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method, electronic states, vibrational and rotational states, molecular spectra,
and ligand field theory.

The quantum mechanics of atoms and molecules, once the exclusive domain
of physicists, has in recent years proliferated into other fields, primarily chemis-
try and several branches of engineering. In recognition of this wider interest, a
full year graduate course in atomic and molecular physics has been taught in the
Department of Applied Physics at Stanford University. Attendees consisted of
students working in diverse fields such as spectroscopy, magnetic resonance,
Mbossbauer resonance, quantumm electronics, solid state electronics, astrophysics,
and biological physics. The present volume is an outgrowth of this course.

Mathematical Background

CHAPTER 1

ANGULAR MOMENTUM

1.1 Orbital Angular Momentum

The orbital angular momentum operator L is defined by
1
L=E(r x p) (1.1-1)

where r is a vector whose components r; are X, y,z (or xy,X,,%3) and
p= —ihV (1.1-2)

is the linear momentum operator; the rectangular components of the
gradient operator V are 0/0x,0/0y, 0/0z. Expanding (1.1-1),
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In (1.1-3) the angles 0 and ¢ are the polar and azimuth angles, respectively.
The operators L, L, and L, are Hermitian, i.e.,

Lt=L  (i=x)2, (1.1-4)

and, as functions of the coordinates, L,,L,, and L, are pure imaginary
operators.

It will often be convenient to use spherical components of L; these are
defined as

1 1 . (0 i
L..=——(E +iL)=———=¢€®|;+i —
+1 \/i( x+l y) \/_2-e (ao+lcot06(p>,
1 1 . (9 d
L .=—(L,—iL)=——e *®|—i = 1-
1 ﬁ( «— iLy) ﬁe (ao lcotf)ap), (1.1-5)
L0=Lz.

The inverse relations are

\1 i
L.= _'ﬁ(L+1 —L_y), Ly=_\/_5(L+1 + L_4) Lz=L0' (1-1'6)

In contrast to the rectangular combdnents of L, L,, and L_, are not
Hermitian since

LY, =-L_y, L', =—-L.,. (1.1-7)
The components of r and p satisfy certain commutation relations:
[r:,p;] = ihdy, (1.1-82)
["ia"j] = [Pist] =0, (1.1-8b)
[r:, p*] = 2ihp;, (1.1-8¢)
[pi.p*1=0 (1.1-8d)

in WhICh risrj = X,y,Z; pi,pj = pxapyapz’ and P2 = pxz + py2 + pzz' The
definition of L (1.1-1) together with (1.1-8) imply that

[L,,L,]} =iL,, (L,,L,]=iL,, [L,,L.]=iL,. (119)
These may be written in any of the compact forms: _
[Li,L;J=iL.  (ij,kcyclic), (1.1-10a)
LxL=IiL, (1.1-10b)
[L;,L;] = iejlas (1.1-10¢)
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in which g, is the antisymmetric unit tensor of rank 3 defined by

+1, i, j, k in cyclic order,
gr=4—L i,j, k not in cyclic order, (1.1-11)
0, two indices alike.

The three statements (1.1-10a)—(1.1-10c) are equivalent in all respects.
Additional commutator relations among the components of L, r, and p are

[Li,rj] = igiphe (1.1-12a)
[L:,pj] = ieubr (1.1-12b)
[Lo,Ls1]= tLzy [Ls+1,L-1]= —Lo. (1.1-13)

Another important operator is L2, also known as the total orbital angular
momentum operator. It may be expressed in various equivalent forms:

L*=L2+L2>+L}

& 8 L.
= ——[567+c0t05§+(1 + cot 0)5—(1’—2]

{ @ ay 1 &
I B B 1-14
[sin069<81n069>+sinzea(pz] (L1-19

=Ly Loy + Lo’ —Lo1Lss
_Y(-LL, (g=10-1.
a

Employing relations (1.1-13) we also have
[2=—2L.,L_;+LoLo—1)= —2L_,L,; + Lo(Lo + 1) (1.1-15)
L2 commutes with all components of L, ie.,
[L*,L,]=0 (1.1-16)

where L, refers to either rectangular components (L, Ly, L;) or spherical
components (L4 1, Lo.L- ) of L.

1.2 Spherical Harmonics and Related Functions

The spherical harmonics Y;.(0, @) are defined by

2 - ! .
Yin(0,0) = /(=D \/—lf,;l \/Si Z;! Plricos B (1.2-1)
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TABLE 1.1

Spherical Harmonics®

! m P Yl X, 3. 2) Y0, 9)
N 4n 4n

1 0 ’iz
4n
_ /3
1 +1 F =iy
8n
5 1
2 0 2 {132 — 2
[4‘”\/;(32 r?)
53
2 +1 F |— |- 1
+ +\/4n\/zz(xi1y)
53
2 +2 IR ot 12
+ \/:n\/;(xity)
. 7 N
3 0 A 2 _ 2,2
/47”/;2(52 3r?)
[7 [3
3 +1 T [— = i 2 _ 2
+ F o 16(xi1y)(52 r?)
7 [15
3 +2 = Y
+ /4n lsz(xi:y)
7 5
3 i3 T [f— [— + i 3
F Vet EY
4 0 '—9— ,L (35z% — 30z%r* + 3r%)
4 \ 64
4 +1 1,2-/5(x+‘)73 3zr?
* =\ 16 + iy)(72® — 3zr)
9 |5
4 +2 /__ /_ + AT — 12
* I 3z(x_ly) (7z r)
9 /35
4 43 7= [2dx ki)
FamN1e Y
9 |35
4 +4 2 [22 iy
+ N Evr ikl

[3 0
47rcos
3 .
s ,gsinﬂe*”’
lsfe 291
4nV 4 cos*6—1)
T—\/E\/?COSOSinOe*“"
4z N 2
[5 [3 .
Z;\/Vgsinzﬂe“'“’
/7f(2 39 — 3 cosfsin? 6
e cos? @ — 3 cos @sin’ )
F ,l [—3—(4coszesin6—sin39)e*"°’
4nV 16
7 15
_ — in2 + 2ip
’471 ’8 cos@sin’f e
[7 ,5
$ o = ein3 * 3ip
o 16sm e
’9 /1(35 49 —30cos?0+3
e cos* @ — 30 cos?0 + 3)
¥ /—9— ,i sin 8(7 cos3 @ — 3 cos f)e*™®
4n V 16
[9 [5
72 a2 20 _ 1\pt2ie
yo 32sm 0(7 cos?8 — 1)e
_[3 B a0
F o 16sm fcosbe
9 35 H 3 1 dig
ViV o

@ In spectroscopic notation, functions that are proportional to Y,, with 1 =0, 1,2,3...are

called s, p, d, f, . . . functions.
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with
1=0,1,2,..., (1.2-2a)
m=1L1-1...,-1 (1.2-2b)

and P|"l(cos 6) an associated Legendre polynomial. The phase convection
in (1.2-1) is not universal; the one adopted here is known as the Condon—
Shortley convention. Some of the commonly used spherical harmonics are
listed in Table 1.1; among their properties are:

Yl —m(Ba (P) = (— l)mem(ga (p)a (12-38)
Yol — 0,7 + @) = (= 1) Yin(0, @)- (1.2-3b)

The change from (6, @) to (m — 6,7 + ¢) corresponds to an inversion, that is,
a change from (x, y,z) to (=X, =V, —z). From (1.2-3b) it is seen that Y,,,(0.¢)
changes sign under inversion when I is an odd integer: when [ is even, there
is no change in sign. In the former case, Y,(0, @) is said to have odd parity
and in the latter, even parity. The quantity (— 1), which is equal to + 1 for |
even and — 1 for [ odd is called the parity factor.

When 6 =0,

0 for m#0,

Y,,.(0, ) = /21 +1 (1.2-4)
— for m=0.
4n

The spherical harmonics satisfy the orthogonality relation
[ Y50,0) ¥ (0. 0)sin 00 do = [ Y500.0) Yo (0.0) 42 = O e (1:2°5)

in which dQ = sin 8 d0 dg is an element of solid angle. An arbitrary function
£(8, ), satisfying the usual criteria for expansion in terms of an orthonormal
set, may be expanded in terms of spherical harmonics as

© 1
f(e, (P) = Z Ay Ylm(ov (P), (12-63.)
!

I=0 m=—

Um = fo*m(G, @)f(0,9)dQ. (1.2-6b)

It is often desirable to work with real functions constructed as linear
combinations of the (complex) spherical harmonics. Several examples are
listed in Table 1.2 and are shown in the form of polar diagrams in Fig. 1.1.

Orbital angular momentum operators and spherical harmonics are inti-
mately related. This may be seen from the standpoint of a central force
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TABLE 1.2

Real Combinations of Spherical Harmonics

Cartesian
Notation coordinates Polar coordinates Spherical harmonics
s i 1 JanYso

. 4z |1
Py x r sinfcos ¢ 3 5(—Y11+ Y, -
’ Lo 4n |1
P, y rsinfsin @ V2 (Y, + Yi-0r
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problem. Let the Hamiltonian of a particle of mass m and momentum p be

p2
H=t kY (1.2-7)

where V is the potential energy. The Schridinger equation
2
V3 + Z’—?—(E — VW =0 (1.2-8)
may be transformed into spherical coordinates as

@ 208\, 2 12 0y, L &
2 - - — = —| ———= i - W)
r <6r2 + r ar>|1/ + hz (E V)!// [Sil’l 000 (Sln o ae) + sinz 0 a(pZ]ll/

(129
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and d functions. (From C. J. Ballhausen and H. B. Gray,

FIG. 1.1 Polar diagrams of s, p, /
ht © 1964 by W. A. Benjamin, Inc., Menlo Park, Cali-

«“Molecular Orbital Theory,” copyrigl
fornia.)



8 1. ANGULAR MOMENTUM

In a central field for which V = V(r), (1.2-9) is separable into two equations
one of which depends on r only and the other on 8 and ¢. Thus let

Y(r,6,9) = R(NOO, 9), (1.2-10)
1
R(r) = " P(r). (1.2-11)
The Schrodinger equation (1.2-9) now separates into

&P | %r; [E - V(OP() = % P, (12-12)

dr?
1 (. ,0 1 o
- [m 56 (sm 0 56) + m a—q;i} 00,9) = A0(0, ¢), (1.2-13)

in which 4 is a separation constant. From (1.1-14) it is seen that the operator
on the left-hand side of (1.2-13) is just L?; thus

L*0(8, ) = A0(0, ¢). (1.2-14)

Quantum-mechanical wave functions and their first derivatives must be
everywhere' continuous, single-valued, and finite. When these conditions
are imposed on ¥ (r, 0, @), it is found that

(0, ¢) = Yim(0: @), (1.2-15)
A=11+1). (1.2-16)

In other words, the solutions to the quantum-mechanical central force
problem are products of radial functions and angular functions and the
latter are the spherical harmonics Y;m(6, @) Which satisfy

L2Y,(0,9) = I(l + DYin(0,9)- (1.2-17)

The relation expressed by (1.2-17) lends itself to the interpretation that
Y,.(0, ) is an eigenfunction of the operator L? and the corresponding
eigenvalue is (I + 1). Alternatively, (1.2-17) is derivable from the basic
definition for L? (1.1-14) and Y, (0.00) (1.2-1). The restrictions on [ and m
are contained in (1.2-2a) and (1.2-2b); in particular, it should be noted that
[ and m, known as quantum numbers in physical terminology, are integers.
In older quantum mechanical formulations +/I(I + 1) was regarded as the
magnitude of the vector L and m was the projection of L on the z axis.
Although this description is somewhat lacking in rigor, it does provide a
useful pictorial representation (Fig. 1.2) which serves as the origin for the
designation of m as a projection quantum number. Also, because m degen-
eracies are removed by a magnetic field (see Section 17.1), m is also known
as a magnetic quantum number.
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p
FIG. 1.2 Geometrical relation between the quantum numbers / and m. In these diagrams
JI( + 1) is regarded as the magnitude of L.

According to (1.1-16), L? commutes with all components of L and in
particular

[L2,L,]=0. (1.2-18)

We therefore expect an eigenfunction of L? to be simultaneously an eigen-
function of L,. Since the @-dependence of Y,.(0,0) is entirely confined to
¢™® and L, is given by (1.1-3¢), we have

L, Y8, 9) = mYi(6, 0)- (1.2-19)

Equations (1.2-17) and (1.2-19) exhibit the basic connections between orbital
angular momentum operators and spherical harmonics. It is important
to note that because of the noncommutativity of the components of L,
simultaneous eigenfunctions of L? and L,, in general, will not be eigen-
functions of any other component of L.

We now list several useful formulas involving spherical harmonics. The
reciprocal distance between two points whose position vectors are Iry and
r, (Fig. 1.3) is given by

1 © rt
= =Y —57 Pcosw), (1.2-20)

Iry —12]  (=o rit!

in which r. stands for the smaller of the two distances |r,| and |ral, 7> is the
greater of the two distances, and P;(cos w)isa Legendre polynomial. If r; is1n
the direction (0,,¢,) and 1z is in the direction (8,,¢,), then the angle w 18
the angle between the two directions. The addition theorem

4 i
Picos) = 5oy L Y0 o) Tn@r02) (22D
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jry—ral
L4

X

FIG. 1.3 Notation and coordinate system for Eq. (1.2-20).

permits us to replace (1.2-20) by
4n  rt

. 1 o ]
= ZO Y TRl YE(01,01) Ym0, 02). (1227

|r1—r2| =0 m=—1

Another variation of (1.2-22) is obtained by writing

Y(ll) . Y(zl) = Y(l)(el ’ (pl) ¢ Ym(HZ H (PZ)

i
Z (— 1)my; —m(019q)1)y;m(62’ (Pz)

m=-—1

!
Y Y01, 01)Yim(02,02). (1.2-23)

m= -1
Substitution in (1.2-22) yields
1 X 4n rot
-1 Se2d+1r01

YP-YY. (1.2-24)
When [ = 1 in (1.2-21),

4 i
Pycosw) =cosw = Y Vi01,00Yim(02002) (1229
m=—1
which then provides an expression for the cosine of the angle between ry
and r, (Fig. 1.3). Alternatively, if o is set equal to zero in (1.2-21),
an
P =57 L Yol

m=—1
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Since P,(1) =1,

m:lZ_x Yo, @) = 2 4; ! (1.2:26)
Also, setting Yy(0,0) = Yoo = 1/3/4m in (1.2-5) yields
f Y,,,(6, 9) dQ = /37 8(1,0)5(m, 0). (1.2-27)
A plane wave may be expanded in terms of spherical harmonics as
kT =4n lio mi l (k1) Yl B, 01) Y 61> @4, (1.2-28)

in which ji(kr) is a spherical Bessel function (Appendix 5), (r.0,,¢,) the
coordinates of the point of observation, and (0,.¢,) the direction of the
wave vector (Fig. 1.4).

0y, iﬁk)

0,9

X

FIG. 1.4 Notation and coordinate system for Eq. (1.2-28).

The integral of the product of three spherical harmonics is given by
T . 2n
[ sin0dd [ do Y10, 9)Yur(0,9)Yinl0, 9)

= [ V2(6,0)Yia(0.0)in(0>) 42
= (I'm'| Ypu|im)

e+ DRL+ DRI+ I L N/l L1
== \/r - 4: res )(—m’ M m)(O 0 0>' (12-29)
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FIG. 1.5 The triangle relation for angular momenta.

This is known as the Gaunt formula; the quantities (42¢) are numerical
coefficients called 3j symbols whose properties are described in Section 1.5.
The integral (1.2-29) vanishes unless the conditions

—m+M+m=0, (1.2-30)

I' + L + lis an even integer, (1.2-31)
r+L-1

'—L+1>20 (1.2-32)
—I'+L+1

are satisfied. The symbol A(I'LI) is often used as shorthand for (1.2-32)
together with the condition that I' + L + lisan integer (not necessarily even).
These are also known as the triangle conditions (Fig. 1.5). Selected numerical
values of (1.2-29) are given in Table 11.1. When the triangle conditions are
satisfied,

Yiu0,@)=(— 1 " "MJ2LFT Y (fn ,'" _’,(4) Vim0, 0) Yoe(0, @), (1.2:33)

214+ DR+ DHERL + 1)
4

I L\(1 I L
* -
* (m m M) (() 0 0) Yiu(0,0), (1.2-34)

Y£(0,0) Ym0, 0) = ¥ (=1 F D@+ DRL+ D

LM 4r

l I L\l 'L :
x(m —-m' M)(O 0 0>YLM(9,(P)- (1.2-35)

Equations (1.2-34) and (1.2-35) are equivalent.

Tin(0,0) ¥im(0,9) = T (
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1.3 Generalized Angular Momentum

The commutation rules (1.1-10) for the components of orbital angular
momentum operators followed from definition (1.1-1) and the commutation
rules (1.1-8a) and (1.1-8b). This development led to the conclusion that the
orbital angular momentum quantum numbers, | and m, were integers. How-
ever, other kinds of angular momenta are encountered in physical problems
and the quantum numbers associated with such angular momenta are not
necessarily integers. It is therefore necessary to extend the formalism in
such a way as to permit the appearance of nonintegral quantum numbers
but without invalidating any of the previous results pertaining to orbital
angular momentum.

For this purpose we take the commutation rules (1.1-10) as the starting
point of the development. The generalized angular momentum operator J
is then defined as a vector operator with Hermitian components Jy J,,and
J, which satisfy

JxJ=il. (1.3-1)
By analogy with (1.1-5), the spherical components are defined as
1
Jog=———=
+1 \/5

with the inverse relations

1 .
5 (J— i), (1.3-2)

7

(Jx+i']y)s J0=Jz’ J—l =

| i
__E(J+1_J—1)9 Jy=—=s, +J-0) J.=Jo. (1.3-3)

N; v
It should be remarked that the structural resemblance between (1.3-2)
and the spherical harmonics Yy,(6, @) (Table 1.1) is not accidental. This

aspect will be further explored in the discussion on irreducible tensors in
Section 6.1. We also have

Je=

Jhi=—J=1, (13-4
and, as a direct consequence of (1.3-1),
[JosJs1l= T 115 [Js1-1]= —Jo- (1.3-5)

Since J,, J,, and J, are Hermitian, the total angular momentum operator

JP=J2+dr+ )0 (1.3-6a)
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must also be Hermitian. It may be written in various forms as

FEI S SRR - SR SV (1.3-6b)
=Y (-, (g=10-1) (1.3-6¢)

q
=20, J s +JoJo— 1) (1.3-6d)
= =2 _Jer +JoJo+ D (1.3-6¢)

in which the last two expressions are based on (1.3-5). J* commutes with all
rectangular and spherical components of J, e,

[J2,J,]=0. (1.3-7)

So far, all the relations that have been written in terms of J are duplicates
of corresponding relations in terms of L given in the previous section. How-
ever, at this stage the development proceeds in a new direction. Since J?
commutes with all components of J and, in particular, with Jo, there exist
simultaneous eigenfunctions of the two operators. Using the Dirac nota-
tion (Appendix 1), let such eigenfunctions, represented symbolically be
|im, satisfy

J¥Amy = Aim, JolAmy = mjim}. (1.3-8)
It is seen that in this notation, the eigenfunctions (eigenkets) are labeled by
the eigenvalues. Since J 2 and J,, are both Hermitian, 2 and m must be real and

CEmi|imy = 8,2 pm: (139)

To proceed further, we invoke a basic postulate of quantum mechanics,
namely, that the scalar product of any state vector f with itself is positive
definite, i.e.,

S =0,
Slf>=0 onlyif f=0. (1.3-10)

Using the “turn-over” rule ((A2-4) Appendix 2), the Hermitian property of
J ., and (1.3-10), it is seen that

amlJ 2|Am) = It AmlJ Amy = {J Am|J Am> = 0. (1.3-11)
Similarly,
(lmlJﬂlm} =0 and am|J 2Amy > 0. (1.3-12)

It follows that
(AmIJ 2|Am> =>0. (1.3-13)

But, from (1.3-8) and (1.3-9),
Jm|J?|Am)y = 4;
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therefore, in view of (1.3-13),
A=0. (1.3-14)

Thus 4 is not only real but is positive or zero.
Tt will now be shown that m has an upper and a lower bound. From (1.3-6¢),

J_Jer=300" +Jo— J?).
Therefore,
Qmld _yJ i |am)y = tm? + m—7);

but
<,1m|J_1J+1|/lm> = —<(J o AmJ 1 Am), (1.3-15)

where the right-hand side of (1.3-15) has again been obtained by the “turn-
over” rule. As before,

{J 41 Am|J 4 Am> =0, (1.3-16)
so that
im*+m—-2)<0 (1.3-17)
or
L=m?+m= f(m). (1.3-18)

A plot of f(m)as a function of m is shown in Fig. 1.6. Since / is positive, it is

m? +m

4 + + m

———

-4 -3 =2 -1 1 2 3 4

FIG. 1.6 Plot of Eq. (1.3-18).
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evident that m possesses an upper bound, say, b =0 and a lower bound
a < 0. Both bounds depend on 4 and there are no eigenvalues of J, outside
of the interval (a, b).

Using the commutator relations (1.3-5),

JoJ wa|Amd = J o1 Jolm)d + J 4 yJamy = (m+ 1)J ., 1}Am>,

from which it is concluded that J,|Am) is an eigenfunction of J, with
eigenvalue (m + 1). Thus J, 4, acting on |Am), has the effect of displacing m
upward by one unit. This may be expressed by writing

Joq|imy = clAm+ 1), (1.3-19)
where c is a constant. Repeating this process, it is found that J% yJAm) is an
eigenfunction of J, with eigenvalue (m + n). Similarly,

JoJ_lllm> = J_1J0|Am> - J_1I1m> = (m b l)J_ ||).m>,

which indicates that

J_yjAmy = chm— 13, (1.3-20)

where ¢ is another constant. In this case J,|Am) is an eigenfunction of Jo
with eigenvalue (m — n). Because of (1.3-19) and (1.3-20), J ., and J_, are
also known as ladder operators. We now have the two sequences (or ladders)

JoJ% ([Am) = (m + 2)J% 1|Am)
JoJ 4 1|Am) = (m + DJ 4 1|Am)
Jojm = m|im) (1.3-21)
JoJ _y|imy = (m — 1)J _,|Am)>
JoJ2 1|Am) = (m — 2)J2 {|Am)

However, the sequences do not continue indefinitely in both directions;
there is, in fact, an upper and lower bound. To see this, we note that both
J ., and J_, commute with JZ so that

JA | Amy = % JP|Amy = AT |Am). (1.3-22)

This means that J% ,|[Am) is an eigenfunction of J? and the corresponding
eigenvalue is A. Thus we have a fixed value of 1 and all the eigenvalues of J,
are confined to an interval such as (g, b) in Fig. 1.6. Let these eigenvalues be

m, m,+l, m,+2,...,mu,

where m, is the lowest eigenvalue in the sequence and does not necessarily
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coincide with the endpoint a. Similarly m, is the highest eigenvalue and does
not necessarily coincide with the endpoint b. But to ensure that the eigen-
values m;, m; + 1, ..., m, remain within the interval {a, b), it is necessary to
impose the conditions

JiqjAm> =0, (1.3-23a)
J_yjAm)y = 0. (1.3-23b)
However, from (1.3-6e) and (1.3-8),
J_Jiq|im) = 1J2 +Jo— JHAm> = L(mz2 + m, — M]im>. (1.3-24)
Condition (1.3-23a) therefore implies that
' m2+m, — 1 =0. (1.3-25)
In the same fashion,
J+ 1J_1|,1m,> =3(Jo>—Jo— J2)|'1mt> =3(m?® —m — l)M’"z) =0 (1.3-20)

or
m?—m —A=0. (1.3-27)

In order to satisfy both (1.3-25) and (1.3-27) we must have

m, = —m. (1.3-28)
It then follows that it is impossible to have a sequence m;, m; + 1,...,m,that
satisfies (1.3-28) unless all members of the sequence are either integral or
half-integral.

It is customary to replace m, by j; we then have, from (1.3-25),
A=j(j+1).

Equations (1.3-8) and (1.3-9) may now be written as
J2|jmy = j(j + D|jm),
J,|jm) = Joljm) = m|jm), (1.3-29)
Gm'|jmd = 6 ;Omm-
Since m, (=j) must be integral or halfjintegral, the possible values of j are
j=0, % 1 3 ... (1.3-30)

Only positive or zero values of j appear because of (1.3-14). Also, since the
possible values of m lie between m and m,, we have, in view of (1.3-28),

As before, m is called the projection or magnetic quantum pumber.
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The result embodied in (1.3-30) contains the basic distinction between
generalized angular momentum and orbital angular momentum. If, in
(1.3-30), we were to allow j to assume only integral values, it would merely
be necessary to replace J by L and j by I to reproduce all the results pertaining
to orbital angular momentum operators. However, (1.3-30) also permits j
to have half-integral values. This is a new result and suggests the possible
existence of angular momentum operators whose properties differ in certain
respects from those associated with orbital angular momentum. Indeed, this
turns out to be the case and leads to far-reaching physical consequences.

Matrix elements of the various angular momentum operators may now
be calculated. From (1.3-29),

m'|J3|jm) = j(j + 1)6;; Srms (1.3-32)

Gm|Jo|jm) = My ;O (1.3-33)

To obtain matrix elements of J , ;, we refer to (1.3-24); in the present notation

J_1J | jmy = 3(Jo% + Jo = JA)| jm)y = §[m(m + 1) = j(j + D]|jm), (1.3-34)
so that

CmlJ - J 4| jmy = $[mOm + 1) = j(j + D] (1.3-35)

From the definition of matrix multiplication (or the closure property) we
also have

Cmld _d g aljmy = Cjmld o jm > Gmd | jm)y. (1.3-36)
jm’

The sum in (1.3-36) may be simplified by application of the following theorem:
If [4,B] =0, A Hermitian, Ay, = a,y,, AY, = a,¥,, and a, # a,, then
{Y,|B|¢2> = 0. In the present case J _; commutes with J % and both | jm) and
| j'm’") are eigenfunctions of J 2 with eigenvalues j(j + 1) and j'(j* + 1). There-
fore {jm|J_{|j'm’> =0 when j # j. The same argument applies to J.;;
hence

Y. Cimld > m | jmy = ¥ Gl > Cm|J g jm. - (1.3-37)
jm m’

The sum over m’ cannot be simplified in the same way because J_, and J ,
do not commute with J,. Nevertheless the sum over m’ reduces to one term
because J _, acting on | jm") displaces m’ downward by one unit as in (1.3-20),
while J , ; acting on | jm") displaces m’ upward by one unit as in (1.3-19). The
orthogonality condition in (1.3-29) then eliminates all terms from the sum
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except (jm|J _1|j m+1><{jm+1|J | jm>. By the “turn-over” rule and (1.3-4)
Gm|J Z | j mA 1> G m+ 1 | jm)
= —{Jyyjmlim+ 1y Gm1|J oy jm) = —|<jm+ 14| imd|% (1.3-38)
Combining (1.3-35), (1.3-36), and (1.3-38), we have
Gm+ 1| jmy = =JELG+ D — mm + D] (1.3-39)

in which the arbitrary phase factor has been chosen in conformity with the
Condon-Shortley convention. All other matrix elements are zero. By a
similar development it is found that the nonvanishing matrix elements of
J_, are

Cim = 1 -y |imYy = JELiG + 1) — mm — 1)]. (1.3-40)

Matrix elements of J, and J, follow immediately from (1.3-3) in combination
with (1.3-39) and (1.3-40). Some numerical values are listed in Table 1.3.

TABLE 1.3
Matrix Elements of {jm x 1|J 4,|jm> = FJHIG+ 1) — mm £ 1]

m Cim+ 1 oy Cim=J -y Lim)>

J m <jm+llJ+1|jm> <jm—1|J_1|jm> J
t 1 0 \/1 2 1 -2 J3
v 1 ! 0 2 -1 -3 J2
2 2 2

2 =2 -2 0
1 1 0 1 ; <

5

e - 0 z
1 0 -1 1 5 5 5
1 -t —1 0 s 3 f ,
3 3 0 \/§ 2 2 2
2 2 2 s ) B B
S S a 2 2 N5
2 2 2

5 1 3
3 1 3 3 T3 NG 2
z — -2 z
2 2 V2 2

5 3 » 5
33 _ 3 0 2 2 2
2 2 2 .

5 5

= S 0
2 2 0 V2 2 2 2
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In the interest of avoiding excessively cumbersome language and where
misunderstanding is unlikely, it is not uncommon to refer to J or its com-
ponents simply as “angular momenta” rather than “angular momentum
operators.” Similarly, one may speak of a state as having an angular mo-
mentum J as a substitute for saying that the wave function of the state is an
eigenfunction of J2 and J, with eigenvalues j(j + 1) and m, respectively. At
times the state may simply be labeled by j and m.

1.4 Spin

The cigenfunctions of JZ and J,, in (1.3-29) have been symbolized by | jm)
with j amd m given by (1.3-30) and (1.3-31). If j is integral, it is known from the
properties of orbital angular momentum that the spherical harmonics are
eigenfunctions of J2 (= L?) and J, (= L), that is,

. Lim) = |lm> = Y(6, ). (1.4-1)

When j is half-integral, the eigenfunctions |jm) are not functions of the
coordinates—they must be specified in other ways. A case in point is j = 3
which is associated with the spin angular momentum properties of an
electron (as well as of other particles, e.g., proton, neutron, etc.)

In discussing the spin properties of a particle it is customary to adopt a

notation in which J = S and j = s. For a fixed value of s,
S%|sm)y = s(s + 1)|sm),
Sol|sm)y = m|sm}, (1.4-2)
{sm'|smy = O,

from (1.3-29). Also, in conformity with the definition of angular momentum
operators

SxS=iS. (1.4-3)

We now give the matrices for the various operators when s = 3. Columns
will be labeled by the value of m starting with the highest value and progres-
sing to the lowest value; rows will be labeled by n, also in the same sequence.
Thus from (1.3-32), the matrix elements of S? are

[N1E
N

Csm'|S2|sm)y = I (1.4-4)

O bl
R O
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or, more compactly,

Sl_(;z. °>~ (14-5)
(9, _
1

that is, the matrix in (1.4-5) is the matrix representation of the operator §? in
the basis set

|sm = 1535, 3 — -

Similarly, from (1.3-33), (1.3-39), and (1.3-40),

1
Sy =35, = (7 0) (1.4-6)
0 z 0 14
0 . 1
S,y = (0 ;) (1.4-7)

00
s_1=(\/% 0)' (1.4-8)

_(0 3 i
.= <% 0>, (14-9)

_ 1
S, = i(i) 8) (1.4-10)
2

The eigenfunctions |sm> may also be written as

1
> = (0) =o,
(1.4-11)

B-b=(})=r

in which (3) and () are to be understood as column matrices. These expres-
sions have been designed explicitly to satisfy (1.4-2); thus

3 0\/1 1
sip = (3 3)(5)-2(g) - e + vt
z

S%a =13 + Do

fsm) =

]

or
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Similarly
1 0\ /1 1
=y )10
0'22 0o —i/\o 2\ o 2|22
or

Soxt = 3ot

The orthogonality relations in (1.4-2) are also satisfied as, for example, by

1
A = o= 0fg) =1
(1.4-12)

s -b=ap=a of])-o

In still another notation, the eigenfunction |sm) is written in the form &(m) or

&, to suggest that ¢ is a function of a “spin coordinate” or “spin variable” m,

the latter being the projection quantum number. With m = +3
f(%) =&z = I%% =,

f("%‘) =& = |% —%> =p.

Evidently, [sm) is not a function of coordinates; mathematically, it is

known as a spinor.
The Pauli spin matrices are defined by

1 0 0 1 0 —i
az—<0 ~1>, ax—<1 0), ay-—(l_ 0). (1.4-14)

Apart from a numerical factor these matrices are the same as those in (1.4-6),
(1.4-9), and (1.4-10); in fact

(1.4-13)

¢ =2S. (1.4-15)

The difference between ¢ and S appears to be trivial; nevertheless, it is
important to recognize that because o satisfies

o x ¢ = 2io, (1.4-16)

which is not of the same form as S x S = iS, the operator o does not qualify as
an angular momentum operator in contrast to §, which is an angular
momentum operator.

1.5 Coupling of Two Angular Momenta

In this section we shall explain the sense in which two angular momentum
operators, J, and J,, are coupled to form a new angular momentum operator
J, and how the respective eigenfunctions and eigenvalues are related.
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It will be assumed that J, and J, operate in different spaces, by which it
is meant that any component of J, commutes with any component of J,, or
that

[Ji6J25] =0, all i,j. (1.5-1)
Thus J, may be a spin angular momentum operator while J, is associated
with orbital angular momentum, or J, and J, may be angular momentum

operators belonging to two different particles.
According to the general definition of angular momentum operators

(1.3-1), J, and J, satisfy
Jl XJ1=iJ1, JZXJ2=iJ2, (1.5'2)

and there exist sets of orthornormal eigenfunctions such that

Jﬂjlm1> =ji(j1 + 1)“1”‘1), le|j1m1> = m1|j1m1>, (1.5-3)
J§|j2m2> = jo(ja + D]j2m2d, Joz|jame) = my|jamsy, (1.5-4)
with
jlsj2=0’ %, L %,..., . (1.5-5)
my=jy, ji—L....—Ju my,=jz, Jja—1Ll....—J2-
We now define a new operator J by

J=J,+J; (1.5-6)
with the understanding that each component of J is the sum of the cor-

responding components of J, and J,, ie.,

Jo=Jix+ 2 Jer=J1a1+ 2415

with similar relations for other components. Is J an angular momentum
operator? The commutation properties provide the answer; thus

[']x"]y] = [‘]lx + J2x’J1y + JZy]
= [Jlanly] + [JlanZy] + [J2x7‘]1y] + [‘]Zx’JZy]' (15'7)
The second and third commutators vanish because of (1.5-1); Eq. (1.5-7) then
becomes

Vol =Uimdpl+ [2xsJ2p) = iU 1z + J22) = i) (1.5-8)
Other commutators of the components of J are evaluated in similar fashion;

it may therefore be concluded that
JxJ=il, (1.5-9)
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which is sufficient to identify J as an angular momentum operator. We regard
(1.5-6) as the defining relation for the coupling of two angular momentum
operators, J; and J,, to form a new angular momentum operator J. Paren-
thetically, it may be remarked that arbitrary linear combinations of J; and
J, do not necessarily produce angular momentum operators.

In view of (1.5-9) there exist orthonormal eigenfunctions |j, j,jm), also
abbreviated to |jm), which satisfy

J2|jmy = 2| jijajmy = j(G + Dljm) = j(j + Vljrj2jm),
lejm> = Jz|j1fzfm> = m|jm> = mljljzjm>,
j=0, 4 1, 3,...; m=j j—1,...,—-j  (L.5-10b)
The mathematical problem is to establish the relationships between the
eigenfunctions and eigenvalues of J,%,J,,,J,% J,, on one hand and the

eigenfunctions and eigenvalues of J2,J, on the other. For this purpose we
construct products of | j;m, > and |j,m,)> which are written as

(1.5-10a)

|jsjamymy> = |jymyd]jams). (1.5-11)

Clearly, such products as well as their linear combinations are still eigen-
functions of J,2,J,,,J,2%,J,, with the same eigenvalues as in (1.5-3) and
(1.5-4) since J, and J, operate exclusively in their individual spaces. Thus

J12|j1j2m1m2> =ji(j1 + I)Ij1j2m1m2>’
J1z|f1j2m1m2> = m1|j1j2m,m2),

2 s o . (1.5-12)
J 2| jyjamams) = joljz + D)jyjamimy),
J2z|j1jzm1mz> = mz|f1]'2m1mz>,
from which it follows that
Joljjamimy) = (J,, + Jajrizmims)
= (m; + m2)|j1j2m1m2>
= m|j1j2m1m2> (1.5-13)
where
m=my; + m,. (1.5-14)

Equation (1.5-13) shows that |j,j,m,m,) is an eigenfunction of J,. Since
J, commutes with

P =+ Jal + Uny + I + Ui + 220 (1.5-15)

we should like an eigenfunction of J, to be simultaneously an eigenfunction
of J2. Unfortunately, |, j,m;m,) is not an eigenfunction of J2; however, it
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is possible to construct linear combinations of the form

ljlfzjm>= 2 ljljzmlmz)(j1j2m1m2|j1j2jm) (1.5-16)

mymz

such that |jj,jm) is simultaneously an eigenfunction of J, and J% The
quantities {j; jamymy|jijajm) are numerical coefficients which are known
as Clebsch—Gordan (CG) coefficients or vector addition coeﬁic1ents. Ip a
commonly employed terminology one refers to |j1j2jm> as an elgepfuqctnon
in the coupled representation and to |j1jamym;) as an eigenfunction in the

uncoupled representation. . ‘
The quantum numbers in the coupled representation must be related in

some fashion to those in the uncoupled representation. To establish these
relations we write

JAivj2jm> =y + Ja) Y |f1j2m1m2><j1j2m1m2|j1j2j'”>

mymy

=3 (ml+m2)|j1j2mlm2><jlj2mlm2|j1j2jm>- (1.5-17)

mymz
If it is stipulated that

lejljzjm> = m|j1j2jm) =m Z |j1j2m1m2)(j1j2m1m2|jlj2jm>, (1.5-18)

mymy
then
(friamyma)jijzimy =0 when m#m; + my, (1.5-19)

and the expression for |j,j,jm) in (1.5-16) may be rewritten as
Ijljzjm> = Z |j1j2m1 m—my)<{jijam m—-m,|j1j2jm>, (1.5-20a)
or
livjzjm> =3 |j1jam—mymy)>{jyjam—mymy|jijzjm). (1.5-20b)
To find the possible values of j it is observed, from (1.5-5), that
—ji<m<j, 2 <M< (1.5-21)

or, since my; + m, = m,

—jy <m—my <y, —j, <m—my <J,. (1.5-22)

Now let m assume its maximum value, namely j, and let m, and m, assume
their respective maximum values, j; and j,. For this case, (1.5-22) becomes

_jl <j—f2 Sjl, _jz <j"j1 <12 (15-23)
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or
J2—ih<Si<iiv+is i <i<ji+ia (1.5-24)

which may be combined into the single expression
i1 —Jol <J<js +i2- (152

Now consider an example: Suppose j, =4 and j, = 1. From (1.5-10b), the
values of j are restricted to integral and half-integral positive values; there-
fore (1.5-25) will be satisfied by j = 4,1,3. When j = 1, the values of m are
1,0, —1; but it is also necessary to satisfy m = m, + m, when m, = +4 and
my = 1,0, —1. This is obviously impossible and the value j = 1 must be
eliminated. To avoid such inconsistencies it is necessary to supplement
(1.5-25) with the condition

Jitia+j=n (1.5-26)
where n is an integer. Since (1.5-25) is equivalent to
Ji+ia—j
J1—Jja+jp20, (1.5-27)
—j1+ja+]

the two conditions (1.5-26) and (1.5-27) taken together are the triangle con-
ditions A(jyj,j) which we have already encountered in Section 1.2. An
equivalent statement for the allowed values of j is

J=Jv+izs ditia—= 1.0 |jy =l (1.5-28a)
The possible values of m must satisfy (1.5-10b) as well as (1.5-14); hence
m=m1+m2 =j, j—l,...,—j. (1.5'28b)

We shall now illustrate the derivation of the CG coefficients in a simple
case. Let a system with j; = § be coupled to another system with j, =4
Then m; = +3, m, = +4. On the basis of (1.5-27) and (1.5-28),

. 0, m=0,
/= {1, m=1,0,—1. (1.5-29)
Starting with the maximum value ofj (= 1) and the maximum value of m (=1),
Jrjzingmy '
lim> =1 1) = }335. (1.5-30)

The right side of (1.5-30) is the only product of |j;m,> and |j,m,)> which
satisfies m = m, + m, when m = 1. Operating on |1 1) with J_; we obtain
(Table 1.3)

J1 1)y =]10). (1.5-31)
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But 1111
11 J_ 434 J,_ 4+ J,_)iiLL
| > = 1 |22 20 = 111 2 1)|2222> (1532)
= A1 11y 111 Ly,
> Izz 22) 5 Izzz 0
therefore
1 1
105 = 11 11N L _ Ly (1.5-33)
I > \/§ |22 22> \/5 i222 2

The process is repeated by operating on |1 0) with J_; the result is
1-1>=3i-3-H. (1.5-34)

This takes care of the case j = 1. Forj = 0, m = 0 there is only one eigenstate

|00)> which must be orthogonal to |1 1),|1 0),and |1 ~ 1); this is satisfied by

1 1
00 = 111 1N 11 11\ 1.5-35)
' > \/E IZZZ 2> \/—2— IZZ 22> (

The CG coefficients may now be organized in tabular form as in the first part
of Table 1.4.

All the functions | jm) given by (1.5-30), (1.5-33)—(1.5-35) are eigenfunctions
of J, and J2. To illustrate, take |1 1> = [§444) as in (1.5-30). Quite clearly
%%%) is an eigenfunction of J, with an eigenvalue equal to one. To verify
that [$441) is also an elgenfunctlon of J2, write

=(J1+J2)'(J1+J2)=J12+J22+2J1°J2. (15'363)

The scalar product J; -J, can be expressed in terms of the spherical com-

ponents (1.3-2) (or on the basis of the general form (6.1-18)):

Jl 'JZ = Jlx‘]2x + leJZy + leJZZ
= —Ji+1da-1 +J1od20 = J1 -1d2 4y

The evaluation of J2|}334) then gives 2|3433> = 1(1 + 1)|1444) as required
by (1.5-10).

This procedure, in which the CG coefficients are generated by the

ladder operators (J - and J , ), becomes quite tedious in more complicated
situations. A general formula for these coefficients is (Wigner, 1959):

(1.5-36b)

.. L U1+ =N)WJ+jy =) (J+i—j) (2j+1)
m;n m)=o(m,m,+m —
{Jrj2my 2|]1]2] >=0( 1 2)\/ (+ji+ia+1)!

(= DGy +m) 'y —m) (o +m) 1, —my) \(j+m) (j—m)!
% K1+ —=i=k) —my = k) +my— k) (j—j +my +K)(j—jy —my+k)!
(1.5-37)
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TABLE 1.4

Clebsch-Gordan Coefficients {jyjamm,|jijzjm>-

uamymaljijzimy = (— 1Y+ 1273¢ o jymgmy | o jyjm-

=% 2=z j=1 j=0
my m, m=1 m=0 m= —1 m=0
1/2 12 1
1/2 —-12 J1/2 1/2
—-12 1/2 12 —J1/2
12 -2 1
=1 j2=1% i=3 =4
m m, m=% m=% m=-% m=-3 m=% m=—}%
1 1/2 1
1 -1/2 1/3 2/3
0 1/2 2/3 =173
0 -172 V2/3 1/3
-1 12 1/3 ~2/3
-1 -172 1
h=% =% ji=2 j=1
m, m, m=2 m=1 m=0 m=-1 m=-2 m=1 m=0 m=-1
3/2 172 1
32 —12 1/4 3/4
1/2 12 3/4 ~J1/4
12 -2 1/2 1/2
-1/2 1/2 J172 -J12
12 -12 3/4 1/4
—3/2 1/2 1/4 —4J3/4
=32 122 1

TABLE 1.4 (continued)
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TABLE 1.4 (continued)
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with

jl’jZ,j=09%9 1,%,"'9. (1.5'38)
ji+ij2+Jj =n  (aninteger), (1.5-39)

N B I o Pl |
A Unla)) J1—Jja+jp=0, (1.5-40)

—j1+j2+]
my =j1aj1 - 1""9_j1’ m; =j2aj2 - 19“"_].21 m=j7j'_ 1,---,_j-
(1.5-41)

Numerical values of some of the coupling coefficients are given in Table 1.4
(Heine, 1960); we list a few of their properties:

(jamymy|jrjzjmy =0 unless m=m, +m,,  (1.5-42)
(Jriamamy|jyjz jmy is real, (1.5-43)
' > Crjamams|jijzimy {jrjamimaljiizjm'> = 6;j Omm (1.5-44a)

mynty

z <j1j2m1m2|j1f2jm><f1j2m1'm2'|j1j2jm> = Opymy’ 5m2m2" (1.5-44b)
jm

it + 1) = mim + 1)y jomymy|jijajm + 1)
=iy + 1) — my(m; — D{jjp m — 1 My jyja2jm)

+ \/jz(jz + 1) — my(my — 1) jyjmy my — 1|j1jzjm>, (1.5-45a)

Vi + 1) —m(m — 1)<j1j2m1mzlj1j2j m—15
= i1 + 1) = my(my + Djyjp my + 1 mzljlfzjm>
+ iz + 1) = my(my + Djyjomy my + 1jyjajm), (1.5-45b)

<f1j2m1m2|j1j2jm> = (- l)j’+j2_j<j2j1m2m1|j2j1jm>- (1.5-46)

The 3j symbols encountered in the Gaunt formula (1.2-29) are closely
related to the CG coefficients; they are defined by

jioJ2 N\ _ (= i
( 1 J2 >=—'———<11]2m1m2|11]21 —m)

my m; m V2i+1

in which the left side is a 3j symbol whose general form is written as

i v J2 s
4 m; m, my)

(1.5-47)
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Among its properties are (Rotenberg et al., 1959)
(jl j2 j3>= j2 j3 jl — j3 jl j2
m, m, m; m, my m my, my m,
— 2 Js i s Jv 2
(m3 ny mz) (mz m, m,)’ (1.5-48)
(_l)jl+j2+j3 jl jZ j3 - j2 jl j3
my my; my /)  \My; My My
J1
my

Jv Js J2
m; ms my

v
-m, —m

J
< jl j2 j3>< jl j2 j3’> —= 5(.].3,]'3’)6("139"13’)’ (15_50)

= j-"), (1.5-49)

2
2 —Mj

m
my my my)\my my; my s+ 1

j§3(2js+1)<" /2 ’3)(", ”, ’3>=5(m1,m1')6(m2,m2'), (15-51)

m; m, ms m, m, ms

(i J2 T3 my +my+m3=0,
=0 unless L 1.5-52
<m1 my m3) {A(jl‘]2]3)' ( )

Equation (1.5-16) for the eigenfunction in the coupled representation, written
in terms of 3j symbols, is

livjajmy = (— 1707 2 NY+1 <nj1i nj12 —I;> ljrjzmymy). (1.5-53)

nymsy 2

1t is also possible to express | jijamym,) in terms of | Jij2jm>:

|jxj2m1mz> =3 (—1y2zivmm 24+ 1 (”Jll J2
Jm 1

J
m, -—m

) jijzjmy. (1.5-54)

A number of special formulas for 3j symbols (Edmonds, 1960) are listed
in Table 1.5. Extensive numerical tables are given by Rotenberg et al. (1959);
a short list of numerical values is given in Table 1.6.

To recapitulate, an eigenfunction |jm) (or |j,j,jm)) in the coupled repre-
sentation is related to the eigenfunctions |j,j,m,m,> in the uncoupled
representation by

|jm> = Ijl.ijm> = Z |j1j2m1m2><j1j2m1m2|j1j2jm>

nymz

— (=) hm 21 jv J2 FAYI
(1) v+l ) <m1 m, —m |jrjzmymy)

nimy

7

(1.5-55)
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TABLE 1.5
Special Formulas for 3j Symbols

hoj2 e e
(01 02 0’):0 if j; +Jy +jaisodd

(j+% i3 —(—aym [J—m+}
m -m-—3% 3 Qi+22i+1D

= (=1)im"1 (-mj-—m+1)
Qj+32+22+H

)

1

(j+1 j 1)_(_1)1._,"_l Gim+D(j—m+1)
m —m 0] V@ +3)+ D2+

(i i 1)=(_,,,--m [G=mi+m+D
m —-m—1 1 (G + DEi+ DLEH
(j j 1)_ o m
(Y
m —m 0 @+ DG+ i
i 0)=(_1),_m
m —m 0 2+l
i 2>=(_“_m 3m? — j(j + 1)
m —m 0 JE G+ D2+ D22i- b

with
m=my + My, j=Jj1t+i2 j1+j2—1,.--,|j1—j2|-

The quantum number j is confined to integral or half-integral values and
m=j,j—1,...,—Jj; |jiijamymy) is an eigenfunction of J,%, J5% Jiz, J2z>
and J, (=J,, + J,,) with eigenvalues j (j; + 1), jaljz + 1), my, M2, and
m(=m; +my), respectively. However, |jijomims is not an eigenfunction of
J2. Note that j,, j,, m;, and m, serve to label the eigenfunction as well as
to specify the eigenvalues; for this reason, jy, j,, My, and m, are often said
to be “good” quantum numbers (in the uncoupled representation). Also,
|17z jm) is an eigenfunction of J \2,J,%, J% and J, with eigenvalues j,(j; + 1),
ja(js + 1), j(j + 1), and m, respectively, but |j, j,jm) is not an eigenfunction
of J,, and J,,. The “good” quantum numbers in the coupled representation

are therefore j,, j,, j, and m.
Henceforth, coupling coefficients will be understood to be either 3j sym-

. bols or Clebsch-Gordan (CG) coefficients.



TABLE 1.6

Numerical Values of 3j Symbols.*® i TABLE 1.6 (continued)
i ik Jo | m me ms Ji Je js my_m: m _i1 jz js m mp M Jr J2 js m m; M
1 1+ oo o © *01 3/2 3/2 1 | 1/2-3/2 1 *101 ‘ - 2 1 |2 -2 o |52 2 3/2 7z 1 1/2| 2l
2 1 1 0 0 0 11 3/2 3/2 1 1/2 -1\/2 © *211 . » . s o1 -1 - I 32| 12 0 /2 o011,
2 2 ° ° ° ° ool 3/2 3/2 1 3/2 -3/2 © 2l 2 2 2 -2 0 2 1011, | 5/2 2 3/2) 3/2 -2 1/2 311,
2 2 2 0 o 0 *1011, 3/2 3/2 1 3/2 -1/2 -1 *101 - - s k1 = ° woul, | 572 2 32l 372 1 —1/2 un,
3 2 1 o] 0 fo} *0111, 2 1 1 =1 0 1 *101 2 2 2 1 0 1 om, 5/e 2 32| 3/2 © -3/2| *o11,
3 3 o] o] 0 o) *0001, 2 1 1 -1 1 1 2 2 2 o -2 2 won, | s/2 2 3/2| 5/2 -2 -1/2| *no0l,
3 3 2o o © 2111, 2 1 1 0 111 s 2 2 o -1 A wou, |52 2 32 sz -1 -3/2| 100L
u 2 2 o] 0 0 ioll, 2 1 1 1 -1 0 *101 2 > 2 o 0 o =011, 5/2 5/2 © 1/2 -1/2 © n
4 3 1 o] 0 [o] 2201, 2 1 1 1 o -1 *101 2 o 2 1 -2 1 *0111, 5/2 5/2 0 3/2 -3/2 © *11
4 3 3 o] o] o] *1001,1 2 1 1 2 -1 -1 001 > 2 2 1 -t o aom, | s/2 5/2 0 5/2 =5/2 0 1n
y 4% o}lo o © 02 2 3/2 /2l o -1/2 /2] *10l s 2 2 1 o -1 jou1, | s/2 /2 1 RYCIRY-R *0111,
y 4 2 0 o} o *2211,1 2 /2 /el v -3/2 /g 201 N 2 o 2 P o wou | sz s/2 1 /2 =3/2 1 I,
4 b y | .0 o 0 1201,11 2 3/2 12| v -Vv/2-1/9 211 l 2 2 2 P o111 | 5/2 5/2 1 1/2 -1/2 © un,
1/2 1/2 0 |1/2-1/2 © 1 2 3/2 /2| 2 -3/2 -1/ *00L s 2 2 s o -2 o |'s/2 5/2 1 3/2 -5/2 1 *0101,
1 1/2 v/elo -1/2 1/2 n 2 3/2 3/2)-1  -1/2 3/9 101 5/2 3/2 1 /2 -1/2 1 *201 s/2 5/2 1 3/2 =3/2 © N,
1 1/2 ‘/2 1 -1/2 -1/2| *0} 2 3/2 3/2f o -3/2 3/2] =201 52 3/2 1 V2 -3/2 1 211 5/2 5/2 1 3/2 -1/2 -1 3,
1 1 o o o © *0}) 2 3/2 3/2] 0o -1/2 /2| *201 s/2 3/2 1 12 -1/2 101 5/2 5/2 1 5/2 -5/2 O a1,
1 1 0 1 o} o1 2 3/2 3/2| 1 -3/2 1/¢f 101 s/2 3/2 1 3/2 -3/2 © *o11 s/2 5/2 1 5/2 -3/2 -1 *0101,
1 1 1 0 1 n 2 3/2 32| 1 -1/2-/3 O s5/2 3/2 1 3/2 -1/2 -1 *101 5/2 s5/2 2 |-3/2-1/2 2 2211,
1 1 1 o = 1 *11 >  3/2 3/2| 2 -3/2-1/94 *i0} s/ 3/2 1 5/2 =3/2 =1 u s/2 5/2 2 |-1/2-3/2 2 2211,
11 1 o 00 ° 2 3/2 3/2[ 2 -/2-3/4 10 52 2 /2|72 o /2| 101 5/2 s5/2 2 |-v/2-1/2 1 0
I n 2 2 oo o0 O 001 s/ 2 /2| 1/z-1 /2| vel | 5/2 s/2 2 | /2 -5/2 2 2001,
I L 1l 2 2 o |1 -1 o0} 001 sz 2 /2|12 o -1/2| *11 | 5/2 s/2 2 | w/2-3/2 1 o011,
32 1 V/ez|/z 0 A2 AL 2 2 o2 -2 O 00} sz 2 /e|ye-2z 2| 1 |52 s/ 2 | 1/2-1/2 o | ra1lL
e 1 2|Vt /2l A 2 2 1 |-t o 1} "l sz 2 /2|32 -zl |52 52 2 | 3/2-5/2 1 | *100L
32 1 1/2[ve o /2 AL 2 2 1 S o1 N lse 2 ae|se-2 -2l w52 s/2 2 | 3/2-3/2 O 21,
3/2 1 1/2 3/2 -1 -1/2 *2 2 2 1 [0} o] o] o] 5/2 2 3/2 -3/2 © 3/2 101_1_1" 5/2 s/2 2 3/2 -1/2 -1 oo\l,
32 3/2 0 [wz-/2 0 | TR 2 2 1 |1v -2 1| Ul s 2 3elase -1 el zab |2 52 @ 5/2 -5/2 © 2111,
3/2 3/2 0 |3/2-3/2 0 2 2 2 v v - o il s 2 32|20 /el ow. |52 /22 5/2 -3/2 -1 | *1001,
/2 3/2 1 |17z -1/2 11 2 2 1 v o 4 101 /o 2 3e|ie-2  3/2| 0Ll |5/2 5/2 2 5/2 -1/2 -2 2001,
« The table gives values of( o J2 f3>2 in prime notation which lists only the exponents of the prime (1.5-48) and (1.5-49) to (a) interchange the columns so that j; = j, = jyand(b) change the signs (if necess
. g My s of my,m,, and m3 so that m, < 0.
numbers in the order 2,3,5,7, 14, ... Negative exponents are underscored. For example, " b Reprinted from “The 3-j and 6+ Symbols,” by Rotenberg, Bivins, Metropolis. and Wooten by
2 %3 x 50 12 mission of the M.LT. Press, Cambridge, Massachusetts. Copyright ©, 1959 by The Massachusetts Insti
2102 =——F5— =715 of Technology.
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1.6 Coupling of Three Angular Momenta

The methods developed for the coupling of two angular momentum
operators may, in principle, be extended to any number of operators—
but not without additional complications. The coupling of three angular
momenta

J=J1 +J2+J3 (1.6'1)

serves as a useful illustration.
Clearly, (1.6-1) may be written as

J1+J2=J129 J12+J3=J. (1.6-2)

Each step then involves two angular momenta and these may be handled
by the methods of the last section. Thus suppose

(ST

jl = la j2 = %7 j3 =
When J, and J, are coupled to form J,, the possible values of J,, are 3
and 3. We indicate these by writing

.

130,
133
On further coupling of J,, with J5 to form J, the possible values of j may be
written in a notation which keeps track of the coupling sequence:

Jualii2) = { (1.6-3)

13(3)3; 0,
133)3 1,
1333 1,
1333 2.

Jri20i12)issJj = (1.6-4)

We may also construct the eigenfunctions |jm) from |jm,>, |j,m,), and
|jsms). As a first step |j;,m,,) is written as a linear combinations of prod-
ucts of |jm;> and |j,m,):

lizmizd = 14312 = VA1 D = = V3L OD,
F - =V OE - - VB -DED,
B2 =1 DD,
B = VAL DB -5 + 10D,
B D=L -+ Vil -DED,
B-—PDu=01 =D -
Now suppose we wish to calculate |jm) = |1 1). Again it is possible to find
the required linear combinations of |j,,m;,> and |jm;). Indeed, on the

(1.6-5)
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basis of (1.6-4) we expect to find two such expressions; they are
ljsz(jlz)j3§jm> = Il%(%)%’ 115
= B
= D -DED - L OEDRED,  (1.6-63)
IjljZ(le)jS;jm> = |1% N1
= VIBD ot —b - VIEDul
= Vil DEDE -H — VAL D -DED
—VALOEDED- (1.6-6b)
The sequential scheme (1.6-2) has led us in a stepwise fashion to (1.6-6a)
and (1.6-6b) which provide two expressions for |jmy =[11) in terms of the

products | j,m, > j;m;>|jsms). However, the replacement of (1.6-1) by (1.6-2)
is certainly not unique. Another possible coupling scheme is

Jy +J3=Jds3, Ji+Jdp=J (1.6-7)
In place of (1.6-3) and (1.6-4) we now have
L 33(0),
J2j3li23) = {%%(1)’
and
1,33(0); 1
11 .
Jird2is(Jza)si = ::;zg;:? (1.6-8)
1,33 2.

The possible values of j are the same as those in (1.6-4) even though‘ the
coupling has been carried out in a different sequence. The eigenfunctions

|jzsm23> are

|j23m23> = IO 0523 = \/%I%%M% '%> - \/%I% —%>I%%

N 11 1>,5 = D3 (1.6:9)

11055 = VEEDE - + V3 -DIED
=1 =} -9k -,
and |jm) = |1 1) now assumes the two forms
ljl,jzjz.(jzs);jm) = |1, %%(0)2 1)
= |1 1>|00>23
= VI DEDE - - VI D -HED, (1.6-10a)
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li1sjzistzs)simy =1, 33(1; 11D
= VHL D|10>55 = VAL O D23
=il DEHE -H +HL DI -Dl2
S oEHED- (1.6-10b)
We now have four separate expressions for |jmy = |t 1), namely (1.6-6a)
and (1.6-6b) and (1.6-10a) and (1.6-10b).
This example illustrates the following properties:

1. When three angular momentum operators Jy, J,, and J; are coupled
to form J, the possible values of j are the same regardless of the coupling
scheme.

2. The eigenfunctions |jm) are not uniquely determined by specifying
|jamy D, |j2mz ), and | jms) but depend on the details of the coupling scheme.

Thus, in general,

|j1i2(i12)ias > # |j152J3(j23); -
However, the two eigenfunctions are related by a unitary transformation
(Sobelman, 1972)

|j1,j2j3(123)§j> = Z Ijljz(j12)j3;j><jlj2(j12)j3;jljlaijS(jZS);j> (1.6-11)
J12

in which

<j1j2(j12)j3;j‘jl,jzj3(j23);j>

=(_1)j1+iz+i3+j 21a + D23 + 1) {jt ;2 ]‘12}. (1.6-12)&

3 J23

The quantity in the braces is a 6/ symbol whose general form is

Jv J2 s
L L I

and whose definition is given by (Rotenberg et al, 1959)

{’,‘ N ’,} = (= 1y A js) Allylaja) Aty Aik)
1 2 3
<Y (— VUit i+l +1-0)!
=Ky +j2 —Js — Ry + I —js = 0+ I, =13 —k)!
(ll+j2—l3_k)!(_jl—ll+j3+13+k)!(—j2—ll+j3+l3+k)!
(1.6-13)
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where

. (a+b—-c)!(a—b+c)!(b+c—a)!
A(abc)_f (@a+b+c+ 1) '

The four triangle relations may be represented symbolically as

I R VG S PN I

A2 Al ja) Aty jals) Alilals)
The 6j symbols are invariant under

(a) an interchange of columns,
(b) an interchange of any two numbers in the bottom row with the
corresponding two numbers in the top row.

J1 J2 s — J2 J1 Js Jv Js 2 —...
L L L L L, I L L L

Thus

L ) (1.6-14)
={11 J2 ]3}={11 I 13}___.._
ll 12 13 jl j2 l3
Among their properties are
{’,‘ 7 ’lj}=(—1)!‘*“‘2*““2W(11j21211;1313) (16-15)
1 2

in which W(jj2l,!1; jal3) is the Racah W coefficient,
. yoJ2 s\ iy 2 ds | _0Us 1)
2, + 1 A L 1.6-16)
L s ){1, L, 13}{11 I, 13} 2, + 1 (

i+ v J2 sl fir Lo Ji J2 I3
-1 j+istls 21 + 1 {]1 J2 ]3}{]1 1 }:{ 38, 1.6-17
:z,:( ) @ ) L 1 L) 2 L Ly 1y j ( )
A number of special formulas are listed in Table 1.7; numerical values
are given in Table 1.8 which is also taken from the tables of Rotenberg et al.

(1959).
To illustrate the use of (1.6-11) and (1.6-12) it is possible to write

L4301 1> = —AGLE 1D + AudE1D  (1618)
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TABLE 1.7 (continued)

{

2¢c—-15%

b C}:(—-l)"Z

[(@+ b+ 1)(@@—5b) —c+ 11[6(s + 1) (s — 2a) (s — 2b) (s — 2¢ + 1)]'/2

{

2¢c-1b+1

[(2b — 1)2b(2b + 1) (2b + 2) (2b + 3) (2c — 2) (2c — 1) 2c(2¢ + 1) (2¢ + 2)]'/2 ’

b c }=(_1),

4[(a+b+2)(a—b—1)—(c—1) (b+c+2)] [(s—2b—1)(s—2b) (s—2c+1) (s —2c+2)]'/?

[26(2b + 1) (2b + 2) (26 + 3) (2b + 4) (2c — 2) (2c — 1) 2¢(2c + 1) 2c + 2)]*/2

abc
2¢bh

= (=1 2B3X(X + 1) — 4b(b + 1) c(c + 1)]

[2b — 1) 2b(2b + 1) (2b + 2) (2b + 3) (2¢ — 1) 2¢(2c + 1) 2¢ + 2) (2 + 32

in which numerical values of the 6j symbols have been obtained from
Table 1.8. Similarly

L33 1 = BdE 1D + UG5 LD, (1619

On substituting (1.6-6a) and (1.6-6b) into (1.6-18) and (1.6-19) it is readily
verified that the results are those given by (1.6-10a) and (1.6-10b).

1.7 Summary and Examples

Definition J,, J,, and J, are components of an angular momentum op-
erator J if

(@) J,,J,,and J, are Hermitian,
(b) J,,J,,and J, satisfy

I xJ=il,
i, ;] = ieinds (1.7-1)
[Ji,J;]]=iJ, (i, ], k cyclic),

where g, is the antisymmetric unit tensor of rank 3. The three forms of
(1.7-1) are equivalent.
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TABLE 1.8
Numerical Values of 6j Symbols™®
J1 j': j:l 1 L I; jl Je2 J3 L I, A
/2 1/2 o 0 o /2| =1 2 1 1 1 ! 1 22
/2 /2 0 /2 1/2 o *2 2 1 ! 2 1 1 222
1 /2 1/2 |o /2 /2 2 2 3/2 /2|0 /2 3/2 3
1 /2 1/2 /2 1/2 22 2 3/2 v/2|ve2 1 L 21
i 1 o o © 1 o1 2 3/2 /2|1 /2 3/2| 301
i 1 0 V2 vz /2| 1 2 3/2 1/2 |1 3/2 v/2| 4
1 1 e} 1 1 0 cz2 2 3/2 1/2 1 3/2 3/2] =201
1 1 0 1 1 1 *02 2 3/2 V/2]3/2 1 1 31
1 1 1 /2 /2 /e | ro2 2 3/2 1/2fe 3/2 1/2 ho2
! ' ! 1 0 1 *02 2 3/e /22 3/2 3/2| *202
1 1 1 1 1 o] *02 2 3/2 3/210 3/2 3/2}| *i
1 i 1 1 1 1 22 2 3/2 3/211/2 1 1 *31
3/2 1 1/2 |0 /2 1% 11 2 3/2 3/2 1 /2 3/2| +201
3/2 /2 {1/2 1 /2| *02 2 3/2 3/2]1 3/2 1/2| *20}
3/2 1 1/2 |1 /2 1 *22 2 3/2 3/2 |1 3/2 3/2 Loz
3/2 1 1/2 {3/2 1 1/2] =42 2 3/2 3/2| 3/2 1 1 *112
3/2 3/2 6 Jo ¢ 3/2| *2 2 3/2 3/2| 2 /2 3/2| *202
3/2 3/2 © /2 1/2 1 *3 2 3/2 3/21 2 3/2 1/2| *202
3/2 3/2 o |1 1 /2§ 21 2 3/2 32} 2 3/2 3/2] Ae2
3/2 3/2 ¢ 1 1 /2 21 2 2 0 c o 2 001
3/2 3/2 © 3/2 3/2 0 *y 2 2 ) /2 1/2 3/2 101
3/2 3/2 © 3/2 3/2 1 3 2 2 0 1 1 1 oyl
3/2 3/2 1 1/2 /2 1 321 2 2 o] 1 1 2 *o11
3/2 3/2 1 1 0 3/2 21 2 2 0 3/2 3/2 1/2 201
3/2 3/2 1 ! 1 1/2 321 2 2 0 3/2 3/2 3/2 *201
3/2 3/2 1 1 1 3/2 1 =121 2 2 © 2 2 ) 002
3/2 3/2 1 /2 V2 i 22 2 2 0 2 2 1 *0C2
3/2 3/2 1 3/2 3/2 © 4 2 2 0 |2 2 2 coz
3/2 3/2 1 3/2 3/2 1 *4220,2 | 2 2 ! /2 /2 3/2] *201
2 1 1 o) 1 1 02 2 2 1 1 0 2 =01

|
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TABLE 1.8 (continued)

jl j2 J3 11 12 ’3 jl j-z j:s 11 12 13
2 2 1 ! 1 1 *201 2 2 2 1 1 1 2121,
2 2 1 1 1 2 221 2 2 2 1 1 2 2121,
2 2 1 3/2 /2 3/2) *301 2 2 2 3/2 1/2 3/2f 3021,
2 2 1 3/2 3/2 1/2f =322 2 2 2 3/2 3/2 /2 3021,
2 2 1 3/2 3/2 3/2] 102 2 2 2 3/2 3/2 3/2) o
2 2 1 2 1 1 202 2 2 2 2 0 2 002
2 2 1 2 1 2 2121, 2 2 2 2 1 1 2121,
2 2 1 2 2 0 *002 2 2 2 2 1 2 *202
2 2 | 2 2 1 22 2 2 2 2 2 0 002
2 2 1 2 2 2 *202 2 2 2 2 2 1 *202

2 2 2 2 2 2 *2022,

. . ;Y2
Ji J2 J3
“ The table lists {11 A 13} in prime notation (see Table 1.6). To find the value of a 6j symbol use the

symmetry properties (1.6-14) to (a) place the largest of the six parameters in the upper left-hand corner
(J; position), (b) place the largest of the remaining four parameters in the middle of the top row (j, position),
and (c) make [, > I, if j, = j,.

? Reprinted from “The 3-j and 6-j Symbols,” by Rotenberg, Bivins, Metropolis, and Wooten by per-
mission of the M.LT. Press, Cambridge, Massachusetts. Copyright ©, 1959 by the Massachusetts Institute
of Technology. '

Spherical Components
L
\/5

1 i
Jx=__[J+1'J—1]’ Jy=_[J+1+J—1], J.=Jo

V2 V2

[J.—-iJ,]= —-J4y,

1
Jor=——=[J +iJ,]=-Jt,, J_ =
+1 \/5[ y] 1 1
(1.7-2)

J2
J2=Jx2+Jy2+J22= "'J+1J-1 +JQ_J_1J+1
=2 (=DJJ, (g=10,-1)
q
= 2 J o+ JJo~ D= =20, T, +Jo(Jo+1). (17-3)
Commutators

[JO’Ji1]= tJ1y, [J+1,J—1]= —Jo. (1.7-4)

1.7 SUMMARY AND EXAMPLES 45

In terms of the CG coefficients, (1.7-4) has the form
U, )= —V2lpgl L1p+gdJ,., (pg=10-1), (1.7-5)
[J,,J2]=0 y=Jodpdd e, dy) (1.7-6)
Operators and Eigenstates

J2|jm) = j(j + 1)|jm),

Jo|imy = Joljm)y = m|jm), (L7-7)
Jialjmy = FALG + D = (m £ Dm]|jm £15
ji=041,323,..., m=jj—1,...,—] (1.7-8)
Matrix Elements
Gl jm> = (G + 185 0m, (1.7-9)
GmJolim) = mbjdpm = J'm|J | jmD, (1.7-10)

G s y|jmy = —VELG+ 1) — (m + Dm] 0 j0m m+ 1, (17-11)
GmN - y|jmy = V3G + 1) — (m — Dm]6;;0m m—1- (1.7-12)

An alternative expression for the matrix element of J .y, J,, or J_ is dertved
in Section 6.3:

(m|J | im>
mf I N TESVTES))
=(=1)"m 2 1 1)o,; = 1,0, —1).
(-1) <_m,qm> @+ DG + Dy @ )
(1.7-13)
For the rectangular components
a 1J » —_ l af 1 . + 1 ,
G m+ 1, jmy = 550 + 1) — mm + 1) (L7-14)
G m=1J,|jmy = $/j(j + 1) — m(m — 1),
] 1) |jm> =—£./i(j + 1) — m(m + 1),
<j m+1|J,|jm) E i+ 1) = m(m + 1), (17-15)
Gm=1J,|jmy = $/j(j + 1) — m(m — 1).
Examples (see (1.4-4) for format)
j=s=4J=S8
1/0 1 1/0 —i 1/1 0
= — = — S = — =S s
5 2(1 o)’ S Z(i o)’ : 2(0 —1) 0
3 (1.7-16)
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1 =a=cia=ih=(g).

|1m> = !sm> = 0 (17-17)
|% -H=p= o1z = P = (1),
S.o = B/2, S:B =0/2,
S,o = ip/2, S, = —ia/2,
S,00 = Spo = 0/2, S.B=S8,8=—p/2,
vt = af B=SoB =~/ w18
Sy2=0, SiB= ““/\/Z
S_ia = B/\/2, S_i8=0,
S%a = 3a, S8 =3p.
j=1
. | 010 i 0 -1 0
J,=—{1 0 1}, J,=—4|1 0 -1},
‘/E 010 ‘/i 0 1 0
1 0 0 2 00
Jo=J,={0 0 0], J*=[{0 2 0}, (1.7-19)
0 0 -1 0 0 2
0 -1 0 0 0 0
Je1=1{0 0 -1}, J_y={1 0 0}).
0 0 0 010

Coupling of Angular Momentum Operators The coupling of two angular
momentum operators J; and J, is expressed by the relation

J=J,+J, (1.7-20)
where J is also an angular momentum operator, and

Ji¥jaimyd = ji(jy + D]jimy), Jizliama) = ja(jz + D]jgmy),

.. .. . . . 1.7-21

T2y = + Dy odiomsy = moljampy, D

with

jl’j2=0>%915%9"" my =jl’jl—19"',_j1? m2=j2’j2—1a--',_j2'
(1.7-22)
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The coupled and uncoupled representations are related by

lfm> = |j1f2jm> = z |j1j2m1m2><j1j2m1m2|j1j2jm)

i ir—m A7 Jv 2 Ny
=(—=1)Y2"Hh—m /2 1
(=1 V2 + M‘Zmz (ml m, _m) |j1jamimz>
(1.7-23)
where
J=J1 s d1+ia— L. i =
=0,3,13,..., (1.7-24)
m=m;+my=j, j—1,...,—J
Jitj+j=n (an integer).
Example Coupling of two electronic spins
L 1N 1)
Ji §y 2 my L2 |slml> {I% _%>1 — ﬂ(l),
LN 2)
== = 1 = +‘L == lz 2>2 a( ’
J2=82=172 m; = 17, |s2m2> {I% _%>2 = B(2),
_so 1, m=M=1,0,-1,
J=27%, m=M=0
|SM> = |1 1) = a(l)a(2),
1
[10)= ﬁ [«(1)B(2) + B((2)],
(1.7-25)

It -1y = BB,
00y = —\‘5 [(1)BQ) — B(D)a(2)]

Three angular momentum operators J,;,J,, and J; may be coupled to
form a resultant J
J=Jl+J2+J3. (17'26)
However, the eigenfunctions of J depend on the coupling sequence and are
related through unitary transformations of the form
lj1,d2is(i2a)s 3> = Y (- D+ izt 34 (21, + 1)(2j23 + 1)

J12

x{’.‘ J2 .‘2} |i1i2(r2)iss iD- (1.7-27)
Jzs J  J23



