Phys306	KFUPM	Hw-07
	Physics Department	Due: 11 May 2017

You will use Mathematica to plot polar plots for the power radiated per solid angle $d\Omega$ by an accelerating charge particle

$$\frac{dP}{d\Omega} = \frac{\mu_0 q^2 a^2}{16\pi^2 c} \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^5}.$$

for $v = 0, v = 0.01 c, v = 0.1 c, v = 0.5 c$, and $v = 0.99 c$.
> Find an expression for θ_{max} where $dP/d\Omega$ is maximum.
> To make $dP/d\Omega = 1$ at θ_{max} for all plots, choose
$$\frac{\mu_0 q^2 a^2}{16\pi^2 c} = \frac{(1 - \beta \cos \theta_{max})^5}{\sin^2 \theta_{max}}$$

➤ Make all the plots on the same figure with the following range $-0.5 \le x \le 1.1$, and $-1.1 \le y \le 1.1$. Also, use the following option: Frame → Ture.