- 1. Entropy, S, is a measure of the disorder.
- 2. Most of the processes in our life are irreversible, that is they happen in one-way.

The change of entropy for an <u>irreversible process</u> in a closed system is <u>always positive</u>.

3. Entropy is a <u>state function</u>, just like the internal energy, i.e., it depends only on <u>the initial</u> and <u>the final</u> state of the system.

So: The change in entropy, **DS**, for an irreversible process that takes the system from an initial state i to a final state f is <u>EQUAL</u> to the change in entropy for any reversible process that takes the system between those same two states.

4. The change in entropy for any reversible process can be calculated by

$$\Delta S = \int \frac{dQ}{T} \quad T \text{ in Kelvin}$$

The unit is J/K.

5. If an <u>ideal gas</u> is taken from state i to state f through a reversible process, then the change in entropy is

$$\Delta S = nc_v \ln(\frac{T_f}{T_i}) + nR \ln(\frac{V_f}{V_i})$$
For isothermal process, $T_i = T_f$ \Rightarrow $\Delta S = nR \ln(\frac{V_f}{V_i})$

For isochoric process,
$$V_i = V_f$$
 $\Rightarrow \Delta S = nc_v \ln(\frac{T_f}{T_i})$

For isobaric process,
$$Pi = Pf$$
 $\Rightarrow \Delta S = nc_p \ln(\frac{T_f}{T_i})$

For adiabatic process,
$$Q = 0$$

For a cyclic reversible process, $\Delta S = 0$ (because $S_f = S_i$)

- 6. If a *solid* or *liquid* is heated or cooled, then the change in entropy is
 - change in temperature only $\Delta S = mc \ln(\frac{T_f}{T_i})$ (i)
 - change in phase only (ii)
 - Solid \rightarrow liquid Liquid \rightarrow gas
- 7. The second law of thermodynamics is expressed in the following way:

$$\Delta S \ge 0$$

8. A heat engine is a device that converts heat into mechanical or electrical energy.

The efficiency of the any heat engine is

$$\boldsymbol{e} = \frac{|W|}{|Q_H|}$$

For an <u>ideal</u> heat engine (reversible cycle) $|Q_H| = |Q_c| + |W|$

$$\mid Q_{\rm H}\mid \ = \mid Q_{\rm c}\mid \ + \mid W$$

$$e = 1 - \frac{|Qc|}{|Q_H|} = 1 - \frac{T_C}{T_H}$$
 T in Kelvin

A perfect engine would have efficiency of 1. This would happen if $T_C = 0$ or T_H infinite which is impossible.

9. A <u>refrigerator</u> (or a heat pump) is a heat engine working in reverse.

The coefficient of performance of a refrigerator is defined as

$$K = \frac{|Q_C|}{|W|}$$

For an ideal refrigerator (reversible) the coefficient of performance is

$$K = \frac{|Q_C|}{|Q_H| - |Q_C|} = \frac{T_C}{T_H - T_C}$$
 T in Kelvin

The coefficient of performance of a heat pump is defined as

$$K = \frac{\left| Q_H \right|}{\left| W \right|}$$

For an **ideal** heat pump (reversible) the coefficient of performance is

$$K = \frac{\left| Q_H \right|}{\left| Q_H \right| - \left| Q_C \right|} = \frac{T_H}{T_H - T_C}$$