CHAPTER 17

STATIC FIELDS

17.1 Magnetic Fields

It is assumed that the electron (or hydrogen atom) is placed in a constant
magnetic field B with vector potential

A=1iBxr (17.1-1)

Referring to the Schrédinger equation (15.2-32) the interaction terms that
depend on the vector potential are

2

e h
sz AT+ 2—"% G-V xA. (17.1-2)

= (p-A+A

me P P+

When A has form (17.1-1), V - A is identically zero as a result of which
p-A=A-.p (17.1-3)

We shall confine our attention, initially, to effects which are linear in B =
V x A; hence the Hamiltonian describing the interaction with the field is

e eh
H =—A. — G- -
n=,—Ap+;—o-B. (17.1-4)
But
Ap=iBxr-p=4B.-rxp=14B-L (17.1-5)

in which L is the orbital angular momentum operator. With the replace-
ment of ¢ by 2S and substitution of (17.1-5) into (17.1-4) we have

eh
H_ =—DB-(L + = (L + -
m=3 cB (L+2S)=pB- (L +2S). (17.1-6)
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The positive constant

2
g = :‘;n% =927 x 107! erg/G

=927 x 107 2*J/T. (17.1-7)

is known as the Bohr magneton.
Equation (17.1-6) may also be written as

#,=—p,-B—ps-B (17.1-8)

where
pL=—BL;  pg= —26S. (17.1-9)

The resemblance of (17.1-8) to the classical expression for the encrgy of a
magnetic dipole in a magnetic field suggests that p, and pg be interpreted
as magnetic moment operators associated with L and S, respectively. The
minus signs in (17.1-9) are due to the negative charge on the electron. Note
that the factor of 2 appears in the relation between pg and S and is absent in
the relation between p; and L. The latter has a classical analog but the former
does not. Actually, the factor of 2 is slightly erroneous; higher order correc-
tions show that

Bs = —g.pS (17.1-10)
with
g. = 2.0023; (17.1-11)
although in most cases it is sufficient to set g, = 2.
It is important to distinguish between a magnetic moment operator g

such as p; or pg defined by (17.1-9) from the quantity ¢ known as “the
magnetic moment.” The orbital magnetic moment g, is defined as

pr=lm =M im=1) (17.1-12)
where ! is the z component of p, . From (17.1-9),
= —Blm =L fim =1y = —BI (17.1-13)

Similarly, the spin magnetic moment ug is given by
s = (s m, = slSJs m, = 5
= —Bg.(s m; = s|S,|s m; = s)
= —Bg.s = —3Bg. ~ — . (17.1-14)

In other words, the absolute value of the spin magnetic moment of the
electron is one Bohr magneton.
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In place of (17.1-9) we may now write

= # L: ps= % S = 2uS. (17.1-15)
It is convenient, although not essential, to assume that the coordinate
system has been chosen so that the z axis coincides with the direction of B.

In that case (17.1-6) simplifies to
K., = BB(L, + 283,) (17.1-16)

where B = B,. We shall now divide the discussion of magnetic field effects
into two parts: “weak” fields and “strong” fields. The scale is set by the spin-
orbit interaction energy. If the changes in energy due to the application ofa
magnetic field are small compared with the spin-orbit coupling energy, the
field is said to be “weak”; otherwise it is strong. The “weak” field case is the
regime of the ordinary Zeeman effect while the “strong” field case corresponds
to the Paschen—Back effect. -

When the fields are “weak” it is presumed that the effects of spin-orbit
coupling have already been taken into account so that the eigenstates are
described in the coupled representation |lsjm). We shall therefore be inter-
ested in matrix elements of 3¢, in this basis set. Furthermore, the assumption
of a “weak” field implies that individual terms like 2S; 2, *Py/3, *P3,, etc,
are sufficiently isolated so that attention can be confined to matrix ele-
ments which are diagonal in I, s, and j. To evaluate such matrix elements
we apply the Landé formula (6.3-19):

(Isjm|(L + 28) - Jisjm) Csim)J JIsjmy.  (17.1-17)

sim'|L, + 28, |lsjim) =

jG+1
But
sim'|J |lsim) = M dpm (17.1-18)
and
S (L+29)-J=J+8)-J=J"+S-J.
L=J-S5, L*=J%+8*-28-,
and
S J=32+8 -1,
we have . v

(L +28)-J =32J2 + (5% — L.
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Therefore
(sim|(L + 28) - J|Isjmy = (Isjm|3J* + 3(8* — L?)|lsjm)
=3j+ D +3sts+ 1) =3+ 1),
Isjm|(L + 28) - J|lsjm) 14 J+D+s(s+ D=1+ 1)
j+1 2j(j+ 1)
= g, = Landé ¢ factor. (17.1-19)

Substituting (17.1-18) and (17.1-19) into (17.1-17) we obtain
¢ lsim'|L + 28, fIsim) = g;m Spm (17.1-20)

which indicates that only diagonal elements are nonzero. Hence the energies
in a “weak” magnetic field are given by

E,, = Pg,Bm. (17.1-21)

These are known as the Zeeman. levels with energies proportional to the
magnetic quantum number m. Thus, the effect of the magnetic field has been
to remove the m-degeneracy.

The Landé g factor (17.1-19) may also be written as

JU+D+ss+ ) —1I+1)
2+ 1)

to permit the use of the more exact value of g, given by (17.1-11).
It is now possible to define a total magnetic moment operator p; by

n, = —Pg,Jd (17.1-23)

which contains (17.1-9) as special cases. Corresponding to (17.1-12)—(17.1-14)
we have, for the total magnetic moment

(17.1-22)

g=1+@ -1
a

p=m=jlu’im=j> = —g,B{jm=jl.|im=j> = —Bg,i. (17.1-24)
Hence (17.1-23) may be written as
ny = (/)Y
and, in terms of p,, the magnetic Hamiltonian (17.1-6) is
Hpm=—p;+B (17.1-25)

which then leads directly to (17.1-21). Also, on comparing (17.1-25) with
(17.1-8), it is seen that

By =pg + Bs. (17.1-26)
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FIG. 17.1 Splitting of 28, ,, in a weak magnetic field.

For an electron in an s state (*S;3), [ =0, 5= L j=14,4g,=2so that the

energies, from (17.1-21) are

E,= +PB (17.1-27)
as shown in Fig. 17.1. The energy separations in 2p,,, and ?P3, are
_',«.\/V . E.(*Py;) = t3PB
o no E(2Ps,) = £2BB, +38B (17.1-28)

““.  as shown in Fig. 17.2.
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FIG. 17.2 Splitting of (a) *Py,; and (b) 2p, , in a weak magnetic field.

As the strength of the field is increased to the point where the splitting is
comparable to the spin-orbit coupling, it is no longer legitimate to isolate a
single term with a specific value of j. In place of (17.1-6), the Hamiltonian
must now include both the spin orbit interaction and the magnetic field term:

#, = &r)L-S + BB(L, + 25,). (17.1-29)

Matrix elements are most conveniently calculated in the |Ism;m,) representa-
tion, since then

<1'Sm,'ms"Lz + 2Szllsm,ms> - (m, + 2ms) 61'1 5m,’m, 5"‘:""3 (17.1'30)

and

(Usmym|L - S|lsmymg) = (Usmimg| — Ly S_y + LoSo — L_ S+, |lsmm).
(17.1-31)
\M.;A\ <. & Sm=yg ot Lo Goll S 5D = g g <, <

rogomg M
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TABLE 17.1
Matrix Elements of w,(17.1-29) for p States P
N N
\15> \l —§> \02> \0 2 2
1 ! 1 4
<1§\ 3 fn|+2ﬁ3\ - o
1 1 1 .
<1 —‘5‘ ( -E 6::1 -ﬁ énl y | .q‘
1 \ _1_ B
(o} S0
! - L “
< —5\ ) ﬂB ﬁénl
1 - ; i 1
-3 = %nl - énl
(43 e
1 ¢
l —_
(-4 (30
, 1]
For the 2p manifold, the matrix elements of L - S have already been calculated A
(Table 16.5). Adding the magnetic field interaction from (17.1-30), the res_ults ¥
are those shown in Table 17.1. The secular equation, therefore, factors mto
1 N e \ L
2ﬁB+§é"l—'E =0 [l ' o | ¢
1 1
i énl -E — énl ‘ .
2 \/i =0 ’VV\J/ “()./\.—x(: ;'x"z
1 "
ﬁ énl BB —E
(17.1-32)
1
—BB -E — Cn!
\/’i ISV
=0 Mg = o,-1,"s" = 7.
1 1
énl _5 énl E

N
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FIG. 17.3 Transition from a weak to a strong magnetic field for a 2P term.

from which the energy eigenvalues are readily calculated. They are
E, BB 1

énl énl * E,

)0
e (2 --T)

These energies are plotted in Fig. 17.3. A few special cases are of interest.
pB » &q: This is the Paschen—Back region. In this approximation the
energies conform to the expression

E,_ = BB(m, + 2m,). (17.1-34)

BB « &,: 1f we confine ourselves to linear terms in BB, the reduction of
(17.1-33) gives

E, =4&,+ 2B, E, =%&, + 3BB, Ey3= —&u+ 3BB,
E,=16,-3pB, Es=-&(u—3BB, E¢= 3¢ — 2BB.

(17.1-33)

(17.1-35)
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These are precisely the energies' obtained on the basis of (16.3-12) for the
spin-orbit interaction with I = 1 and (17.1-21) for the splitting in a “weak”
magnetic field. The correlations between the “weak” field and “strong” field
levels are shown in Fig. 17.4. Note .that _states_with the same value of
m (= m, + m;) do not cross. A further point is that the «“weak” field case is
best described in the coupled representation as evidenced by the fact that m
is a “good” quantum number. In a classical sense this means that the orbital
and spin angular momenta are coupled to produce a total angular momentum
and it is the latter which precesses about the applied magnetic field. On the
othet hand, when the field is “strong,” the “good” quantum numbers are m,
and m,. This is in the uncoupled representation and corresponds, classically,
to the orbital angular momentum and the spin angular momentum individ-
ually precessing about the field (Fig. 17.5).

A further point to note is that, when an atom is subjected to a magnetic
field, thq__ﬁamilgqnjgn_ is no longer invariant under all _thr;:e-dimcnsional
@,s_ﬁ@ggy_ under rotations about an axis parallel to the magnetic
field. In other words, the symmetry has been reduced from 07 (3) to C,.The
consequence of this restriction in symmetry is that the Hamiltonian no
longer commutes with J2, although it commutes with J,. Alternatively, it
may be a said that, in a magnetic field, jis not a good quantum number but

m is. When these features are fully realized, the field is regarded as “strong”
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FIG. 17.4 Splitting of a p state under the influence of spin-orbit coupling and a magnetic
field.
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FIG. I7.5 Precession of L, S, J in (a) a weak and (b) a strong magnetic field.

and by the same token, a “weak” field i i i
tion, j is still a good quantum number.s one for which, to @ good approxima-
We note that the degeneracy in hydrogen between 22S,,, and 22P,,, has
no effect on the computation performed above. Because of/’ (17.1-29) :Illzatrix
elem?nts of L, + 25, between 2s and 2p vanish; the spin-orbit c,ouplin
matrix e!ement (17.1-31) also vanishes unless Al = 0. :
Experiments in which photons are used to excite electronic transitions
between magnetic substates are known as electron spin resonance (ESR) or
electrgn paramagnetic resonance (EPR) experiments. For an s state the
energies are given by (17.1-27); hence the photon energy must satisfy

ho = 2B (17.1-36)

ar}d upon inserting numerical values for the constants, the photon frequency
vis

(03]
V= ﬂ = 2.80BMHz (S = %, Bin gaUSS). (171_37)

This relatioq is also applicable to a large number of free radicals.
The term in A? contained in (17.1-2) with A given by (17.1-1) is
— e2 1 B e2
d_zmcz 4( X l')(B X r)=8mcz
where 8 is the apgle between B and r. For the ground state of hydrogen or
any other spherically symmetric state the expectation value of (17.1-38) is
e 2

2/2\ iz — _©
8mc2B (rysin” 6 = 12me?

B%r*sin? 0 (17.1-38)

Ed=

B*r?) (17.1-39)
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in which ¢r?) is the expectation value of r2, r is the distance of the electron
from the nucleus and sin’ 6 is a spherical average. The ratio of E, in (17.1-39)
to E,, in (17.1-21) at fields of the order of 10* gauss is approximately equal to
a2 = (e2/he)? = (1/137)%.

For the magnetic moment we may take

0E, e’ 5
= e % 17.1-4
H= =38 = “gma <7 (17.1-40)

from which we obtain the diamagnetic susceptibility

u e 2 1,2 2
Xd =-—B—= —6mc2 <r >:= —ga a0<r > (17.1'41)

where «a, is thc Bohr radius.

Diamagnetism arises as a consequence of the orbital motion of the elec-
trons; hence it is a general property of all atoms and molecules. Paramag-
netism, on the other hand, has its origin in the alignments of magnetic
moments associated with orbital and spin angular momenta in an external
magnetic field. Quite often, an electronic system may possess both a dia-
magnetic and paramagnetic susceptibility.

17.2 Electric Fields

Electric fields may also have an effect on the states of an atom. This is
known as the Stark effect. The discussion in this section will be confined to

hydrogen which is somewhat unique in this respect.
If the coordinate system is chosen so that the z axis coincides with the
direction of the electric field, the Hamiltonian for the interaction is

H, = eEz = eErcos?. (17.2-1)

The situation of greatest physical interest is the one in which the splittings
due to the Stark effect are large compared to the spin-orbit splittings. A
numerical estimate of the required field will be given later. As in the case
of high magnetic fields, the uncoupled representation is the appropriate
one; we shall therefore calculate matrix elements of #, in the |nlsmym)
representation.

It is convenient to replace cos @ in (17.2-1) by J4n/3Y,, so that we may
make use of the theorem (1.2-29):

A'mf|Yppllm) = (— 1y /@I + DL + D2l + 1)/4n

roL I\l LI
. 722
x(—m,' M m,)(O 0 0) 1722
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The matrix element vanishes when I’ + L + [ is odd, that is, when the
integrand is of odd parity. In the present case Y, = Y;, which means that
the expectation value of #, must vanish for any state in which ! is a good
quantum number. From this we conclude that there is no first-order splitting
due to an electric field.

Although this conclusion is generally correct, it does not hold for hydrogen.
The reason is that the energy in hydrogen, in first approximation, depends
only on the principal quantum number n and not on I. Consider, for example,
the case n = 2. This consists of four degenerate states: [ =0,m, =0;1 =1,
m, = 0, + 1. Within this manifold of states there will be nonvanishing matrix
elements of Y, between the state with | = 0 and states with [ = 1. A first-
order Stark effect in hydrogen is therefore expected.

To proceed with the calculation it is noted that

I L 1
=0
(—m,’ M m,)

unless —m;' + M + m; = 0. Since M =0,m; and m/ are equal. Moreover
m; = m, = 0 because one of the ! values is zero. This leaves two nonzero
matrix elements in (17.2-2) which are

00| Y;0/10) = <10|Y; 0|00} = 1/\/4x. (17.2-3)

Also, the matrix element of r taken between the 2s function and the radial
part of the 2p, wave function is given by

(2s|r|R(2po)> = (R(2po)|r|2s) = (17.2-4)

2 %
Bz
Combining the results from (17.2-3) and (17.2-4), the Hamiltonian matrix is

the one shown in Table 17.2 with eigenvalues
E, = 3eEay/Z, 0, 0, —3eEay/Z. (17.2-5)

TABLE 17.2

Matrix Elements for the Stark Effect in Hydrogen with
n=2s=4m=m

o0y [10y 11y 1 -1
00| ' 3eEay/Z
10| | 3eEay/Z
At
Q-1
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— 0 are shifted up and down symmetrically while the

The two states with m, hus, the m de-

states with m; = t1 are not affected by the electric field. T

generacy is only partially lifted.
In hydrogen, assuming E=1

3eEag/Z =13 cm™,

fine structure splitting (Section 16.3

0*Vem land Z =1,

which is considerably larger than the

and Fig. 16.5). o
It is gseen that because of the degeneracy of states with different [ and the

same n there is a linear Stark effect in hydrogen. At very high field strengtﬁs
a quadratic effect appears, superimposed upon the linear effect, and results
in an asymmetric shift of energy levels.
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