Summary of chapter 28

I. Objective:

1. Learn how to calculate the equivalent resistance for a group of resistor.
2. Use Ohm's and Kirchhoff's laws to solve multi-loop circuits.
3. Study the R-C circuit (charging and discharging effects).

II. Summary of major points:

1. For a series combination of resistors: $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots \cdots \cdots$.

For a parallel combination of resistors: $\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\cdots \cdots \cdots$.
2. IMPORTANT:

* $\quad V_{B}-V_{A}=-\mathbb{R}<0$

When you move in the same direction as the current the potential drops ($\Delta \mathrm{V}$ is negative).

* $\quad \mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=+\mathrm{I}_{\mathrm{R}}>0$

When you move in the opposite direction of the current the potential increases ($\Delta \mathrm{V}$ is positive).

* $\quad \mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=+\varepsilon>0$

When you cross the power supply from - to + the potential increases $(\Delta \mathrm{V}$ is positive).

$$
\text { * } \quad \mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-\varepsilon>0
$$

When you cross the power supply from + to $\boldsymbol{-}$ the potential drops ($\Delta \mathrm{V}$ is negative).

Kirchhoff's Law \# 1:

The sum of the currents at a junction must be zero. This is the law of conservation of charge.

Kirchhoff's Law \# 2:

The sum of the changes in potential around a loop equal zero. This is the law of conservation of energy.
3.

* When a potential difference is applied across an uncharged capacitor then the capacitor will charge up.

The current in the circuit varies in time according to;

$$
I(t)=\frac{a}{R} e^{-\frac{t}{R C}}
$$

The charge on the capacitor plate varies in time according to

$$
\mathrm{Q}(\mathrm{t})=\mathrm{C}\left(1-\mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}\right)
$$

And the potential difference across the capacitor can be calculated from

$$
\mathrm{V}=\mathrm{Q} / \mathrm{C}=\mathrm{a}\left(1-\mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}\right)
$$

Where ε is the potential difference across the battery in Volts, R is the resistance in the circuit in Ohms, and C is the capacitance in Farad The product $\mathbf{R C}$ is called the time constant and has unit of time.

* When a charged capacitor is connected across a resistance \mathbf{R} then the capacitor
will discharge into the resistance.

The current in the circuit varies according to the expression:

$$
\mathrm{I}(\mathrm{t})=\frac{\mathrm{Qo}}{\mathrm{RC}} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}
$$

The charge on the plate of the capacitor varies in time according to the expression:

$$
\mathrm{Q}(\mathrm{t})=\mathrm{Qo} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}
$$

And the potential difference across the capacitor varies in time according to the expression:

$$
\mathrm{V}=\mathrm{Q} / \mathrm{C}=\frac{\mathrm{Qo}}{\mathrm{C}} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}
$$

