KFUPM – Physics Department PHYS102 – Chapter 24 (Instructor: Dr. Al–Shukri)

Q1. What is the external work required to bring four 3.0×10^{-9} C positive point charges from infinity and place them at the corner of a square of side 0.12 m

a. +**3.7 μJ** b. -3.7 μJ c. 67 μJ d. -67 μJ e. 7.4 μJ

Q2. A point charge $q_1 = +2.4 \ \mu\text{C}$ is held stationary at the origin. A second point charge $q_2 = -4.3 \ \mu\text{C}$ moves from $x_1 = 0.15 \ \text{m}, y_1 = 0$ to a point $x_2 = 0.25 \ \text{m}, y_2 = 0.25 \ \text{m}$. How much is work done by the electric force on q_2 ?

a. 0.36 J b. 0.30 J c. 0.45 J d. 0.50 J e. 0.25 J

Q3. An electron is accelerated from a speed of 3×10^6 m/s to 8×10^6 m/s. Calculate the potential through which electron has to pass to gain this acceleration?

a. 157 V b. 126 V c. 165 V d. 185 V e. 205 V

Q4. The electric potential in a certain region is described by $V(x,y, z) = 2xy - 4x^2 + 6y + 3$. Find the magnitude of the net electric field at x = -1 and y = 1?

a. 11 N/C b. 9 N/C c. 13 N/C d. 6.0 N/C e. 0

Q5. A conducting sphere with a radius of 10 cm, has a surface charge density of 4.0 μ C/m². The electric potential, at *r* = 5.0 cm from the center of the sphere is (assume *V* = 0 at infinity):

a. 4.5×10^4 V b. 9.0×10^4 V c. 10×10^4 V d. 35×10^4 V e. 72×10^4 V

Q6. In the **Figure** below, two particles with charges Q and -Q are fixed at the vertices of an equilateral triangle of sides a.

The work required to move a particle with charge q from point **i** to point **f** is:

a. 0b. kQq/ac. 4kQq/ad. 2kQq/ae. $\sqrt{2k}Qq/a$

Q7. Over a certain region of space, the electric potential is give by: $V(x,y) = 4x^2 + ay^2 + bxy$ where V is in V and x and y are in m. Find the constants a & b if the magnitude of the electric field at the point P (1.0, 2.0) vanishes.

a. 8.5 N/C b. 12 N/C c. 0 d. 6 N/C e. 3 N/C

Q8. In the **Figure**, two conducting spheres, one having twice the diameter of the other, are separated by a distance large compared to their diameters. Initially, the smaller sphere (1) has charge q and the larger sphere (2) is uncharged. If the spheres are then connected by a long thin conducting wire:

a. 1 and 2 have the same potential

b. 2 has twice the potential of 1

c. 2 has half the potential of 1

d. 1 and 2 have the same charge

e. 1 has twice the charge of 2

 $d \oint \left(\begin{array}{c} 1 \\ q \end{array} \right)$

Q9. A charge $q_1 = -5.0 \ \mu\text{C}$ and a charge $q_2 = 6.0 \ \mu\text{C}$ are located at (8.0 cm, 0.0) and (0.0 cm, 6.0 cm) respectively in the *xy* plane. How much work was done, by an external agent, to bring these charges to their final positions starting from infinite separation.[Take V = 0 at infinity]

a. –2.7 J b. 2.7 J c. –3.4 J d. –4.5 J e. 3.4 J

Q10. A particle $(m = 9.0 \times 10^{-9} \text{ kg}, q = +8 \text{ nC})$ has a kinetic energy $K = 36 \text{ }\mu\text{J}$ at point A and moves to point B where the potential is 3.0×10^3 V greater than that at point A. What is the particle's kinetic energy at point B?

a. 12
$$\mu$$
J b. 60 μ J c. 24 μ J d. 36 μ J e. -24 μ J
Q11. An electron moves
from point i to point f, in
the direction of a uniform
electric field (see the

Figure). During this displacement:

- a. the work done by the field is negative and the electric potential energy of the electron-field system increases.
- b. the work done by the field is positive and the electric potential energy of the electron-field system increases.
- c. the work done by the field is positive and the electric potential energy of the electron-field system decreases.
- d. the work done by the field is negative and the electric potential energy of the electron-field system decreases.
- e. the work done by the field is positive and the electric potential energy of the electron-field system does not change.

Q12. A particle with a charge of 5.5×10^{-8} C is fixed at the origin. A particle with a charge of -2.3×10^{-8} C is moved from x = 3.5 cm on the x-axis to y = 4.3 cm on the y-axis. The change in potential energy of the two-particle system is

a. +6.0×10⁻⁵ J b.
$$-3.1 \times 10^{-3}$$
 J c. $+3.1 \times 10^{-3}$ J d. -6.0×10^{-5} J e. 0

Q13. The **Figure** shows a particle of mass *m* and charge -q moving between two equipotential surfaces V_1 and V_2

which are separated by a distance *d*. If the speed of the particle at surface V_1 is v_o , what is the change in the kinetic energy of the particle when it moves from surface V_1 to surface V_2 ?

b. −*qV*

d. $-(\frac{1}{2})mv_o^2$

a. *qV*

c. $(\frac{1}{2})mv_o^2$

e. $qV - (\frac{1}{2})mv_0^2$

Q14. What is the velocity of an alpha particle (containing 2 protons and 2 neutrons) if it is accelerated from rest through a voltage of 100 kV ?

a. 3.1×10^6 m/s**b.** 1.1×10^6 m/s**c.** 2.1×10^6 m/s**d.** 1.6×10^6 m/s**e.** 2.6×10^6 m/s