A current is set up in a wire loop that is formed as shown in the figure, where $R_{1}=2.0 \mathrm{~cm}$ and $R_{2}=4.0 \mathrm{~cm}$. The loop carries a current of 5.0 A , as shown in the figure. What is the magnetic field at the center of the loop (C)?
A) $3.9 \times 10^{-5} \mathrm{~T}$ out of the page
B) $3.9 \times 10^{-5} \mathrm{~T}$ into the page
C) $1.2 \times 10^{-4} \mathrm{~T}$ out of the page
D) $1.2 \times 10^{-4} \mathrm{~T}$ into the page
E) $7.9 \times 10^{-5} \mathrm{~T}$ into of the page

$$
\begin{aligned}
& \vec{B}=\vec{B}_{1}+\vec{B}_{2}+\vec{B}_{3}+\vec{B}_{4} \\
& B_{3}=B_{4}=0 \text { because } d \vec{s} \times \hat{r}=0 \\
& \beta_{1}=\frac{\mu_{0} i \phi}{4 \pi R_{1}}=\frac{\mu_{0} i \pi}{4 \pi R_{1}} \text { into the page } \\
& B_{2}=\frac{\mu_{0} i \pi}{4 \pi R_{2}} \text { out of the page } \\
& B=\frac{\mu_{0} i}{4}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \text { out of the page } \\
& B=\frac{\left(4 \pi \times 10^{-7}\right)_{5}}{4}\left(\frac{1}{0.02}-\frac{1}{0.04}\right)=3.9 \times 10^{-5} \mathrm{~T} \text { out of the page }
\end{aligned}
$$

Two long wires are placed in the xy plane, as shown in the figure. Each wire carries a current of 1.5 A , directed out of the page. If the distance $\mathrm{d}=3.0 \mathrm{~m}$, what is the net magnetic field due to these wires at the origin?
A) $(+0.10 \mu T) \hat{\imath}+(-0.10 \mu T) \hat{\jmath}$
B) $(+0.10 \mu T) \hat{\imath}+(+0.10 \mu T) \hat{\jmath}$
C) $(-0.10 \mu T) \hat{\imath}+(-0.10 \mu T) \hat{\jmath}$
D) $(-0.10 \mu T) \hat{\imath}+(+0.10 \mu T) \hat{\jmath}$
E) zero

$$
\begin{aligned}
& B_{1}=\frac{\mu_{0} i}{2 \pi R}=\frac{4 \pi \times 10^{-7}}{2 \pi(3)} 1.5=0.1 \mu T \\
& B_{2}=\frac{\mu \partial \tau}{2 \pi R}=0.1 \mu \mathrm{~T} \\
& \vec{B}=\vec{B}_{1}+\vec{B}_{2}=(0.1 \hat{\imath}-0.1 \hat{\jmath}) \mu T
\end{aligned}
$$

A long, straight, cylindrical conductor of radius $R=12.0 \mathrm{~mm}$ carries a current I uniformly distributed over its cross section. If the magnitude of the magnetic field produced at a distance $r=24.0 \mathrm{~mm}$ is 0.100 mT , then what is the magnitude of the magnetic field at a distance $r=6.00 \mathrm{~mm}$?
A) 0.100 mT
B) 0.050 mT
C) 0.400 mT
D) 0.200 mT
E) 0.440 mT

$$
\begin{aligned}
& B_{\text {out }}=\frac{\mu_{0} i}{2 \pi r} \\
& B_{\text {in }}=\frac{\mu_{0} i}{2 \pi R^{2}} r
\end{aligned}
$$

at $r_{1}=24 \mathrm{~mm}>R=12 \mathrm{~mm}$

$$
B=0.1 m T=\frac{\mu_{0} i}{2 \pi r_{1}} \Rightarrow \frac{\mu_{0} i}{2 \pi}=0.1 \times 10^{-3} r_{1}
$$

at $r_{2}=6 \mathrm{~mm}<R=12 \mathrm{~mm}$

$$
\begin{aligned}
B=\frac{\mu_{0} i}{2 \pi R^{2}} r_{2}=\frac{0.1 \times 10^{-3} r_{1} r_{2}}{R^{2}} & =0.3 \times 10^{-3} \frac{(24)(6)}{(12)^{2}} \\
& =0.1 \times 10^{-3} T=0.1 \mathrm{mT}
\end{aligned}
$$

The figure shows cross sectional areas of three conductors that carry current through the plane of the figure. The currents have the magnitude $I_{1}=6.0 \mathrm{~A}$ and $\mathrm{I}_{3}=2.0 \mathrm{~A}$ and directions as shown. If the value of the line integral $\oint \vec{B} \cdot d \vec{s}$ is $+3.8 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m}$, what is magnitude and direction of current I_{2}. The integral involves going around the path in the counterclockwise direction, as shown in the figure.
A) 7.0 A out of the page
B) 6.0 A into the page
C) 5.0 A out of the page
D) 8.0 A into the page
E) 9.0 A out of the page

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\text {enc }}=\mu_{0}\left(-I_{1}+I_{2}+I_{3}\right) \\
& 3.8 \times 10^{-6}=4 \pi \times 10^{-7}\left(-6+I_{2}+2\right) \\
& \frac{38}{4 \pi}=I_{2}-4 \\
& I_{2}=+7 A \Rightarrow \text { out of page }
\end{aligned}
$$

A 1.0 m long solenoid is 10.0 cm in diameter and carries 51.9 A current to produce 0.15 Tesla magnetic field inside the solenoid (Assume solenoid to be ideal). Determine the number of turns in the solenoid.
A) 2.30×10^{3}
B) 3.73×10^{3}
C) 1.81×10^{2}
D) 5.33×10^{6}
E) 1.01×10^{2}

$$
\begin{aligned}
& B=n \mu_{0} i=\frac{N}{l} \mu_{0} i \\
& N=\frac{B l}{\mu_{0} i}=\frac{(0.15)(1)}{\left.4 \pi \times 10^{-7}(5) .9\right)}=2.30 \times 10^{3} \text { turns }
\end{aligned}
$$

Two long straight wires penetrate, normally, the plane of the paper at two vertices of an equilateral triangle as shown in the figure. They each carry 3.0 A , out of the page. The magnetic field at the third vertex (P) has magnitude (in T):
A) 3.5×10^{-5}
B) 2.0×10^{-4}
C) 0
D) 3.5×10^{-7}
E) 8.7×10^{-6}

$$
\begin{aligned}
& \vec{B}=\vec{B}_{1}+\vec{B}_{2} \\
& B_{1}=B_{2}=\frac{\mu_{0} i}{2 \pi R} \\
& B=2 B_{1} \cos 30 \\
& B=2 \frac{\left(4 \pi \times 10^{-7}\right)(3)}{2 \pi(0.03)} \cos 60^{\circ} \\
& B=3.5 \times 10^{-5} \mathrm{~T}
\end{aligned}
$$

