KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF PHYSICS

PHYS 133 - FINAL EXAMINATION (TERM 062)

Instructor: Dr. Al-Solami

CHOOSE 15 PROBLEMS ONLY

Show full details of your solutions

	iii aeiaiis oj your s
Problem #	Grade/10
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
Total / 150	Total / 30

1. At what temperature will cooper have the same resistivity as tungsten does at $20^{\circ}\,\mathrm{C}$?

 $((\rho \text{ copper at } 20^{\circ} \text{ C})=1.68\times10^{-8}\Omega.\text{m}) \ (\rho \text{ tungsten at } 20^{\circ} \text{ C})=5.6\times10^{-8}\Omega.\text{m}))$

2. Find the resistance of a 10m copper wire 1.5mm in diameter.

 $(\rho \text{ copper at } 20^{\circ} \text{ C}) = 1.68 \times 10^{-8} \Omega.\text{m})$

3.	What is the resistance 120 V source?	and	current	throu	gh a	100-W	light if	connect	ed to a

4.	Determine the magnitudes resistor in the figure below:	and	direction	of	the	currents	through	each

5. Find the net resistance and current of the flowing circuit. Take each resistance to be 30Ω .

6. Two capacitors C1=10 μ F and C2=30 μ F connected in parallel to a 12V battery. Find the charge in each capacitor.

- 7. A 2cm high object is placed 20 cm from a concave mirror whose radius of curvature is 15cm. Find
 - a) The image position
 - b) The image size

- 8. Sunlight is observed to focus at a point 15cm behind a lenses:
 - a) What kind of lenses is this?
 - b) What is its radius?

9. Find the rate of heat transferred by conduction through a concrete wall, 3.0 m high, 4.0 m long and 0.2 m thick, if one side of the wall is held at 20° C and the other side is at 40° C.

(Thermal conductivity of concrete is 0.8 J/S.m.c°)

10. What will be the equilibrium temperature when 300g copper mass at $300^{\rm o}C$ is placed in 1000g of water at $10^{\rm o}C$? $(C_{\rm w}\!\!=1~cal/g.c^{\rm o},~C_{\rm cu}\!\!=\!\!0.093~cal/g.c^{\rm o})$

11. Find the rms speed of H_2 molecule when the temperature is $20^{\circ}C$. (Atomic weight of H_2 is 2 g/mole).

12. A copper steam pipe is 2 m long when the temperature is 20° C. What is the length of the pipe when it carries steam at 120° C? (coefficient or thermal expansion for copper is 17×10^{-6} /C°)

13. A 1500kg car has a net forward force of 4500 N applied to it. Find the change in its kinetic energy after it has traveled 100m.

14. A traffic light weighing 100 N hangs as shown. Find T1 and T2.

15. A train moving at a speed of 40 m/s sounds its whistle, which has a frequency of 500 H_z . Determine the frequency heard by a stationary observer as the train approaches.

16. A car increases its velocity from 80 km/h to 120 km/h in a distance of 100m. Find the magnitude of its acceleration.

17. An FM radio station broadcasts of a frequency of 100 MHz (M=mega=10⁶) with a radio wave having wavelength of 3.0 m. Find the speed of the radio wave.