6XP P DM RATRDSWUII

Prepared by Dr. A Mekki

1. The magnetic force that acts on a charged particle of charge q moving with a velocity \boldsymbol{v} in an external magnetic field \boldsymbol{B} is given by;

$$
\vec{F}_{B}=q(\vec{v} \times \vec{B})
$$

where $\boldsymbol{F}_{\boldsymbol{B}}$ is in Newton $(\mathrm{N}), \boldsymbol{q}$ is in coulomb(C), \boldsymbol{v} is in m / s and \boldsymbol{B} is in Tesla (T).

Important:

The magnetic force is perpendicular to both \boldsymbol{v} and \boldsymbol{B}. The magnitude of the force is given by;

$$
F_{B}=q v B \sin \theta
$$

where θ is the angle between the velocity \mathbf{v} and the magnetic field \boldsymbol{B}.
To find the direction of the magnetic force, use the RIGHT HAND RULE.

If the charge is negative, use the opposite of the right hand rule to find the direction of the magnetic force.
2. The velocity selector

A charged particle is moving through crossed fields, that is an electric field and a magnetic field perpendicular to each other. There will be two forces on the charged particle. The particles that pass through undeflected, that is the net force is zero, have a velocity given by

$$
v=\frac{E}{B}
$$

3. If a charged particle moves in a uniform magnetic field \boldsymbol{B} such that \boldsymbol{B} is perpendicular to \boldsymbol{v}, then the particle will move in a circle whose plane is perpendicular to \boldsymbol{B}.

- The radius r of the circle is:

$$
r=\frac{m v}{q B}
$$

where \boldsymbol{m} is mass of the charged particle, \boldsymbol{v} is velocity of the charged particle and \boldsymbol{B} is magnetic field. The radius \boldsymbol{r} is in meters.

- \quad The period \boldsymbol{T} of revolution is

$$
T=\frac{2 \pi m}{q B}
$$

The period is in seconds.

- \quad The angular frequency $\boldsymbol{\omega}$ of he particle is:

$$
\omega=\frac{q B}{m}
$$

The angular frequency is in rad/s.
4. If a straight conductor of length l carries a current I, the force on that conductor in the external magnetic field \boldsymbol{B} is given by;

$$
\vec{F}_{B}=I(\vec{L} \times \vec{B})
$$

where $\mathrm{F}_{\mathbf{B}} \mathrm{S}$ in $\operatorname{Newton}(\mathrm{N})$, I is in $\operatorname{Ampere}(\mathrm{A}), L$ is in meters (m) and B is in Tesla(T).

Special case: For a closed wire carrying a current I in a magnetic field B, the net force is ZERO.
5. The magnetic moment μ of a current loop carrying a current I is:

$$
\vec{\mu}=I \vec{A}
$$

where $\boldsymbol{\mu}$ is magnetic moment (A.m ${ }^{2}$), \boldsymbol{I} is current (A) and \boldsymbol{A} is vector area $\left(\mathrm{m}^{2}\right)$ perpendicular to the plane of the loop.
6. The torque $\boldsymbol{\tau}$ on a current loop placed in a uniform magnetic field \mathbf{B} is:

$$
\vec{\tau}=I \vec{A} \times \vec{B}=\vec{\mu} \times \vec{B}
$$

where τ is magnetic torque (N.m), μ is magnetic moment (A.m ${ }^{2}$) and B is magnetic field (T).

- Magnitude of the torque is:

$$
\tau=\mu B \sin \theta
$$

where θ s the angle between μ and B or A and B .

If there are \mathbf{N} loops then the torque is

$$
\tau=N \mu B \sin \theta
$$

- Direction: Use the right hand rule.

Special cases:

$\tau_{\max }=N I A B=N \mu B$ when $\theta=90^{\circ}$. The loop will rotate until the torque is zero.
$\tau=0$ when $\theta=0$ or $\theta=180^{\circ}$. The loop will not rotate.

