
STUDENT No. ______

Q1. In an isobaric process, an ideal monatomic gas absorbs 30.7 J of heat. What is the change in the internal energy of the gas in this process?

A) 18.4
B) 51.2
C) 43.0
D) 21.9
E)
$$46.0$$

$$\triangle E_{int} = n C_V \triangle T$$

$$Q = \frac{n C_V \triangle T}{n C_P \triangle T} = \frac{C_V}{C_P}$$

$$A = n C_P \triangle T$$

$$Q = \frac{3}{5} R Q = \frac{3}{5} 30.7 = 18.4 T$$

Q2. An ideal gas initially at a pressure of 0.936 atm and temperature 64.7 °C undergoes an isothermal expansion to twice its original volume. During the expansion, the gas absorbs 90.0 kJ of heat. Find the number of moles for this gas?

A) 46.2	Isothernal > DT=0 > DEint=NGDT=0
B) 241 C) 60.6	of Nf
D) 69.8	$\Delta Z_{int} = Q - W \Rightarrow Q = W = nRT ln \frac{V_f}{V_i}$
E) 29.6	90×10^3
	$n = \frac{Q}{RT \ln \frac{VF}{V_i}} = \frac{90 \times 10^3}{8.31(64.7 + 273.15) \ln 2} = 46.2$
	Vi

23 A B O D E	48 (A) (B) (C) (D) (E)	73 A B O D E	98 A B C D E	123 A B O D E
24 (A (B) (C) (D) (E)	49 A B C D E	74 (A (B) (C) (D) (E)	99 A B C D E	124 A B O D E
25 A B C D E	50 A B C D E	75 A B C D E	100 A B C D E	125 A B C D E