#### ch17

## Q1

M1-122-06

M1-112-05

The pressure in a travelling sound wave is given by the equation  $\Delta p = (1.00 \text{ Pa}) \sin \pi [(0.900 \text{ m}^{-1}) \text{ x} - (315 \text{ s}^{-1}) \text{ t}]$ Find the sound level of the wave (Take the density of air  $\rho_{air} = 1.21 \text{ kg/m}^3$ ).

| A) 90.7 dB | $\beta = 10 \log \frac{1}{I_0}$ and $I = \frac{1}{2} p V w^2 S_m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B) 100 dB  | $\Delta P_m = V \rho  \omega  \text{Sm} \implies T = \frac{1}{2}  \frac{\Delta P_m^2}{V \rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C) 85.0 dB | $\frac{1}{100} \int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{\sqrt{\rho}} \int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{\sqrt{\rho}} \int_{-\infty}^{\infty} \frac{1}{2} \frac{1}{\sqrt{\rho}} \frac{1}{\sqrt{\rho}} \frac{1}{2} \frac{1}{\sqrt{\rho}} 1$ |
| D) 75.0 dB | $\beta = 10 \text{ by } \frac{1}{2} \frac{\Delta \beta_m^2}{V \rho I_0} = 10 \text{ by } \frac{1}{2} \frac{1}{343(121)(10^{-12})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E) 120 dB  | $\beta = 90.8 \ \text{JB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            | $\beta = 10.8 \text{ GD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### Q2

A sound wave enters a tube at the source end, as shown in figure 1. At point P, the sound wave splits into two waves that recombine at point Q. The radius of the semicircle is varied until the first minimum is observed at the detector when r = 50.0 cm. What is the wavelength of sound?



#### M1-132-07

waves in phase as shown in **Figure 2**. What is the first frequency at which destructive interference occurs and the first frequency at which constructive interference occurs at point P, respectively? Speed of sound = 350 m/s.

A) 500 Hz, 1000 Hz
B) 500 Hz, 1500 Hz
C) 1500 Hz, 500 Hz
D) 1000 Hz, 500 Hz
E) 1000 Hz, 1500 Hz



# Q4

M1-132-05

A point sound source, emitting sound waves isotropically with constant power, is located at a distance d from you. If you move the source to position at a distance of 2d from you, by how many decibel (dB) the sound intensity level will drop at your position?

A) 6  
B) 4 
$$\beta_1 = 10 \log \frac{\overline{I}_1}{\overline{I}_0} = 10 \log \frac{\frac{\beta_1}{4\pi d^2}}{\overline{I}_0}$$

C) 2  
D) 8  

$$\beta_2 = 10 \log \frac{I_2}{I_0} = 10 \log \frac{P_3}{\frac{4\pi(2d)^2}{I_0}} = 10 \log \frac{P_3}{\frac{4\pi d^2}{I_0}} - 10 \log \frac{P_3}{I_0}$$

- $\beta_2 \beta_1 = -10 \log 4 = 6 dB$ D) 8
- E) 10

## Q5

M1-132-06

M1-122-08

Δ

Organ pipe A, with one open end, has a fundamental frequency of 220 Hz. The next-highest harmonic of pipe A has the same frequency as the third harmonic of a pipe B which has both ends open. How long is pipe B? The speed of sound = 345 m/s.٨

#### **Q6** O8.

A sound source and a truck are approaching each other with speeds of 50.0 m/s and 30.0 m/s respectively. The source emits sound waves at a frequency of 0.150 MHz. Find the wavelength of the sound waves reflected back to the source.

(The speed of sound in air is 340 m/s)

A) 0.141 cm  
B) 1.20 cm  
C) 0.213 cm  
D) 0.532 cm  
E) 0.921 cm  
Detected by truck 
$$f' = f \frac{V + Vt}{V - V_s} = 0.191 \text{ MHZ}$$
  
Detected by source  $f'' = f' \frac{V + Vs}{V - V_t} = 0.241 \text{ MHZ}$   
 $\chi'' = \frac{V}{f''} = 0.141 \text{ cm}$