Summary chapter 30

I. Objective:

1. Calculate the magnetic field at a point P due to a current element by using Biot-Savart law.
2. Calculate the magnetic force between two parallel conductors carrying currents I_{1} and I_{2}.
3. Use Amper's law to calculate the magnetic field due to a cylindrical wire of radius R.
4. Calculate the magnetic field due to a solenoid.
5. Calculate the magnetic flux through a surface A placed in a magnetic field.

II. Summary of major points:

1. * The magnetic field due to a straight carrying a current I is given by;

$$
\mathrm{B}_{\mathrm{P}}=\frac{\grave{\mathrm{I}}_{0} \mathrm{I}}{4 \pi \mathrm{a}}\left(\cos \grave{e}_{1}-\operatorname{cose}_{2}\right)
$$

where a is distance between P and the wire and $\mu_{0}=4 \pi \times 10^{-7}$ wb/A.m.

The direction of the magnetic field at point P is out of the paper.

* The magnetic field due to an infinite long wire (è $1=0$, è $2=\varnothing$) is:

$$
\mathrm{B}_{\mathrm{p}}=\frac{\grave{\mathrm{I}}_{0} \mathrm{I}}{2 \pi \mathrm{a}}
$$

* The magnetic feld at the center of an arc of radius \mathbf{R} which subtends an angle θ is given by:

$$
\mathrm{B}_{\mathrm{o}}=\frac{\grave{\mathrm{I}}_{0} \mathrm{I}}{4 \pi \mathrm{R}} \grave{\mathrm{e}}
$$

The angle θ is in radian.

* The magnetic field at the center of circular loop carrying a current I is given by:
$\mathrm{B}=\frac{\mathrm{i}_{0} \mathrm{I}}{2 \mathrm{R}}($ here $\theta=2 \pi)$
where R is the radius of the loop.

The direction of the magnetic at the center of the loop is out of the paper.
2. The magnetic force per unit length between parallel conductors is given by:

$$
\frac{\mathrm{F}_{1}}{\ell}=\frac{\grave{\mathrm{i}}_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{a}}
$$

where a is distance between the two conductors.

* If the currents, I_{1} and I_{2} have the same direction, he wires will attract each other.
* If the current have opposite direction, the wires will repel each other.

3. Amper's law is defined as;

$$
\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~s}}=\mathrm{i}{ }_{\mathrm{o}} \mathrm{I}
$$

The magnetic field due to a long wire of radius \mathbf{R} is;

$$
\begin{aligned}
& \mathrm{B}=\frac{\grave{\mathrm{I}}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}}{2 \pi \mathrm{r}} \mathrm{r} \geq \mathrm{R} \quad \text { (inside the wire) } \\
& \mathrm{B}=\left(\frac{\grave{\mathrm{i}}_{\mathrm{o}} \mathrm{I}_{\mathrm{o}}}{2 \pi r}\right) \mathrm{r} \quad \mathrm{r}<\mathrm{R} \quad \text { (outside the wire) }
\end{aligned}
$$

4. The magnetic flux through a surface \mathbf{A} is given by:

$$
\Phi_{\mathrm{m}}=\int \overrightarrow{\mathrm{B}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}
$$

If the area is a plane then and B is uniform then:

$$
\Phi_{\mathrm{m}}=\mathrm{BA} \cos \theta
$$

where θ is angle between \boldsymbol{B} and \mathbf{A}.

