
STUDENT No. ______
SECTION No. _____

Q1. A charge of + 3.57 μ C is placed at the origin. A second charge q₂ is placed at x = 3.00 m. If a charge of 1.00 μ C experiences no force if placed at x = 4.00 m, then the charge of q₂ in μ C is:

A) -0.397

B) 0.223

C) -0.223

D) 0.397

E) -2.01

$$|q_{1}||g_{3}| = |x| \frac{|q_{2}||g_{3}|}{|r_{2}|^{2}} = |x| \frac{|q_{2}||g_{3}|}{|r_{2}|^{2}} = |x| \frac{|q_{2}||g_{3}|}{|r_{2}|^{2}} = |x| \frac{|q_{2}||g_{3}|}{|r_{2}|^{2}} = |g_{2}||g_{3}||g_{3}|$$

$$|q_{2}| = |q_{1}| \frac{|r_{2}|^{2}}{|r_{1}|^{2}} = 3.57 \times 10^{6} \frac{|r_{2}|}{|q_{2}|} = 0.223 \text{ MC}$$

$$|q_{2}| = -0.223 \text{ MC}$$

Q2. How much work in the units of 10^{-24} J is required to turn an electric dipole 180° in a uniform electric field of magnitude 39.7 N/C if the dipole moment has a magnitude of 3.02×10^{-25} C m and the initial angle between the electric field and the dipole moment is 64.0° ?

A) -1.33	$W_a = + \Delta U = U_{\zeta} - U_i$
B) 10.5 C) -10.5	= (-PE 650;)-(-PE650i)
D) 1.33	= pE(wsqi-cos Qf)
E) 21.6	= $3.02 \times 10^{-25} (39.7) (\omega 564^{\circ} - \omega 5(64^{\circ} + 180^{\circ}))$
	$= 10.5 \times 10^{-24} \text{J}$

23 A B © D E	48 A B C D E	73 A B O D E	98 A B O D E	123 A B O D E
24 A B C D E	49 A B C D E	74 (A (B) (C) (D) (E)	99 A B © D E	124 (A (B) (C) (E)
25 A B C D E	50 A B C D E	75 A B C D E	100 A B C D E	125 A B C D E