A proton travels through both a uniform magnetic field \vec{B} and a uniform electric field \vec{E}. The magnetic field is given by $\vec{B}=(2.5 \mathrm{mT}) \hat{\imath}$. At one instant, the velocity of the proton is $\vec{v}=$ $\left(2.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\right) \hat{\jmath}$ and the net force acting on it is zero. Find the electric field \vec{E} in units of V / m. Ignore the gravitational force on the proton.
A) $+5.0 \hat{k}$
B) $-5.0 \hat{k}$
C) $+5.0 \hat{\jmath}$
D) $-5.0 \hat{\jmath}$

$$
\begin{aligned}
\overrightarrow{F_{B}}=|q| \vec{v} \times \vec{B}= & e v \hat{\jmath} \times B \hat{\imath}= \\
& \Rightarrow \vec{\jmath} \hat{\jmath} \times \hat{\imath}=\hat{\jmath}(-\hat{k})
\end{aligned}
$$

E) $-5.0 \hat{k}+5.0 \hat{\jmath}$
net Force $=0 \Rightarrow \vec{F}_{B}+\vec{F}_{E}=0$

$$
\begin{aligned}
\Rightarrow & \overrightarrow{F_{B}}=-\overrightarrow{F_{E}} \quad \overrightarrow{F_{E}}=\vec{E} \\
\Rightarrow & \notin V B(-\hat{k})=-\notin \vec{E} \\
\Rightarrow & \vec{E}=V B \hat{k}=\left(2.5 \times 10^{-3}\right)\left(2 \times 10^{3}\right) \hat{k} \\
& \vec{E}=5 \hat{k}
\end{aligned}
$$

The coil in the figure has its plane parallel to the $x z$ plane and carries current $i=1.0 A$ in the direction indicated. The coil has 8.0 turns and a cross sectional area of $4.0 \times 10^{-3} \mathrm{~m}^{2}$ and lies in an external uniform magnetic field that is given by $\vec{B}=(-2.0 \mathrm{mT}) \hat{l}$. Find the torque (in units of $\mu \mathrm{N} . \mathrm{m}$) on the coil due to the magnetic field.
A) $-64 \hat{k}$
B) $+64 \hat{k}$
C) $+12 \hat{\imath}$
D) $-12 \hat{\imath}$
E) $-64 \hat{\jmath}$

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu} \times \vec{B} \\
& \operatorname{NAi}(-\hat{\jmath}) \\
& \vec{\tau}=\operatorname{NAi}(-\hat{\jmath}) \times B(-\hat{\imath}) \\
& \vec{\tau}=\operatorname{NAiB}(-\hat{k}) \hat{j} \times \hat{i}=-\hat{k} \\
& \vec{\tau}=-8\left(4 \times 10^{-3}\right)(1)\left(2 \times 10^{-3}\right) \hat{R} \\
& \vec{\tau}=-64 \mu \operatorname{Nm}) \hat{k}
\end{aligned}
$$

A wire is bent as shown in the figure. It lies in a uniform magnetic field $\vec{B}=(4.0 T) \hat{k}$. Each wire section is 2.0 m long and makes an angle of $\theta=60^{\circ}$ with the x-axis, and the wire carries a current of 2.0 A . What is the net magnetic force on the wire? (the positive z-axis is out of the page).
A) $(+16 N) \hat{\jmath}$
$\vec{F}_{B}=i \vec{L} \times \vec{B}$
B) $(+28 N) \hat{\jmath}$
C) $(-28 N) \hat{\imath}$
D) $(-16 N) \hat{\jmath}$
E) Zero

$$
\begin{aligned}
\overrightarrow{F_{B}} & =2 i L, B \cos \theta \hat{\jmath} \\
& =2(2)(2)(4) \cos 60^{\circ} N \hat{\jmath}=16 N \hat{\jmath}
\end{aligned}
$$

Two electrons 1 and 2 are trapped in a uniform magnetic field \vec{B} and they move in a plane perpendicular to the magnetic field in circular paths of radii R_{1} and R_{2}, respectively. Electron 1 has kinetic energy $K_{1}=500 \mathrm{eV}$ and electron 2 has kinetic energy $\mathrm{K}_{2}=300 \mathrm{eV}$. What is the value of R_{1} / R_{2} ?
A) 1.3
B) 2.8
C) 1.7
D) 4.0
E) 1.0

$$
\begin{aligned}
& r=\frac{m v}{|q| B} \\
& K=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{\frac{2 K}{m}} \\
& r=\frac{m \sqrt{\frac{2 k}{m}}}{191 B}=\frac{\sqrt{2 k m}}{|q| B} \\
& \frac{R_{1}}{R_{2}}=\frac{\frac{\sqrt{2 K_{1} m}}{181 B}}{\frac{\sqrt{2 K_{2} m}}{191 B}}=\sqrt{\frac{K_{1}}{K_{2}}}=\sqrt{\frac{5}{3}}=1.3
\end{aligned}
$$

A particle with $2.58 \times 10^{-15} \mathrm{~kg}$ mass and a negative charge is traveling through a region containing a uniform magnetic field $\vec{B}=-(0.120 T) \hat{k}$. At a particular instant, the velocity of the particle is $\vec{v}=\left(1.05 \times 10^{6}\right)[(-3.00 \mathrm{~m} / \mathrm{s}) \hat{\imath}+(4.00 \mathrm{~m} / \mathrm{s}) \hat{\jmath}+(12.0 \mathrm{~m} / \mathrm{s}) \hat{k}]$ and the force \vec{F} on the particle has a magnitude of 2.45 N . Determine the magnitude of the charge of the particle
A) $3.89 \times 10^{-6} \mathrm{C}$
B) $1.11 \times 10^{-6} \mathrm{C}$
C) $2.33 \times 10^{-6} \mathrm{C}$
D) $3.05 \times 10^{-6} \mathrm{C}$
E) $4.88 \times 10^{-6} \mathrm{C}$

$$
\begin{aligned}
& \overrightarrow{F_{B}}=q \vec{v} \times \vec{B} \quad \begin{array}{l}
\hat{\imath} \times \hat{k}=-\jmath \\
\vec{\jmath} \times \hat{k}=\tilde{\imath} \\
\overrightarrow{F_{B}}=q\left(v_{x} \hat{\imath}+v_{y} \hat{\jmath}+v_{z} \hat{k}\right) \times B(-\hat{k}) \\
\overrightarrow{F_{B}}=q B\left(v_{x} \hat{\jmath}-v_{y} \hat{\imath}\right) \\
F_{B}=|q| B \sqrt{v_{x}^{2}+v_{y}^{2}} \Rightarrow|q|=\frac{F_{B}}{B \sqrt{v_{x}^{2}+v_{y}^{2}}} \\
\Rightarrow q=\frac{2.45}{(0.12)\left(1.05 \times 10^{6}\right) \sqrt{3^{2}+4^{2}}}=3.89 \times 10^{-6} C
\end{array}, l
\end{aligned}
$$

A long wire carrying 4.50 A of current makes two 90.0° bends, as shown in the Figure. The bent part of the wire passes through a uniform 0.240 T magnetic field, which is confined to a limited space region, as shown in the figure. Find the magnitude of the net force that the magnetic field exerts on the wire.
A) 0.724 N
B) 0.224 N
C) 0.323 N
D) 0.444 N
E) 0.175 N

$$
\begin{aligned}
& \vec{B} \cdot \overrightarrow{L_{2}}=0.3 m \\
& \longleftrightarrow L_{1}=0.6 m \longrightarrow l \\
& F_{1 B}=i L_{1} B \sin 90^{\circ}=i L_{1} B \\
& F_{2 B}=i L_{2} B \sin 90^{\circ}=i L_{2} B \\
& F_{B}=\sqrt{F_{B 1}^{2}+F_{B 2}^{2}}=i B \sqrt{L_{1}^{2}+L_{2}^{2}} \\
& F_{B}= \\
& =(4.5)(0.24) \sqrt{0.3^{2}+0.6^{2}}=0.724 \mathrm{~N}
\end{aligned}
$$

