The figure shows a combination of four capacitors $\mathrm{C}_{1}=\mathrm{C}_{3}=8.0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=\mathrm{C}_{4}=6.0 \mu \mathrm{~F}$ connected to a 12-V battery. Calculate the charge on capacitor C_{1}.
A) $36 \mu \mathrm{C}$
B) $18 \mu \mathrm{C}$
C) $12 \mu \mathrm{C}$
D) $24 \mu \mathrm{C}$
E) $30 \mu \mathrm{C}$

Consider the circuit of identical capacitors shown in the figure. A potential difference of $2.0 \times 10^{2} \mathrm{~V}$ is applied by the battery V . Calculate the energy stored in the system if the capacitance of each capacitor is $50 \mu \mathrm{~F}$.
A) 3.0 J
B) 4.0 J
C) 6.0 J
D) 1.0 J
E) 7.0 J

The electric potential across 4 capacitors is $v / 2$ and across 2 capacitors is V.

$$
\begin{aligned}
& U=4\left[\frac{1}{2} C\left(\frac{V}{2}\right)^{2}\right]+2\left[\frac{1}{2} C V^{2}\right] \\
& U=\frac{3}{2} C V^{2}=\frac{3}{2}\left(50 \times 10^{-6}\right)(200)^{2} \\
& U=3.0 \mathrm{~J}
\end{aligned}
$$

An air-filled parallel plate capacitor has a capacitance of $5.0 \mu \mathrm{~F}$ and a plate area of $60 \mathrm{~cm}^{2}$. What is the energy density stored, in $\mathrm{J} / \mathrm{m}^{3}$, between the plates if the potential difference across them is 8.0 V?
A) 2.5×10^{6}
B) 5.0×10^{5}
C) 1.2×10^{6}
D) 1.6×10^{6}
E) 8.9×10^{5}

$$
\begin{aligned}
& U=\frac{1}{2} C V^{2} \\
& \text { Volume }=A_{\uparrow} d=\frac{\varepsilon_{0} A^{2}}{C} \\
& \quad C=\frac{\varepsilon_{0} A}{d} \Rightarrow d=\frac{\varepsilon_{0} A}{C} \\
& u=\frac{U}{\text { Volume }}=\frac{1}{2} \frac{C^{2} V^{2}}{\varepsilon_{0} A^{2}}=\frac{1}{2} \cdot \frac{\left(50 \times 10^{-6}\right)^{2}(8)^{2}}{8.85 \times 10^{-12}\left(60 \times 10^{-4}\right)^{2}} \\
& u=2.5 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}
\end{aligned}
$$

The figure shows 6 identical capacitors, each with a capacitance of $1.0 \mu \mathrm{~F}$. Find the equivalent capacitance $C_{\text {eq }}$ between points A and B.
A) $1.5 \mu \mathrm{~F}$
B) $4.0 \mu \mathrm{~F}$
C) $3.0 \mu \mathrm{~F}$
D) $2.5 \mu \mathrm{~F}$
E) $9.0 \mu \mathrm{~F}$

A $2.0-\mathrm{nF}$ parallel plate capacitor is charged using a $12-\mathrm{V}$ battery. The battery is removed and a dielectric of dielectric constant $\kappa=3.5$ is inserted, filling completely the space between the plates of the capacitor. What is the energy stored in the capacitor after inserting the dielectric?
A) $4.1 \times 10^{-8} \mathrm{~J}$
B) $5.0 \times 10^{-5} \mathrm{~J}$
C) $1.4 \times 10^{-7} \mathrm{~J}$
D) $2.4 \times 10^{-8} \mathrm{~J}$
E) $1.0 \times 10^{-6} \mathrm{~J}$

$$
q=C V=2 \times 10^{-9} \times 12=24 n C
$$

When the battery is removed, the charge on the capacitor does not change

$$
U=\frac{q^{2}}{2 K C}=\frac{\left(24 \times 10^{-9}\right)^{2}}{2(3.5) 2 \times 10^{-9}}=4.1 \times 10^{-8} \mathrm{~J}
$$

Two capacitors, C_{1} and, C_{2} are connected in series to a 40 V power supply. If the capacitance $\mathrm{C}_{1}=$ 35 nF , and of $\mathrm{C}_{2}=85 \mathrm{nF}$, find the voltage across C_{1}.
A) 28 V
B) 12 V
C) 16 V
D) 40 V
E) 24 V

$$
40 \mathrm{\imath} \frac{I}{T} c_{\text {eq }}=\frac{1}{\frac{1}{c_{1}}+\frac{1}{c_{2}}}=\frac{35 \times 85}{35+85} n F=24.79 \mathrm{nF}
$$

The charge on $C_{\text {eq }}$ is the same as the charge on C_{1}.

$$
q=c V=24.79 \times 10^{-9} \times 40=991.7 n C
$$

The voltage across C_{1} is $V_{1}=\frac{q_{1}}{c_{1}}=\frac{q}{c_{1}}=\frac{991.7}{35}=28.3 \mathrm{~V}$

