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PERTURBATIVE TREATMENT OF COULOMB TYPE
POTENTIAL IN THE PRESENCE OF A BACKGROUND
HARMONIC OSCILLATOR FIELD
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ABSTRACT

The confining potential for quarks may be simulated by a harmonic oscillator
potential. The shorter range interaction between the quarks can in turn be
simulated by a Coulomb potential. This latter potential we treat using perturbation
theory, and in the process obtain some relations between perturbed energy
spacings for general /. Finally we also numerically evaluate the perturbations
introduced by a Coulomb and by a linear potential and illustrate these effects
graphically.
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PROBLEMS

H. A. Mavromatis and M. A. Al-Solami

INTRODUCTION

Quarks in nuclei or mesons satisfy two boundary
conditions. On the one hand. at large distances, they
are subject to a strong attractive force which keeps
them together. This can be simulated by a harmonic
oscillator field. On the other hand, at short distances,
they experience a short-range attraction. This may be
approximated by a Coulomb potential. These facts,
and a recent preprint [1] in which this subject was
studied motivated us to investigate this boundary-
value problem using perturbation theory and drawing
on a general result one of us derived [2] namely:

J exp(—x)xP Ly(x) L} (x)dx

1]
_P(rta+1)T(n'+a +1)
- n!n'!

T(B+1) [(n'—B+a’)
X T(=B+a)T(a+1)

X (F(=n,B+ ]_B—ﬂ-’.g_]:a_f_luB_a:_'_l_n.;l).

(1)

The ;F, in Equation (1) is a generalized hyper-
geometric [3] function which may be expressed in
terms of a finite series since n in Equation (1) is an
integer and generally:

;,E{(al...a,,:bl.,.bq;x)
D 1) Dl £ DT (B8 x
]"(al),..[“(a“)l"(bﬁl}...]"(bq+l) 1!
o I'(a,+2)..T'(a,+2)I'(b;)...T'(b,) x_’
F(ul)‘.,l‘(ap_)l“(hl+2}‘,,I"(b,!+2) 2!

Seven special cases where the ;F, in Equation (1)
simplifies were given in reference 2. In the Appendix
we list two additional cases where Equation (1)
simplifies. These new results were obtained with the
help of contiguity relations [4].

DISCUSSION AND RESULTS

Two quarks of mass m attracted to each other by a
three-dimensional oscillator force —kr are mathe-
matically equivalent in their relative motion to a
particle of mass w = m/2, subject to the potential
Vakr®, where F = F,—F,. We choose to work in units
where p=k=#=1.
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The radial eigenfunctions R,,(r) of the three-
dimensional harmonic oscillator Schrodinger equa-
tion:

a2l r?_
(% e E) Yin,.(ﬁ"dj)Rnf(r)

=&y Yo (0.0) R, (r) = @n+1+3%) Y, (8,0)R, (1),
(n,1=0,1,...m]| =1), are [5]
|n!) = Rn!(r)
2n! T
ponesl N vl ! ;| 2 I+ lay 2

[lﬁ(n+!+3z’2}"J rrexpl—=lar®) LT3 ()
Hence (in the above units) the imperturbed (relative)
energy levels of a two-quark system can be written:

g, =2n+l+% .

If a perturbation V is added to this system, the
first-order energy correction is given by:

AE, (V)=<(nl|V|nl).
Thus, if a linear perturbation V(r) = ar is applied,
(nllar|nl)

an!

- T ) e L W L

Considering the special case B =/+1 in Equation
(1) one obtains the energy correction due to such a
linear perturbation:

a(l+ DT (n-1%)

2n!T(1+3%)Vr

X 3By (=, 1+2,3%;1+3%,%—n:1). (2)

AEH.!(G”‘) =

A simple subtraction and rearrangement of terms
further yields:

AEn+|J(ar}_AEn,r(ﬂ-")

_ a3(I+ )T (n—1A)
T AVm(n+ 1)IT(I+35)

X K (—(n+1),1+2,3%:1+3%,3%—n;1).

(3)
For I =0, Equations (2), (3) reduce to very simple
expressions if one uses Gauss’s theorem [6]:
FWMI'y—a-p)

2File,Bsy;1) = F(y—a)T(y=B)’

4)
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(where B >0,y—a—B>0). (These two [ =0 results
are also given in reference 1):

al’'(n—14)
mn!

n—14

= — L!) 2Fi(—n,2;3%-n;1)

m™h.

AE, p(or) = = iFil=n, 2,959, % -n1)

5 adl(n+3%2) 5)

h!

AE.-: t l_:l(ar}_‘ﬁEN.ll(ur)

_a3l(n—1"2) ) ;
~ it Pl 1,25
_a2l(n+32)

T ©)

Similarly if the unperturbed system is subjected to a
Coulomb-type potential V(r) = \/r,

X

nl’)

B An!
" Dnt+i+3%)

<rm‘ A

\ r

f exp(—w)u'LL () L " (u)du.

Considering the special case B =1 in Equation (1)
one obtains the energy correction due to a Coulomb
potential:

i (5)_ NIT (n+14)
“"\r) " Van!T(+3%)

X 3B (—nI+1,;0+3%,%—n;1). (7)

Substracting and combining terms in this case one
has:

A A
AEH' I,f(;)_AErr.F(;)

B M!IT(n+12)
2Va(n+1)!IT(1+%)

XS F (= (n+1),I+1,Y%;1+3%,%—n;1).  (8)

To our knowledge Equations (2), (3), (7), and (8)
are new, as well as useful results even though the
3Fy’s in each of these expressions involve finite
series. Thus, if for instance n = 0, substituting into
Equation (8) one has:
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A A
AEI.I ; _AEU.I ?

o bV e R
T =T e
R { (=1)(I+1) (%)
2T+ %) (I+3%)(14)

N

AT+ %)

elc,

In his preprint [1] Fayyazuddin obtains two inter-
esting new relations between linear and Coulomb
energy corrections. In our notation these relations
are as follows:

(n+1+%)AE, (ar)
~(n+1)AE,., (ar)=IAE, ;,\(ar) =0, (9)

A A
(:1+I+%)£\E,,J(;)—(n+ DAE,, u(;)

-(f+1)a5,,.m(%)=o. (10)

If one writes the corrections involved using Equa-
tions (2), (7), one can show these two results (i.e.
Equations (9), (10)), imply the contiguity relation:

(n+a—b+1)sFi(—n,a,b:a—=b+1,b—n;1)
—(n=b+1);F,(—{n+1},a,b;a—b+1,b—{n+1};1)

_ala—=2b+1)

(1)

where the parametric excess [7] s=1-b. (For
general ;F,(a,B,v;d,e;1), s=8+e—a—B—vy, and
for Saalschutzian series s = 1.) The three-term con-
tiguity relation Equation (11) can be easily verified
analytically for the simple cases n =0,1,2. We also
verified it numerically for arbitrary values of a and b
and various large values of the integer n.

A more general way to verify Equation (11) is as
follows [9].

Use the relationships [10—12]:

o«

[(p+a) 2°
Fhme) = S B

=10 I"(a) p! e
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z I'(n—2z) B ., T(z+1) )
5 T=2) ~ (=T) im (n integer),
S M)
=S S (1-z)
oy e R S Bt
&= @) (=1 T -2 (n integer).
:"J r b
= +1—- n
= Multiplying Equation (11) by Lf'n(li_b)) % and

summing over n, one obtains for the first term:

i F(n+1-b)z"(n+a—b+1)
n=0 l—‘(}_b) n!

X 3F(—n,a,b;a—b+1,b-n;1)
=a,Fi(a+1,b;a—b+1:2)(1-2)"""+(1-b)
X ,Fi(a, bja—b+1;2)(1-2)*2,

while for the second term:

_ % D(n+1-b)z"(n—b+1)
”Z_;” [(1-b) n!

X sFy(—{n+1}a,b;a—b+1,b—{n+1};1)
-bz " Fi(a,b+1;a—b+1;2)(1-2)""!
- (1=-b)z ', F(a,b;a—b+1;z2)

X (1=2)"+z7" ,F(a,b;a—b+1;2)(1-2)""},

and the third 'erm

(a—2b+1) Z T'(n+1-b)

a=-b+1 ‘=, T'(1-b) n!
X F(-na+1.ba=b+2,b—n;1)
_a(a-2b+1)
a a-b+1

X F(a+1,b;a—b+2;2)(1-2z)""".
Thus one obtains:

a,F(a+1,b;a=b+1;2)(1-2)"""+(1-b)
X ,Fi(a, bja—b+1;z)(1—2)**
— bz Fi(a,b+1a-b+1;z)(1-2)""
— (1-b)z ', F(a,bja—b+1;2)(1-2)* 2+ 2!

ala—2b+1)

i ¥ s el
X F(a,b;a—b+1;z)(1—2) a—b+1

X ,Fi(a+1,b;a—b+2;2)(1-2)"""
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If one now factors (1—2z)"? out of this expression,
one can readily verify that what remains is a power
series in z, (in fact beginning from z ') all of whose
coefficients are 0.

The results of plotting Equations (2) and (7) are
illustrated in Figures 1—4. In Figure 1 the first-order
linear corrections of Equation (2) are plotted for the
case a = 1 and in Figure 2 the actual energy levels to
first-order are shown for this value of . Analogously
in Figure 3 the first-order Coulomb corrections of
Equation (7) are plotted for the case A =1 and in
Figure 4 the actual energy levels to first-order are
shown for this value of \. Different columns corre-
spond to increasing values of / (starting from / = 0),
and the vertical scale corresponds to increasing
values of n (starting from n = 0).

One notes the first-order linear correction in-
creases as n and/or / increases. This can be under-
stood by noting that as n, [ increase the probability
distribution r’R},(r) moves towards larger r. Thus
for n =10,

L %(r?) = T(+%),

. 2 "
r:Ri(r) = F(!+3/§) ri*Zexp(-r?),
and
1 1
Frax = V t+1= ."— = 2 r—{+1 .

Hence the expectation value of r ie. AE, (ar)
increases and analogously AE,,(\/r), decreases
with increasing n, [

An indication of the flexibility of the approach in
this paper may be obtained by considering the case
when the attractive perturbation is a bit stronger or
weaker than N/r, i.e. \/r'*".

In this case:

N X 2xn! L
AE, ( :‘) i F(n+{+3/2)3£,r

exp(—=r>) LI ()L (rY) r2dr

An! T el
C(n+1+35)* ),

exp(—u) L, " (u) L, " (u)du,
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Figure 1. Plot of First-Order Linear Corrections Assuming a Background Three-Dimensional Oscillator Potential.
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Figure 2. Plot of Energy to First-Order Assuming a Linear Perturbation and
a Background Three-Dimensional Oscillator Potential.
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and using Equation (1) one obtains:

‘AE”{(%) N AC(IF2+1)[(n+ V2 £54)

T n! T (Va= )T (1+32)

X F(=n 1+ 1575, V2% 25043, e F 4 —n; ).
(12)

As €—0 this result reduces to Equation (7). If
¢ —2[+2, substituting in Equation (12) one obtains:

ﬁEnf(hry* l)

ALQU+2)T(n—1-14)
- alT(=1=-')T(1+3%)

X 3 F(—n,21+2,1+%;1+3,1+ ¥ —n;1)

_ATQRI+2)T(n—1-2)T(I+3%—n)
3 ! (I+32) (=1 Va—n)

_ XN ==Y L+ %—n)
n!VaL(I+¥) T (~1-2—n)

AT (n+1+34)
n!Val(1+3%)

ie.
4rT(n+34
AE, (A1) = —% if 1=0, (see Equation (5)),
: hz;‘ﬂ IIJT
AEn.'()\*"'_{' N= Vo if n=0,
etc.
SUMMARY

In this paper the boundary condition, that at large
distances quarks are confined by a three-dimensional
harmonic oscillator potential, is assumed. The first-
order effect, on this system. of a linear and Coulomb
potential are then obtained explicitly, as well as
expressions for adjacent levels, and arbitrary [
Finally these results are plotted and the trends
obtained are analyzed.

October 1992

H. A. Mavromatis and M. A. Al-Solami

APPENDIX

In reference [2] we give seven special cases where
sF; In Equation (1) simplifies. Using contiguity
relations [4] between ,F,’s we obtain two additional
special cases where the . F, in Equation (1) simplify,
namely:

e
-
-~
—
=
-
!

r gxp(=e)x* LIt LY ey

D(nta+ )T (n'+a’ + )T (n' —a+a' — 1)
B n''n!l(a'—a-1)

Dig=a'=n'+ 201 =p"—1¥#)
I'a—a' —n'+n+2)T(—n'—1)

1) (' =n+1)
x {(a—a’+2} C )nfj—l £ )}.

_M(nta+1)

= (2n+a+1), (if n=n', a=a'),

(A.1)

the diagonal case (n=n', a=a') being a known
result [8], and:

f exp(—x)x* 1 La(x) L (x) dx
(1]

_(n+a+)T(n'+a' +1)T(a+a' +2)
= n''n!T(—a—1)

['(n'—a—1)I'(a—n'+2)'(-n+n'—a'—1)
Fa+2)I(@a+2-n'+n)[(—n'—a —1)

X {(a+a'+2) g Cllia ) o, ) }

n'+a+1
_D(rta+DIQ@a+d)
T A Ter2)TlarT) r et
(f n=n', a=a). (A.2)

The contiguity relation required for (A.1) is obtained
by writing
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