Phys530 grading policy and syllabus Statistical Mechanics (3-0-3) Fall 2006

Instructor: Abdulaziz Aljalal

Course Description

The statistical basis of thermodynamics, element of ensemble theory, the canonical and grand canonical ensembles, quantum statistics, application to simple gases, Bose and Fermi systems, imperfect gases, phase transitions, and Ising model

Text book

Statistical Mechanics by R. K. Pathria

References

K. Hung, "Statistical Mechanics", 2nd Ed., Wiley,1987.
F. Reif, "Fundamentals of Statistical and Thermal Physics", McGraw-Hill, 1965.
C. Kittel and H. Kroemer, "Thermal Physics", 2nd Ed. W.H. Freeman and Company, 1980.

Grading policies

25% homework15% project / term paper20% first major20% second major20% final

Homework policy

A homework set is generally due one week from assignment. You may submit it after the due date but 5% of the grade will be deducted for every day after the due date.

Term paper policy

You are encouraged to find a suitable topic as soon as possible. Your work is expected to evolve over the course of the term. I would like to see your progress periodically. The project is due one week before the end of classes. You may submit it late but there will be a plenty of 5% for every day after the dead line.

Exams policies

Exams will be closed book. Useful formula will be provided.

Topics covered

We plan to cover the following chapters

- Ch 1 The statistical basis of thermodynamics
- Ch 2 Element of ensemble theory
- Ch 3 The canonical and ensembles
- Ch 4 The grand canonical ensembles
- Ch 5 Formulation of quantum statistics
- Ch 6 The theory of simple gases
- Ch 7 The ideal Bose Systems only sections 1 and 2
- Ch 8 Ideal Fermi systems only sections 1, 2, and 3