GXP P DURIRDSNUII

1. The electric flux through a planar surface in a uniform electric field $\overrightarrow{\boldsymbol{E}}$ is;

$$
\Phi=\boldsymbol{E} \boldsymbol{A} \cos \boldsymbol{\theta}
$$

where the angle θ is between the vector E and the vector A. The vector A is always perpendicular (normal) to the surface in consideration.

$>$ If

$$
\theta=0 \quad \Rightarrow \quad \phi=\mathrm{E} \mathrm{~A}
$$

$$
\Rightarrow \text { If } \theta=90^{\circ} \quad \Rightarrow \quad \phi=0
$$

\Rightarrow If $\quad \theta=180^{\circ} \quad \Rightarrow \quad \phi=-E A$
$>$ In general $\quad \phi=\mathrm{E} \mathrm{A} \mathrm{cos} \theta$

If the electric field \mathbf{E} is not uniform then we must perform the integration to calculate the electric flux using the relation

$$
\Phi=\int \vec{E} \cdot d \vec{A}
$$

If the surface is closed, then the electric flux is given by;

$$
\Phi=\oint \vec{E} \cdot d \vec{A}
$$

2. The electric flux through a closed surface is also given by;

$$
\Phi=\frac{q_{\text {enc }}}{\varepsilon_{o}}
$$

where q_{nc} is the charge inside the closed surface.
3. Gauss' law states that Φ, the electric flux through a closed surface, is given by

$$
\Phi_{c}=\oint \vec{E} \cdot d \vec{A}=\frac{q_{i n c}}{\varepsilon_{o}}
$$

where $\mathrm{q}_{\text {inc }}$ is the charge enclosed by the Gaussian surface and ε_{0} is a the permitivity of free space equal to $8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$.

Note: Gauss law is generally used to calculate the electric field for a highly symmetric charge distribution.
4. Examples of the use of Gauss law in calculating the electric field.
(i) The electric field near the surface (outside) of a charged conductor is

$$
E_{\text {out }}=\frac{\sigma}{\varepsilon_{o}}
$$

σ is the surface charge density $=\mathrm{q} / \mathrm{A}\left(\mathrm{C} / \mathrm{m}^{2}\right)$.
The electric field inside any conductor is zero, since the charge always moves to the surface of the conductor and remains there. So there is NO charge inside a conductor.

$$
E_{\text {in }}=0
$$

(ii) The electric field due to charged spherical shell of radius R , whether it is insulator or conductor, is:

Since there is no charge inside the shell $\quad \Rightarrow E_{i n}=0$

The electric field outside the shell is

$$
E_{\text {out }}=k \frac{q}{r^{2}}
$$

where r is the distance from the center of the shell to the point outside the shell.
(iii) The electric field due to an infinitely long, straight line charge, at a point that is a radial distance r from the line is

$$
E=\frac{\lambda}{2 \pi \varepsilon_{o} r}
$$

λ is the linear charge density $=\mathrm{q} / \mathrm{L}(\mathrm{C} / \mathrm{m})$
(iv) The electric field outside an thin infinite non-conducting plane sheet of charge density σ is

$$
E=\frac{\sigma}{2 \varepsilon_{o}}
$$

(v) The electric field due to a non-conducting (insulating) solid sphere of charge q distributed uniformly thought the sphere of radius R is

$$
\begin{aligned}
& E_{\text {in }}=k \frac{q}{R^{3}} r \\
\text { and } \quad E_{\text {out }} & =k \frac{q}{r^{2}}
\end{aligned}
$$

(vi) The electric field due to a conducting solid sphere of charge q and radius R .

Since this is a conductor, the charge q will be distributed ONLY on the surface of the sphere and NOT inside it!

$$
E_{i n}=0
$$

and

$$
E_{\text {out }}=k \frac{q}{r^{2}}
$$

r is the distance from the center of the sphere to the point outside the sphere where the electric field is to be evaluated.

Summary

Charge Distribution	$\mathbf{E}(\mathbf{N} / \mathbf{C})$	Location
Conductor of charge density $\boldsymbol{\sigma}$	0	inside
Infinite thin line charge carrying charge density $\boldsymbol{\lambda}$	$\frac{\sigma}{\varepsilon_{o}}$	outside
Non-conducting infinite thin plane sheet carrying a charge density $\boldsymbol{\sigma}$	$\frac{\sigma}{2 \varepsilon_{o}}$	
Spherical shell of radius \mathbf{R} and charge \mathbf{q} (Conducting and non-conducting)	0	$\mathrm{r}<\mathrm{R}$ (inside)
Non-conducting solid sphere of radius and charge \mathbf{q}	$\frac{k q}{R^{3}} r$	$\mathrm{r}<\mathrm{R}$ (inside)
Conducting solid sphere of radius R charge \mathbf{q}	$\frac{\mathrm{kq}}{r^{2}}$	$\mathrm{r}>\mathrm{R}$ (outside)

$\boldsymbol{\lambda}=\frac{q}{L} \quad$ is the linear charge density (C / m)
$\sigma=\frac{q}{A} \quad$ is the surface charge density $\left(\mathrm{C} / \mathrm{m}^{2}\right)$
$\boldsymbol{\rho}=\frac{q}{V} \quad$ is the volume charge density $\left(\mathrm{C} / \mathrm{m}^{3}\right)$

