A- Two sinusoidal waves with the displacements $y_{1}(x, t)=A \cos \left(k_{1} x-\omega_{1} t\right)$, and $y_{2}(x, t)=$ $A \cos \left(k_{2} x-\omega_{2} t\right)$ interfere to produce a wave with displacement $y(x, t)=y_{1}(x, t)+$ $y_{2}(x, t)$. Use some trigonometric identities to write $y(x, t)$ as product of two traveling waves.

B- Suppose that $k_{2}-k_{1} \ll k_{1} \approx k_{2}$ and $\omega_{2}-\omega_{1} \ll \omega_{1} \approx \omega_{2}$, show that the speed of one of the waves in the product is $v_{p} \approx \omega_{2} / k_{2} \approx \omega_{1} / k_{1}$, while the speed of the other wave in the product is $v_{g}=d \omega / d k=\left(\omega_{2}-\omega_{1}\right) /\left(k_{2}-k_{1}\right)$.

C- Use Mathematica to generate three animated GIF files as follows:

	File1	File2	File3
k_{1}	$1+0.05$	$1+0.05$	$1+0.05$
k_{2}	$1-0.05$	$1-0.05$	$1-0.05$
ω_{1}	$1-0.025$	1	$1+0.025$
ω_{2}	$1+0.025$	1	$1-0.025$

You need to choose the options in your plots to produce a plot like the figure below:

The disk should move at speed of v_{g}.
The arrow should move at speed of v_{p}.
Both the disk and arrow should start at $t=0$ at $x=20 \pi$.
$A=1$.
Range of x is from 0 to 40π.
Range of y is from -2.1 to 2.1.
Make frames for $t=0$ to 20π in steps of $0.01 \times 20 \pi$.
The size of the disk in y direction is 0.1 .
Adjust the size of the disk in the x direction to get a perfect circle.
The colors of the envelope and the wave are gray. The envelope should be dashed.
Show only the x -axis with no ticks.

