

NAME _ STUDENT No. _____ SECTION No. _

1ABODE	26 A B C D E	51 A B C D E	76 A B C D E	101 (A) (B) (C) (D) (E)
2 A B C D E	27 A B © D E	52 A B C D E	77 A B C D E	102 A B C D E
3 A B C D E	28 (A) (B) (C) (D) (E)	53 A B C D E	78 A B C D E	103 A B C D E

Q1. In the circuit shown in the figure, the 33 Ω resistor dissipates 3.98 W. What is the emf of the ideal battery in Volts?

Q2. A charged capacitor, with potential difference 12.5 V is connected to a voltmeter having an internal resistance of $11.0 \times 10^6 \Omega$. Ater a time of 56.7 s the voltmeter reads 3.25 V. What is the capacitance of -t/RC V(t) = V(0) e the capacitor in µF?

- A) 3.10
- B) 4.78
- C) 3.83
- D) 2.37
- E) 1.65

$$V(t) = V(0) e$$

$$\frac{1}{V(0)} = \frac{1}{RC}$$

$$\ln \frac{V(r)}{V(o)} = -\frac{t}{RC}$$

$$C = \frac{-t}{R \ln(\frac{V(t)}{V(o)})} = \frac{-56.7}{11.0 \times 10^6 \ln(\frac{3.25}{12.5})} = 3.83 \, \mu F$$

	48 (A) (B) (C) (D) (E)	73 A B C D E	98 A B C D E	123 A B C D E
24 A B C D E	49 (A) (B) (C) (D) (E)	74 A B C D E	99 A B O D E	124 (A (B) (C) (D) (E)
25 A B C D E	50 A B O D E	75 A B C D E	100 A B O D E	125 A B O D E