STUDENT NUMBER:

NAME:

SECTION NUMBER:

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

COURSE: PH102

EXAM: PHYS102 2ND MAJOR EXAM - 011

TEST CODE NUMBER: XXX

INSTRUCTIONS:

- 1. PRINT YOUR STUDENT NUMBER, NAME, AND SECTION NUMBER ON THE EXAM.
- 2. PRINT YOUR STUDENT NUMBER, SECTION NUMBER, AND YOUR NAME ON THE EXAM ANSWER FORM. PRINT THE TEST CODE NUMBER, OR CHECK IT IF IT HAS ALREADY BEEN PRINTED ON YOUR ANSWER FORM.
- 3. CODE YOUR STUDENT NUMBER AND SECTION NUMBER ON THE EXAM ANSWER FORM. CODE THE TEST CODE NUMBER, OR CHECK IT IF IT IS ALREADY CODED.
- 4. CODE YOUR ANSWERS ON THE EXAM ANSWER FORM. YOU MUST NOT GIVE MORE THAN ONE ANSWER PER QUESTION.
- 5. RETURN THE EXAM AND ANSWER FORM TO THE INSTRUCTOR WHEN YOU HAVE FINISHED.

TEST CODE: 005 PAGE: 001

QUESTION NO: 1

What is the electric potential energy of an electron at a distance r = 2.40*10**(-10) m from the nucleus of a hydrogen atom? (the nucleus consists of a single proton)

- A. 6.0 eV.
- B. 6.8 eV.
- C. 8.5 eV.
- D. 6.0 eV.
- E. 6.8 eV.

QUESTION NO: 2

Not required for second major 032

An electric dipole consists of charges +2e and -2e separated by 0.78*10**(-9) m. It is in an electric field of strength 3.0*10**6 N/C. Calculate the magnitude of the torque on the dipole when the dipole is perpendicular to the field. [e is the magnitude of the charge on the electron.]

- A. 0 N.m.
- B. 8.5*10**(-22) N.m.
- C. 7.5*10**(-22) N.m.
- D. 3.5*10**(-22) N.m.
- E. 6.5*10**(-22) N.m.

QUESTION NO: 3

A charge of + 3.2*10**(-6) C is placed at the origin. A second charge (q2) is placed at x = 3.0 m. If a charge of 1.0*10**(-6) C experiences no force if placed at x = 4.0 m, then q2 is:

- A. -3.3*10**(-6) C.
- B. -2.1*10**(-6) C.
- C. + 0.2*10**(-6) C.
- D. -0.2*10**(-6) C.
- E. + 2.1*10**(-6) C.

TEST CODE: 005 PAGE: 002

QUESTION NO: 4

An ideal engine, whose low-temperature reservoir is at 27 degrees Celsius, has an efficiency of 20%. By how much should the temperature of the high-temperature reservoir be increased to increase the efficiency to 50%?

- A. 225 K.
- B. 300 K.
- C. 88 K.
- D. 20 K.
- E. 975 K.

QUESTION NO: 5

Consider a metallic sphere carrying a charge of 4.0*10**(-8) C and having a potential of 400 V. Find the diameter of the sphere.

- A. 3.6 m.
- B. 6.0 m.
- C. 1.2 m.
- D. 4.2 m.
- E. 1.8 m.

Not required for second major 032

Consider the circuit shown in figure (5). If C1 = 1 micro F, C2 = 6 micro F and C3 = 3 micro F, what is the charge on C3?

- A. 2 micro C.
- B. 9 micro C.
- C. 3 micro C.
- D. 6 micro C.
- E. 5 micro C.

QUESTION NO: 7

Calculate the electric flux (phi) through the curved surface of a cone of base radius R and height h. The electric field E is uniform and perpendicular to the base of the cone, and the field lines enter through the base. The cone has no charge enclosed inside it, as seen in figure (2).

- A. Pi*(R**2)*E.
- B. -2*Pi*R*E.
- C. 2*Pi*R*E.
- D. Pi*R*h*E.
- E. -Pi*(R**2)*E.

QUESTION NO: 8

Two equal charges, each of 0.12 C, are separated by a distance of 1.8 m. What is the work done, by an external agent, to bring a charge of 0.15 C from infinity to the midpoint between the two charges?

- A. 2.0*10**8 J.
- B. 1.7*10**7 J
- C. 2.1*10**8 J.
- D. 3.6*10**8 J.
- E. 0.6*10**8 J.

QUESTION NO: 9

Not required for second major 032

At 20 degree C, a 100-W light bulb has a resistance of 12 ohms. To increase the resistance of the light bulb to 48 ohms, the temperature of the filament should be:
[Assume the temperature coefficient of resistivity of the filament is constant and = 0.006 (degree C)**(-1)].

- A. 654 degree C.
- B. 520 degree C.
- C. 150 degree C.
- D. 500 degree C.
- E. 576 degree C.

PAGE:

004

QUESTION NO: 10 ******

Not required for second major 032

A solid piece made of copper has the shape and dimensions shown in figure (6). Determine the resistance for the current that flows through the solid in the z-direction. (resistivity of copper = 1.69*10**(-8) ohm-meter).

- A. 2.1*10**(-7) ohms.
- B. $8.5 \times 10 \times (-7)$ ohms.
- 3.4*10**(-6) ohms. C.
- D. $2.9 \times 10 \times \times (-5)$ ohms.
- **E** . $8.5 \times 10 \times (-6)$ ohms.

QUESTION NO: 11 *****

Not required for second major 032

Consider an isolated capacitor of capacitance CO and charge QO. Which of the following statements is true when a dielectric slab is inserted between the plates of the capacitor?

- A. The charge on the capacitor does not change.
- The potential difference across the capacitor does not change. В.
- C. The capacitance goes to zero.
- The capacitance of the capacitor does not change. D.
- The energy stored in the capacitor does not change. Ε.

QUESTION NO: *****

Which of the following statements is WRONG:

- Α. Electric field lines extend away from a positive charge.
- В. The magnitude of the charge on a positive ion is an integer multiple of the electron charge.
- A shell of uniform charge density exerts a constant force C. on a charge inside it.
- D. A shell of uniform charge density exerts a constant force on a charge outside it.
- E. Electric field can exert a torque on an electric dipole.

QUESTION NO: 13

A point charge of -50e lies at the center of a hollow spherical metal shell that has a net charge of -100e, as seen in figure (4). Calculate the charge on the

- (a) shell's inner surface, and (b) on its outer surface.
- [e is the magnitude of the charge on the electron.]
- A. (a) 50e (b) -150e.
- B. (a) 50e (b) -100e.
- C. (a) -50e (b) -100e.
- D. (a) Zero (b) -150e.
- E. (a) -50e (b) 150e.

QUESTION NO: 14

An ideal monatomic gas is confined to a cylinder by a piston. The piston is slowly pushed in so that the gas temperature remains at 27 degree C. During the compression, 750 J of work is done on the gas. The change in the entropy of the gas is:

- A. Zero.
- B. -3.0 J/K.
- C. 2.5 J/K.
- D. 3.0 J/K.
- E. 2.5 J/K.

QUESTION NO: 15

Which of the following statements are WRONG:

- 1. The efficiency of the ideal engine is greater than one.
- 2. The change in entropy is zero for reversible isothermal processes.
- 3. In cyclic processes, the change in entropy is zero.
- 4. If steam is condensed, its entropy will decrease.
- 5. If ice is melted, its entropy will decrease.
- A. 1, 2 and 3.
- B. 1, 3 and 5.
- C. 2, 3 and 4.
- D. 1, 2 and 5.
- E. 1, 2 and 4.

QUESTION NO: 16

A proton is shot out along the +x-axis from the origin with a speed of 1.0*10**6 m/s. In this region a uniform electric field of 2500 N/C exits in the negative x-direction. Find the distance traveled by the proton before it momentarily comes to rest.

- A. 8.9 m.
- B. 2.9 m.
- C. 2.1 m.
- D. 4.2 m.
- E. 1.0 m.

QUESTION NO: 17

As shown in figure (3), a small, nonconducting ball of mass m = 1.0*10**(-6) kg and charge q = 2.0*10**(-8) C, distributed uniformly through its volume, hangs from an insulating thread that makes an angle theta = 20 degrees with a vertical, uniformly charged nonconducting sheet (shown in cross section). Considering the weight of the ball and assuming that the sheet extends far vertically and into and out of the page, calculate the surface charge density of the sheet.

- A. 2.5*10**(-9) C/m**2.
- B. 4.0*10**(-9) C/m**2.
- C. 8.7*10**(-9) C/m**2.
- D. 5.0*10**(-9) C/m**2.
- E. 3.2*10**(-9) C/m**2.

QUESTION NO: 18

For the arrangement of charges shown in figure (1), the electric field at the point P is:

- 1.3*k*q/(d**2) in the negative y-direction.
- B. 1.3*k*q/(d**2) in the positive y-direction.
- C. 2.0*k*q/(d**2) in the negative y-direction.
- D. Zero
- E. 2.0*k*q/(d**2) in the positive y-direction.

007

QUESTION NO: 19

An infinite nonconducting sheet has a surface charge density 0.10*10**(-6) C/m**2 on one side. How far apart are equipotential surfaces whose potentials differ by 90 V?

- A. 1.6 cm.
- B. 2.0 cm.
- C. 0.88 cm.
- D. 2.5 cm.
- E. 1.8 cm.

QUESTION NO: 20

Not required for second major 032

A 2.5 micro F capacitor, C1, is charged to a potential difference V1 = 10 V, using a 10 V battery. The battery is then removed and the capacitor is connected to an uncharged capacitor, C2, with capacitance of 10 micro F. What is the potential difference across C1 and C2, respectively?

- λ . 5 V, 5 V.
- B. 2 V, 2 V.
- C. 2 V, 8 V.
- D. 1 V, 9 V.
- E. 6 V, 6 V.

Physics 102 Formula Sheet for 2nd Major Exam Second Semester 2001-2002 (Term 011)

$$Q = mc\Delta T$$
, $Q = mL$

$$Q = nc_p \Delta T$$
, $Q = nc_v \Delta T$

$$W = Q_h - Q_c$$

$$\varepsilon = \frac{W}{Q_h} = 1 - \frac{Q_c}{Q_h}$$

$$K = \frac{Q_c}{W}$$

$$\frac{Q_c}{Q_h} = \frac{T_c}{T_h} , \Delta S = \int \frac{dQ}{T}$$

$$F = k \frac{q_1 q_2}{r^2}$$
 , $\Phi = \int_{\text{Surface}} \vec{E} . d\vec{A}$

$$E = \sigma / 2\epsilon_o$$
, $E = \sigma / \epsilon_o$

$$E = k \frac{q}{r^2}, \quad E = k \frac{q}{R^3} r, \quad E = \frac{2k\lambda}{r}$$

$$\mathbf{U} = -\vec{P} \cdot \vec{E}$$

$$\bar{\tau} = \vec{P} \times \vec{E}$$

$$\Phi_c = \oint \vec{E} . d\vec{A} = \frac{q_{in}}{\varepsilon_0}$$

$$E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}$$

$$\Delta V = V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{S} = \frac{\Delta U}{q_0}$$

$$V = k \frac{q}{r}$$

$$U = k \frac{q_1 q_2}{r_{12}}$$

$$C = \frac{q}{V} \ , \qquad C = \kappa \ C_0$$

$$I = J A,$$

$$P = I V$$
, $U = \frac{1}{2} CV^2$

$$I = \frac{dq}{dt}$$
; $I = \frac{\Delta q}{\Delta t}$

$$R = \frac{V}{I} = \rho \frac{L}{A}$$

$$\rho = \rho_0 \left[1 + \alpha \left(T - T_0 \right) \right]$$

$$y = y_0 + at$$

$$x - x_o = v_o t + \frac{1}{2} a t^2$$

$$v^2 = {v_0}^2 + 2 a (x-x_0)$$

Constants:

$$Pi = \pi$$

$$k = 9.0 \times 10^9 \text{ N.m}^2/\text{C}^2$$

$$\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N.m}^2$$

$$e = -1.6 \times 10^{-19} C$$

$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

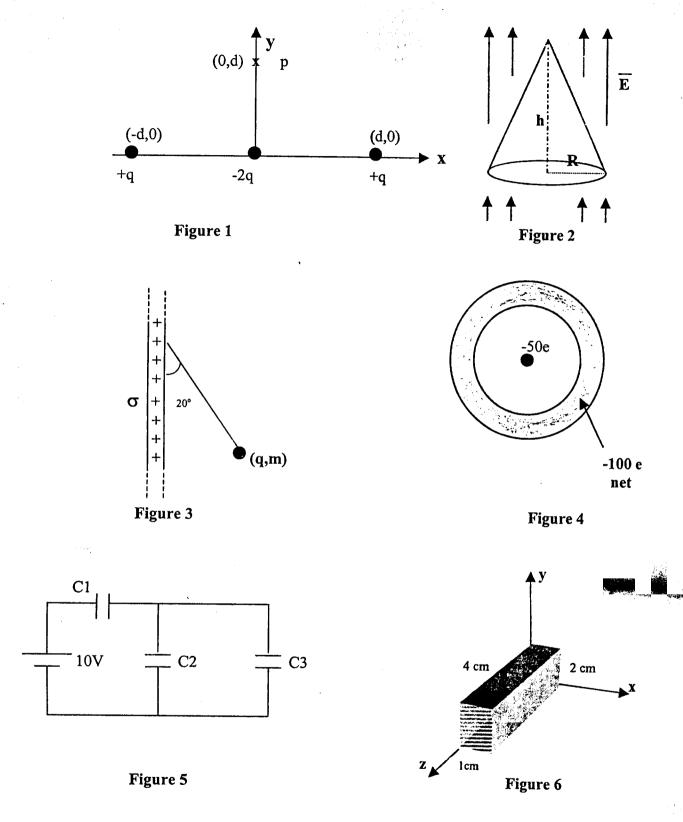
$$m_p = 1.67 \times 10^{-27} \text{ kg}$$

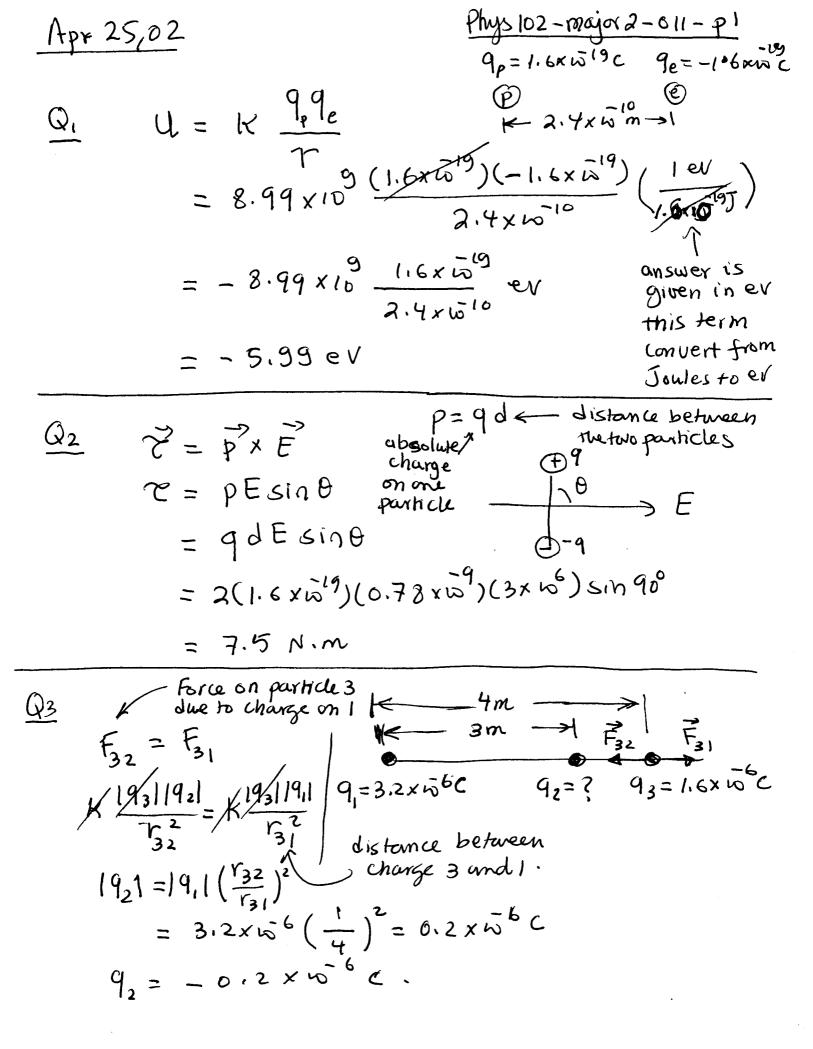
$$k_B = 1.38 \times 10^{-23} \text{ J/K}$$

$$N_A = 6.022 \times 10^{23}$$
 molecules/mole

$$R = 8.314 \text{ J/mol. K}$$

$$1 \text{ atm} = 1.013 \times 10^5 \text{ N/m}^2$$


$$g = 9.8 \text{ m/s}^2$$


$$micro = 10^{-6}$$

nano =
$$10^{-9}$$

$$pico = 10^{-12}$$

$$a*b**c = ab^c$$

Apr 25,02

Phys 102-major 2-011-p2

Q4
$$\& = 1 - \frac{T_{e}}{T_{H}} \implies T_{H} = \frac{T_{L}}{1 - 2}$$
 Temperature in Kelvins

 $T_{H,old} = \frac{273 + 27}{1 - 0.2} = \frac{300}{0.8} = 0.2 \text{ not } 20.$
 $T_{H,new} = \frac{273 + 27}{1 - 0.5} = \frac{360}{0.5}$
 $T_{H,new} - T_{H,old} = \frac{360}{0.8} - \frac{300}{0.5} = 227 \text{ K}$

$$V = K \frac{Q}{R} \Rightarrow R = \frac{KQ}{V}$$

$$D = 2R = \frac{2KQ}{V} = 2\frac{8.99 \times 100(4.8 \times 10^{3})}{400}$$

$$V = \frac{1.8 \text{ m}}{V}$$

$$\begin{array}{c|c}
C_{1} = I\mu F \\
V_{0} = 10V & C_{2} = 6\mu F & C_{3} = 3\mu F \\
\hline
V_{0} = 0 & C_{1} & C_{2} = 0 \\
\hline
V_{0} = 0 & C_{2} = 0 \\
\hline
V_{0} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$\begin{array}{c|c}
C_{1} = 0 & C_{1} & C_{2} = 0 \\
\hline
V_{0} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$\begin{array}{c|c}
C_{1} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$\begin{array}{c|c}
C_{1} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$\begin{array}{c|c}
C_{1} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$\begin{array}{c|c}
C_{1} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$\begin{array}{c|c}
C_{1} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$\begin{array}{c|c}
C_{1} = 0 & C_{1} & C_{2} = 0
\end{array}$$

$$Q_{3} = C_{3}V_{3} = (3\mu F)(1V)$$

$$A = 3\mu C$$

$$C_{23} \text{ is the equivalent} \Rightarrow V = V$$
of C_{2} and C_{3} in parallel V_{2} in V_{2} and V_{2} in V_{2} and V_{2} in V_{2} and V_{2} a

Q7

$$\phi = 0$$
 (Gauss' Law; not change inside)

flux through closed surface

$$\varphi = -\varphi = -\int \vec{E} \cdot d\vec{A}$$

$$= -\vec{E} A \cos \theta$$

$$= -\vec{E} \pi r^2 \cos 180$$

$$\varphi = \vec{E} \pi r^2$$

Q8

$$9 = 0.12C$$
 $9_{3} = 0.15C$ $9_{2} = 0.12C$

$$W = U_{13} + U_{23}$$

$$= K \frac{9.93}{R_{13}} + K \frac{9.93}{R_{23}}$$
 distance between 2 and 3

$$= \frac{8.99 \times 10^{9} (0.15) [0.12 + 0.127]}{0.9} = 3.5 \times 10^{3} \text{ J}$$

multiply this equation by

 $P-P_0=P_0 \times (T-T_0)$ multiply this equation by

Report to get

ignore themself expansion

ignore is very small

its effect is very small $R-R_0=R_0 \times (T-T_0)$ $\Rightarrow T=T_0+\frac{R-R_0}{\propto R_0}$ oß.

$$T = 20 + \frac{48 - 12}{12(0.006)} = 520^{\circ} C$$

Phys 102-major 2-011-p4

-150C

mark done on

the gas

$$Qv = P$$

$$R = P = 1.69 \times 10^{-8} \frac{4 \times 10^{-2}}{(1 \times 10^{2})(2 \times 10^{2})}$$

The charge on the capaciter does not change

A shell of uniform change density exerts a constant force on a charge inside it

(a) 50 e (b) -150 e QB

there is no electric field inside the metal

(electroslatic case).

flux through the shell

shown in the figure = 0 => net charge unside the

shell = 0 => there should

surface. Since the metall has not charge of -100 e

the outer surface should have -100e-50e = -150e.

 $\Rightarrow Q = W$

Q14 Preversible isothernal process
$$\Rightarrow \Delta s = \int \frac{dQ}{T} = \frac{Q}{T}$$

dE = 20 - 2W = 0. for on ideal gas, fint

depends only on T. Since T does not change

$$AS = \frac{-750}{27+273} = -\frac{750}{300} = -2.5 \text{ J/K}$$

1, 2 and 5 are wrong 810

Q16 initial

firal V=0

Mechanical Energy is conserved

$$6 + eV = \frac{1}{2}mV^2 + 0$$

$$eV = \frac{1}{2}mV^2 + 0$$

 $eEd = \frac{1}{2}mV^2 \implies d = \frac{mV^2}{2eE} = \frac{1.67 \times 10^{27} (1.0 \times 10^6)^2}{2(1.6 \times 10^{19})(2500)}$

= 3.2 x w C/me

Q17

A

T

Gaussian Surface

Flux through this closed Gaussian surface

= charge inside/
$$\epsilon_0$$

EA + ϵ_A = $\frac{G}{\epsilon_0}$ = $\frac{G}{\epsilon_0}$ \Rightarrow ϵ_0 = $\frac{G}{\epsilon_0}$

Newton's Second law along- γ : Toso = rng ϵ_0 divide

 ϵ_0 along- ϵ_0 : Tsino = ϵ_0 = ϵ_0
 $\epsilon_$

Phys 102-major 2-011-p6 Apr 25,02 E32K9 12 PID Ez= K 29 -29 Along y-axis E, cos45 + E3 cos45 - E2 $= k \frac{9}{24^2} \frac{1}{5} + k \frac{9}{24^2} \frac{1}{5^2} - k \frac{29}{12}$ $=\left(\frac{1}{2}\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} - 2\right) \times \frac{9}{12} = -1.3 \times \frac{9}{12}$ Along x-axis E, sin45 - Ez sin45 =0 E is 1.3 kg along negative y-axis DN = - (E - 43 R Shan DV = Ed DV = 5 d Gaussian Surface $8 \in 1 \text{ A} = \frac{G \cdot A}{E_0} \Rightarrow E_0 + E_0 = \frac{G}{2E_0}$ = 0.0159m = 1.6 cm $V_{0} = C_{1} = 2.5 \text{ MF}$ $V_{0} = C_{1} = 2.5 \text{ MF}$ $V_{0} = C_{1} = 2.5 \text{ MF}$ $C_{1} = C_{2} = 0 \text{ MF}$ $C_{2} = 10 \text{ MF}$ $C_{1} = C_{2} = 0 \text{ MF}$ $C_{1} = C_{2} = 0 \text{ MF}$ $C_{1} = C_{2} = 0 \text{ MF}$ $C_{2} = 0 \text{ MF}$ $C_{1} = C_{2} = 0 \text{ MF}$ $C_{2} = 0 \text{ MF}$ $C_{2} = 0 \text{ MF}$ $C_{3} = 0 \text{ MF}$ $C_{4} = 0 \text{ MF}$ $C_{1} = 0 \text{ MF}$ $C_{1} = 0 \text{ MF}$ $C_{2} = 0 \text{ MF}$ $C_{3} = 0 \text{ MF}$ $C_{1} = 0 \text{ MF}$ $C_{2} = 0 \text{ MF}$ $C_{3} = 0 \text{ MF}$ $C_{4} = 0 \text{ MF}$ $C_{4} = 0 \text{ MF}$ $C_{5} = 0 \text{ MF}$ $C_{1} = 0 \text{ MF}$ $C_{2} = 0 \text{ MF}$ $C_{3} = 0 \text{ MF}$ $C_{4} = 0 \text{ MF}$ $C_{5} = 0 \text{ MF}$ $V = \frac{C_1 V_0}{C_1 + C_2} = \frac{2.5}{2.5 + 10} = 2 V$ on both of them on both Gad Cz, 4 = 2 V