An electron is released from rest at the origin in a uniform electric field that points in the positive x direction and has a magnitude of $850 \mathrm{~N} / \mathrm{C}$. What is the change in the electric potential energy of the electron-field system when the electron moves a distance of 2.5 m ?
A) $-3.4 \times 10^{-16} \mathrm{~J}$
B) $+3.4 \times 10^{-16} \mathrm{~J}$
C) $-1.4 \times 10^{-16} \mathrm{~J}$
D) $+1.4 \times 10^{-16} \mathrm{~J}$
E) $-5.4 \times 10^{-16} \mathrm{~J}$

$$
\begin{aligned}
& \vec{E}=(850 \mathrm{~N} / \mathrm{C}) \hat{\imath} \\
& \Theta_{\text {final }}^{1 \leftarrow}<\underset{d=2.5 m}{\rightleftarrows} \Theta_{\text {initial }} \\
& \Delta U=-W_{\text {field }}=-\int_{i}^{f} \vec{F} \cdot d \vec{s}=-\int_{i}^{f} q \vec{E} \cdot d \vec{s} \\
& \Delta u=-\int_{i}^{f}(-e) E d s \cos 180^{\circ}=-\int_{i}^{i} e E d s=-c E d \\
& \Delta u=-1.6 \times 10^{-19}(850)(2.5)=-3.4 \times 10^{-16} \mathrm{~J}
\end{aligned}
$$

The figure shows a plot for the electric field E_{x} as a function of x . Find the magnitude of the potential difference between the points $x=2.00 \mathrm{~m}$ and $\mathrm{x}=6.00 \mathrm{~m}$.
A) 14.5 V
B) 12.5 V
C) 10.0 V
D) 16.5 V
E) 11.0 V

$$
\begin{aligned}
& \Delta V=-\int_{i}^{t} \vec{E} \cdot d \vec{s} \\
& |\Delta V|=\left|\int_{i}^{f} E d s\right| \\
& =14.5 \mathrm{~V} \\
& \\
&
\end{aligned}
$$

In the figure, particles with charges $\mathrm{q}_{1}=+10 \mu \mathrm{C}$ and $\mathrm{q}_{2}=-30 \mu \mathrm{C}$ are fixed in place with a separation of $d=24 \mathrm{~cm}$. What is the value of Q that will make the potential equal zero at point P.
A) $7.1 \mu \mathrm{C}$
B) $5.1 \mu \mathrm{C}$
C) $10 \mu \mathrm{C}$
D) $3.5 \mu \mathrm{C}$
E) $4.5 \mu \mathrm{C}$

$$
\begin{aligned}
V=\frac{k q_{1}}{r_{1}}+\frac{k q_{2}}{r_{2}}+\frac{k Q}{r_{3}} & =0 \\
\frac{k q_{1}}{d}+\frac{k q_{2}}{2 d}+\frac{k Q}{\sqrt{2} d} & =0 \\
Q=\sqrt{2}\left(-9,-\frac{q_{2}}{2}\right) & =\sqrt{2}\left(-10 \mu c-\left(-\frac{30 \mu c}{2}\right)\right) \\
& =\sqrt{2}(5 \mu c)=7.1 \mu c
\end{aligned}
$$

In a certain region of space, the electric potential is given by: $V=-2.0 x y z^{2}$, where V is in volts, and x, y, and z are in meters.
What is the magnitude of the electric field at the point with position vector $(2.0 \hat{\imath}-2.0 \hat{\jmath}+4.0 \hat{k}) ?$
A) $111 \mathrm{~V} / \mathrm{m}$
B) $90.8 \mathrm{~V} / \mathrm{m}$
C) $16.1 \mathrm{~V} / \mathrm{m}$
D) $743 \mathrm{~V} / \mathrm{m}$
E) $571 \mathrm{~V} / \mathrm{m}$

$$
\begin{aligned}
& E_{x}=-\frac{\partial V}{\partial x}=2 y z^{2}=2(-2)(4)^{2}=-64 \mathrm{~N} / \mathrm{C} \\
& E_{y}=-\frac{\partial V}{\partial y}=2 x z^{2}=+64 \mathrm{~N} / \mathrm{C} \\
& E_{z}=-\frac{\partial V}{\partial z}=4 x y z=4(2)(-2)(4)=-64 \mathrm{~N} / \mathrm{C} \\
& E=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}=111 \mathrm{~V}
\end{aligned}
$$

Four identical charged particles, each of charge $q=30 \mu \mathrm{C}$, are fixed at the corner of a square of length 10.0 cm . How much work is required, by an external agent, to move one of them to infinity?
A) -219 J
B) +219 J
C) -510 J
D) +105 J
E) -105 J

$$
\begin{aligned}
& \Delta K^{\circ}=-\Delta U+W_{\text {app }} \\
& W_{\text {app }}=\Delta U=q \Delta V=q\left(y_{f}^{\lambda^{0}}-V_{i}\right)=-q\left(\frac{k q}{d}+\frac{k q}{d}+\frac{k q}{\sqrt{2} d}\right) \\
& W_{\text {app }}=-\frac{k q^{2}}{d}\left(2+\frac{1}{\sqrt{2}}\right)=\frac{\left(9 \times 10^{9}\right)\left(30 \times 10^{-6}\right)^{2}}{0.1}\left(2+\frac{1}{\sqrt{2}}\right) \\
& W_{\text {app }}=-219 J
\end{aligned}
$$

Two metal spheres 1 and 2 with radii $r_{1}=1.0 \mathrm{~cm}$ and $r_{2}=2.0 \mathrm{~cm}$ carry charges $\mathrm{q}_{1}=+22 \mathrm{nC}$, and $\mathrm{q}_{2}=$ -10 nC , respectively. Initially both spheres are far apart. Then the spheres are connected by a thin wire, how much charge is lost by sphere 1 when the electrostatic equilibrium is reached?
A) +18 nC
B) -18 nC
C) +12 nC
D) -12 nC
(1) $22 n c$
E) +14 nC

$$
\begin{aligned}
& \begin{array}{l}
V_{1}=V_{2} \\
\frac{k q_{1}}{R_{1}}=\frac{k q_{2}}{R_{2}} \\
\frac{q_{1}}{0.01}=\frac{q_{2}}{0.02} \Rightarrow 2 q_{1}=q_{2} \\
\text { charge lost by sphere } 1 \text { is } 22 n c-4 n c=12 n c-10 n C=12 n c
\end{array} \Rightarrow 3 q_{1}=12 n C \Rightarrow q_{1}=4 n c \\
& q_{2}=8 n C
\end{aligned}
$$

