Q1
M1-081-01
The displacement of a string carrying a traveling sinusoidal wave is given by:

$$
y(x, t)=y_{m} \sin (k x-\omega t+\varphi)
$$

At time $t=0$ the point at $x=0$ has a displacement of zero and is moving in the positive y direction. Find the value of the phase constant φ.
A) 180 degrees
B) 90 degrees
C) 135 degrees
D) 0 degrees
E) 270 degrees

$$
\begin{aligned}
& \text { moving to the right } \\
& y(x, t)=y_{m} \sin (k x-w t+\phi) \\
& y(x=0, t=0)=y_{m} \sin \phi=0 \\
& \sin \phi=0 \Rightarrow \phi=0^{\circ} \text { or } 180^{\circ}
\end{aligned}
$$

Another way $u(x, t)=-y_{m} \omega \cos (k x-\omega t+\phi)$
$\Rightarrow u(x=0, t=0)=-y_{m} \omega \cos \phi=\left\{\begin{array}{l}-y \omega \cos 0^{\circ}=-y \omega \\ \text { moving up } u>0 \Rightarrow \phi=180^{\circ}\end{array} \quad \Rightarrow \cos 180^{\circ}=y \omega\right.$

A transverse sinusoidal wave is travelling on a stretched string. The maximum transverse speed of a particle on the string is $24.0 \mathrm{~m} / \mathrm{s}$. The frequency of oscillations of a particle in the string is 120 Hz . What is the amplitude of the wave?
A) 31.8 mm
B) 25.1 mm
C) 12.0 mm
D) 43.3 mm
E) 53.2 mm

$$
\begin{aligned}
& u_{\max }=y_{m} \omega=y_{m} 2 \pi f \\
& \Rightarrow y_{m}=\frac{u_{\max }}{2 \pi f}=\frac{24}{2 \pi \times 120}=0.0381 \mathrm{~m} \\
& =38.1 \mathrm{~mm}
\end{aligned}
$$

Q3
M1-081-02
A stretched string of mass 2.0 g and length 10 cm , carries a wave having the following displacement wave: $y(x, t)=0.05 \sin (2 \pi x-400 \pi t)$, where x and y are in meters and t is in seconds. What is the tension in the string?
A) 800 N
B) 150 N
C) 55 N
D) 15 N
E) 100 N

$$
\begin{aligned}
v=\sqrt{\frac{\tau}{\mu}} \Rightarrow \tau & =v^{2} \mu=\left(\frac{\omega}{k}\right)^{2} \mu=\left(\frac{\omega}{k}\right)^{2} \frac{m}{l} \\
\tau & =\left(\frac{400 \pi}{2 \pi}\right)^{2} \frac{2 \times 10^{-3}}{10 \times 10^{-2}}=800 \mathrm{~N}
\end{aligned}
$$

A transverse sinusoidal travelling wave on a stretched string is given by: $y(x, t)=0.00230 \sin (6.98 x+742 t)$, where x and y are in meters, and t is in seconds. The length of the string is 1.35 m and its mass is 3.38 g . What is the average power carried by the wave?
A) 0.387 W
B) 0.774 W
C) 0.194 W
D) 0.457 W
E) 0.513 W

$$
\begin{aligned}
P_{\text {avg }}=\frac{1}{2} \mu v \omega^{2} y_{m}^{2} & =\frac{1}{2} \frac{3.38 \times 10^{-3}}{1.35} \frac{742}{6.98} 742^{2}(0.0023)^{2} \\
& =0.388 \mathrm{~W}
\end{aligned}
$$

Q5

Two identical sinusoidal waves travel simultaneously in the same direction along the same string. Each wave has an amplitude of y_{m}. If the amplitude of the resultant wave is $y_{m} / 2$, what is the phase difference between the two waves?
A) 151°
B) 75.5°
C) 120°
D) 60.0°
E) 110°
$2 y_{m} \cos \frac{1}{2} \phi=\frac{y m}{2}$
$\Rightarrow \cos \frac{1}{2} \phi=\frac{1}{4} \Rightarrow \frac{1}{2} \phi=\cos ^{-1} \frac{1}{4}$
$\Rightarrow \phi=2 \cos ^{-1}\left(\frac{1}{4}\right)=151^{\circ}$

Two identical strings (same mass and length), each fixed at both ends, are arranged near each other. If string A starts oscillating in its fundamental mode, it is observed that string B will begin vibrating in its third normal mode $(n=3)$. What is the ratio of the tension in string B to that in string A ?
A) $1 / 9$
B) 9
C) $1 / 3$
D) 3
E) 1

$$
f_{n}=n \frac{v}{2 L}
$$

$\begin{array}{ll}\text { For string } A & f_{A 1}=1 \frac{-\sqrt{A}}{2 L} \\ \text { For string } B & f_{B 3}=3 \frac{\sqrt{B}}{2 L}\end{array}$

$$
\begin{aligned}
f_{A 1}=f_{B 3} \Rightarrow \frac{v_{A}}{2 L} & =3 \frac{v_{B}}{2 L} \\
v_{A} & =3 \sqrt{B} \\
\sqrt{\frac{\tau_{A}}{\mu}} & =3 \sqrt{\frac{\tau_{B}}{\mu}} \\
\tau_{A} & =9 \tau_{B} \\
\Rightarrow \frac{\tau_{B}}{\tau_{A}} & =\frac{1}{9} .
\end{aligned}
$$

