Start with

$$
\frac{d P}{d \Omega}=\frac{q^{2}}{16 \pi^{2} \epsilon_{0}} \frac{[\hat{\imath} \times(\mathbf{u} \times \mathbf{a})]^{2}}{(\hat{\imath} \cdot \mathbf{u})^{5}}
$$

a- For the case when the velocity and acceleration are perpendicular, choose your axes so that \mathbf{v} lies along the z axis and a along the x axis and show that

$$
\frac{d P}{d \Omega}=\frac{\mu_{0} q^{2}}{16 \pi^{2} c} \frac{a^{2}\left\{(1-\beta \cos \theta)^{2}-\left(1-\beta^{2}\right) \sin ^{2} \theta \cos ^{2} \phi\right\}}{(1-\beta \cos \theta)^{5}}
$$

b- Use Mathematica to plot polar plots for $d P / \Omega$ for $v=0, v=0.01 c, v=$ $0.1 c, v=0.5 c$, and $v=0.99 c$.
To make $d P / d \Omega=1$ at $\theta=0$, choose $\phi=0$, and

$$
\frac{\mu_{0} q^{2} a^{2}}{16 \pi^{2} c}=(1-\beta)^{3}
$$

Make all the plots on the same figure with the following range
$-1.1 \leq x \leq 1.1$, and $-1.1 \leq y \leq 1.1$. Also, use the following option: Frame \rightarrow Ture.

