<u>Uwo o ct{'qhlej cr vgt '45</u>

Prepared by Dr. A. Mekki

1. The *electric flux* through a planar surface in a uniform electric field \vec{E} is;

 $\Phi = E A \cos q$

where the angle θ is between the vector E and the vector A. The vector A is always <u>perpendicular</u> (normal) to the surface in consideration.

 \succ If $\theta = 0 \implies \phi = E A$

 $\succ \text{ If } \quad \theta = 90^{\circ} \qquad \Rightarrow \quad \phi = 0$

$$\succ$$
 If $\theta = 180^{\circ} \implies \phi = - E A$

 \succ In general $\phi = E A \cos \theta$

If the electric field \mathbf{E} is **not uniform** then we must perform the integration to calculate the electric flux using the relation

$$\Phi = \int \vec{E} d\vec{A}$$

If the surface is *closed*, then the electric flux is given by;

$$\Phi = \oint \vec{E} . d\vec{A}$$

2. The electric flux through a *closed surface* is also given by;

$$\Phi = \frac{q_{enc}}{\boldsymbol{e}_o}$$

where q_{enc} is the charge *inside* the closed surface.

3. *Gauss' law* states that Φ , the electric flux through a closed surface, is given by

$$\Phi_C = \oint \vec{E} \cdot d\vec{A} = \frac{q_{inc}}{e_o}$$

where q_{inc} is the charge enclosed by the *Gaussian surface* and ϵ_o is a the permitivity of free space equal to 8.85 x $10^{-12} \text{ C}^2/\text{N.m}^2$.

Note: Gauss law is generally used to calculate <u>the electric field</u> for a highly symmetric charge distribution.

4. Examples of the use of Gauss law in calculating *the electric field*.

(i) The electric field near the surface (outside) of a charged <u>conductor</u> is

 σ is the *surface charge density* = q / A (C/m²).

The electric field inside any conductor is zero, since the charge always moves to the surface of the conductor and remains there. So there is NO charge inside a conductor.

$$E_{in} = 0$$

 (ii) The electric field due to charged spherical shell of radius R, whether it is <u>insulator</u> or <u>conductor</u>, is:

Since there is no charge inside the shell $\Rightarrow E_{in} = 0$

The electric field outside the shell is

$$E_{out} = k \frac{q}{r^2}$$

where *r* is the distance from the **center** of the shell to the point outside the shell.

(iii) The electric field due to an infinitely long, straight line charge, at a point that is a radial distance r from the line is

 λ is the linear charge density = q/L (C/m)

The electric field outside an thin infinite non-conducting plane (iv) <u>sheet</u> of charge density σ is

The electric field due to a non-conducting (insulating) solid sphere (v) of charge q distributed uniformly thought the sphere of radius R is

$$E_{in} = k \frac{q}{R^3} r$$

 $E_{out} = k \frac{q}{r^2}$

and

(vi) The electric field due to a <u>conducting solid sphere</u> of charge q and radius R.

Since this is a conductor, the charge q will be distributed ONLY on the surface of the sphere and NOT inside it!

$$E_{in} = 0$$

and

$$E_{out} = k \frac{q}{r^2}$$

r is the distance from the center of the sphere to the point outside the sphere where the electric field is to be evaluated.

Summary

Charge Distribution	E(N/C)	Location
Conductor of charge density s	0	inside
	$\frac{\boldsymbol{s}}{\boldsymbol{e}_{o}}$	outside
Infinite thin line charge carrying a	-	
charge density 1	$2k\frac{I}{r}$	
Non-conducting infinite thin plane sheet	S	
carrying a charge density s	2 e	
Spherical shell of radius R and charge q	0	r < R (inside)
(Conducting and non-conducting)	$k\frac{q}{r^2}$	r > R (outside)
Non-conducting solid sphere of radius R and charge q	$\frac{kq}{R^3}r$	r < R (inside)
	$\frac{kq}{r^2}$	r > R (outside)
Conducting solid sphere of radius R and charge a	0	r < R (inside)
	$\frac{kq}{r^2}$	r > R (outside)

$$I = \frac{q}{L}$$
 is the linear charge density (C/m)
$$S = \frac{q}{A}$$
 is the surface charge density (C/m²)
$$r = \frac{q}{V}$$
 is the volume charge density (C/m³)