A particle is traveling along a line making 30° with the x axis in \mathcal{S}, at ordinary speed $(1 / \sqrt{5}) c$.
(a) Find the component u_{x} and u_{y} of the ordinary velocity.
(b) Find the components η_{x} and η_{y} of the proper velocity.
(c) Find the zeroth component of the 4 -velocity, η^{0}.

System $\overline{\mathcal{S}}$ is moving in the x direction with ordinary speed $(1 / \sqrt{5}) c$, relative to \mathcal{S}. By using the appropriate transformation laws:
(d) Find the ordinary velocity components \bar{u}_{x} and \bar{u}_{y} in $\overline{\mathcal{S}}$.
(e) Find the proper velocity components $\bar{\eta}_{x}$ and $\bar{\eta}_{y}$ in $\overline{\mathcal{S}}$.
(f) As a consistency check, verify that

$$
\bar{\eta}=\frac{\bar{u}}{\sqrt{\left(1-\bar{u}^{2} / c^{2}\right)}}
$$

