Q1

M1-122-11
Water at $90.0^{\circ} \mathrm{C}$ fills a Pyrex tube (radius $=2.00 \mathrm{~cm}$, height $=12.0 \mathrm{~cm}$) to the rim. If we ignore the expansion of the Pyrex tube, what will be the height of water if it is cooled to $10.0^{\circ} \mathrm{C}$. (The coefficient of volume expansion of water is $207 \times 10^{-6} \mathrm{C}^{\circ}$)
A) 11.8 cm

$$
\begin{gathered}
\Delta V=\beta V \Delta T \\
V=l \operatorname{lingth} \times \text { area }=l A \\
\Delta(l A)=\beta l A \Delta T \\
(\Delta l) A=\beta l A \Delta T \\
\Delta l=207 \times 10^{-6}(12)(10-90)=-0.199 \mathrm{~cm} \\
\Delta l=l_{f}-l_{i} \Rightarrow l_{f}=\Delta l+l_{i}=-0.199-12.0=11.8 \mathrm{~cm} .
\end{gathered}
$$

B) 10.4 cm
C) 10.9 cm
D) 9.00 cm
E) 9.70 cm

Q2
M1-132-09
What is the change in area (in cm^{2}) of a $60.0 \mathrm{~cm} \times 150 \mathrm{~cm}$ (width \times height) glass plate when its temperature increases by $65.0 \mathrm{~F}^{\circ}$. The coefficient of volume expansion of glass is $2.70 \times$ $10^{-5} / C^{\circ}$.

$$
\Delta A=2 \alpha A \Delta T
$$

A) 5.85
B) 19.3
$\Delta A=2\left(\frac{\beta}{3}\right) A D T$
C) 3.24
D) 14.9
E) 8.62

$$
\begin{aligned}
& \Delta A=2\left(\frac{2.7 \times 10^{-5}}{30^{0}}\right)(60 \mathrm{~cm})(150 \mathrm{~cm})\left(65 F^{0}\right)\left(\frac{5^{2}}{197^{\circ}}\right) \\
& \Delta A=5.85 \mathrm{~cm}^{2}
\end{aligned}
$$

Q3
M1-112-09
A block of ice, with a mass of 6.30 kg at $0.00^{\circ} \mathrm{C}$, is added to a certain amount of water. The water is cooled from 100 to $0.00^{\circ} \mathrm{C}$. What is the mass of water used? Assume that all the ice melted.
A) 5.01 kg
B) 2.04 kg
C) 3.42 kg
D) 1.50 kg
E) 6.05 kg

$$
\begin{aligned}
& Q_{A}+Q_{B}=0 \\
& m_{A} L_{f}+m_{B} c_{w}\left(T_{f}-T_{i}\right)=0 \\
& \begin{array}{l}
m_{B}=\frac{-m_{A} L_{f}}{c_{w}\left(T_{f}-T_{i}\right)}=\frac{-(6.3 \mathrm{~kg})\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)}{4.19 \times 10^{3} \mathrm{~J}\left(0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}\right)} \\
m_{B}=5.01 \mathrm{~kg}
\end{array}
\end{aligned}
$$

When 200 W is supplied continuously to an isolated object of mass 0.400 kg , its phase changes from solid to liquid, and finally to gas as shown in the figure. What is the latent heat of vaporization, in J/kg, of the object?
A) 1.05×10^{6}
B) 2.00×10^{6}
C) 1.52×10^{7}
D) 2.35×10^{6}
E) 5.50×10^{6}

Q5

$$
\begin{aligned}
& \text { time }=(60-25) \mathrm{min}=2100 \mathrm{~s} \\
& Q=\text { Energg }^{2}=\text { Power } \times \text { time } \\
& Q=200 \times 2100 \mathrm{~J}=0.420 \times 10^{6} \mathrm{~J} \\
& L_{V}=\frac{Q}{m}=\frac{0.420 \times 10^{6} \mathrm{~J}}{0.400 \mathrm{~kg}} \\
& L_{V}=1.05 \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

A sample of a gas undergoes a transition from an initial state i to a final state f by two different paths, if and ibf, as shown in the figure. The energy transferred to the gas as heat along the path if is $10 p_{i} V_{i}$. Find the change in internal energy of the gas for the path ibf.
A) $6 p_{i} V_{i}$
B) $p_{i} V_{i}$
C) $(3 / 2) p_{i} V_{i}$
D) $10 p_{i} V_{i}$
E) $(5 / 2) p_{i} V_{i}$

$$
\begin{aligned}
& \Delta E_{i b f}=\Delta E_{i f} \quad \text { independent } \\
& W_{i f}=p_{i}\left(5 V_{i}-V_{i}\right)=4 P_{i} V_{i} \\
& \Delta E_{i b f}=Q_{i f}-W_{i f} \\
& \Delta E_{i b f}=10 P_{i} V_{i}-4 P_{i} V_{i}=G P_{i} V_{i}
\end{aligned}
$$

Q6
M1-112-10
Consider a copper slab of thickness 19 cm and cross sectional area $5.0 \mathrm{~m}^{2}$. Heat is conducted from the left to the right of the slab at a rate of 1.2 MW . If the temperature on the left of the slab is $102{ }^{\circ} \mathrm{C}$, what is the temperature on the right of the slab? (The thermal conductivity of copper is $400 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$)
A) $-12^{\circ} \mathrm{C}$
B) $+12{ }^{\circ} \mathrm{C}$
C) $-20^{\circ} \mathrm{C}$
D) $+20^{\circ} \mathrm{C}$
E) $+42{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
P_{\text {cond }} & =\frac{k A\left(T_{H}-T_{C}\right)}{L} \\
T_{H}-T_{C} & =\frac{P_{\text {cond }} L}{k A} \\
\Rightarrow T_{C} & =T_{H}-\frac{P_{\text {cond }} L}{k A} \\
T_{C} & =102-\frac{\left(1.2 \times 10^{6}\right)(0.19)}{(400)(5)}=-12^{\circ} \mathrm{C}
\end{aligned}
$$

