KFUPM – Physics Department PHYS102 – Chapter 26 (Instructor: Dr. Al–Shukri)

Q1. Two wires, as shown in the **Figure**, are made of same material. If the current density $\overline{}$

through segment S_1 is J_1 = 6400 A/m² and the current density through segment S_2 is

 $J_2 = 1239 \text{ A/m}^2$, then the diameter D_2 of segment S_2 is:

a. 5.0 cm b. 4.0 cm c. 5.5 cm d. 6.5 cm e. 3.5 cm

Q2. Wires A and B are made from same material. Wire A has twice the diameter and half the length of wire B. If the resistance of wire A is 20Ω , the resistance of wire B is:

a. 160 Ω b. 100 Ω c. 60 Ω d. 260 Ω e. 300 Ω

Q3. A 10 V battery is applied across a 15 W device. How much charge goes through the device in 4.0 hours?

a. 2.2×10 ⁴ C	b. 1.0×10 ⁴ C	c. 1.5×10 ⁵ C
d. 4.0×10^3 C	e. 1.7×10 ⁶ C	

Q4. A coffee maker, which draws 12.0 A of current, has been left on for 8.0 min. What is the net number of electrons that have passed through the coffee maker?

a. 3.6×10 ²²	b. 6.0×10 ²²	c. 1.0×10 ²²
d. 5.7×10 ²²	e. 2.0×10 ²²	

Q5. The **Figure** represents a

section of a circular conductor of non-uniform diameter carrying a current of 10.0 A. The crosssectional area A₁ has a radius of

0.400 cm. If the cross-sectional area A_2 has a radius twice of that of cross-sectional area A_1 , then what is the current density at A_2 ?

a. 4.97 A/cm ²	b. 5.80 A/cm ²	c. 2.31 A/cm ²
d. 7.01 A/cm ²	e. 1.97 A/cm ²	

Q6. What would be the uniform cross-sectional area of a wire made out of 1.50 g of a metal having a resistance of 0.600 Ω , and all of the metal was used to make the wire? Take the density of the metal to be 8.92 g/cm³ and resistivity1.69×10⁻⁸ Ω -m.

a. 6.88×10 ⁻⁸ m ²	b. 4.73×10 ⁻⁸ m ²	c. $2.22 \times 10^{-8} \text{ m}^2$
d. $5.92 \times 10^{-8} \text{ m}^2$	e. 9.93×10 ⁻⁸ m ²	

Q7. A light bulb is rated at 0.40 A and 3.0 V. At 20°C, the bulb filament has a resistance of 2.0 Ω . If the filament is made of tungsten, what is the temperature of the filament when bulb is on? The temperature coefficient of resistivity for tungsten is 4.5×10^{-3} K⁻¹.

a. 630 °C b. 900 °C c. 340 °C d. 500 °C e. 450 °C

Q8. A current of 0.300 A is passed through a lamp (light bulb) for 2.00 minutes using a 6.00 V power supply. The energy dissipated by this lamp during the 2.00 minutes is:

Q9. A certain wire has resistance R. Another wire, of the same material, has half the length and half the diameter of the first wire. The resistance of the second wire is:

a. 2R b. R/2 c. R d. R/4 e. 4 R

Q10. A certain resistor dissipates 0.500 W when connected to a 3.00 V potential difference. When connected to a 1.00 V potential difference, this resistor will dissipate:

a. 0.0556 W	b. 0.500 W	c. 0.167 W
d. 1.50 W	e. 3.00 W	

Q11. How much would the temperature of a copper wire have to be increased to raise its resistance by 20% over the value it had at 20 oC? The temperature coefficient of resistivity of copper is

0.0040 (Co)-1. Neglect any change in length or cross sectional area due to the change in temperature.

a. 50 C° b. 300 C° c. 80 C° d. 260 C° e. 75 C°

Q12. Two light bulbs operate from a 120-V voltage source. Bulb A has a power rating of 25.0 W and bulb B has a power rating of 100 W. Which of the following statements is CORRECT?

a. Resistance of A is larger than resistance of B.

b. Resistance of A is smaller than resistance of B.

c. The current through A is higher than the current through B.

d. The resistances of the two bulbs are the same.

e. The currents through the two bulbs are the same.

Q13. A 10-ohm resistor has a constant current. If 1200 C of charge flow through it in 4 minutes what is the value of the current?

a. 5.0 A b. 3.0 A c. 11 A d. 15 A e. 20 A

Q14. Two cylindrical resistors R_1 and R_2 are made from the same material and have the same length. When connected across the same battery, R_1 dissipates twice as much power as R_2 . he ratio of diameter of resistor R_1 to that of R_2 is:

a.
$$\sqrt{2}$$
 b. 2 c. $3/\sqrt{2}$ d. $\frac{1}{2}$ e. $2/\sqrt{2}$

Q15. A carbon resistor has a resistance of 18 Ω at a temperature of 20 °C. What is its resistance at a temperature of 120 °C? (The temperature coefficient of resistivity for carbon is -5.0×10⁻⁴/C°.)

a. 17
$$\Omega$$
 b. 22 Ω c. 11 Ω d. 32 Ω e. 10 Ω

Q16. Electric charges flow through a wire shaped as shown in Fig. 5. The cross-sectional areas are $A_1 = 4 \text{ mm}^2$ and $A_2 = 1$

mm² respectively. What is the drift speed of the electrons in the narrow section of the wire if their speed is 0.08 m/s in the wider region?

a. 0.32 m/s	b. 0.02 m/s	c. 0.0
d. 0.16 m/s	e. 0.08 m/s	

c. 0.04 m/s

a. 216 J b. 12.0 J c. 20.5 J d. 36.0 J e. 1.85 J