STUDENT No.

NAME _

SECTION No. _

1 A B C D E	26 A 6 C D E	51 & B C D E	76 & 6 C D E	101 A B C D E
2 A B C D E	27 A B C D E	52 @ B © D E	77 A B C D E	102 A B C D E
3 A B C D E	28 A 6 C D E	53 & B © D E	78 A B C D E	103 & © © © ©

Q1. The transverse displacement of a wave on a string is

 $y(x,t) = 0.0241\sin(3.53x - 157t),$

where x and y are in meters and t is in seconds. Calculate the magnitude of the transverse velocity, in the units of m/s, at x = 3.94 m and t = 1.26 s.

A) 1.71	$\mathcal{U} = -\omega \psi \omega s (k x - \omega t)$
B) 3.05	Em
C) 3.38	
D) 3.75	= -0.0241(157)(65(3.5)(5.94)-157(1.26))
E) 0.485	= -0.485 m/s

Q2. A sinusoidal wave of frequency 472 Hz has a speed of 330 m/s. How many meters apart are two points that differ in phase by 4.04 radians?

$$\begin{split} & \triangle \phi = k \triangle x = \frac{2\pi}{\lambda} \Delta x \\ \Rightarrow & \triangle x = \frac{\lambda}{2\pi} \Delta \phi = \frac{\sqrt{2}}{2\pi f} \Delta \phi = \frac{330}{2\pi (472)} \end{split}$$
A) 5.78 B) 2.82 C) 0.920 D) 0.450 E) 5.20 = 0.450 m 23 A B C D E 48 🖲 🕲 🗊 🗊 73 🗛 🖲 🖸 🖻 98 A B C D E 123 A B C D E 24 A B C D E 49 A B C D E 74 & B C D E 99 A B C D E 124 A B C D E 25 A B C D E 75 A B C D E 100 A B C D E 125 A B C D E 50 A B C D E