Interactions of Charged Particles With Matter

Chapter # 4

Mode of Interaction depends:

– Type of Radiation

– Energy of Radiation

– Type of Material
General Properties of Radiation

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Charge</th>
<th>Rest Mass</th>
<th>Range</th>
<th>Ionizing Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Nucleus of He Atom</td>
<td>+2e</td>
<td>6.6×10⁻²⁷ kg</td>
<td>Very Short (<0.1 mm in tissue)</td>
<td>Very High</td>
</tr>
<tr>
<td>β</td>
<td>Electron/ Positron</td>
<td>-1e/ +1e</td>
<td>9.1×10⁻³¹ kg</td>
<td>> α (Few mm in tissue)</td>
<td>< α</td>
</tr>
<tr>
<td>γ</td>
<td>Electromagnetic</td>
<td>0</td>
<td>≫ β (Whole Body)</td>
<td>≫ β (Several cm in tissue)</td>
<td>≪ β</td>
</tr>
<tr>
<td>n</td>
<td>Nucleon</td>
<td>0</td>
<td>1.67×10⁻²⁷ kg</td>
<td>≫ β</td>
<td>≪ β</td>
</tr>
</tbody>
</table>

Benefits of Radiation Interaction Studies

Nuclear Radiation is invisible to the eye, has no smell or taste. Only through its effects on matter one can

- Identify the type, intensity and energy of the radiation
- Understand radiation hazards to biological tissue
- Design suitable Radiation Shielding
- Build appropriate Radiation detectors
Radiation Groups with similar Mode of Interaction:

- Charged Particles
 - Heavy Particles: p, d, α, Heavy Ions
 - Light Particles: e−, e+
- Gamma Rays and X-Rays
- Neutrons

Interaction of Heavy Charged Particles with Matter

- Excitation of Atoms of matter
- Ionization of Atoms of Matter
- Bremsstrahlung Interaction with Coulomb Field of Atomic Nuclei of Matter
- Nuclear Reaction with Nuclei of Matter
Excitation Process

Ionization Process
Bremsstrahlung Process

- More probable with light charged particles such as electrons

Nuclear Reaction Process

- Possible only at high enough energy to penetrate the nucleus
- Much less likely than the other 3 processes
Some Important Terms in Charged Particle Interactions:

- **Stopping Power or Specific Energy Loss (S)**
 Rate of energy loss per unit length in the medium
 \[S = - \frac{dE}{dX} \]

- **Linear Energy Transfer (LET)**
 Mean energy transferred to the medium per unit length

- **Specific Ionization (I_s)**
 Number of ion pairs produced in the medium per unit length. Greater for heavy particles than electrons

- **W Value (E_{av})**
 Average energy spent to create one ion pair. In air \(W \) is about 35 eV per ion pair

Some Important Terms in Charged Particle Interactions

- **Range (R)**
 Distance traveled by a particle before coming to a full stop
 Range of a particles in Air: \(R_{air} = 0.325 \times E^{3/2} \)
 \((R \) is in cm and \(E \) is in MeV) \n Range in other materials: \(R_M = 3.2 \times 10^{-4} \times R_{air} \times M^{1/2} / \rho \)
 \((R_M \) is range is range in material of density \(\rho \) and atomic weight \(M \))

- **Relative Stopping Power:**
 Ratio of the range of a particle in air to its range in some other material
 Relative stopping power = \(R_{air}/R_M = 3100 \times \rho/M^{1/2} \)
Interaction of Beta Particles with Matter

• Excitation and Ionization
 Appreciable at low energy and in light (low Z) materials

• Bremsstrahlung Radiation
 Dominant at high energy (> 10 MeV)
 Greater in heavy (high Z) materials

• Range of Beta particles
 \[R \times \rho = 0.412 \times E^{1.265} - 0.0954 \times \ln E \quad \text{for} \ E < 2.5 \text{ MeV} \]
 \[R \times \rho = 0.412 \times E^{-0.106} \quad \text{for} \ E > 2.5 \text{ MeV} \]

R(range) in cm, \(\rho \) (density) in g/cm\(^3\), E(energy) in MeV,
R\(\times \rho \) (equivalent thickness) in g/cm\(^2\)

Energy Straggling

After passing through a material, a group of particles having the same initial energy will have a spread in energy.
Range Straggling

Range Straggling

Fluctuations in the range of a group of particles having the same initial energy

\[R_p = \text{Mean Range inside a material} \]

Example 1:
Determine the number of ion pairs produced by a 10 MeV proton.

Solution:
Energy required to produce one ion pair = 35 eV
No. of ion pairs = \(10 \times 10^4\) eV/35 eV = \(2.86 \times 10^6\)

Example 2:
Calculate the thickness of Al (\(\rho = 2.7 \text{ g/cm}^3\)) necessary to stop 5 MeV alpha particles.

Solution:
\(R_m = 0.325 \times 35 = 0.325 \times (5)^{35} = 3.6 \text{ cm}\)
\(R_a = 3.2 \times 10^{-4} \times (3.6) \times \text{sqrt}(27) / 2.7 = 0.002 \text{ cm}\)
Example 3

Tritium emits beta- particles with a maximum energy of 18.6 keV. What is the maximum range of these beta rays in air and in water?

Solution

\[R \times \rho = 0.412 \times 0.0186 \times 1.265 - 0.0954 \times \ln(0.0186) = 0.000586 \text{ g/cm}^2 \]

- At standard ambient temperature and pressure (25 °C and 100 kPa) dry air has a density of \(\rho_{SATP} = 1.168 \text{ kg/m}^3 = 0.001168 \text{ g/cm}^3 \)

\[R_{air} = 0.5 \text{ cm} \]

- \(\rho_{Water} = 1 \text{ g/cm}^3 \)

\[R_{Water} = 0.000586 \text{ cm} = 5.86 \mu\text{m} \]
Interactions of Neutrons with Matter

Chapter # 8

General Properties of Neutrons

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>n</td>
</tr>
<tr>
<td>Nature</td>
<td>Nucleon</td>
</tr>
<tr>
<td>Charge</td>
<td>0</td>
</tr>
<tr>
<td>Rest Mass</td>
<td>1.6×10^{-27} kg</td>
</tr>
<tr>
<td>Range</td>
<td>Much larger than α or β particles</td>
</tr>
<tr>
<td>(can penetrate several cm of tissue)</td>
<td></td>
</tr>
<tr>
<td>Ionizing Power</td>
<td>Much less than α or β particles</td>
</tr>
</tbody>
</table>
Sources of Neutrons

A. Radioisotope Sources

1. \((\alpha, n)\) Sources: \(^{241}\text{Am-Be}, \, ^{210}\text{Po-Be}\)

2. \((\gamma, n)\) Sources: \(^{124}\text{Sb-Be}, \, ^{24}\text{Na-Be}\)

3. Spontaneous Fission: \(^{252}\text{Cf}\)

Sources of Neutrons

B. Accelerator Sources

1. Electron Accelerators: High Energy Bremsstrahlung radiation from these accelerators is used in nuclear reactions to produce neutrons

\[^{9}\text{Be} + \gamma = ^{8}\text{Be} + n \]

2. Low Energy Positive Ion Accelerators (~ 300 keV): Deuterons and Tritons from these accelerators are used in nuclear reactions to produce neutrons

a. D-T reactions: \(^{2}\text{H} + ^{3}\text{H} = ^{4}\text{He} + n\) \((E_n = 14\text{ MeV})\)

b. D-D Reactions: \(^{2}\text{H} + ^{2}\text{H} = ^{3}\text{He} + n\) \((E_n = 3\text{ MeV})\)
Sources of Neutrons

B. Accelerator Sources

3. High Energy Positive Ion Accelerators (~ 1-10 MeV):
Particles with MeV energies from these accelerators are used in nuclear reactions to produce neutrons

\[^7\text{Li} + p = ^7\text{Be} + n \]

4. Fission Reactor Sources
Reactors are good sources of high flux neutrons arising from the fission process

\[^{235}\text{U} + n = \text{Fission Fragments} + (2-3) \text{ neutrons} \]
Average energy of fission neutrons \(E_n = 2 \text{ MeV} \)

Classification of Neutrons

1. Thermal Neutrons: \(E = 0.025 \text{ eV} \)
2. Slow Neutrons: \(E < 0.5 \text{ eV} \)
3. Intermediate Energy Neutrons: \(0.5 \text{ eV} < E < 10 \text{ keV} \)
4. Fast Neutrons: \(E > 10 \text{ keV} \)
Neutron Interaction Cross Section

Defined as the probability of interaction with a material

- **Macroscopic Cross Section:** Σ
 Probability of Interaction per unit length in a material:
 Unit: cm$^{-1}$

- **Microscopic Cross Section:** σ
 Probability of interaction per nucleus of material
 Unit: Barn
 1 Barn $= 10^{-24}$ cm2

Relation Between Macroscopic and Microscopic Cross Sections

$$\Sigma = N \sigma$$

N is the number of atoms per cm3 of the material

$$N = \rho N_A / M$$

ρ = Density of the material (g/cm3)

M = Molar Mass of the material (g/mole)

N_A = Avogadro’s Number $= 6.02 \times 10^{23}$ (atoms/mole)
Neutron Interaction Processes

A. Elastic Scattering from Nuclei of Material: (Billard Ball)

Most probable Interaction Process

- Elastic Scattering:
 \[KF_n + KE_N \text{ (before)} = KF_n + KE_N \text{ (after)} \]

- Amount of energy lost by a neutron in each elastic collision
 \[\Delta E = [(1-\alpha)/2]E_o \]

\[E_o = \text{Initial Neutron energy} \]
\[\alpha = [(A-1)/(A+1)]^2 \]
\[A = \text{Atomic mass of the target} \]

Example 1

Calculate energy lost by a 1 MeV neutron in one collision with a hydrogen nucleus

Solution

Here \(A = 1 \), so \(\alpha = [(A-1)/(A+1)]^2 = 0 \) therefore \(\Delta E = [(1-\alpha)/2]E_o = 0.5 \text{ MeV} \)

Light nuclei are more efficient to reduce neutron energy by elastic collision. For example:

<table>
<thead>
<tr>
<th>Scattering Nucleus</th>
<th>Energy Loss Per Collision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>50%</td>
</tr>
<tr>
<td>Carbon</td>
<td>14%</td>
</tr>
<tr>
<td>Uranium</td>
<td>1%</td>
</tr>
</tbody>
</table>

This is why water or graphite is mostly used as moderator in reactors.
Neutron Interaction Processes

B. Inelastic Scattering

\[KE_n + KE_N \text{ (before)} = KE_n + KE_N \text{ (after)} \]

C. Radiative Capture Process

Neutrons are absorbed giving \(\gamma \) radiation:

\[^1H + n = ^2H + \gamma \quad (E_\gamma = 2.52 \text{. MeV}) \]

D. Charged Particle Reactions

\[^{10}B + n = ^7Li + \alpha \]

E. Fission Reactions

\[^{235}U + n = \text{Fission Fragments} + (2-3) \, n \]
Mean Free Path

Average distance that a neutron travels between collisions.
It is related to the linear absorption coefficient Σ by:

$$\lambda = \frac{1}{\Sigma}$$

Relaxation Length R_l

Thickness of Material necessary to attenuate a neutron beam by $1/e$ (37%); $e=2.72$ is the base of natural logarithm.

$$\frac{I(X=R_l)}{I_0} = e^{-\Sigma \times R_l} = \frac{1}{e} = e^{-1}$$

$$\Sigma \times R_l = 1$$

$$R_l (cm) = \frac{1}{\Sigma}$$
Relative Hazards of Charged Particles

- Hazard from external α sources is minimal since α particles have short ranges. α’s are easily stopped by the skin. Protective eye cover required.
- Hazard from internal α sources can be significant in some sensitive organs from direct ionization.
- Because of their greater range, external beta particles can penetrate the skin and deposit their energy in sensitive tissues.
- Internally, beta sources can cause significant damage by ionization.
Relative Hazards Gamma Rays

- γ-Rays and X-rays from external sources are significant hazards because of their long range.

- Because photons penetrate large thicknesses, the damage to tissue will extend throughout the body.

Relative Hazards of Neutrons

- Neutrons are uncharged, and so they travel long distances, and can be an external hazard.

- Deeper, sensitive tissues are exposed to external neutron field

- Damage to tissues is dependent on neutron energy. 50% of neutron energy is lost in tissues in a single collision with hydrogen nuclei.

- Absorption and inelastic collisions with tissue materials gives rise to γ radiation which compounds the problem

- Neutrons can also produce recoil charged particles in tissue which can cause ionization damage
Interaction of Photons with Matter

Chapter # 6

General Properties of Photons

- Category = Gamma rays (γ) and X-rays
- Nature = Electromagnetic Radiation
- Charge = 0
- Rest Mass = 0
- Range = Much larger than α and β particles (can penetrate whole body)
- Ionizing Power = Much less than α and β particles
Interaction Processes for Photons with Matter

- **Photoelectric Effect**
 An incident photon spends all its energy to eject an electron (photoelectron) from the atom of the material.

- **Compton Scattering**
 Incident Photon loses part of its energy in ejecting an electron from the atom, and is itself scattered with a lower energy.

- **Pair Production Process**
 A photon passing near a nucleus of the material disappears, giving up all its energy to create an electron-positron pair. A positron is an electron with a positive charge.

\[E \propto \frac{Z^4}{E_i^2} \]
Compton Scattering

Most dominant process in the photon energy range between 0.1 and 10 MeV.

The scattered photon energy is given by

\[E' = \frac{E_e}{1 + (E_e / 0.511 \text{ MeV})(1 - \cos \theta)} \]

Pair Production Process

- Dominant process at photon energy above 10 MeV.
- Minimum photon energy necessary for pair production: \(E_e = 1.02 \text{ MeV} \)
 = Sum of the Rest Mass Energies of the positron and the electron
- Rest Mass Energy of an Electron or a Positron: \(E_{\text{rest}} = m_e c^2 = 0.51 \text{ MeV} \)
Pair Annihilation Phenomenon

\[e^+ + e^- \rightarrow \gamma_a + \gamma_b \]

Attenuation of Photons in Matter

\[I(x) = I_0 e^{-\mu x} \]

- \(\mu \) = Linear Attenuation Coefficient
 - Probability of attenuation per unit length in the absorber (cm\(^{-1}\)).
- Mass Attenuation Coefficient = Linear Attenuation Coeff / Density
 \[\mu_{\text{m}} = \mu \rho \]
 Unit of \(\mu_{\text{m}} \): (cm\(^{-1}\)) g/cm\(^3\) = cm\(^2\)/g

\[I(d) = I_0 e^{-\mu_{\text{m}} d} \]
 \(d \) = equivalent thickness = \(x/\rho = (g/cm^2) \)

Att. Coeff vary with \(\gamma \) energy and material type.
Total Absorption Coefficient for a Material

\[\mu_{\text{total}} = \mu_{\text{pe}} + \mu_c + \mu_{\text{pp}} \]

where

pe = photoelectric process

c = Compton Scattering process

pp = pair production process
Attenuation Coefficient for a Mixed Material

\[
\mu = \left[W_1 \mu_1 + W_2 \mu_2 + W_3 \mu_3 + \ldots \right]/100
\]

where

\(\mu_1, \mu_2, \mu_3 = \) attenuation coefficient for individual components in the mixture

\(W_1, W_2, W_3 = \) percents by weight of the constituents

Mean Free Path

Average distance a photon travels between collisions with the atoms in the absorber. It is related to the linear absorption coefficient.

\[
\lambda = 1/\mu
\]
Relaxation Length

Thickness of material necessary to attenuate the photon beam by 1/e (or by 37%)

e is the base of the natural logarithm = 2.72

\[I = I_0 \times e^{-\mu x} \]

\[\frac{I}{I_0} = \frac{1}{e} = e^{-\mu R_l} \]

Take ln of both sides

\[-1 = -\mu R_l \]

Therefore

\[R_l = \frac{1}{\mu} \]

Half Value Layer (HVL)

Thickness of material needed to reduce initial radiation intensity by half

Putting \(I(X = \text{HVL}) = \frac{1}{2} I_0 \) in the attenuation equation \(I = I_0 \times e^{-\mu x} \)

\[\frac{1}{2} = e^{-\mu \times \text{HVL}} \]

Taking ln of both sides

\[-0.693 = -\mu \times \text{HVL} \]

\[\text{HVL} = \frac{0.693}{\mu} \]
Example 1

The linear attenuation coefficient of lead for 1 MeV gamma ray is 0.74 cm⁻¹. Calculate

(a) Half value thickness
(b) Thickness of lead necessary to reduce the intensity of the gamma rays to 1/1000 of its initial value.

Solution

(a) HVL \[X_{\text{hal}} = \frac{0.693}{\mu} = \frac{0.693}{0.74} = 0.94 \text{ cm} \]

(b) \[I = I_0 e^{-\mu x} \quad \frac{I}{I_0} = 1/1000 = e^{-\mu x} \quad 0.001 = e^{-0.74x} \]

\[\ln (0.001) = \ln (e^{-0.74x}) \]

\[-6.9 = -0.74x \]

\[x = 9.3 \text{ cm} \]

Example 2.

A 5-cm thick Pb plate is used to attenuate gamma rays from Co-60. What percent of the initial radiation penetrates the plate?

Linear attenuation coefficient for maximum energy gamma rays from Co-60 in Pb = 0.66 cm⁻¹.

Solution

Highest energy gamma rays from Co-60 = 1.33 MeV

\[I = I_0 e^{-\mu x} \quad \frac{I}{I_0} = e^{-\mu x} = e^{-0.66} \quad (5) \]

Take ln

\[\ln \frac{I}{I_0} = \ln (e^{-0.66}) = -0.66 \quad (5) \]

\[\ln \frac{I}{I_0} = -3.3 \]

Take anti ln

\[\frac{I}{I_0} = 0.037 = 3.7 \% \]
Example 3
Calculate (a) the mass attenuation coefficient and (b) the mean free path for 1 MeV gamma rays in lead from the following data: 4.5 cm thickness of lead reduces the radiation intensity by 95%.

Solution

(a) \(I = I_0 e^{-\mu x} \)
\(\frac{I}{I_0} = \frac{5}{100} = e^{-\mu x} \)
\[0.05 = e^{-\mu \cdot 4.5} \]
\[\ln(0.05) = \ln(e^{-4.5\mu}) \]
\[-3 = -4.5\mu \]
\[\mu = 0.7 \text{ cm}^{-1} \]
\[\mu_{\text{m}} = \frac{\mu}{\rho} = \frac{0.7 \text{ cm}^{-1}}{11.4} = 0.06 \text{ cm}^2 / \text{g} \]

(b) Mean Free Path, \(\lambda = \frac{1}{\mu} = 1.4 \text{ cm} \)