KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #5- CHAPTER 21

NAME:

Key

ID#

SECTION#

Consider two identical conducting spheres, A and B. Initially, sphere A has a charge of -80 Q and Sphere B has a charge of +20 Q. If the spheres are touched and then separated by a distance of 0.3 m, what is the magnitude of the resultant force between them? [Take Q = 5.7×10^{-8} C]

$$|\vec{F}_{12}| = \frac{|\vec{F}_{13}|^2}{|\vec{F}_{12}|} = \frac{9 \times 10^9 (30 \times 5.7 \times 10^8)^2}{(0.3)^2}$$

= $[0.292 \text{ N}]$

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #5- CHAPTER 19

NAME: Key ID# SECTION#

Two positive charges $q_1 = +8.0$ C and $q_2 = +2.0$ C are separated by 300 m. A third charge q_3 is placed a distance r from q_1 so that the resultant electric force on q_3 due to the other two charges is zero. Calculate the distance r.

KING FAHD UNIVERSITY OF PERTOLEUM & MINERALS PHYSICS DEPARTMENT QUIZ #5- CHAPTER 21

NAME:

ID#

SECTION#

In the figure, Q = 60 $\mu C,\,q$ = - 20 $\mu C,\,a$ = 3.0 m, and b = 4.0 m. Calculate the magnitude and direction of the total electric force on charge q.

$$|\vec{F}_{nut,3}| = |\vec{F}_{31}| + |\vec{F}_{32}|$$

$$|\vec{F}_{31}| = |\vec{F}_{32}| = |k| \frac{9}{19^3}$$

$$= 9 \times 10^3 \times (60 \times 10^6) (20 \times 10^6) = 0.432 \text{ N}$$

Trut, by = 0

 $\theta = 605' \left(\frac{4}{5}\right) = 36.9^{\circ}$

$$f_{\text{Nut}_{1}x} = -f_{31} \cos \theta + f_{32} \cos \theta$$

= $-2 f_{31} \cos \theta = -2 \times 0.432 \times \frac{4}{5} = -0.691 \text{ N}$

$$\vec{F}_{\text{not},3} = -0.6912 + 03$$

magnitude = 0.691N direction: negative x-axix