a door by applying the same force F at different points: r = outer edge, middle, 

near hinge.  You will quickly realize that the resulting motion of the door  the acceleration  

 depends on F and r.  It turns out that the “turning ability” of a force is simply the product 

of F and r.  The technical name for this turning ability is torque.  Torque comes from Latin 

and means “to twist”. 

------------------------------------------------ 

 
 

    r 
rotation 

   axis 

F  
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10-6 Torque “Is a force that causes a rotational acceleration of a rigid body about an axis 

or motion of a single particle relative to some fixed point”.  

 

1- Torque is a vector.  

2- Torque is positive when the body rotate counterclockwise (convention) 

3- Torque is negative when the body rotate clockwise (convention) 

 

Suppose the force F  (whose direction lies in the plane of rotation) is applied at a point r  

(relative to the rotation axis which is the pivot). Suppose that the (smallest) angle between r 

and F  is  . Then the magnitude of the torque exerted on the object by this force is 

( sin )                                                      (17)r F   

By some very simple regrouping, this equation can be written as 

moment arm of  

( sin )

F

r F r F r F r F         

SI unit of torque is N.m (same as the work); but Never use Joules as a unit of torque, 

because Joules is a unit of work. 

---------------------------------------------------- 

In Summary:  

 Force causes linear acceleration. 

 Torque causes angular acceleration. 

------------------------------------------------------------- 

If you want to easily rotate an object about an axis, you want a large lever arm r and a large 

perpendicular force F: 

 

 
------------------------------------------------------------------------- 

 
------------------------------------------------------ 

axis 

no good! 

(r = 0) 

bad better best 

no good! 

(F = 0) 
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Example: Calculate the net torque (magnitude, in N.m, and direction) on a uniform beam 

shown in the Figure about a point O passing through its center. 

 
Answer: 

 
-------------------------------------------------------------------- 

Example: The pull cord of an engine is wound around a drum of radius 6.00 cm. The cord is 

pulled with a force of 75.0 N by the engine. What magnitude torque does the cord apply to 

the drum? 

Answer: 

 
------------------------------------------------------------- 

Q: A series of wrenches of different lengths is used on a hexagonal bolt, as shown below. 

Which combination of wrench length and Force applies the greatest torque to the bolt? 

 
Answer: The correct answer is c. Torque, the “turning effect” produced by a force applied to 

a moment-arm, is calculated according to ( sin )r F r F    , where  is the angle 

between the vectors r and F. Here, each combination of wrench length and force produces a 

net torque of LF  except for answer c: 

( cos ) (2 cos30 ) 3r F r F L F LF       
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10-7 NEWTON’S SECOND LAW FOR ROTATION 
 

 

                            =I         is the rotational analogue of         F = ma. 

 
 Newton’s Second Law “Linear Acceleration of an object is directly proportional to 

the net force acting on it and inversely proportional to its mass (inertia).” 

 , 1/ /a F a m a F m     

 

 Newton’s Second Law for Rotation “Angular Acceleration of an object is directly 

proportional to the net force  torque acting on it and inversely proportional to its 

mass  rotational inertia.”  ,  1/ /I I         

------------------------------------------------- 

In Summary: we are going to use the following expressions for the torque 

         (1)              =                  (2)I r F



  

and the equation  

                  (3)
R

a
  

 



Prof. Dr. I. Nasser                     Chapter 10-III                         November 16, 2017  

 5 

Examples 

 

Example: The flywheel of a stationary engine has a moment of inertia 0f 30 kg.m2. What 

constant torque is required to accelerate the flywheel to an angular velocity of 900 rpm in 10 

seconds, starting from rest? 

Answer: 

2
900rpm 900 94.2 rad/s;  0

60

94.2 0
30 282.7 N.m;

10

f i

d
I I

dt


 


 

 
     

 

 
    

 

 

-------------------------------------------------------------- 

Example: A uniform thin rod of mass M = 3.0 kg and 

length L =  2.0 m is pivoted at one end O and acted upon by 

a force F =  8.0 N at the other end as shown in Figure. 

Calculate the angular acceleration of the rod at the moment 

the rod is in the horizontal position as shown in this figure. 

Answer: First calculate the M.I. about the pivot O using the PAT: 

2 2 2 2

0

1 1
( ) ;

12 2 3
CM

L
I I Md ML M ML                (1) 

Then, use the torque equations as follows: 

 21

3
       (2)                     FL   (3)oI ML = Fr  



  r F  

Equating  (2) = (3) implies 

20

FL 8 2 rad
4 Counterclockwise

1 s(3)2
3

I


    

-------------------------------------------------------------------------------- 

 Example: A uniform disk of radius 50 cm and mass 4 kg is 

mounted on a frictionless axle, as shown in Figure. A light cord is 

wrapped around the rim of the disk and a steady downward pull of 

10 N is exerted on the cord. Find the tangential acceleration of a 

point on the rim of the disk.  

Answer: Apply Newton’s second law gives: 

0 (1)ma F T F T      

Then, use the torque equations as follows: 

 21

2
       (2)                     TR   (3)CMI MR = Fr  



  r F  

Equating  (2) = (3) and using 
R

a
 implies 

21

2

2 2
10  5 m/s Clockwise

4
Ma T a T

M
      

------------------------------------------------------------------------ 
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Example: A rigid bar with a mass M and length L is free to rotate about a frictionless hinge 

at a wall, see figure a. The bar has a moment of inertia I = 1/3 ML2 about the hinge, and is 

released from rest when it is in a horizontal position as shown. What is the instantaneous 

angular acceleration when the bar has swung down so that it makes an angle of 30° to the 

vertical? 

 
a 

 
b 

 

Answer:  The bar is accelerating angularly in response to the torque due to the force of 

gravity acting on the center of mass. Its angular acceleration due to this torque   at the final 

position, see figure (b), can be calculate as follows: 

   2 01

3
       (1)                     sin30    (2)

L

2
I ML = Fr Mg  



  r F  

 

(1) = (2) implies 

3
Clockwise

4

g

L
  

Note that:  

1- At the horizontal position, we have the maximum torque:  0

2
sin90 / 2

L
Mg MgL . 

2- At the vertical position, we have the minimum torque:  0

2
sin0 0

L
Mg  , i.e. no rotation 

motion. 

----------------------------------------------------- 
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Example: For the system in figure (a) with 2.5 kg, 1.2 kg, M m  and 0.2 mR  , find 

,  and a T  . 

 
Answer: Draw the FBD for the masses, Figures (b) and (c), and then apply Newton’s 2nd law 

as follows: 

 1- For m: Figure (b), consider the motion is going down: 

                          (1),ma mg T   

2- For M: Figure (c), consider the rotation clockwise is positive: 

21
         (2)                         TR       (3)

2
CMI MR



   

Equating  (2) = (3) and using 
R

a
 implies 

1

2
T Ma                   (4) 

Substitute (4) in (1), we can have 

21 2 2 1.2
4.8 m/s

2 2 2.5 2 1.2

m
ma mg Ma a g

M m

 
      

   
 

2

1
6.0 N

2

4.8
24 rad/s Clockwise

0.2

T Ma

a

R

  

  

 

--------------------------------------------------------------------------- 

Example: A mass, m1 = 5.0 kg, hangs from a string and descends with a linear acceleration 

“ a ”. The other end is attached to a mass m2 = 4.0 kg which slides on a frictionless horizontal 

table. The string goes over a pulley (a uniform disk) of mass M = 2.0 kg and radius R = 5.0 

cm (see Figure a). Find the value of a .  

 
a  

b 

 

Answer: The equations of motion for the two masses are given by: 

 1 1 1

1 2 1 2 1

2 2

(1),
( )   (3)

          (2)

m a m g T
m m a m g T T

m a T

  
    

 
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We are taking the clockwise direction is positive (see figure b, then 

 2

1 2

1
         (4)                         T -T R      (5)

2
CMI MR



   

Equating  (4) = (5) and using 
R

a
 implies 

 

1 2

1

2
( )           (6)Ma T T   

Use Eqs. (3) and (6) to solve for a , one finds: 

 
1

2

1 2

m
4.9

/ 2 s

m g
a

m m M
 

 
 

-------------------------------------------------------- 

Example: In Fig. 10-41, block 1 has mass 1 0.460 kgm  , block 2 has mass 

2 0.500 kgm  , and the pulley, which is mounted on a horizontal axle with 

negligible friction, has radius R = 5.00 cm. When released from rest, block 2 

falls 75.0 cm in 5.00 s without the cord slipping on the pulley. (a) What is 

the magnitude of the acceleration of the blocks? What are (b) tension 
2T  and 

(c) tension 1T ? (d) What is the magnitude of the pulley’s angular 

acceleration? (e) What is its rotational inertia? 

Answer:   
(a) We use constant acceleration kinematics. If down is taken to be positive and a is the 

acceleration of the heavier block m2, then its coordinate is given by y at 1
2

2 , so 

a
y

t
    2 2 0 750

500
6 00 10

2 2

2 2( . )

( . )
. .

m

s
m / s  

Block 1 has an acceleration of  6.00  10–2 m/s2 upward. 

(b) Newton’s second law for block 2 is 
2 2 2m g T m a  , where 2m  is its mass and 2T  is the 

tension force on the block. Thus, 

 2 2 2

2 2( ) (0.500 kg) 9.8 m/s 6.00 10 m/s 4.87 N.T m g a        

(c) Newton’s second law for block 1 is 
1 1 1 ,m g T m a    where 1T  is the tension force on the 

block. Thus, 

 2 2 2

1 1( ) (0.460 kg) 9.8 m/s 6.00 10 m/s 4.54 N.T m g a        

(d) Since the cord does not slip on the pulley, the tangential acceleration of a point on the rim 

of the pulley must be the same as the acceleration of the blocks, so  

  









a

R

6 00 10

500 10
120

2 2

2

2.

.
. .

m / s

m
rad / s

                   

Clockwise  

(e) The net torque acting on the pulley is 2 1( )T T R   . Equating this to I we solve for the 

rotational inertia: 

 
    2

2 1 2 2

2

4.87 N 4.54 N 5.00 10 m
1.38 10 kg m .

1.20 rad/s

T T R
I






 

      

------------------------------------------------------------------------------ 
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10-8 WORK AND ROTATIONAL KINETIC ENERGY 
In linear motion, we knew that 

2 21 1

2 2
;               , if  is constant

                             

f

i

x

f i f i

x

W K K K mv mv W Fdx F

W
P Fv

t

       


  




 

----------------------------------------------- 
Similarly, for rotational motion, we can have: 

2 21 1

2 2
;               

( )    if  is constant

      (power, rotation about fixed axis)

f

i

f i f i

f i

W K K K I I

W d

dW
P

dt

     

  

 






 

     

 

 

------------------------------------------------- 

Example: A horizontally-mounted disk with moment of inertia I spins about a frictionless 

axle. At time 0t  , the initial angular speed of the disk is   . A constant torque  is applied 

to the disk, causing it to come to stop in time t  . How much Power is required to dissipate the 

wheel’s energy during this time? 

Answer: Given that: 0,f i    . The Power required to dissipate the wheel’s initial 

energy is calculated using P=W/t, where W is the Work required to change the wheel’s 

kinetic energy from its initial value to 0: 

W
P

t



,    2 2 21 1 1

2 2 2
0f i f iW K K K I I I           

2

2

W I
P

t t


 




 

--------------------------------------------------------------- 

Example: The engine delivers 1.20 ×10
5 

W to a plane fan at 2400 rev/min 251 rad/s  . 

How much work does the engine do in one revolution?  

Answer: Since ; ,s vt t t   


 


then the periodic time will be: 
2

s 0.025 sT  



. 

Consequently,  

51.2 10 0.025 3000 J
W

P W P T
t


         


  

----------------------------------------------- 
Example: A grinding wheel of moment of inertia 0f 0.01 kg.m2 is brought to rest, in 10 

revolutions, from an initial angular velocity of 3000 rpm = 314.2 rad/s . What is the 

power dissipated? 

Answer: 

 
22

3

1 1 10
(0.01) 314.2 493.5J, 0.2 s;

2 2 (3000 / 60)

2.47 10 W

W K I t

K
P

t

       


  




 

------------------------------------------------------------------------------ 
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Sample Problem 10.11 Work, rotational kinetic energy, torque, disk 

----------------------------------------------- 

Analogous Linear and Angular Quantities 

 

Linear  Angular Relation 

Linear displacement s    Angular displacement   s r  
Linear speed v    Angular speed   v r  
Linear acceleration a    Angular acceleration   a r  
Mass (Inertia) m    Moment of inertia I  2I mr  
Force F    Torque   r F    
Linear momentum mv    Angular momentum mvr I    
Linear impulse F t    Angular impulse t   

 

 

Linear      F ma    21

2
. .K E mv      work = F s           power = F v  

Angular    I      21

2
. .K E I       work =             power =    

 

 
Section Summary We now have some understanding of why objects rotate the way they do. 

We built the laws of rotational motion in analogy to Newton’s Laws of Motion for 

translation, 

 Newton’s First Law for Rotation  

“Every object will move with a constant angular velocity unless a torque acts on it.” 

 

 Newton’s Second Law for Rotation  

“Angular acceleration of an object is directly proportional to the net torque acting on it and 

inversely proportional to its rotational inertia.” 

----------------------------------------- 
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Extra problems 
 

Q. A string is wrapped around a solid disk of mass m, radius R. The 

string is stretched in the vertical direction and the disk is released as 

shown in the Figure. Find the tension (T) in the string.  

Answer: 

21 1

2 2

(1),

; (2)
R

cm

ma mg T

a a
I TR mR TR ma T

R

 

 
      

 
 

 

2 1
(2) (1) g   g

3 3
a T       

-------------------------------------------------- 

Q: A string (one end attached to the ceiling) is wound around a 

uniform solid cylinder of mass M = 2.0 kg and radius R = 10 cm (see 

Figure). The cylinder starts falling from rest as the string unwinds. The 

linear acceleration of the cylinder is:  

Answer: 

2

2

1 1

2 2

(1),

; (2)
R

2
(1) g  6.53 m/s  

3

cm

ma mg T

a a
I TR mR TR ma T

R

a

 

 

 
      

 

   

 

--------------------------------------------------------------------------- 

Q: A 16 kg block is attached to a cord that is wound around the rim of a 

flywheel of radius 0.20 m and hangs vertically, as shown in Fig 4. The 

rotational inertia of the flywheel is 0.50 kg·m2. When the block is released 

and the cord unwinds, the acceleration of the block is:  
Answer: 

2

(1),

; 0.5 0.2 12.5 (2)
R 0.2

16
(1) 16 16 12.5   5.5 m/s  

28.5

ma mg T

a a
I TR T T a

a g a a g

 

 

 
       

 

      

 

---------------------------------------------------------------------- 

H.W.: A torque of 0.80 N.m applied to a pulley increases its angular speed from 45.0 rpm to 

180 rpm in 3 seconds.  Find the moment of inertia of the pulley. 

Answer:  0.17 kg.m2 

----------------------------------------------------------------------------------------------------- 
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Q:  A uniform 2.0 kg cylinder of radius 0.15 m is suspended by two 

strings wrapped around it, as shown in Figure 4.  The cylinder 

remains horizontal while descending. The acceleration of the center 

of mass of the cylinder is:  

Answer: Start with the equations of motion: 

2 (1),

2         (2),

          (3),

ma mg T

I tr

a

r

 









 

With the given information 21
, 2 kg, 0.15 m

2
I mr m r   , one has: 

2

1
(3)

4

3 2 m
(1) 6.53

2 3 s

T ma

ma mg a g

 

    

 

------------------------------------------------------------------------ 

Q: In Fig. 10-41, two blocks, of mass m1 = 400 g and m2 = 600 g, are connected 

by a massless cord that is wrapped around a uniform disk of mass M= 500 g and 

radius R = 12.0 cm. The disk can rotate without friction about a fixed horizontal 

axis through its center; the cord cannot slip on the disk. The system is released 

from rest. Find (a) the magnitude of the acceleration of the blocks, (b) the tension 

T1 in the cord at the left, and (c) the tension T2 in the cord at the right. 

Answer:   
We choose positive coordinate directions (different choices for each item) so that each is 

accelerating positively, which will allow us to set a a R1 2    (for simplicity, we denote 

this as a). Thus, we choose upward positive for m1, downward positive for m2 and (somewhat 

unconventionally) clockwise for positive sense of disk rotation. Applying Newton’s second 

law to m1m2 and (in the form of Eq. 10-45) to M, respectively, we arrive at the following 

three equations. 

T m g m a

m g T m a

T R T R I

1 1 1 1

2 2 2 2

2 1

 

 

  

 

(a) The rotational inertia of the disk is I MR 1
2

2  (Table 10-2(c)), so we divide the third 

equation (above) by R, add them all, and use the earlier equality among accelerations — to 

obtain: 

m g m g m m M a2 1 1 2

1

2
   
F
HG

I
KJ  

which yields 24 1.57m/s .
25

a g   

(b) Plugging back in to the first equation, we find  

1 1
29 4.55 N
25

T m g   

where it is important in this step to have the mass in SI units: m1 = 0.40 kg. 

(c) Similarly, with m2 = 0.60 kg, we find 

2 2
5 4.94 N.
6

T m g   

------------------------------------------ 




