A point charge $\mathrm{q}=-1.0 \times 10^{-10} \mathrm{C}$ is placed at the center of a spherical conducting shell that has a total charge $Q=5.0 \times 10^{-10} \mathrm{C}$, as shown in the figure. The outer surface has radius $\mathrm{R} 2=10 \mathrm{~cm}$. The charge density on the external surface is equal to
A) $+3.2 \mathrm{nC} / \mathrm{m}^{2}$
B) $-3.2 \mathrm{nC} / \mathrm{m}^{2}$
C) $+4.0 \mathrm{nC} / \mathrm{m}^{2}$
D) $+0.80 \mathrm{nC} / \mathrm{m}^{2}$
E) $-0.80 \mathrm{nC} / \mathrm{m}^{2}$

Net charge in a cavity totally within a conductor is zero

$$
\begin{aligned}
& \Rightarrow q_{\text {in }}+q=0 \\
& \Rightarrow q_{\text {in }}=-q=+1 \times 10^{-10} \mathrm{C}
\end{aligned}
$$

From conservation of charge, the total charge of the spherical conductor cannot charge

$$
\begin{aligned}
& \Rightarrow q_{\text {out }}+q_{\text {in }}=5 \times 10^{-10} \mathrm{C} \\
& \Rightarrow q_{\text {out }}=4 \times 10^{-10} \mathrm{C}
\end{aligned}
$$

\Rightarrow The charge density on the external surface

$$
=\frac{q_{\text {out }}}{4 \pi r^{2}}=\frac{4 \times 10^{-10}}{4 \pi(0.1)^{2}}=3.2 \times 10^{-9} \mathrm{c} / \mathrm{m}^{2}=3.2 \mathrm{nC} / \mathrm{m}^{2}
$$

The figure shows a pyramid with horizontal square base, $a=6.00 \mathrm{~m}$ on each side, and a height, $h=$ 4.00 m . The pyramid is placed in an upward vertical electric field of magnitude $E=52.0 \mathrm{~N} / \mathrm{C}$. If the pyramid does not include any charge inside, calculate the electric flux, in N.m²/C, through its four slanted (inclined) surfaces.
A) $+1.87 \times 10^{3}$
B) -1.87×10^{3}
C) $+0.9 \times 10^{3}$
D) -0.9×10^{3}
E) -3.27×10^{3}

Gauss' Law $\varepsilon_{0} \phi=9$ enc
Since $q_{\text {enc }}=0 \Rightarrow \phi=0$

$$
\Phi_{\text {base }}+\Phi_{\text {sides }}=0
$$

$$
\begin{aligned}
& \Phi_{\text {base }}=\vec{E} \cdot \vec{A}=E A \cos 180=-E a^{2} \\
& \Rightarrow \Phi_{\text {sides }}=-\Phi_{\text {base }}=E a^{2}=52(6)^{2} \frac{\mathrm{Nm}^{2}}{\mathrm{C}}
\end{aligned}
$$

$$
\Phi_{\text {sides }}=+1.87 \times 10^{3} \frac{\mathrm{Nm}^{2}}{\mathrm{c}}
$$

Consider three infinite non-conducting sheets with uniform charge densities ($-\sigma,+2 \sigma,+3 \sigma$), as shown in cross section in the figure. The electric field between plates A and B is given by
A) $\frac{3 \sigma}{\epsilon_{0}}$ to the left
B) $\frac{6 \sigma}{\epsilon_{0}}$ to the left
C) $\frac{3 \sigma}{\epsilon_{0}}$ to the right
D) $\frac{6 \sigma}{\epsilon_{0}}$ to the right
E) $\frac{\sigma}{\epsilon_{0}}$ to the right

The figure shows the cross sectional area of two identical charged solid spheres, 1 and 2, of radius R. The charge is uniformly distributed throughout the volumes of both the spheres. The net electric field is zero at point P, which is located on a line connecting the centers of the spheres, at radial distance $R / 2$ from the center of sphere 1 . If the charge on sphere 1 is $q_{1}=7.8 \mu \mathrm{C}$, determine the magnitude of the charge q_{2} on sphere 2.
A) $8.8 \mu \mathrm{C}$
B) $3.2 \mu \mathrm{C}$
C) $9.3 \mu \mathrm{C}$
D) $3.5 \mu \mathrm{C}$
$r_{2}>R$

$$
E_{2}=\frac{k q_{2}}{r_{2}^{2}}=\frac{k q_{2}}{\left(R+\frac{R}{2}\right)^{2}}
$$

E) $6.8 \mu \mathrm{C}$

$$
\begin{aligned}
& E_{1}=\frac{k q_{1}}{R^{3}} r_{1}=\frac{k q_{1}}{R^{3}}\left(\frac{R}{2}\right) \\
& E_{2}=E_{1} \Rightarrow \frac{k q_{2}}{\left(R+\frac{R}{2}\right)^{2}}=\frac{k q_{1}}{R^{3}} \frac{R}{2} \\
& \Rightarrow \frac{q_{2}}{\left(\frac{3}{2}\right)^{2}}=\frac{q_{1}}{2} \Rightarrow q_{2}=\frac{9}{8} q_{1}=8.8 \mu c
\end{aligned}
$$

$$
2
$$

A long, straight wire has fixed negative charge with a linear charge density of magnitude $4.5 \mathrm{nC} / \mathrm{m}$. The wire is enclosed by a coaxial, thin walled nonconducting cylindrical shell of radius 20 cm . The shell is to have a positive charge on its outside surface (with a surface charge density σ) that makes the net electric field at points 30 cm from the center of the shell equal to zero. Calculate σ.
A) $3.6 \times 10^{-9} \mathrm{C} / \mathrm{m}^{2}$
B) $3.0 \times 10^{-10} \mathrm{C} / \mathrm{m}^{2}$
C) $1.5 \times 10^{-10} \mathrm{C} / \mathrm{m}^{2}$
D) $4.5 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$
E) $7.8 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$

Since the point P is outside the cylindrical shell, we can treat the shell as another wire located at the same position of the real wire.

$$
\begin{aligned}
& E_{s}=E_{w} \\
& \Rightarrow \frac{\lambda_{s}}{2 \pi \varepsilon_{0} r}=\frac{\lambda_{w}}{2 \pi \varepsilon_{0} r} \\
& \Rightarrow \lambda_{s}=\lambda_{w} \\
& \lambda_{s}=\frac{\text { charge }}{\text { length }} \\
& \sigma=\frac{\vec{E}_{s}}{\text { area }}=\frac{\vec{E}_{w}}{2 \pi r_{s} l}=\frac{2, \lambda_{s}}{2 \pi r_{s}} \\
& \sigma=\frac{\lambda_{w}}{2 \pi r_{s}}=\frac{4.5}{2 \pi(0.2)} \frac{n C}{\mathrm{~m}^{2}}=3,6 \times 10^{-9} \frac{\mathrm{C}}{\mathrm{~m}^{2}}
\end{aligned}
$$

Consider two infinitely long thin wires carrying uniform linear charge densities λ_{1} and λ_{2}. The wires are arranged as shown in the figure and $\lambda_{2}=+5.50 \mathrm{nC} / \mathrm{m}$. If the net electric field at P is zero, determine the magnitude of λ_{1}.
A) $2.75 \mathrm{nC} / \mathrm{m}$
B) $1.50 \mathrm{nC} / \mathrm{m}$
C) $1.75 \mathrm{nC} / \mathrm{m}$
D) $2.00 \mathrm{nC} / \mathrm{m}$
E) $0.50 \mathrm{nC} / \mathrm{m}$

$$
\left\{\begin{array}{l}
\vec{E}_{1} \\
\vec{E}_{2}
\end{array}\right.
$$

$$
\begin{aligned}
E_{1} & =\frac{\left|\lambda_{1}\right|}{2 \pi \varepsilon_{0} r_{1}} \\
E_{2} & =\frac{\left|\lambda_{2}\right|}{2 \pi \varepsilon_{0} r_{2}} \\
E_{1} & =E_{2} \Rightarrow \frac{\left|\lambda_{1}\right|}{r_{1}}=\frac{\left|\lambda_{2}\right|}{r_{2}} \\
& \Rightarrow\left|\lambda_{1}\right|=\frac{r_{1}}{r_{2}}\left|\lambda_{2}\right|=\frac{0.02}{0.04} 5.5 \frac{n c}{m}=2.75 \frac{n c}{m}
\end{aligned}
$$

