Uwo o ct{'qhej cr vgt '43

Prepared by Dr. A. Mekki

1.

- There are two types of electric charges in nature;
 Positive charge (proton) and negative charge (electron).
- An object is positively charged if it has lost electrons.
- An object is negatively charged if it has gained electrons.
- 2. **Conductors** are materials in which electric charge (electrons) can move quite freely. Metals such as copper and aluminum are conductors.

Insulators are materials in which electric charge (electrons) are *not* free to move. Materials such as glass, rubber, and plastic are insulators.

Semi-conductors have electrical properties between metals and insulators.

3. Coulomb's Law state that the **electrostatic force** between two charged particles separated by a distance r is given by:

$$F = \frac{1}{4\mathbf{pe}_o} \frac{\left| q_1 \right| \left| q_2 \right|}{r^2}$$

$$\frac{1}{4pe_{O}} = k = 9 \times 10^{-9} \text{ N m}^2/\text{C}^2$$

 ε_0 is the permittivity of free space and k is the electrostatic constant, q_1 and q_2 are the charges of the two particles and r is the distance between the two charges.

• If the two charges have <u>same signs</u>, there is **repulsion** between them.

• If the two charges have <u>opposite signs</u>, there is **attraction** between them.

4. The shell theorem

(i) A charge q is outside a uniformly charged shell carrying a charge Q.

The force on the charge q in both cases is

$$F = \frac{1}{4\mathbf{pe}_o} \frac{|Q||q|}{r^2}$$

q

If the charge q in inside the uniformly charged shell then the force on the charge q is **ZERO**.

- The elementary charge is that of the electron $|e| = 1.6 \times 10^{-19} \text{ C}$. Any charge on a body is an integer multiple of the electron charge,i.e., $Q = n e, n = \pm 1, \pm 2,...$
- Electric charge is always conserved. It can be transferred from one body to another but cannot be lost.