- A- Two sinusoidal waves with the displacements $y_1(x,t) = A\cos(k_1x \omega_1t)$, and $y_2(x,t) = A\cos(k_2x \omega_2t)$ interfere to produce a wave with displacement $y(x,t) = y_1(x,t) + y_2(x,t)$. Use some trigonometric identities to write y(x,t) as product of two traveling waves.
- B- Suppose that $k_2 k_1 \ll k_1 \approx k_2$ and $\omega_2 \omega_1 \ll \omega_1 \approx \omega_2$, show that the speed of one of the waves in the product is $v_p \approx \omega_2/k_2 \approx \omega_1/k_1$, while the speed of the other wave in the product is $v_q = d\omega/dk = (\omega_2 \omega_1)/(k_2 k_1)$.
- C- Use Mathematica to generate three animated GIF files as follows:

	File1	File2	File3
k_1	1 + 0.05	1 + 0.05	1 + 0.05
k_2	1 - 0.05	1 - 0.05	1 - 0.05
ω_1	1 - 0.025	1	1 + 0.025
ω_2	1 + 0.025	1	1 - 0.025

You need to choose the options in your plots to produce a plot like the figure below:

The disk should move at speed of v_a .

The arrow should move at speed of v_p .

Both the disk and arrow should start at t = 0 at $x = 20\pi$.

A=1.

Range of x is from 0 to 40π .

Range of y is from -2.1 to 2.1.

Make frames for t = 0 to 20π in steps of $0.01 \times 20\pi$.

The size of the disk in y direction is 0.1.

Adjust the size of the disk in the x direction to get a perfect circle.

The colors of the envelope and the wave are gray. The envelope should be dashed.

Show only the x-axis with no ticks.