Recitation 13

1

 \bullet 7 In Fig. 29-38, two circular arcs have radii $a = 13.5$ cm and $b = 10.7$ cm, subtend angle $\theta = 74.0^{\circ}$, carry current *i* $= 0.411$ A, and share the same center of curvature P . What are the (a) magnitude and (b) direction (into or out of the page) of the net magnetic field at P ?

a) The field due to the straight segments at point P is zero. The right hand rule tells us that the magnetic field due the small and large arcs at point P are out of the page and into the page, respectively.

The net field B is then

$$
B = B_b - B_a = \frac{\mu_0 i \theta}{4\pi b} - \frac{\mu_0 i \theta}{4\pi a} = \frac{\mu_0 i \theta}{4\pi} \left(\frac{1}{b} - \frac{1}{a}\right)
$$

=
$$
\frac{(4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})(0.411 \text{ A}) (74.0^{\circ} \times \frac{\pi}{180^{\circ}})}{4\pi} \left(\frac{1}{0.107 \text{ m}} - \frac{1}{0.135 \text{ m}}\right)
$$

= 1.03 × 10⁻⁷ T.

b) Out of the page since the outward field (B_h) is larger than the field inward (B_a) .

••23 ILW Figure 29-50 shows a snapshot of a proton moving at velocity $\vec{v} = (-200 \text{ m/s})\hat{\text{i}}$ toward a long straight wire with current $i =$ 350 mA. At the instant shown, the proton's distance from the wire is $d = 2.89$ cm. In unit-vector nota-

tion, what is the magnetic force on the proton due to the current?

The magnetic field above the wire is out of the page. At the proton's location

$$
\vec{B} = \frac{\mu_0 i}{2\pi d} \hat{k} = \frac{(4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})(0.350 \text{ A})}{2\pi (0.0289 \text{ m})} \hat{k} = 2.42 \times 10^{-6} \text{ T } \hat{k}.
$$

$$
\vec{F}_B = q\vec{v} \times \vec{B} = (1.60 \times 10^{-19} \text{ C}) \left(200 \frac{\text{m}}{\text{s}}\right) (2.42 \times 10^{-6} \text{ T}) \left(-\hat{\text{j}} \times \hat{\text{k}}\right)
$$

$$
= -7.75 \times 10^{-23} \text{ N} \hat{\text{i}}.
$$

••25 SSM A wire with current $i = 3.00$ A is shown in Fig. 29-52. Two semi-infinite straight sections, both tangent to the same circle, are connected by a circular arc that has a central angle θ and runs along the circumference of the circle. The arc and the two straight sections all lie in the same plane. If $B = 0$ at the circle's center, what is θ ?

The outward field (the field of the two semi-infinite wires) is equal to the field of the arc but opposite to it. Thus,

$$
\frac{\mu_0 i}{4\pi R} + \frac{\mu_0 i}{4\pi R} = \frac{\mu_0 i\theta}{4\pi R}.
$$

This gives that

$$
\theta = 2 \text{ rad} = 115^{\circ}.
$$

Figure 29-88 shows a cross section of a 87 long conducting coaxial cable and gives its radii (a, b, c) . Equal but opposite currents *i* are uniformly distributed in the two conductors. Derive expressions for $B(r)$ with radial distance r in the ranges (a) $r < c$, (b) $c < r < b$, (c) $b < r < a$, and (d) $r > a$.

Part (c) is optional.

Ampere's law gives a) $r < c$ $2\pi rB = \mu_0 i$ r^2 $\mathcal{C}_{0}^{(n)}$ $\overline{a} \Rightarrow B =$ μ_0 ir $2\pi c^2$. b) $c < r < b$ $2\pi rB = \mu_0 i \implies B =$ μ_0 i $2\pi r$. c) $b < r < a$ $2\pi rB = \mu_0 \int i - i$ $r^2 - b^2$ a^2-b $\frac{1}{2}$ \Rightarrow $B = \left(1 - \frac{1}{2} \right)$ $r^2 - b^2$ $a^2 - b^2$ μ_0 i $2\pi r$. d) $r > a$ $2\pi rB = 0 \implies B = 0.$