A proton travels through both a uniform magnetic field \vec{B} and a uniform electric field \vec{E} . The magnetic field is given by $\vec{B} = (2.5 mT) \hat{i}$. At one instant, the velocity of the proton is $\vec{v} = (2.0 \times 10^3 m/s) \hat{j}$ and the net force acting on it is zero. Find the electric field \vec{E} in units of V/m. Ignore the gravitational force on the proton.

A) +5.0
$$\hat{k}$$

B) -5.0 \hat{k}
C) +5.0 \hat{j}
D) -5.0 \hat{j}
E) -5.0 \hat{k} +5.0 \hat{j}
hat Force =0 \Rightarrow $\vec{F}_{B} + \vec{F}_{E} = 0$
 \Rightarrow $\vec{F}_{B} = -\vec{F}_{E}$
 \Rightarrow $\vec{F}_{B} = -\vec{F}_{E}$

F-112-19

F-112-22

The coil in the figure has its plane parallel to the *xz* plane and carries current i = 1.0 A in the direction indicated. The coil has 8.0 turns and a cross sectional area of $4.0 \times 10^{-3} m^2$ and lies in an external uniform magnetic field that is given by $\vec{B} = (-2.0 mT) \hat{i}$. Find the torque (in units of µN.m) on the coil due to the magnetic field.

F-122-22

A wire is bent as shown in the figure. It lies in a uniform magnetic field $\vec{B} = (4.0 T) \hat{k}$. Each wire section is 2.0 m long and makes an angle of $\theta = 60^{\circ}$ with the x-axis, and the wire carries a current of 2.0 A. What is the net magnetic force on the wire? (the positive z-axis is out of the page).

F2-122-16

Two electrons 1 and 2 are trapped in a uniform magnetic field \vec{B} and they move in a plane perpendicular to the magnetic field in circular paths of radii R₁ and R₂, respectively. Electron 1 has kinetic energy K₁= 500 eV and electron 2 has kinetic energy K₂= 300 eV. What is the value of R₁/R₂?

A) 1.3
B) 2.8
C) 1.7
D) 4.0
E) 1.0

F-182-18

A particle with 2.58 ×10⁻¹⁵ kg mass and a negative charge is traveling through a region containing a uniform magnetic field $\vec{B} = -(0.120 T) \hat{k}$. At a particular instant, the velocity of the particle is $\vec{v} = (1.05 \times 10^6)[(-3.00 m/s) \hat{i} + (4.00 m/s) \hat{j} + (12.0 m/s) \hat{k}]$ and the force \vec{F} on the particle has a magnitude of 2.45 N. Determine the magnitude of the charge of the particle

A) 3.89 × 10⁻⁶ C B) 1.11 × 10⁻⁶ C C) 2.33 × 10⁻⁶ C D) 3.05 × 10⁻⁶ C E) 4.88 × 10⁻⁶ C

$$\begin{aligned}
\vec{F}_{B} &= q \vec{J} \times \vec{B} & \hat{i} \times \hat{k} = -\hat{J} \\
\vec{J} \times \hat{k} &= \hat{i} \\
\vec{F}_{B} &= q \left(\sqrt{x} \hat{i} + \sqrt{y} \hat{j} + \sqrt{z} \hat{k} \right) \times B(-\hat{k}) \\
\vec{F}_{B} &= q B(\sqrt{x} \hat{j} - \sqrt{y} \hat{i}) \\
\vec{F}_{B} &= I q I B \sqrt{\sqrt{x^{2} + \sqrt{y^{2}}}} \Rightarrow I q I = \frac{F_{B}}{B \sqrt{\sqrt{x^{2} + \sqrt{y^{2}}}} \\
&=) q = \frac{2.45}{(6.12)(1.05 \times 10^{6}) \sqrt{3^{2} + \sqrt{y^{2}}}} = 3.89 \times 10^{6} \text{ C}
\end{aligned}$$

A long wire carrying 4.50 A of current makes two 90.0^o bends, as shown in the Figure. The bent part of the wire passes through a uniform 0.240 T magnetic field, which is confined to a limited space region, as shown in the figure. Find the magnitude of the net force that the magnetic field exerts on the wire.

A) 0.724 N B) 0.224 N C) 0.323 N D) 0.444 N E) 0.175 N

F-182-20