You will use Mathematica to plot polar plots for the power radiated per solid angle $d \Omega$ by an accelerating charge particle

$$
\frac{d P}{d \Omega}=\frac{\mu_{0} q^{2} a^{2}}{16 \pi^{2} c} \frac{\sin ^{2} \theta}{(1-\beta \cos \theta)^{5}}
$$

for $v=0, v=0.01 c, v=0.1 c, v=0.5 c$, and $v=0.99 c$.
$>$ Find an expression for $\theta_{\max }$ where $d P / d \Omega$ is maximum.
$>$ To make $d P / d \Omega=1$ at $\theta_{\max }$ for all plots, choose

$$
\frac{\mu_{0} q^{2} a^{2}}{16 \pi^{2} c}=\frac{\left(1-\beta \cos \theta_{\max }\right)^{5}}{\sin ^{2} \theta_{\max }}
$$

$>$ Make all the plots on the same figure with the following range $-0.5 \leq x \leq 1.1$, and $-1.1 \leq y \leq 1.1$. Also, use the following option: Frame \rightarrow Ture.

